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Abstract

In this paper, a quadratic system with two parallel straight line-isoclines is con-
sidered. This system corresponds to the system of class II in the classification of
Ye Yanqian [13]. Using the field rotation parameters of the constructed canonical
system and geometric properties of the spirals filling the interior and exterior do-
mains of its limit cycles, we prove that the maximum number of limit cycles in
a quadratic system with two parallel straight line-isoclines and two finite singular
points is equal to two. Besides, we obtain the same result in a different way: apply-
ing the Wintner–Perko termination principle for multiple limit cycles and using the
methods of global bifurcation theory developed in [7].

Keywords: planar quadratic dynamical system; isocline; field rotation parameter;
bifurcation; limit cycle; Wintner–Perko termination principle

1 Introduction

We consider the system of differential equations

ẋ = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2,

ẏ = b00 + b10x + b01y + b20x
2 + b11xy + b02y

2
(1.1)
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with the real coefficients aij, bij in the real variables x, y, where at least
one quadratic term has a coefficient unequal to zero. Such a system will be
referred to as a quadratic system. The main problem of the qualitative theory
of system (1.1) is Hilbert’s Sixteenth Problem on the maximum number and
relative position of its limit cycles, i. e., closed isolated trajectories of (1.1)
[1], [7], [10]–[13]. The solution of this problem could give us all possible phase
pertraits of system (1.1) and, thus, could complete its qualitative analysis.

Earlier [4]–[9], we studied a quadratic system with two intersecting straight
line-isoclines. In this paper, we will study a quadratic system with two parallel
straight line-isoclines. Such a system corresponds to the system of class II in
the classification of Ye Yanqian [13]:

ẋ = λ x− y + l x2 + m xy + n y2,

ẏ = x + x2.
(1.2)

Applying a new geometric approach to the study of limit cycle bifurcations
developed in [9], we will prove that a quadratic system with two parallel
sraight line-isoclines and two finite singular points has at most two limit cy-
cles (a quadratic system with one sraight line-isocline was studied in detail
in [1]). The same result will be obtained in a different way: applying the
Wintner–Perko termination principle for multiple limit cycles [11] and using
the methods of global bifurcation theory developed in [7].

In particular, in Section 2, we construct a canonical system with field rotation
parameters corresponding to the system of class II in the classification of Ye
Yanqian [13]. In Section 3, using the canonical system and geometric properties
of the spirals filling the interior and exterior domains of limit cycles, we obtain
the main result of this paper on the maximum number of limit cycles of a
quadratic system with two parallel straight line-isoclines. In Section 4, we
obtain the same result applying the Wintner–Perko termination principle for
multiple limit cycles.

2 Canonical systems

First, we have to construct canonical quadratic systems with field rotation
parameters for studying limit cycle bifurcations. The following theorem is
valid.

Theorem 2.1. A quadratic system with limit cycles can be reduced to the

2



canonical form

ẋ = −y (1 + x + α y),

ẏ = x + (λ + β + γ)y + a x2 + (α + β + γ)xy + c γ y2
(2.1)

or

ẋ = −y (1 + ν y) ≡ P, ν = 0; 1,

ẏ = x + (λ + β + γ)y + a x2 + (β + γ)xy + c γ y2 ≡ Q.
(2.2)

Proof. As was shown in [7], by means of Erugin’s two-isocline method [3], an
arbitrary quadratic system with limit cycles can be reduced to the form

ẋ = −y + mxy + ny2,

ẏ = x + λy + ax2 + bxy + cy2,
(2.3)

where m = −1 or m = 0.

Input the field rotation parameters into this system so that (2.1) corresponds
to the case of m = −1 and (2.2) corresponds to the case of m = 0.

Compare (2.1) with (2.3) when m = −1. Firstly, we have changed several
parameters: n by−α; b by β; c by c γ. Secondly, we have input additional terms
into the expression for ẏ : (β + γ) y and (α + γ) xy. Similar transformations
have been made in system (2.3) when m = 0; but in this case, we have denoted
n by ν assigning two principal values to this parameter: 0 and 1. It is obvious
that all these transformations do not restrict generality of systems (2.1) and
(2.2) in comparison with system (2.3), which proves the theorem. �

System (2.1) is a basic system for studying limit cycle bifurcations. It contains
four field rotation parameters: λ, α, β, γ. This system has been considered in
[9]. Now we will consider system (2.2). The following lemma is valid for (2.2).

Lemma 2.1. Each of the parameters λ, β, and γ rotates the vector field of
system (2.2) in the domains of existence of its limit cycles, under the fixed
other parameters of this system, namely : when the parameter λ, β, or γ in-
creases (decreases), the field is rotated in positive (negative) direction, i. e.,
counterclockwise (clockwise), in the domains, respectively :

1 + ν y < 0 (> 0);

(1 + x)(1 + ν y) < 0 (> 0);

(1 + x + c y)(1 + ν y) < 0 (> 0).
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Proof. Using the definition of a field rotation parameter [2], [7], we can cal-
culate the following determinants:

∆λ = PQ′
λ −QP ′

λ = −y2(1 + ν y);

∆β = PQ′
β −QP ′

β = −y2(1 + x)(1 + ν y);

∆γ = PQ′
γ −QP ′

γ = −y2(1 + x + c y)(1 + ν y).

Since, by definition, the vector field is rotated in positive direction (counter-
clockwise) when the determinant is positive and in negative direction (clock-
wise) when the determinant is negative [2], [7] and since the obtained domains
correspond to the domains of existence of limit cycles of (2.2), the lemma is
proved. �

3 Limit cycle bifurcations

We will study limit cycle bifurcations of canonical system (2.2) with two paral-
lel straight line-isoclines and three field rotation parameters. We will consider
the case when system (2.2) has only two finite singularities: a saddle and an
anti-saddle (all other cases can be considered in an absolutely similar way).
Let us prove the following theorem.

Theorem 3.1. System (2.2) with two parallel straight line-isoclines and two
finite singular points can have at least two limit cycles surrounding the origin.

Proof. To prove the theorem, fix, for example, a = 1 and take c > 1 in
system (2.2) for ν = 1. Then vanish all field rotation parameters of (2.2),
β = γ = λ = 0:

ẋ = −y (1 + y),

ẏ = x + x2.
(3.1)

We have got a system with the zero divergence and four finite singular points:
two centers and two saddles (a Hamiltonian case).

Input, for example, a positive parameter γ into system (3.1):

ẋ = −y (1 + y),

ẏ = x + γ y + x2 + γ xy + c γ y2.
(3.2)

On increasing the parameter γ, the vector field of (3.2) is rotated in negative
direction (clockwise) and the center at the origin turns into an unstable focus.
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Suppose that γ satisfies the condition

−1 + 2
(
c−

√
c(c− 1)

)
< γ < −1 + 2

(
c +

√
c(c− 1)

)
. (3.3)

In this case we will have only two finite sigularities: a saddle (−1, 0) and an
anti-saddle (0, 0).

Fix γ and input a negative parameter β into system (3.2):

ẋ = −y (1 + y),

ẏ = x + (β + γ) y + x2 + (β + γ) xy + c γ y2.
(3.4)

On decreasing the parameter β, the vector field of (3.4) is rotated in posi-
tive direction, and, for some value βS of the parameter β, a separatrix loop is
formed around the origin generating a stable limit cycle for β < βS (an un-
stable limit cycle cannot appear from the origin because of the negative first
focus quantity at the origin for γ > 0 when β + γ = 0 [1]).

Fix β satisfying the condition 0 < β + γ � 1 and input a positive parameter
λ into system (3.4):

ẋ = −y (1 + y),

ẏ = x + (λ + β + γ) y + x2 + (β + γ) xy + c γ y2.
(3.5)

To have still two finite singularities, we also suppose that the parameters β, γ,
and λ satisfy the condition

−1−
√

4cγ − 1 < β + γ + λ < −1 +
√

4cγ − 1. (3.6)

On increasing the parameter λ, the vector field of (3.5) is rotated in negative
direction, and, for some value λ = λS, a separatrix loop is formed around the
origin again generating an unstable limit cycle for λ > λS (the stable limit
cycle cannot disappear through the loop because of the positive divergence at
the saddle (−1, 0) for λ > 0 [1]).

Thus, we have obtained at least two limit cycles surrounding the focus (0, 0),
which proves the theorem. �

Let us prove now a much stronger theorem (it is the main result of our paper).

Theorem 3.2. System (2.2) with two parallel straight line-isoclines and two
finite singular points has at most two limit cycles surrounding the origin.

Proof. Consider again system (2.2) for ν = 1, a = 1, and c > 1 supposing
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that condition (3.6) is also valid. All other particular cases of (2.2) can be
considered in a similar way.

Vanishing all field rotation parameters of system (3.1), β = γ = λ = 0, we
have got again Hamiltonian system (3.1) with four finite singular points: two
centers and two saddles. Let us input successively the field rotation parameters
into (3.1).

Begin, for example, with the parameter γ supposing that γ > 0. Then we
get system (3.2). On increasing the parameter γ, the vector field of (3.2) is
rotated in negative direction (clockwise) and the center at the origin turns
into an unstable focus. We also suppose that γ satisfies condition (3.3) and
that we have only two finite sigularities in this case: a focus (0, 0) and a saddle
(−1, 0).

Fix γ and input a negative parameter β getting system (3.4). On decreasing
the parameter β, the vector field of (3.4) is rotated in positive direction, and,
for some value βS of the parameter β, a separatrix loop is formed around the
origin generating a stable limit cycle for β < βS. As we noted above, a limit
cycle cannot appear from the origin because of the negative first focus quantity
at the origin for γ > 0 when β + γ = 0 [1].

Denote the limit cycle by Γ1, the domain inside the cycle by D1, the domain
outside the cycle by D2 and consider logical possibilities of the appearance of
other (semi-stable) limit cycles from a “trajectory concentration” surrounding
the focus (0, 0). It is clear that on decreasing β, a semi-stable limit cycle cannot
appear in the domain D2, since the outside spirals winding onto the cycle will
untwist and the distance between their coils will increase because of the vector
field rotation in positive direction.

By contradiction, we can also prove that a semi-stable limit cycle cannot
appear in the domain D1. Suppose it appears in this domain for some values
of the parameters γ∗ > 0 and β∗ < 0. Return to initial system (3.1) and change
the order of inputting the field rotation parameters. Input first the parameter
β < 0:

ẋ = −y (1 + y),

ẏ = x + β y + x2 + β xy.
(3.7)

Fix it under β = β∗. The vector field of (3.7) is rotated in negative direction
and (0, 0) becomes a stable focus. Inputting the parameter γ > 0 into (3.7),
we have got again system (3.4), the vector field of which is rotated in posi-
tive direction. Under this rotation, for γ = −β, the focus (0, 0) changes the
character of its stability, and a stable limit cycle Γ1 appears from the origin.
This cycle will expand, the focus spirals will untwist, and the distance between
their coils will increase on increasing the parameter γ to the value γ = γ∗. It
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follows that there are no values of γ = γ∗ and β = β∗, for which a semi-stable
limit cycle could appear in the domain D1.

This contradiction proves the uniqueness of a limit cycle surrounding the focus
(0, 0) in system (3.4) for any values of the parameters γ and λ of different signs.
Obviously, if these parameters have the same sign, system (3.4) has no limit
cycles surrounding (0, 0) at all.

Let system (3.4) have the unique limit cycle Γ1. Fix the parameters γ > 0,
β < 0 and input the third parameter, λ > 0, getting system (3.5). On increas-
ing the parameter λ, the vector field of (3.5) is rotated in negative direction,
and, for some value λ = λS, a separatrix loop is formed around the origin
again generating an unstable limit cycle for λ > λS. Note again that a limit
cycle cannot disappear through the loop because of the positive divergence at
the saddle (−1, 0) for λ > 0 [1]. Denote this cycle by Γ2. On further increasing
λ, the limit cycle Γ2 will join with Γ1 forming a semi-stable limit cycle, Γ12,
which will disappear in a “trajectory concentration” surrounding the origin
(0, 0). Can another semi-stable limit cycle appear around the origin in addition
to Γ12? It is clear that such a limit cycle cannot appear either in the domain
D1 bounded by the origin and Γ1 or in the domain D3 bounded on the inside
by Γ2 because of the increasing distance between the spiral coils filling these
domains on increasing λ.

To prove impossibility of the appearance of a semi-stable limit cycle in the
domain D2 bounded by the cycles Γ1 and Γ2 (before their joining), suppose
the contrary, i. e., for some set of values of the parameters γ∗ > 0, β∗ < 0,
and λ∗ > 0, such a semi-stable cycle exists. Return to system (3.1) again and
input first the parameters γ > 0 and λ > 0:

ẋ = −y (1 + y),

ẏ = x + (λ + γ) y + x2 + γ xy + c γ y2.
(3.8)

Both parameters act in a similar way: they rotate the vector field of (3.7) in
negative direction turning the origin (0, 0) into an unstable focus.

Fix these parameters under γ = γ∗, λ = λ∗ and input the parameter β < 0
into (3.8) getting again system (3.5). Since, in our assumption, this system
has two limit cycles for β < β∗, there exists some value of the parameter, β12

(β∗ < β12 < 0), for which a semi-stable limit cycle, Γ12, appears in system (3.5)
and then splits into a stable cycle, Γ1, and an unstable cycle, Γ2, on further
decreasing β. The formed domain D2 bounded by the limit cycles Γ1, Γ2 and
filled by the spirals will enlarge, since, by the properties of a field rotation
parameter, the interior stable limit cycle Γ1 will contract and the exterior
unstable limit cycle Γ2 will expand on decreasing β. The distance between
the spirals of the domain D2 will naturally increase, which will prohibit the
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appearance of a semi-stable limit cycle in this domain for β < β12. Thus, there
are no such values of the parameters, γ∗ > 0, λ∗ > 0, β∗ < 0, for which system
(3.5) would have an additional semi-stable limit cycle.

Obviously, there are no other values of the parameters λ, β, γ, for which
system (3.5) would have more than two limit cycles surrounding the origin
(0, 0). It follows that system (3.5) and, hence, system (2.2) can have at most
two limit cycles. The theorem is proved. �

4 The Wintner–Perko termination principle

In [7], for the global analysis of limit cycle bifurcations, we used the Wintner–
Perko termination principle which was stated for relatively prime, planar,
analytic systems and which connected the main bifurcations of limit cycles [11].
Let us formulate this principle for the polynomial system

ẋ = f(x, µ), (4.1µ)

where x ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial vector function).

Theorem 4.1 (Wintner–Perko termination principle). Any one-para-
meter family of multiplicity-m limit cycles of relatively prime polynomial sys-
tem (4.1µ) can be extended in a unique way to a maximal one-parameter family
of multiplicity-m limit cycles of (4.1µ) which is either open or cyclic.

If it is open, then it terminates either as the parameter or the limit cycles be-
come unbounded; or, the family terminates either at a singular point of (4.1µ),
which is typically a fine focus of multiplicity m, or on a (compound,) separatrix
cycle of (4.1µ), which is also typically of multiplicity m.

The proof of the Wintner–Perko termination principle for general polynomial
system (4.1µ) with a vector parameter µ ∈ Rn parallels the proof of the
planar termination principle for the system

ẋ = P (x, y, λ), ẏ = Q(x, y, λ) (4.1λ)

with a single parameter λ ∈ R (see [7], [11]), since there is no loss of generality
in assuming that system (4.1µ) is parameterized by a single parameter λ; i. e.,
we can assume that there exists an analytic mapping µ(λ) of R into Rn such
that (4.1µ) can be written as (4.1 µ(λ)) or even (4.1λ) and then we can repeat
everything, which had been done for system (4.1λ) in [11]. In particular, if
λ is a field rotation parameter of (4.1λ), the following Perko’s theorem on
monotonic families of limit cycles is valid.
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Theorem 4.2. If L0 is a nonsingular multiple limit cycle of (4.10), then L0

belongs to a one-parameter family of limit cycles of (4.1λ); furthermore:

1) if the multiplicity of L0 is odd, then the family either expands or contracts
monotonically as λ increases through λ0;

2) if the multiplicity of L0 is even, then L0 bifurcates into a stable and an
unstable limit cycle as λ varies from λ0 in one sense and L0 disappears as λ
varies from λ0 in the opposite sense; i. e., there is a fold bifurcation at λ0.

In [4]–[9], using Theorems 4.1 and 4.2, we have proved the following theorem.

Theorem 4.3. There exists no quadratic system having a swallow-tail bifur-
cation surface of multiplicity-four limit cycles in its parameter space. In other
words, a quadratic system cannot have either a multiplicity-four limit cycle
or four limit cycles around a singular point (focus), and the maximum multi-
plicity or the maximum number of limit cycles surrounding a focus is equal to
three.

Applying the same approach, let us give an alternative proof of Theorem 3.2.

Proof (an alternative proof of Theorem 3.2). The proof of this theorem
is carried out by contradiction. Consider canonical system (2.2) with three
field rotation parameters, λ, β, γ, and suppose that (2.2) has three limit
cycles around the origin. Then we get into some domain of the field rotation
parameters being restricted by definite conditions on two other parameters,
a and c, corresponding to one of that cases of finite singularities which were
considered in [7]. We can fix both of these parameters putting, for example,
a = 1 and c > 1 (ν = 1) and supposing that system (2.2) has only two finite
singularities: a saddle and an anti-saddle. Thus, there is a domain bounded by
two fold bifurcation surfaces forming a cusp bifurcation surface of multiplicity-
three limit cycles in the space of the field rotation parameters λ, β, and γ.

The corresponding maximal one-parameter family of multiplicity-three limit
cycles cannot be cyclic, otherwise there will be at least one point correspon-
ding to the limit cycle of multiplicity four (or even higher) in the parameter
space. Extending the bifurcation curve of multiplicity-four limit cycles through
this point and parameterizing the corresponding maximal one-parameter fam-
ily of multiplicity-four limit cycles by a field-rotation parameter, according to
Theorem 4.2, we will obtain two monotonic curves of multiplicity-three and
one, respectevely, which, by the Wintner–Perko termination principle (Theo-
rem 4.1), terminate either at the origin or on a separatrix loop surrounding
the origin. Since we know at least the cyclicity of the singular point which
is equal to two (see [1]), we have got a contradiction with the termination
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principle stating that the multiplicity of limit cycles cannot be higher than
the multiplicity (cyclicity) of the singular point in which they terminate.

If the maximal one-parameter family of multiplicity-three limit cycles is not
cyclic, using the same principle (Theorem 4.2), this again contradicts with the
cyclicity of the origin [1] not admitting the multiplicity of limit cycles to be
higher than two. This contradiction completes the proof. �
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