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Solving Large Sparse Linear Systems Efficiently on

Grid Computers using an Asynchronous Iterative

Method as a Preconditioner

Abstract

In this paper we describe an efficient iterative algorithm for solving large sparse
linear systems on Grid computers and review some of its advantages and disad-
vantages. The algorithm is a combination of a synchronous flexible outer iterative
method and a coarse–grain asynchronous inner iterative method as a preconditioner.
We present results of a complete implementation using mature Grid middleware,
applied to a 3D convection–diffusion problem. Experiments are performed in a het-
erogeneous computing environment.

Key words. Parallel and Distributed Computing, Numerical Algorithms for CS&E, Grid Computing

(middleware, algorithms, performance evaluation), Sparse linear systems, Preconditioning.

1 Introduction

The solution of sparse linear systems is the computational bottleneck for many large–scale
numerical simulations. In order to solve these systems, which may consist of millions
of equations, the aggregated computing power of many processors is needed. Dedicated
parallel hardware, however, is expensive.

An obvious strategy for providing cheap parallel computing power is to use the avail-
able non–dedicated hardware, and thus to make better use of existing resources. This
idea has given rise to the concept of Grid computing [1]. In Grid computing a pool of
computational tasks is dynamically distributed over a computational grid, which can be a
local cluster of computers, but it can also be a group of computers and/or clusters at geo-
graphically separated sites that are connected via the Internet. This approach has proven
to be successful for embarrassingly parallel applications where the tasks do not require
interprocessor communication, as exemplified by the well–known SETI@home project [2].

For the numerical solution of linear systems of equations, however, inter–task com-
munication is unavoidable. For this application, developing efficient parallel numerical
algorithms for dedicated homogeneous systems is a difficult problem, but becomes even
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more challenging when applied to heterogeneous systems. In particular, the heterogene-
ity of the computational servers and erratic network behaviour present new algorithmic
challenges.

In this paper we describe an efficient iterative method for solving large linear systems
that is designed to exploit the characteristics of both Grid computing and parallel com-
puting. More specifically, it is a combination of the flexible iterative method GMRESR [3],
and an asynchronous iterative method [4] as preconditioner.

Much work has been done on applying asynchronous iterative algorithms to solve lin-
ear systems on Grid computers, but the slow block Jacobi–like convergence rate of asyn-
chronous methods limits the applicability of such approaches [4, 5]. By using an asyn-
chronous method as a coarse–grain preconditioner in a flexible iterative method, we expect
to improve overall convergence rate and to extend the range of applications.

A full implementation of the algorithm using the Grid middleware GridSolve [6, 7] will
be presented. Depending on the application, the outer iteration may be performed either
sequentially on a single master node or in parallel. The asynchronous preconditioner is
implemented in a coarse–grained parallel manner. Numerical experiments are performed
on a local heterogeneous cluster applied to a realistic test problem.

2 Sparse linear solvers in Grid environments

This section starts by giving a brief overview of the complete algorithm. Then, in Sect. §2.2
the Grid middleware GridSolve is discussed describing the various components along with
some of its advantages and disadvantages. Section §2.3 describes specific details pertaining
to the parallel implementation in GridSolve. Finally, Sect. §2.4 reviews some of the advan-
tages and disadvantages of using an asynchronous iterative method as a preconditioner.

2.1 GMRESR with asynchronous preconditioning

We are interested in designing efficient iterative methods for solving large sparse linear
systems,

Ax = b, with a non–symmetric, non–singular matrix A, (1)

on heterogeneous networks of computers. Parallel asynchronous iterative methods possess
several characteristics that are perfectly suited for Grid computing, such as lack of syn-
chronisation points [8]. Unfortunately, they also have significant drawbacks, such as slow
convergence rates [4]. We propose to use an asynchronous method as a coarse–grain precon-
ditioner in a flexible iterative method, in which the preconditioner is allowed to change in
each iteration step. By using a slowly converging asynchronous method as a preconditioner
in a fast converging flexible method we expect to achieve overall fast convergence.

We choose GMRESR as a flexible method, partly because the orthogonalisation process
can be easily truncated, which is essential for practical implementations. The truncated
variant of GMRESR is shown in Alg. 1. The preconditioning step in the second line
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Algorithm 1 GMRESR (truncated version)

input: Parameters m, ǫin, jin, Tmax; Initial guess x0; Set r0 = b − Ax0.
output: Approximate solution to Ax = b.

1: for k = 0, 1, . . . , until convergence do

2: Evaluate u = M(rk, ǫin/jin, Tmax);
3: Compute c = Au;
4: Compute [ck, uk] = orthonorm(c, u, ci, ui, k, m);
5: Compute γ = c⊤k rk;
6: Update xk+1 = xk + γuk;
7: Update rk+1 = rk − γck;
8: end for

Algorithm 2 Block Jacobi iteration on p processors.

output: u = M(r, ǫin/jin, Tmax)
1: Initialize u(0);
2: for t = 1, 2, . . . , until Tmax do

3: for i = 1, 2, . . . , p do

4: Approximate Aiiui(t) = ri −

p
∑

j=1,j 6=i

Aijuj(t − 1);

5: end for

6: end for

computes some approximate solution for Au = rk in each outer iteration step k and is
performed by an asynchronous iterative method. The obtained search direction is then
orthogonalised against m previous search directions. Note that it is our intention that the
bulk of the computational work is performed by the preconditioner.

Asynchronous algorithms generalise simple iterative methods such as the classical block
Jacobi iteration [9], shown in Alg. 2. To compute an approximation to Au = r using p pro-
cessors, the coefficient matrix, the solution vector, and the right–hand side are partitioned
into blocks as follows:

A =











A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

. . .
...

Ap1 Ap2 · · · App











, u =











u1

u2
...

up











, r =











r1

r2
...
rp











. (2)

In the standard synchronous Jacobi iteration process, the processors operate in parallel
on their part of the vector u(t), followed by a synchronisation point at each iteration step
t. In our asynchronous algorithm, a processor computes ui(t) using information that is
available at that particular time. As a result, each separate block Jacobi iteration process
may use out–of–date information, but the lack of synchronisation points and the reduction
of communication can potentially result in improved parallel performance.
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Figure 1: Schematic overview of GridSolve. The dashed line symbolises (geographical)
distance between the client and servers.

Note that in practical implementations, the inner system in line 4 of Alg. 2 is often
solved (possible inaccurately) by some other iterative method.

2.2 Brief description of GridSolve

GridSolve (GS) is a distributed programming system which uses a client–server model
for solving complex problems remotely on global networks. It is an instantiation of the
GridRPC model, a standard for a Remote Procedure Call (RPC) mechanism on Grid com-
puters [10]. The GridRPC Application Programming Interface (API) is defined within the
Global Grid Forum [11]. Other projects that implement the GridRPC API are DIET [12],
NetSolve [13], Ninf–G [14], and OmniRPC [15].

Software environments such as GridSolve are often called Network Enabled Servers
(NES). These systems typically consist of six components: clients, agents, servers, databases,
monitors, and schedulers. We will elaborate on the specific details of these components in
the context of the current version (0.17.0) of GS (see Fig. 1). The GS servers (component
#3) are software components that are started on each computational node which may con-
sist of a single CPU or a cluster. The server monitors the workload of the node and keeps
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an updated list of the services (or tasks) that are installed on the server. For example, a
task can be a single dgemm or a parallel MPI job. Services can be easily added or modified
without restarting the server.

A single GridSolve agent (component #2 in Fig. 1) actively monitors the server prop-
erties such as CPU speed, memory size, computational services, and availability. These
properties are stored in a database on the agent node and are periodically updated. When
a GridSolve client program (component #1) written in either C, Fortran, or Matlab uses
the GridRPC API to initiate a GS call to a remote problem, the GS middleware first
contacts the agent. Based on the problem complexity, size of the input parameters, and
the available computational resources, the agent then returns a list of servers sorted by
minimum completion time. The client resorts the list after performing a quick network
performance test. Input parameters are sent to the first server on the list and the task,
which can be either blocking or non–blocking, is executed on the server. The result (if
any) is then sent back to the client. If a task should fail it is transparently resubmitted to
the next server on the list.

The main advantages of GridSolve are that it is easy to use, install, maintain, and that
it is a standard for programming on Grid environments. Nevertheless, the current imple-
mentation has several limitations. For example, the remote servers cannot communicate
directly. In the current GridSolve model, separate tasks communicate data through the
client, resulting in bridge communication. As a result, input and output data associated
with a task are continuously being sent back and forth between the client and the server
using a possibly slow network connection. Also, any data that are read or generated locally
during the execution of a task is lost after it completes. Several strategies such as data
persistence and data redistribution have been proposed to tackle these deficiencies for dif-
ferent implementations of the GridRPC API [16, 17, 18, 19, 20]. Furthermore, a proposal
for a Data Management API within the GridRPC is currently being developed.

In GridSolve there is a partial solution to the data management problem called the Dis-
tributed Storage Infrastructure (DSI). At the Logistical Computing and Internetworking
(LoCI) Laboratory of the University of Tennessee the IBP (Internet Backplane Protocol)
middleware has been developed based on this approach [21]. To avoid multiple transmis-
sions of the same data between the client and the server, the client can upload data to an
IBP data depot which is in close proximity to the computational servers. Subsequently a
data handle can be sent to the server and the task can manipulate data on the IBP depot
(component #4). Using the DSI can be considered as programming for a shared memory
model.

2.3 Parallel implementation details

The coarse–grain nature of the asynchronous preconditioning iteration allows for efficient
implementation on a Grid computer. On the other hand, the relatively fine–grain nature of
the rest of the operations in the outer iteration (i.e., the matrix–vector multiplication, or-
thogonalisation, and vector operations) may present parallel efficiency issues in the current
context.
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Algorithm 3 Asynchronous block Jacobi iteration task for each server i.

output: u = M(rk, ǫin/jin, Tmax)

1: Read ri from IBP depot; Set t = 0; Set u
(0)
i = 0;

2: Perform ILU decomposition of Aii;
3: while telapsed < Tmax do

4: Read ũ(t) from IBP depot if t 6= 0;
5: Compute v

(t)
i = ri −

∑

j Aiju
(t)
j ;

6: Solve Aiix
(t)
i = v

(t)
i with IDR(s) using jin steps and/or with accuracy ǫin;

7: Set u
(t+1)
i = u

(t)
i + x

(t)
i ;

8: Write u
(t+1)
i to IBP depot;

9: Set t = t + 1;
10: end while

Performing the outer iteration on a single node will eventually become a bottleneck,
either in memory or computational work. As previously mentioned, the bulk of the com-
putational work is to be performed by the asynchronous preconditioning. This implies
that in order to reduce the number of outer iterations, more work may be devoted to the
preconditioning by either (i) adding more servers or by (ii) increasing the time spent on
each preconditioning step.

Nevertheless, for extremely large problems such an approach may become impractical.
A parallel outer iteration was therefore implemented using techniques described in [22].
Currently, the matrix is partitioned using a homogeneous one–dimensional block–row dis-
tribution, both in the preconditioning iteration and in the outer iteration. The vectors
are distributed accordingly. What follows are various implementation issues pertaining to
performing the outer iteration in sequential or parallel.

2.3.1 Sequential outer loop.

All of the operations — with exception of the preconditioning iteration — are performed
on the client machine. There is a single GridSolve task for the preconditioning step, which
implies that there is a single global synchronisation point in each outer iteration step.
The client machine begins by updating the complete residual on the IBP data depot.
Algorithm 3 shows the specific steps performed by each server i in the preconditioning
phase.

At the beginning of task i, the appropriate portion of the residual is read and the
task starts iterating on its portion of u. At the end of each block Jacobi iteration step, the
server updates the relevant portion(s) of u (i.e., the overlap) on the IBP depot. This process
continues until some appropriate criterion is met, which is currently related to a simple
time limit. Each process then writes its part of u to the IBP depot and the complete vector
u is read by the client machine. The obtained search direction is then used to compute the
new iterate and residual. This procedure is repeated until convergence.
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Algorithm 4 Classical Gram–Schmidt

output: [ck, uk] = orthonorm(c, u, ci, ui, k, m);

1: Compute β = c⊤c;
2: for i = max(0, k − m), . . . , k − 1) do

3: Compute αi = c⊤ci;
4: end for

5: Compute β =
√

β −
∑k−1

i=1 α2
i ;

6: Compute ck = β−1
(

c −
∑k−1

i=1 αici

)

;

7: Compute uk = β−1
(

u −
∑k−1

i=1 αiui

)

;

2.3.2 Parallel outer loop.

In this case, no bulk computation and communication is done by the client machine. The
only data that is communicated between the client and the computational nodes are the
results of the (partial) inner products.

In a parallel context, choosing an appropriate orthogonalisation procedure becomes
essential. The classical Gram–Schmidt algorithm (CGS) applied to our case is shown in
Alg. 4 and has good parallel properties. However, it may suffer from numerical instabilities.
This may be remedied by using a selective reorthogonalisation procedure [23, 24].

By combining operations as much as possible, three distinct GridSolve tasks can be
constructed, giving three synchronisation points per outer iteration step. The first task
consists of two main operations: updating the iterate and residual and performing the
asynchronous Jacobi iterations. The second GridSolve task has two operations: computing
the local matrix–vector product and performing the first phase of the CGS algorithm. The
third and last GridSolve task performs the second phase of CGS and stores the newly
computed search directions.

A disadvantage of this approach is that every GridSolve task should be performed
on reliable hardware. That is, should any of the tasks fail, it is likely that important
intermediate information is lost, halting the entire outer iteration process. An obvious
solution is to create a fourth GridSolve task solely for updating the iterate and residual.
The tasks that perform the preconditioning iteration may then be executed on resources
that are less reliable.

The client node is idle most of the time during the preconditioning iteration. To avoid
this, it may be included in the computational nodes.

2.4 Discussion

A good preconditioner is crucial for rapid convergence of iterative methods. Generally
speaking, efficient parallelisation of a preconditioner is a difficult problem, particularly in
Grid environments. Asynchronous iterative methods exhibit features that are perfectly
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suitable for these environments, such as: easy to parallelise, coarse–grain, overlapping
communication with computation, and no synchronisation points. Also, if we choose to
use a fixed number of seconds to perform the preconditioning step, there is no need for a
— possibly complicated and expensive — convergence detection algorithm.

Nevertheless, asynchronous iterative method have several disadvantages. For example,
they exhibit slow (block Jacobi–type) convergence rates, iterations performed on the ba-
sis of outdated information can be non–effective and possibly counterproductive, finding
effective inner iteration stopping criteria is not trivial, and implementation of an efficient
convergence detection algorithm is difficult.

By using the asynchronous iteration as a preconditioner in a flexible iterative method,
we obtain an algorithm that is partially fault tolerant. In the preconditioning phase, each
server iterates on a specific part of the new search direction. In heterogeneous computing
environments, servers may become unavailable at any time, resulting in loss of computed
data. If the asynchronous method is used to solve the main linear system, such an event
would be disastrous. In our case, the outer iteration process will slow down in the worst
case, but is otherwise unaffected.

Asynchronism in iterative methods allows for efficient overlapping of communication
by computation. However, this does not automatically exclude the issue of load balancing.
To avoid significant desynchronisation of the Jacobi iterations in heterogeneous environ-
ments, the problem of efficiently partitioning the computational work becomes equally
important. Our algorithm has another advantage in this respect. We can use a simple
static partitioning scheme during the preconditioning iteration and choose to repartition
(if necessary) each outer iteration step. Any load imbalance that may have occurred during
the preconditioning will then automatically be resolved.

The complete algorithm allows for highly recursive iteration schemes. For example, it
would be possible to solve a sub–block in parallel on a dedicated cluster.

Another issue is tuning. There are many different parameters which have a significant
effect on the performance of the complete iteration process, and finding the ideal parameters
for a specific application may be a difficult issue.

There is an important question regarding trade–off. That is, finding the ideal time spend
on preconditioning is highly problem dependent. Furthermore, it may be advantageous to
vary the amount of preconditioning in each iteration step. In this case some form of
convergence detection may become necessary. At the moment we use a fixed number of
seconds for each preconditioning step. A related issue is how to accurately measure the
effectiveness of the preconditioning step.

The preconditioning operator varies in each outer iteration step which forces us to
use a flexible method. In some cases this can introduce additional overhead in the outer
iteration, such as with flexible Conjugate Gradients [25, 26].
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3 Numerical simulations

We have conducted several experiments solving the following form of the 3D convection–
diffusion problem,

{

−∇2u + (2p · ∇)u = f(u), u ∈ Ω,

u = 0, u ∈ ∂Ω,
(3)

where p = (1, 2, 3). Discretisation by the finite difference scheme with a seven point stencil
on a uniform nx × ny × nz mesh results in a sparse linear system of equations Ax = b
where A is of order n = nxnynz. Centered differences are used for the first derivatives.
The grid points are numbered using the standard (lexicographic) ordering, resulting in a
block pentadiagonal coefficient matrix.

3.1 Experimental setup

The experiments are performed using a local cluster, which is a multi–user system. It
is moderately heterogeneous in design, consisting of twelve nodes: six Intel 2.20 GHz
machines, two Intel 2.66 GHz machines, and four AMD Athlon 2.20 GHz machines. It will
be used for heterogeneous experiments in a real–world setting. The nodes are equipped
with memory in the range of 2–4 GB and the cluster is interconnected through 100 MB/s
Ethernet links.

The IBP depot is started on one of the nodes in the cluster. Also, instead of letting the
GridSolve agent assign the tasks, the client randomly allocates tasks to servers. The Jacobi
sweeps are performed for a fixed number of seconds Tmax = 120s and we use matrix–free
storage. The inner iterations are solved (inaccurately) with relative tolerance ǫin = 10−4

using the recent Krylov method IDR(s) taking s = 4 and preconditioned with ILU [27].
In the context of Grid computing, it is natural to fix the problem size per server and

investigate the scalability of the algorithm by adding more servers in order to solve bigger
problems. For each experiment, we take nx = ny = nz such that the number of equations
of unknowns per server is approximately 250,000.

Using the approach discussed previously, the outer iteration is performed either se-
quentially on the client machine or in parallel. The complete linear system is solved with
relative residual ǫ = 10−8. To limit memory requirements, the truncation parameter is
kept small (m = 5).

3.2 Experimental heterogeneous results

The experiments are performed on a typical work day, during which other users perform
their computations on various combinations of nodes. The diversity of the hardware and
the varying workload of the servers both add to the heterogeneity of the computational
environment. The goal of these experiments is to provide results from a real–world setting.
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Figure 2: Large heterogeneous cluster with 250,000 equations per server.

Table 1: Results of heterogeneous experiments.

number of servers number of outer iterations avg. comm/comp ratio server

1 1 n/a
2 4, 5 6.3 · 10−3

3 6, 7, 11 2.3 · 10−2

4 7, 10, 12 3.2 · 10−2

5 8, 13, 16 4.8 · 10−2

6 9, 10, 13, 20 7.6 · 10−2

7 9, 10, 11 1.9 · 10−1

8 10, 11, 12, 13 1.6 · 10−1

9 9, 11, 12, 14, 15 2.0 · 10−1

10 13 3.1 · 10−1

11 14, 15 3.9 · 10−1

12 15, 16, 18 6.0 · 10−1

Throughout the day, five executions of the algorithm were performed, each time using
a different set of servers. Figure 2 shows results obtained using up to twelve servers (i.e.,
for problem sizes between 250,000 and three million). In Fig. 2(a) the total execution time
of the outer iteration process is shown. The average execution times for each number of
servers are connected with straight lines. Not surprisingly, the method converges in one
outer iteration step when using a single server.

Table 1 shows the number of outer iterations with increasing servers. It also lists
the average communication/computation ratio per server, for the complete outer iteration
process. Although both the parallel and sequential implementation of the outer loop were
used in the experiments, we only present results for the sequential outer iteration. The
reason is that the additional overhead caused by the outer iteration is small compared to
the total execution time.
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For a small number of servers the spread in execution time is rather large, which may
be explained as follows. Firstly, the heterogeneity of the computational environment can
have an increased impact and secondly, the total number of outer iterations is relatively
small. This may potentially cause large fluctuations in the number of outer iterations.
Vice versa, for a large number of servers the effects of these properties are averaged.

The results show that the execution time increases, but this can be attributed almost
completely to the increase in the number of outer iterations. Furthermore, increasing the
problem size by adding servers has the following adverse consequences.

1. The coefficient matrix becomes increasingly ill–conditioned; and

2. the number of subdomains in asynchronous block Jacobi increases.

These two effects have a negative impact on the number of outer iterations. The first
consequence is inherent to the problem and the second effect applies to all block Jacobi–type
preconditioners. A possible third consequence is that the average number of Jacobi sweeps
per server decreases due to increased communication. However, this was not observed in
our experiments.

Factors that do have a large impact on the effectiveness of the preconditioner are the
heterogeneity of the hardware and the differences in work load. Using the current com-
putational environment and the aforementioned parameters the number of Jacobi sweeps
on a server during a preconditioning step ranged between approximately 120 for a fully
dedicated server and 30 for a fully occupied server.

Despite these highly unfavorable conditions there is only a limited increase in total
computing time.

Keeping the problem size per server fixed implies that — in the ideal case where over-
head is negligible — the execution time per outer iteration remains constant. This is
demonstrated in Fig. 2(b), were we show the average times per outer iteration step, for
the sequential (bottom) and parallel (top) implementations. It indicates that for the se-
quential outer loop the overhead is rather small. Also, the increase in overhead due to the
additional work in the outer loop and the (GridSolve) communication overhead is quite
limited. For the parallel outer iteration a single execution is listed. Clearly, the overhead
has increased and grows more rapidly compared to the sequential outer iteration.

For illustrative purposes, Fig. 3(a) and Fig. 3(b) demonstrate the effect of varying
workload and heterogeneity of hardware on a typical execution of the algorithm. It shows
the number of Jacobi iterations performed by each server per outer iteration step, using
four and nine servers respectively. Certain nodes exhibit an increased workload and its
effect is clearly visible.

4 Conclusions and future work

Although the idea of using a coarse–grain asynchronous iterative method as a precondi-
tioner is quite natural, there have not been any implementations and experimental results
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Figure 3: Jacobi sweeps performed by each server during outer iteration steps.

in Grid environments — to the best of our knowledge. Previous approaches that solely
use asynchronous iterative methods to solve linear systems on heterogeneous networks of
computers appear limited in scope and applicability.

Our contribution is two–fold. We have described in detail an iterative algorithm that is
designed to combine the strengths of both Grid computing and cluster computing to solve
large linear systems. We believe it has the potential to be highly effective in performing
large–scale numerical simulations in various fields of science. Furthermore, we have pre-
sented a fully working implementation using standardised Grid middleware, applied to a
realistic test problem.

Valuable numerical experiments were performed under real–world conditions and we
believe that the obtained results are promising in the context of sparse iterative solvers
and Grid computing.

Naturally, there is much room for improvement. Increasing the effectiveness of the
preconditioner may be done in various ways. Block Jacobi methods are closely related to
domain decomposition techniques and the large number of subdomains would suggest that
some form of coarse grid correction may be appropriate. Furthermore, communication
is currently done through a single memory depot. We hope to reduce communication
overhead by using Grid middleware that allows for direct communication between the
servers.

Also, the work performed by the preconditioner is currently being divided equally over
the available servers. In an extremely heterogeneous computing environment, such an
approach could lead to significant desynchronisation of the block Jacobi processes and
deteriorate the effectiveness of the preconditioner. We plan to use a form of resource–
aware partitioning technique such as described in [22] to divide the work according to the
currently available hardware.

Another important research question is how much time one should devote to the pre-
conditioning. Further analysis is planned.
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