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Abstract

We propose a new framework for modeling systematic risk in Loss-
Given-Default (LGD) in the context of credit portfolio losses. The class of
models is very flexible and accommodates well skewness and heteroscedas-
tic errors. The quantities in the models have simple economic interpreta-
tion. Inference of models in this framework can be unified. Moreover, it
allows efficient numerical procedures, such as the normal approximation
and the saddlepoint approximation, to calculate the portfolio loss distri-
bution, Value at Risk (VaR) and Expected Shortfall (ES).

1 Introduction

In the context of credit portfolio losses, the quantity Loss-Given-Default (LGD)
is the proportion of the exposure that will be lost if a default occurs. The un-
certainty about the actual LGD constitutes an important source of the credit
portfolio risk in addition to the default risk. In practice, e.g., in both Credit-
Metrics (Gupton et al. 1997) and KMV Portfolio Manager (Gupton & Stein
2002), the uncertainty in the LGD rates of defaulted obligors is assumed to be
a Beta random variable independent for each obligor. The Beta distribution is
well-known to be very flexible, modeling quantities constrained in the interval

∗Corresponding author; E-mail: X.Huang@ewi.tudelft.nl. This author would like to thank
Dr. Mâcé Mesters from Rabobank for helpful discussions.
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[0, 1]. Depending on the choice of parameters, the probability density function
can be unimodal, U-shaped, J-shaped or uniform.

However, extensive empirical evidence, see e.g., Hu & Perraudin (2002), Alt-
man et al. (2005), shows that this simple approach is insufficient. It is now well
understood that LGD is positively correlated to the default rate, in other words,
LGD is high when the default rate is high, which suggests that there is also sys-
tematic risk in LGD, just like in the default rates. A heuristic justification is
that the LGD is determined by the collateral value which is sensitive to the
state of the economy.

Based on results of a non-parametric estimation procedure, Hu & Perraudin
(2002) further showed that without taking into account the PD/LGD correla-
tion the economic capital, or Value at Risk (VaR), of a loan portfolio can be
significantly underestimated. This has a critical consequence on risk manage-
ment practice. In the Basel II Accord this issue is addressd by the notion of
“downturn LGD”.

The insight of LGD being subject to systematic risk dates back to Frye
(2000), in which the LGD is modeled by a normal distribution. An obvious
problem with this model is that LGD is unbounded in R and can thus be nega-
tive. To ensure the nonnegativity of LGD, Pykhtin (2003) employs a truncated
log-normal distribution for the LGD. Andersen & Sidenius (2004) propose the
use of a probit transform of the LGD such that the transformed LGD is nor-
mally distributed. The probit transformation guarantees that the LGD stays
in the interval [0, 1]. In a similar manner Düllmann & Trapp (2004), Rösch &
Scheule (2005) employ a logit transform of the LGD. Rather different from the
above approaches, Giese (2006), Bruche & González-Aguado (2008) extend the
static Beta distribution assumption in CreditMetrics and KMV Portfolio Man-
ager by modeling the LGD by a mixture of Beta distributions that depend on
the systematic risk.

In this article we propose a Generalized Beta Regression (GBR) framework
to model the Loss-Given-Default. This framework generalizes the Beta Regres-
sion model proposed by Ferrari & Cribari-Neto (2004) and is very similar to
a class of models derived from Generalized Linear Models (GLM). Our mod-
els are called Generalized Beta Regression Models since the LGD is always
assumed to be (conditionally) Beta distributed. The models by Giese (2006),
Bruche & González-Aguado (2008) can be regarded as special examples in our
GBR framework. The quantities in our models have simple economic interpre-
tation. Compared to the transformed LGD models, GBR models accommodate
better skewness and possible heteroscedastic errors. Inference of models in this
framework can be unified. Moreover, the GBR framework allows both the nor-
mal approximation and the saddlepoint approximation to efficiently calculate
the portfolio loss distribution.

The rest of the article is organized as follows. In section 2 we introduce the
Vasicek’s Gaussian one-factor model as the default model and give a brief sum-
mary of existing random LGD models. Section 3 elaborates on the GBR frame-
work including the basic Beta regression model and two extensions. In Section 4
we discuss methods for parameter estimation and provide a calibration example.
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Section 5 explains techniques for efficient loss distribution approximation in the
GBR framework.

2 Credit portfolio loss

Consider a credit portfolio consisting of n obligors, each with exposure at default
(EAD) wi and probability of default (PD) pi. Obligor i is subject to default after
a fixed time horizon and the default can be modeled as a Bernoulli random
variable Di such that

Di =

{

1 with probability pi,
0 with probability 1 − pi.

Let Loss-Given-Default (LGD), the proportion of the exposure that will be lost
if a default occurs, be denoted by Λ, then the loss incurred due to the default of
obligor i is given by Li = wiΛiDi. It follows that the portfolio loss is given by

L =

n
∑

i=1

Li =

n
∑

i=1

wiΛiDi.

To evaluate the distribution of L, a key issue is essentially to model the various
dependence effects, including the dependence between defaults, the dependence
between between LGDs and the dependence between PD and LGD. A convenient
approach is to utilize a latent factor model and introduce systematic risk in both
PD and LGD.

2.1 Default model

We consider the Vasicek (2002) Gaussian one-factor model as our default model.
Based on Merton’s firm value model, the Vasicek model evaluates the default
of an obligor in terms of the evolution of its asset value. For obligor i, default
occurs when the standardized asset log-return Xi, is less than some pre-specified
threshold γi, where Xi is normally distributed and P(Xi < γi) = pi. Xi is
decomposed into a systematic part Y , representing the state of the economy,
and an idiosyncratic part Zi, such that

Xi =
√

ρY +
√

1 − ρZi, (1)

where Y and all Zi are i.i.d standard normal random variables and ρ is the
common pairwise correlation. It is now easily deduced that Xi and Xj are
conditionally independent given the realization of Y . This implies that Li and
Lj are also conditionally independent given Y .

Denote by pi(y) = P[Li = 1|Y = y], i.e., the probability of default condi-
tional on the common factor Y = y. Then

pi(y) = P[Li = 1|Y = y] = P[Xi < γi|Y = y] = Φ

(

Φ−1(pi) −
√

ρy√
1 − ρ

)

, (2)

where Φ is the cdf of the standard normal distribution.
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2.2 LGD models

A variety of models in which LGD is subject to systematic risk can be found in
the literature. Within a one-factor framework, Frye (2000) proposed a model in
which the LGD is normally distributed and influenced by the same systematic
factor Y that drives the PD, so that

Λ = µ + σξ,

ξ =
√

ρ̃Y +
√

1 − ρ̃ε,

where ξ and ε are both standard normally distributed. In this way both the de-
pendence between LGDs and the dependence between PD and LGD are modeled
simultaneously. The parameters µ and σ can be understood to be the expected
LGD and the LGD volatility, respectively. Unfortunately, the LGD is unbounded
in R and can thus be negative. To ensure the nonnegativity of LGD, Pykhtin
(2003) employs a log-normal distribution for the LGD,

Λ =
(

1 − eµ+σξ
)+

,

Other extensions include Andersen & Sidenius (2004), choosing a probit trans-
formation

Λ = Φ(µ + σξ),

where Φ is again the cdf of the standard normal distribution and Düllmann &
Trapp (2004), Rösch & Scheule (2005) that employ a logit transformation

Λ =
1

1 + exp(µ + σξ)
.

All three transformations for the LGD above guarantee that the LGD lies in
the interval [0, 1]. However the parameters µ and σ no longer have a convenient
economic interpretation as in Frye’s model.

A rather different approach from the above extends the static Beta distribu-
tion assumption as it is present in CreditMetrics and KMV Portfolio Manager.
Giese (2006), Bruche & González-Aguado (2008) model the LGD by a mixture
of Beta distributions

Λ ∼ Beta(α, β)

where both α and β are functions of common factor Y .
Along this direction, we here propose the Generalized Beta Regression

(GBR) framework for random LGD. The GBR framework includes Giese (2006),
Bruche & González-Aguado (2008) as special examples. The class of models is
very flexible and the quantities in our models have an easy economic interpreta-
tion. Compared to the transformed LGD models, the GBR models accommodate
better skewness and possible heteroscedastic errors.
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3 Generalized Beta Regression Models

3.1 Parameterization of a beta distribution

Recall that the probability density function of a beta distribution with param-
eters α > 0, β > 0 reads

f(x) =
xα−1(1 − x)β−1

B(α, β)
=

Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1,

where B(·, ·) denotes the beta function and Γ(·) the Gamma function.
The Beta distribution is well-known to be very flexible, modeling quantities

constrained in the interval [0, 1]. Depending on the choice of parameters, the
probability density function can be unimodal, U-shaped, J-shaped or uniform.
The expectation and variance of a beta distributed variable X are given by

µ = E(X) =
α

α + β
, (3)

σ2 = V ar(X) =
αβ

(α + β)2(α + β + 1)
=

µ(1 − µ)

α + β + 1
. (4)

Let ϕ = α + β, then ϕ can be regarded as a dispersion parameter in the sense
that, for a given µ, the variance is determined by the size of ϕ.

The parameters α and β can be formulated in terms of the mean and dis-
persion in the following way

α = µϕ, β = (1 − µ)ϕ. (5)

Apparently, a beta distribution can also be uniquely determined by its mean
and dispersion.

3.2 Beta Regression Model

The Generalized Beta Regression framework is characterized by the following
elements,

1. the LGD is assumed to be beta distributed, conditional on some covariates,

2. the beta distribution is parameterized by its mean and dispersion, rather
than its natural parameters (α, β).

This framework generalizes the Beta Regression model proposed by Ferrari &
Cribari-Neto (2004) for modeling rates and proportions. The models from the
GBR framework are similar to a class of models derived from Generalized Linear
Models (GLM).

The Generalized Linear Models have been developed since the seminal paper
Nelder & Wedderburn (1972) as an extension to the classical linear regression
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models. In a GLM, the response variable X is in the exponential family. Its
density can be represented in the form

f(x; θ, ϕ) = ea(ϕ)[xθ−b(θ)]+c(ϕ,x), (6)

For a comprehensive exposition of GLM we refer to McCullagh & Nelder (1989).
We start the explanation of the GBR framework with the basic Beta Re-

gression model proposed in Ferrari & Cribari-Neto (2004). This basic approach
only models the mean µ and treats the dispersion parameter ϕ as a nuisance
parameter. With some abuse of language we also call the model for the mean,
µ, a GLM (although the probability density function of the beta distribution
cannot be written in the form (6) and therefore it does not fit in the framework
of GLM). The mean model has the following two components:

• a linear predictor η
η = αζ (7)

where ζ is a vector of explanatory variables and α is a vector of the cor-
responding regression coefficients. As convention the first element of ζ is
set to be 1, so that the first element of α is an intercept term.

• a monotonic, differentiable link function g

g(µ) = η. (8)

In particular, the inverse of the link function, g−1(·), should form a mapping
from R to [0, 1], which is exactly the range of µ. This can be achieved by a
variety of link functions, such as the logit link

µ =
eη

1 + eη
, η = log

(

µ

1 − µ

)

, (9)

or the probit link
µ = Φ(η), η = Φ−1(µ). (10)

Both the logit and probit link functions have a symmetric form about µ = 1/2.
If however it is believed that symmetric links are not justified, asymmetric link
functions like the scaled probit link and the complementary log-log link can be
used instead.

The most parsimonious model for LGD subject to systematic risk is a one-
factor model with ζ = [1, Y ]T , where Y is the common factor that also drives
the default process. An example of such a model is given in Giese (2005), where
the mean is modeled by

µ = 1 − a0 (1 − pi(Y )a1)
a2 (11)

and ϕ is considered a nuisance parameter. According to Schuermann (2004),
other factors that have a significant effect on LGD include seniority, collateral
and type of industry.
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3.3 Extensions

The basic beta regression model above can be readily extended in various ways.
One extension is to model the mean and dispersion jointly, rather than treating
the dispersion parameter ϕ as a nuisance parameter which is either fixed or
known. This is in the same spirit as the Joint Generalized Linear Model (JGLM)
from the GLM framework, see e.g., Nelder & Lee (1991), Lee & Nelder (1998).

The dispersion ϕ can be modeled by a separate GLM,

h(ϕ) = bζ,

where h is also a link function. A simple way to ensure ϕ > 0 is to use a log link
so that

ϕ = ebζ . (12)

A model of this type, but using a different version of the dispersion parame-
ter, has been suggested in Bruche & González-Aguado (2008), where the Beta
distribution is parameterized by its two parameters α and β.

Since both α and β are positive, Bruche & González-Aguado (2008) suggest
to employ the following log-linear model for the two parameters,

α = ecζ , β = edζ , (13)

where, as usual, ζ is a vector of covariates and c and d are vector coefficients.
However, α and β are both shape parameters, and an economic interpretation
of such a model is very difficult. In this regard, we note that by substituting
(13) into (3) we obtain

µ =
α

α + β
=

e(c−d)ζ

1 + e(c−d)ζ
,

which is simply a logit model with vector coefficient c− d. The variance is then
given by

σ2 =
µ(1 − µ)

α + β + 1
=

µ2(1 − µ)

α + µ
,

so that the following dispersion parameter is adopted,

ϕ = α = ecζ .

A second extension is that the mean parameter µ can be modeled by a
Generalized Linear Mixed Model (GLMM). GLMM extends GLM by adding
normally distributed random effects in the linear predictor η. The simplest mixed
model is the random intercept model

g(µ) = η = aζ + ν, (14)

where, in addition to the fixed effect aζ, η also has a single component of random
effect ν that follows a univariate normal distribution N(0, σ2

ν). In our setting
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ν can be thought of as a latent factor for the LGD independent of the fixed
effects.

Such a GLMM, along with the probit link (10), is employed to model the
mean LGD in Hillebrand (2006). Other applications of GLMM for portfolio
credit default and migration risk can be found in McNeil & Wendin (2006,
2007).

Note that the two extensions above can be readily combined to form a new
model that jointly models the mean and dispersion by means of GLMMs, i.e.,
fixed and random effects can be included in the modeling of both mean and
dispersion. Further extensions are possible, e.g., replacing the linear predictor
by a Generalized Additive Model (GAM), see Hastie & Tibshirani (1990), or
adding multi-level random effects in the GLMM.

4 Estimation

In this section, we discuss the parameter estimation in the GBR framework by

1. least squares,

2. maximum likelihood estimation (MLE).

The former requires only the knowledge of yearly mean LGD and LGD volatility
and can be used as the first approximation to the MLE.

Suppose we have a time series of LGD data for T ∈ N years. Let Kt be
the number of defaulted obligors in year t and λt,k be the observed LGD for
defaulted obligor k, t = 1, . . . , T , k = 1, . . . , Kt. Each year, a realization of the
common factor Yt can be inferred from the default model and historical default
data. The value of Yt, t = 1, . . . , T should be considered a known fixed effect in
the LGD model.

From now on we call the three models in the GBR framework GBR-GLM,
GBR-JGLM and GBR-GLMM, respectively. The parameters to be estimated
are: {a, ϕ} in GBR-GLM, {a, b} in GBR-JGLM or {a, ϕ, σν} in GBR-GLMM,
where a represent the vector coefficients in the linear predictor (7), b the vector
coefficients in the linear predictor (12), ϕ is the dispersion parameter and σ2

ν is
the variance of the random effect ν in (14).

4.1 Least squares

The method of least squares we propose here only requires the knowledge of the
yearly mean LGD and LGD volatility for parameter estimation. The estimates
of the yearly mean LGD and LGD volatility for t = 1, . . . , T can be obtained by
matching the first and second moments of the LGD realizations λt,k such that

mt =
1

Kt

Kt
∑

k=1

λt,k, σ2
t =

1

Kt

Kt
∑

k=1

λ2
t,k − m2

t .
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Estimation of a and µ

The estimate for parameter a can be obtained by employing a linear regression
of the transformed mean LGD g(mt) on Yt and other covariates,

g(mt) = âζt + νt, (15)

where νt is the residual term. In the GBR-GLM and GBR-JGLM

µ̂t = g−1(âζt). (16)

And in the GBR-GLMM νt is taken to be the realized random effect in year t
so that

µ̂t = g−1(âζt + νt). (17)

Estimation of b or ϕ

The estimation of the parameters b or ϕ takes the prediction of µ̂t, produced
by (16) or (17), as an input. From (4), we obtain

ϕt =
µ̂t(1 − µ̂t)

σ2
t

− 1.

In both the GBR-GLM and GBR-GLMM the dispersion parameter ϕ is treated
as a nuisance parameter. Its method-of-moments estimator is simply

ϕ̂ =
1

T

T
∑

t=1

ϕt.

In the GBR-JGLM, the coefficient b can be calculated by linear regression of
the transformed dispersion h(ϕt) on covariate vector ζ such that

h(ϕt) = b̂ζt + εt.

Estimation of σν in GBR-GLMM

The moment based estimate for σ2
ν is given by

σ̂2
ν =

1

T

T
∑

t=1

ν2
t ,

where νt is the residual term in (15).

4.2 Maximum likelihood estimation

Parameter estimation by the method of maximum likelihood is also straight-
forward in the GBR framework. In the models without random effects, i.e.,
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GBR-GLM and GBR-JGLM, the log-likelihood function to be maximized reads

`(µ, ϕ) =

T
∑

t=1

Kt
∑

k=1

{(µϕ − 1) log(λt,k) + [(1 − µ)ϕ − 1] log(1 − λt,k)+

+ log Γ(ϕ) − log Γ(µϕ) − log Γ[(1 − µ)ϕ]} (18)

The score function, the gradient of the log-likelihood function and the Fisher
information matrix, i.e., the variance of the score, can be formulated explicitly
in terms of polygamma functions. They are given in Appendix A. Asymptotic
standard errors of the maximum likelihood estimates of the parameters can be
computed from the Fisher information matrix.

Since the corresponding estimating equations do not admit a closed form
solution, numerical maximization of the log-likelihood is necessary. Estimates
by the method of least squares may be used as the initial approximations to the
solutions of the likelihood equations.

We remark that the maximum likelihood estimation in Ferrari & Cribari-
Neto’s Beta Regression Model is already implemented in the statistical comput-
ing software R (www.r-project.org) in package ‘betareg’ so that it can be used
immediately.

Marginal likelihood in GBR-GLMM

With the presence of random effects, the samples are no longer independent.
In the random intercept model (14), the LGD’s in year t are only independent
conditional on the random effect νt. Since we are only interested in inference
of the variance of the random component ν, but not in its realizations, the
random effect needs to be integrated out. Therefore we maximize the marginal
log-likelihood,

`m(a, ϕ, σν) =
T
∑

t=1

log

(

∫ Kt
∏

k=1

L(a, ϕ, ζt, νt; λt,k)pσν
(νt)dνt

)

where pσν
(·) is the pdf of a normal distribution with mean 0 and variance σ2

ν ,
and L( ; λt,k) is the likelihood of {LGD = λt,k} given νt. The integral can be
efficiently evaluated by Gaussian quadrature. Alternatively, the marginal likeli-
hood can be approximated analytically by the use of the Laplace approximation
to the integral, such as the penalized quasi-likelihood (PQL) estimation (Bres-
low & Clayton 1993) and the h-likelihood (Lee & Nelder 2001), thus avoiding
numerical integration.

Finally we note that the likelihood ratio test based on large sample inference
can be employed for model selection. Information criteria such as Akaike’s in-
formation criterion (AIC) or the Bayesian information criterion (BIC) can also
be used.
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4.3 A simulation study

As we presently have no access to historical LGD data, we show in this section
how the models in the GBR framework can be calibrated to fit some simulated
data. As a result the focus here is not to identify possible covariates that influ-
ence LGD but only to show that parameter estimation and model selection in
the GBR framework can be easily dealt with.

The simulated LGD observations are based on data from Bruche & González-
Aguado (2008), which give the annual default frequency, number of defaults,
mean LGD and LGD volatility for the years 1982 - 2005. For completeness the
data are reproduced in Appendix B. For each year, a realization of the LGD
is simulated for each defaulted obligor from a beta distribution matching the
empirical mean and variance. This gives in total 1, 123 LGD observations in
T = 24 years.

First, we fit the Vasicek default model. We assume that all obligors in the
portfolio have the same probability of default p and asset correlation ρ. Denote
by pt the annual default frequency. We take the MLE’s for ρ and p according to
Düllmann & Trapp (2004),

ρ =
V ar

[

Φ−1(pt)
]

1 + V ar [Φ−1(pt)]
, p = Φ

(

∑T
t=1 Φ−1(pt)

T
√

1 + V ar [Φ−1(pt)]

)

,

where V ar[δ] = 1
T

∑T
t=1 δ2

t −
(

1
T

∑T
t=1 δt

)2

. This yields

ρ = 0.0569, p = 0.0153. (19)

The common factor Yt for year t can be estimated as follows,

Yt =
Φ−1(p) −√

1 − ρΦ−1(pt)√
ρ

.

As for the LGD model, we only consider one covariate, which is the common
factor Y in the default model. The mean LGD is fitted using a logit link

µ =
ea1+a2Y

1 + ea1+a2Y

in the GBR-GLM and GBR-JGLM and

µ =
ea1+a2Y +ν

1 + ea1+a2Y +ν

in the GBR-GLMM. In the GBR-JGLM model, the dispersion parameter is
modeled to be

ϕ = eb1+b2Y .

The estimates given by the method of least squares are presented in Table
1. Note that the coefficient a2 is negative, indicating negative relationship be-
tween Y and mean LGD, just as expected. These estimates are used as the first
approximation to the MLE.
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GBR-GLM GBR-JGLM GBR-GLMM
a1 0.3718 0.3718 0.3718
a2 -0.3054 -0.3054 -0.3054
ϕ 4.1914 - 4.0907
b1 - 1.3505 -
b2 - -0.0033 -
σν - - 0.2686

Table 1: Estimates given by the method of least squares for different models.

The maximum likelihood estimates for the various parameters are given in
Table 2. For the GBR-GLM model, we also report in parenthesis the asymptotic
standard errors of the estimates. The Wald test confirms that both a1 and a2

are statistically significant (both p-values < 0.0001).
The log-likelihood ratio statistics of GBR-JGLM and GBR-GLMM to GBR-

GLM are −402.74− (−403.34) = 0.6 and −402.74− (−468.78) = 66.04, respec-
tively. They correspond to p-value 0.44 and < 0.0001 for the chi-square dis-
tribution with one degree of freedom. It is clear that GBR-GLMM provides a
significant improvement over the basic GBR-GLM, whereas GBR-JGLM fails to
do so. AIC and BIC lead to the same conclusion (see Table 2). We remark that
this however does not suggest that GBR-JGLM should be abandoned in general
since the idea of jointly modeling mean and dispersion may be meaningful if we
include other covariates.

GBR-GLM GBR-JGLM GBR-GLMM
a1 0.3459 (0.0359) 0.3471 0.3319
a2 -0.3213 (0.0298) -0.3246 -0.3307
ϕ 3.0276 (0.1149) - 3.3240
b1 - 1.0879 -
b2 - -0.0306 -
σν - - 0.2943

-2` -402.74 -403.34 -468.78
AIC -398.74 -395.34 -460.78
BIC -381.67 -375.25 -440.69

Table 2: Maximum Likelihood Estimates of various models.

It is also interesting to see how much the choice of a LGD model can influence
the VaR at the portfolio level. We consider a portfolio of 100 obligors with
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uniform PD p and correlation ρ as in (19) and exposures as follows

wi =























1, k = 1, . . . , 20
4, k = 21, . . . , 40
9, k = 41, . . . , 60
16, k = 61, . . . , 80
25, k = 81, . . . , 100.

We compare three models for the LGD, (i) the GBR-GLM, (ii) the GBR-
GLMM and (iii) the constant LGD model. For the GBR-GLM and GBR-
GLMM, the LGD parameters are taken from Table 2. In the constant LGD
model, we take for all obligors Λ = 0.58, matching the expected LGD EY [µ(Y )]
in the GBR-GLM model, where EY (·) denotes the expectation obtained by in-
tegrating over Y .

The portfolio loss distributions plotted in Figure 1(a) are based on Monte
Carlo simulation with two hundred thousand scenarios. On the one hand the
curves of GBR-GLMM and GBR-GLM are almost identical, with GBR-GLMM
producing a slightly heavier tail. On the other hand the loss distribution under
the constant LGD model deviates substantially from the other two models with
random LGD.

We then look at the portfolio VaR at three particular confidence levels 99%,
99.9%, 99.99%, which are illustrated in Figure 1(b). Compared to the constant
LGD model, the GBR-GLM (GBR-GLMM) increases the VaR at the three levels
by a factor of 1.26 (1.26), 1.32 (1.36) and 1.36 (1.41), respectively. It is apparent
that ignoring the systematic risk in the LGD significantly underestimates risk.
Moreover, the further in the tail, the higher the degree of underestimation.

5 Loss distribution approximations

An important advantage of adopting the Generalized Beta Regression frame-
work for random LGD is that it allows both the normal approximation and the
saddlepoint approximation to efficiently calculate the portfolio loss distribution,
thus avoiding the need for time-consuming simulation. For simplicity, we derive
the formulas only for the basic GBR-GLM with a single covariate Y , or equiv-
alently, a single-factor model. Generalization to more complex models is rather
straightforward.

5.1 Normal approximation

First of all, in the case of a large homogeneous portfolio, the expected loss from
obligor i conditional on Y reads

E[Li(Y )] = wiE[Di(Y )]E[Λi(Y )] = wipi(Y )µi(Y ). (20)
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Figure 1: (a) The portfolio loss distributions and (b) the portfolio VaR at three
confidence levels under the three LGD models. The results are based on Monte
Carlo (MC) simulation of two hundred thousand scenarios. For GBR-GLM and
GBR-GLMM, the LGD parameters are taken from Table 2. In the constant
LGD model Λ = 0.58 for all obligors.

A version of the large homogeneous portfolio approximation similar to that in
the Vasicek model can also be obtained for random LGD:

L(Y )
∑n

i=1 wi

→
∑n

i=1 wipi(Y )µi(Y )
∑n

i=1 wi

a.s.

When the portfolio is however not sufficiently large or not very homogeneous,
unsystematic risk arises. The normal approximation improves on the large ho-
mogeneous portfolio approximation by taking into account the variability of
portfolio loss L conditional on the common factor Y . The conditional portfolio
loss L(Y ) can be approximated by a normally distributed random variable with
mean M(Y ) and variance V 2(Y ) such that

M(Y ) =
n
∑

i=1

wipi(Y )µi(Y ),

V 2(Y ) =

n
∑

i=1

E[L2
i (Y )] −

n
∑

i=1

E[Li(Y )]2,

where

E[L2
i (Y )] = w2

i E[Di(Y )]E[Λ2
i (Y )] = w2

i pi(Y )E[Λ2
i (Y )]

= w2
i pi(Y )[µ2

i (Y ) + V ar(Λ|Y )]

= w2
i pi(Y )[µ2

i (Y ) + µi(Y )(1 − µi(Y ))/(1 + ϕi)].
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The conditional tail probability is P (L > x|Y ) = Φ
(

M(Y )−x

V (Y )

)

and it follows

that the unconditional tail probability reads

P (L > x) =

∫

Φ

(

M(Y ) − x

V (Y )

)

dP (Y ) = EY

[

Φ

(

M(Y ) − x

V (Y )

)]

. (21)

5.2 Saddlepoint approximation

The saddlepoint approximation has been presented by Huang, Oosterlee &
van der Weide (2007) as an efficient tool to estimate the portfolio credit loss
distribution in the Vasicek model. More importantly, it handles well exposure
concentration when the portfolio is dominated by a few loans significantly larger
than the rest. In Huang, Oosterlee & van der Weide (2007) the LGD was however
assumed to be constant.

The use of the saddlepoint approximation only requires the existence of
the moment generating function (MGF), which makes the beta distribution
assumption for LGD in our framework very attractive. Recall that the MGF
of a beta distributed random variable with parameters (α, β) is a confluent
hypergeometric function as follows,

MGF (t) =

∫

etx xα−1(1 − x)β−1

B(α, β)
dx =

+∞
∑

k=0

∫

tkxk

k!

xα−1(1 − x)β−1

B(α, β)
dx

=

+∞
∑

k=0

tk

k!

B(α + k, β)

B(α, β)

∫

xα+k−1(1 − x)β−1

B(α + k, β)
dx

=

+∞
∑

k=0

tk

k!

Γ(α + k)Γ(α + β)

Γ(α)Γ(α + β + k)

=1F1(α, α + β; t).

By basic differentiation, we obtain the following first and second derivatives of
the MGF

MGF ′(t) =
+∞
∑

k=1

tk−1

(k − 1)!

Γ(α + k)Γ(α + β)

Γ(α)Γ(α + β + k)
=

+∞
∑

k=0

tk

k!

Γ(α + k + 1)Γ(α + β)

Γ(α)Γ(α + β + k + 1)

=

+∞
∑

k=0

tk

k!

Γ(α + k + 1)Γ(α + β + 1)

Γ(α + 1)Γ(α + β + k + 1)

α

α + β

=1F1(α + 1, α + β + 1; t)
α

α + β
,

MGF ′′(t) =1F1(α + 2, α + β + 2; t)
α(α + 1)

(α + β)(α + β + 1)
.

In our setting, the obligors are independent conditional on the common factor
Y and (α, β) conditional on Y can be determined by (5). The conditional MGF
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and the cumulant generating function (CGF), denoted by κ, of the portfolio loss
are then given by

MGF (t, Y ) =

n
∏

i=1

[1 − pi + pi 1F1(α, α + β; wit)] ,

κ(t, Y ) = log(MGF (t, Y )) =

n
∑

i=1

log [1 − pi + pi 1F1(α, α + β; wit)] .

For simplicity of notation, we have suppressed the explicit dependence of pi and
(α, β) on the common factor Y .

The derivatives of the conditional CGF up to second order are

κ′(t, Y ) =

n
∑

i=1

wipi 1F1(α + 1, α + β + 1; wit)

1 − pi + pi 1F1(α, α + β; wit)

α

α + β
,

κ′′(t, Y ) =

n
∑

i=1

{

w2
i piα(α + 1) 1F1(α + 2, α + β + 2; wit)

(α + β)(α + β + 1)[1 − pi + pi 1F1(α, α + β; wit)]

− w2
i p2

i α
2

1F1(α + 1, α + β + 1; wit)
2

(α + β)2[1 − pi + pi 1F1(α, α + β; wit)]2

}

.

After finding the saddlepoint t̃ that solves κ′(t̃, Y ) = x for the loss level x, the
tail probability conditional on Y can be approximated by the Lugannani & Rice
(1980) formula

P(L > x|Y ) = 1 − Φ(zl) + φ(zl)

(

1

zw

− 1

zl

)

, (22)

where zw = t̃
√

κ′′(t̃, Y ), zl = sgn(t̃)
√

2[xt̃ − κ(t̃, Y )] and φ is the pdf of the
standard normal distribution.

Integrating over Y gives the unconditional tail probability P(L > x), from
which the portfolio Value at Risk (VaR) can be derived. Formulas for the cal-
culation of other risk measures like VaR contribution, Expected shortfall (ES)
and ES contribution can be found in Huang, Oosterlee & van der Weide (2007).

5.3 Numerical results

We now illustrate the performance of the normal and saddlepoint approxima-
tions in loss distribution calculation. We take a homogeneous portfolio with
n = 100 obligors, each with

w = 1, p = 0.005, ρ = 0.18,

The parameters in the LGD are

a = [0.37,−0.32], ϕ = 3.16,
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with a logit link for mean LGD. This leads to the following specification of
(conditional) mean LGD

µ =
1

1 + e−0.37+0.32Y
.

We compare the loss distributions obtained from various approximation
methods to the results from a Monte Carlo (MC) simulation. Our benchmark is
the sample mean and the accompanying 95% confidence intervals obtained by
10 subsamples of Monte Carlo simulation with 20 thousand replications each.
The performance of the approximations is demonstrated in Figure 2(a)-(b).

The large homogeneous approximation (LHA) results deviate considerably
from our benchmark. This is not surprising as the size of the portfolio is rather
small. The normal approximation (NA) provides a significant improvement over
the LHA and underestimates risk only slightly. Some of its tail probability es-
timates however fall out of the 95% confidence interval. By comparison, the
saddlepoint approximation (SA) is able to give all tail probability estimates
within the 95% confidence interval. The loss distribution given by the saddle-
point approximation is indistinguishable from the benchmark. A remark is that
the calculation of the loss distribution in MATLAB costs roughly 4 seconds for
the normal approximation and 4 minutes for the saddlepoint approximation on
a Pentium 4 2.8 GHz desktop.

Finally we calculate the VaR for the portfolio considered in §4.3 with LGD
modeled by the GBR-GLM. The results are given in Table 3. The MC results
are based on two hundred thousand simulated scenarios and can be regarded as
our benchmark. In this example the saddlepoint approximation is again very ac-
curate. The normal approximation is however rather unsatisfactory: at all three
levels relative errors are around 8%. This is certainly due to the existence of
exposure concentration as the variation in the exposures is not negligible. For
more details on how robust the normal approximation and saddlepoint approx-
imation are in terms of handling exposure concentration, we refer to Huang,
Oosterlee & Mesters (2007).

VaR99% VaR99.9% VaR99.99%

MC 63 98 133
NA 58 90 123
SA 63 97 133

Table 3: Approximations to the portfolio VaR at three confidence levels. The
LGD model adopted here is GBR-GLM. The MC results are based on two
hundred thousand simulated scenarios and can be regarded as our benchmark.
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Figure 2: The loss distribution obtained from (a) the large homogeneous ap-
proximation (LHA), the normal approximation (NA) and (b) the saddlepoint
Approximation (SA) compared to results based on Monte Carlo (MC) simula-
tion of two hundred thousand scenarios. The MC 95% confidence interval (CI)
are based on the standard deviation calculated using 10 simulated sub-samples
of 20 thousand scenarios each.

6 Conclusion

In this paper we have proposed the Generalized Beta Regression framework
for modeling systematic risk in Loss-Given-Default (LGD) in the context of
credit portfolio losses. The GBR framework provides great flexibility in ran-
dom LGD modeling. The quantities in the GBR models have simple economic
interpretation. We have shown that parameter estimation and model selection
are straightforward in this framework. Moreover, it has been demonstrated that
the portfolio loss distribution can be efficiently evaluated by both the normal
approximation and the saddlepoint approximation.
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A Score function and Fisher information matrix

In this appendix we give details about the score function and the Fisher infor-
mation matrix for the parameters appearing in the GBR-GLM and GBR-JGLM
models. The score function may help to accelerate the convergence in the MLE
procedure and the Fisher information matrix leads to the asymptotic standard
errors of the maximum likelihood estimates of the parameters in the models. In
the GBR-GLMM the corresponding formulas get more complicated and lengthy
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and therefore they are omitted here. We refer the interested reader to Pan &
Thompson (2007) for an example.

The score function, i.e., the partial derivative of the log-likelihood function
with respect to parameters (µ, ϕ), reads

∂`

∂µ
= ϕ

{

log

(

λ

1 − λ

)

− Ψ(µϕ) + Ψ[(1 − µ)ϕ]

}

, (23)

∂`

∂ϕ
= µ log λ + (1− µ) log(1− λ) + Ψ(ϕ)− µΨ(µϕ)− (1− µ)Ψ[(1− µ)ϕ], (24)

where λ is a realization of the LGD and Ψ(·) is the digamma function.
The second order partial derivatives of the log-likelihood function with re-

spect to parameters (µ, ϕ) are

∂2`

∂µ2
= −ϕ2{Ψ′(µϕ) + Ψ′[(1 − µ)ϕ]}, (25)

∂2`

∂ϕ2
= Ψ′(ϕ) − µ2Ψ′(µϕ) − (1 − µ)2Ψ′[(1 − µ)ϕ], (26)

∂2`

∂µ∂ϕ
=

1

ϕ

∂`

∂µ
− ϕ{µΨ′(µϕ) − (1 − µ)Ψ′[(1 − µ)ϕ]}. (27)

where Ψ′(·) is the trigamma function.
In the GBR-GLM, the parameters to be estimated are a and ϕ. The score

function for ϕ is given by (24); the score function with respect to ai, the i-th
element of a, is given by

∂`

∂ai

=
∂`

∂µ

∂µ

∂ai

= ϕ

{

log

(

λ

1 − λ

)

− Ψ(µϕ) + Ψ[(1 − µ)ϕ]

}

ζi

g′(µ)
. (28)

The Fisher information matrix is the negative of the expectation of the second
derivative of the log-likelihood with respect to the parameters. The entries in
the Fisher information matrix are

−E

(

∂2`

∂ϕ2

)

= − ∂2`

∂ϕ2
, (29)

−E

(

∂2`

∂ai∂aj

)

= − ∂2`

∂µ2

ζiζj

(g′(µ))2
, (30)

−E

(

∂2`

∂ai∂ϕ

)

= ϕ{µΨ′(µϕ) − (1 − µ)Ψ′[(1 − µ)ϕ]} ζi

g′(µ)
. (31)

In the GBR-JGLM, the parameters to be estimated are a and b. The score
function for the coefficient a is given by (28) and that for bi, the i-th element of
b, is as follows

∂`

∂bi

=
∂`

∂ϕ

∂ϕ

∂bi

= {µ logλ + (1 − µ) log(1 − λ)+

+Ψ(ϕ) − µΨ(µϕ) − (1 − µ)Ψ[(1 − µ)ϕ]} ζi

h′(ϕ)
. (32)
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The Fisher information matrix contains −E
(

∂2`
∂ai∂aj

)

given by (30) and

−E

(

∂2`

∂bi∂bj

)

= − ∂2`

∂ϕ2

ζiζj

(h′(ϕ))2
, (33)

−E

(

∂2`

∂ai∂bj

)

= ϕ{µΨ′(µϕ) − (1 − µ)Ψ′[(1 − µ)ϕ]} ζiζj

g′(µ)h′(ϕ)
. (34)

B LGD Statistics by Year

In this section we present a table of the LGD statistics by year, from 1982 until
2005. This table is taken from Bruche & González-Aguado (2008), where mean
recovery rate (RR) is reported instead of LGD. The column of mean LGD here
is calculated to be 1 minus RR, i.e., LGD=1-RR.

Year PD # of defaults mean LGD LGD volatility
1982 1.18% 12 60.49% 14.9%
1983 0.75% 5 51.07% 23.53%
1984 0.9% 11 51.19% 17.38%
1985 1.1% 16 54.59% 21.87%
1986 1.71% 24 63.91% 18.82%
1987 0.94% 20 46.64% 26.94%
1988 1.42% 30 63.43% 17.97%
1989 1.67% 41 56.54% 28.78%
1990 2.71% 76 74.76% 22.28%
1991 3.26% 95 59.95% 26.09%
1992 1.37% 35 45.55% 23.38%
1993 0.55% 21 62.46% 20.11%
1994 0.61% 14 54.46% 20.46%
1995 1.01% 25 57.1% 25.25%
1996 0.49% 19 58.1% 24.68%
1997 0.62% 25 46.54% 25.53%
1998 1.31% 34 58.9% 24.56%
1999 2.15% 102 71.01% 20.4%
2000 2.36% 120 72.49% 23.36%
2001 3.78% 157 76.66% 17.87%
2002 3.6% 112 69.97% 17.18%
2003 1.92% 57 62.67% 23.98%
2004 0.73% 39 52.19% 24.1%
2005 0.55% 33 41.37% 23.46%
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