
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 08-11

Pricing Early-Exercise and Discrete Barrier Options by
Fourier-Cosine Series Expansions

F. Fang and C.W. Oosterlee

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2008



Copyright  2008 by Delft Institute of Applied Mathematics Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands.



Pricing Early-Exercise and Discrete Barrier Options by

Fourier-Cosine Series Expansions

F. Fang∗, C.W. Oosterlee†

May 29, 2008

Abstract

We present a pricing method based on Fourier-cosine expansions for early-exercise
and discretely-monitored barrier options. The method works well for exponential
Lévy asset price models. The error convergence is exponential for processes charac-
terized by very smooth (C∞[a, b] ∈ R) transitional probability density functions. The
computational complexity is O((M − 1)N log N) with N a (small) number of terms
from the series expansion, and M , the number of early-exercise/monitoring dates.
This paper is the follow-up of [21] in which we presented the impressive performance
of the Fourier-cosine series method for European options.

Within stock option pricing applications, interesting numerical mathematics questions
can be found in product pricing and in calibration. Whereas the former topic requires
especially robust numerical techniques, the latter also relies on efficiency and speed of
computation.

Numerical integration methods, based on a transformation to the Fourier domain (the
so-called transform methods), are traditionally very efficient, due to the availability of the
Fast Fourier Transform (FFT) [13, 34], for the pricing of basic European products, and
thus for calibration purposes. These methods can readily be applied to solving problems
under various asset price dynamics, for which the characteristic function (i.e., the Fourier
transform of the probability density function) is available. This is the case for models from
the class of regular affine processes of [18], which also includes the exponentially affine
jump-diffusion class of [17], and, in particular, the exponentially Lévy models.

Recently, transform methods have been generalized to solving somewhat more com-
plicated option contracts, like Bermudan, American or barrier options, see, for example,
[31, 20, 3, 4, 28, 40, 16, 39]. These exotic options, still with basic features, are used in the
financial industry as building blocks for more complicated products. A natural aim for the
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near future with these transform methods is to calibrate to these exotic products and to
price the huge portfolios (at the end of a trading day) very fast.

Next to FFT-based methods, new techniques based on the Fast Gauss or the Hilbert
Transform have been introduced for this purpose [9, 10, 22]. In this paper we will also
generalize a transform method to pricing Bermudan, American and discretely-monitored
barrier options. It is the method based on Fourier-cosine series expansions, called the COS
method, introduced by us in [21], where we showed that it was highly efficient for pricing
European options. The underlying idea is to replace the transitional probability density
function by its Fourier-cosine series expansion, which has an elegant relation to the con-
ditional characteristic function. For many underlying asset price models, the method is
remarkably fast and the density function can be recovered easily. Since a whole function
of option values is obtained, the Greeks can be computed at almost no additional compu-
tational cost. Here, we will show that the COS method can also price the early-exercise
and barrier options with exponential convergence.

The methods are, for these option contracts in competition with the methods that
require the solution of discrete partial (integro-) differential operators (PIDO) [42, 11].
PIDO-based methods are traditionally used since early-exercise and the exotic features
can often be interpreted as special payoffs or boundary conditions. Generally speaking,
however, the computational process with PIDOs is rather expensive, especially for the
infinite activity Lévy processes we are interested in, because they give rise to an integral
in the PIDO with a weakly singular kernel [2, 26, 41].

We will therefore compare our results with other highly efficient transform methods,
i.e., with the Convolution (CONV) method [31], based on the FFT, which is one of the
state-of-the-art methods for pricing Bermudan and American options. Its computational
complexity for pricing a Bermudan option with M exercise dates is O((M − 1)N log2(N)),
where N denotes the number of grid points used for numerical integration. Quadrature
rule based techniques are, however, not of the highest efficiency when solving Fourier
transformed integrals. As these integrands are highly oscillatory, a relatively fine grid
has to be used for satisfactory accuracy with the FFT. The COS method presented here
requires a substantially smaller value of N .

Especially for barrier options, another highly efficient alternative method from [22]
is based on the Hilbert transform. Its error convergence is exponential for models with
rapidly decaying characteristic functions, also with a computational complexity of O((M−
1)N log2N) for a barrier option with M monitoring dates. This method is, however, not
applicable for Bermudan options.

The paper is organized as follows. In Section 1 the COS method for pricing Bermudan
and barrier options is presented. The handling of the discretely monitored barrier options
is discussed in particular in Subsection 1.4. Error analysis is performed in Section 2.
Numerical results are finally presented in Section 3, where we focus on option pricing
under exponential Lévy processes, in particular under the CGMY [12] and the Normal
Inverse Gaussian [5] processes.
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1 Pricing Bermudan and Barrier Options

A Bermudan option can be exercised at pre-specified dates before maturity. The holder
receives the exercise payoff when he/she exercises the option. Between two consecutive
exercise dates the valuation process can be regarded as that for a European option, priced
with the help of the risk-neutral valuation formula. Let t0 denote the initial time and
T {t1, · · · , tM} be the collection of all exercise dates with ∆t := (tm − tm−1), t0 < t1 <
· · · < tM = T . The pricing formula for a Bermudan option with M exercise dates then
reads, for m = M,M − 1, . . . , 2:

{

c(x, tm−1) = e−r∆t
∫

R
v(y, tm)f(y|x)dy

v(x, tm−1) = max (g(x, tm−1), c(x, tm−1))
(1)

followed by

v(x, t0) = e−r∆t

∫

R

v(y, t1)f(y|x)dy. (2)

Here x and y are state variables, defined as the logarithm of the ratio of the asset price St

over the strike price K,

x := ln(S(tm−1)/K) and y := ln(S(tm)/K),

v(x, t), c(x, t) and g(x, t) are the option value, the continuation value and the payoff at
time t, respectively. Note that for vanilla options, g(x, t) equals v(x, T ), with

v(x, T ) = [αK(ex − 1)]+, α =

{

1 for a call,
−1 for a put.

The probability density function of y given x under a risk-neutral measure is denoted by
f(y|x) in (2), and r is the (deterministic) risk-neutral interest rate.

Equations (1), (2) can be efficiently evaluated by the COS method in [21], provided
that the Fourier-cosine series coefficients of v(y, tm) are known.

1.1 The COS Method

The COS method is based on the insight that the Fourier-cosine series coefficients of f(y|x)
are closely related to its characteristic function.

Since the density function, f(y|x), decays to zero rapidly as y → ±∞, we can trun-
cate the infinite integration range in the risk-neutral valuation formula without loosing
significant accuracy. Suppose that we have, with [a, b] ⊂ R,

∫

R\[a,b]

f(y|x)dy < TOL, (3)

for some given tolerance, TOL, then we can approximate c(x, tm−1) in (1) by

c(x, tm−1) = e−r∆t

∫ b

a

v(y, tm)f(y|x)dy + ǫ1. (4)
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(The different error terms, ǫi, are discussed in Section 2.) As a second step, we replace the
density function by its Fourier-cosine series expansion on [a, b],

f(y|x) =
∑′∞

k=0
Ak(x) cos

(

kπ
y − a

b− a

)

, (5)

where
∑′ indicates that the first term in the summation is multiplied by 1/2. The series

coefficients {Ak(x)}∞k=0 are defined by

Ak(x) :=
2

b− a

∫ b

a

f(y|x) cos

(

kπ
y − a

b− a

)

dy. (6)

Interchanging the summation and integration operators yields

c(x, tm−1) =
1

2
(b− a)e−r∆t

∑′∞

k=0
Ak(x)Vk(tm) + ǫ1, (7)

with Vk(tm) the Fourier-cosine series coefficients of v(y, tm) on [a, b], i.e.

Vk(tm) :=
2

b− a

∫ b

a

v(y, tm) cos

(

kπ
y − a

b− a

)

dy. (8)

As a third step, we use the relation between Ak(x) and the conditional characteristic
function, φ(ω; x), defined as

φ(ω; x) :=

∫

R

f(y|x)eiωydy. (9)

Coefficients Ak(x) can be written as

Ak(x) =
2

b− a
Re

{

e−ikπ a
b−a

∫ b

a

ei kπ
b−a

yf(y|x)dy
}

. (10)

where Re {·} denotes taking the real part. With (3), the finite integration in (10) can be
approximated by

∫ b

a

ei kπ
b−a

yf(y|x)dy ≈
∫

R

ei kπ
b−a

yf(y|x)dy =: φ

(

kπ

b− a
; x

)

.

As a result, Ak(x) can be approximated by Fk(x) with

Fk(x) :=
2

b− a
Re

{

φ

(

kπ

b− a
; x

)

e−ikπ a
b−a

}

. (11)

Replacing Fk(x) by Ak(x) and then truncating the infinite series summation gives the COS
formula for pricing European options for different underlying processes.

ĉ(x, tm−1) := e−r∆t
∑′N−1

k=0
Re

{

φ

(

kπ

b− a
; x

)

e−ikπ a
b−a

}

Vk(tm), (12)
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where the function ĉ(x, tm−1) represents the approximation of the continuation value c(x, tm−1):
An error analysis justifying the different approximations for European options was pre-
sented in [21].

For exponential Lévy processes, formula (12) can be simplified to

ĉ(x, tm−1) = e−r∆t
∑′N−1

k=0
Re

{

ϕlevy

(

kπ

b− a

)

eikπ x−a
b−a

}

Vk(tm), (13)

where ϕlevy(ω) := φlevy(ω; 0), see [21]. Using this, we can also approximate v(x, t0) in (2)
by

v̂(x, t0) = e−r∆t
∑′N−1

k=0
Re

{

ϕlevy

(

kπ

b− a

)

eikπ x−a
b−a

}

Vk(t1), (14)

provided that the series coefficients, Vk(t1), are known. We will show that the Vk(tm),
k = 0, 1, · · · , N − 1, can be recovered from Vj(tm+1), j = 0, 1, · · · , N − 1.

1.2 Series Coefficients of Option Values

The integral in the definition of Vk(tm) in (8) can be split into two parts when we know
the early-exercise point, x∗m, at time tm, which is the point where the continuation value
equals the payoff, c(x∗m, tm) = g(x∗m, tm).

Since ĉ(x, tm) in (13) is an approximation of the whole function c(x, tm), and not only
at grid points, we can simply use Newton’s method to locate x∗m. Note that, on each time
lattice, there is at most one point which satisfies ĉ(x, tm) − g(x, tm) = 0. Therefore, we
determine whether x∗m lies in [a, b] and, if not, set x∗m equal to the nearest boundary point.

Once we have x∗m, we can split the integral, which defines Vk(tm), into two parts: One
on the interval [a, x∗m] and a second on (x∗m, b], i.e.

Vk(tm) =

{

Ck(a, x
∗
m, tm) +Gk(x

∗
m, b), for a call,

Gk(a, x
∗
m) + Ck(x

∗
m, b, tm), for a put,

(15)

for m = M − 1,M − 2, · · · , 1, and

Vk(tM) =

{

Gk(0, b), for a call

Gk(a, 0), for a put,
(16)

whereby

Gk(x1, x2) :=
2

b− a

∫ x2

x1

g(x, tm) cos

(

kπ
x− a

b− a

)

dx. (17)

and

Ck(x1, x2, tm) :=
2

b− a

∫ x2

x1

ĉ(x, tm) cos

(

kπ
x− a

b− a

)

dx. (18)
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Theorem 1.1. The Gk(x1, x2) in (17) are known analytically and the Ck(x1, x2, tm) in (18)
can be computed in O(N log2(N)) operations with the help of the Fast Fourier Transform
(FFT).

Proof. Let us first derive the analytical solution of Gk(x1, x2). Since g(x, tm) ≡ αK(1 −
ex)+, it follows, for a put, with x2 ≤ 0, that

Gk(x1, x2) =
2

b− a

∫ x2

x1

K(1 − ex) cos

(

kπ
x− a

b− a

)

dx, (19)

and for a call, with x1 ≥ 0, that

Gk(x1, x2) =
2

b− a

∫ x2

x1

K(ex − 1) cos

(

kπ
x− a

b− a

)

dx, (20)

The fact that x∗m ≤ 0 for put options and x∗m ≥ 0 for call options, ∀t ∈ T , gives

Gk(x1, x2) =
2

b− a
αK [χk(x1, x2) − ψk(x1, x2)] , α =

{

1 for a call,
−1 for a put,

(21)

with

χk(x1, x2) :=

∫ x2

x1

ex cos

(

kπ
x− a

b− a

)

dx, (22)

ψk(x1, x2) :=

∫ x2

x1

cos

(

kπ
x− a

b− a

)

dx. (23)

These integrals admit the following analytical solutions:

χk(x1, x2) =
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
x2 − a

b− a

)

ex2 − cos

(

kπ
x1 − a

b− a

)

ex1

+
kπ

b− a
sin

(

kπ
x2 − a

b− a

)

ex2 − kπ

b− a
sin

(

kπ
x1 − a

b− a

)

ex1

]

,

ψk(x1, x2) =







[

sin
(

kπ x2−a
b−a

)

− sin
(

kπ x1−a
b−a

)]

b−a
kπ

k 6= 0,

(d− c) k = 0.
(24)

Next, we derive the formula for the coefficients Ck(x1, x2, tm). Notice that c(x, tm) in
the definition of Ck(x1, x2, tm) in (18) has been replaced by approximation ĉ(x, tm), which
yields

Ck(x1, x2, tm) = e−r∆tRe

{

∑′N−1

j=0
ϕlevy

(

jπ

b− a

)

Vj(tm+1) ·Mk,j(x1, x2)

}

, (25)

where the coefficients Mk,j(x1, x2) are given by

Mk,j(x1, x2) :=
2

b− a

∫ x2

x1

eijπ x−a
b−a cos

(

kπ
x− a

b− a

)

dx, (26)
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with i =
√
−1 being the imaginary unit. With fundamental calculus, we can rewrite Mk,j

as

Mk,j(x1, x2) = − i

π

(

M c
k,j(x1, x2) +Ms

k,j(x1, x2)
)

, (27)

where

M c
k,j :=























(x2 − x1)πi
(b− a)

k = j = 0

exp

(

i(j + k)
(x2 − a)π

b− a

)

− exp

(

i(j + k)
(x1 − a)π

b− a

)

j + k
otherwise

(28)

and

Ms
k,j :=























(x2 − x1)πi
b− a

k = j

exp

(

i(j − k)
(x2 − a)π

b− a

)

− exp

(

i(j − k)
(x1 − a)π

b− a

)

j − k
k 6= j

(29)

In matrix-vector-product form, (25) reads

C(x1, x2, tm) =
e−r∆t

π
Im {(Mc +Ms)u} , (30)

where Im {·} denotes taking the imaginary part, and

u := {uj}N−1
j=0 , uj := ϕ

(

jπ

b− a

)

Vj(tm+1), u0 =
1

2
ϕ (0)V0(tm+1). (31)

Moreover, the matrices

Mc := {M c
k,j(x1, x2)}N−1

k,j=0 and Ms := {Ms
k,j(x1, x2)}N−1

k,j=0

have a special structure for which the FFT can be employed to compute (30) efficiently:
Matrix Mc is a Hankel matrix,

Mc =















m0 m1 m2 · · · mN−1

m1 m2 · · · · · · mN

...
...

mN−2 mN−1 · · · m2N−3

mN−1 · · · m2N−3 m2N−2















N×N

(32)

and Ms is a Toeplitz matrix,

Ms =















m0 m1 · · · mN−2 mN−1

m−1 m0 m1 · · · mN−2
...

. . .
...

m2−N · · · m−1 m0 m1

m1−N m2−N · · · m−1 m0















N×N

(33)
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with

mj :=



















(x2 − x1)π
b− a

i j = 0

exp

(

ij
(x2 − a)π

b− a

)

− exp

(

ij
(x1 − a)π

b− a

)

j j 6= 0

(34)

Computation of C(x1, x2, tm). For the computation of C(x1, x2, tm) in (30), we require
efficient algorithms for matrix-vector products, with a Toeplitz matrix, Ms, and a Hankel
matrix, Mc. Due to the special structure of these matrices, we can rewrite these products
into circular convolutions, that can be efficiently dealt with by the FFT algorithm. For
Toeplitz matrices this is well-known, described in detail, for example, in [2]. The product
Msu is equal to the first N elements of ms ⊛ us with the 2N -vectors:

ms = [m0, m−1, m−2, · · · , m1−N , 0, mN−1, mN−2, · · · , m1]
T ,

and us = [u0, u1, · · · , uN−1, 0, · · · , 0]T .
For the Hankel matrix this is less known, so we formulate it in the following result:

Result 1.1. The product Mcu is equal to the first N elements of mc⊛uc, in reversed order,
with the 2N-vectors: mc = [m2N−1, m2N−2, · · · , m1, m0]

T and uc = [0, · · · , 0, u0, u1, · · · , uN−1]
T .

For the efficient computation of Mcu, we need to construct the following circulant
matrix, Mu,

Mu =































0 uN−1 uN−2 · · · · · · · · · 0
0 0 uN−1 uN−2 · · · · · · 0
...

. . .
. . .

...
0 · · · 0 uN−1 uN−2 · · · u0

u0 0 · · · 0 uN−1 · · · u1

u1 u0 0 · · · 0 · · · u2
...

. . .
. . .

...
uN−2 · · · u0 0 · · · 0 uN−1

uN−1 uN−2 · · · u0 0 · · · 0































(2N)×(2N)

. (35)

Straightforward computation shows that the first N elements of the product of Mu and
mc equals Mcu, in reversed order.

The FFT algorithm can be employed since the circular convolution of two vectors is
equal to the inverse discrete Fourier transform (D−1) of the products of the forward DFTs,
D, i.e.,

x ⊛ y = D−1{D(x) · D(y)}.
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We can recover Vk(t1) recursively backwards in time. Since the computation ofGk(x1, x2)
is linear in N , the overall complexity of this recovery procedure is thus dominated by the
computation of Ck(x1, x2, tm), whose complexity is N log2 N with the FFT. As a result, the
overall computational complexity for pricing a Bermudan option with M exercise dates is
O((M − 1)N log2N), as the work needed for the final exercise is only O(N).

1.3 The COS algorithm for Bermudan options

The pricing algorithm for Bermudan options is summarized into Algorithm 1:

Algorithm 1: Pricing Bermudan options with the COS method.

Initialization: For k = 0, 1, · · · , N − 1,

• Vk(tM) = Gk(0, b) for call options; Vk(tM) = Gk(a, 0) for put
options;

Main Loop to Recover Vk(tm): For m = M − 1 to 1,

• Determine early-exercise point x∗m by Newton’s method;

• Compute Vk(tm) from (15) (with the help of the FFT algo-
rithm).

Final step: Reconstruct v(x, t0) by inserting Vk(t1) into (2).

The FFT algorithm is required five times for the computation of C(x1, x2, tm), as de-
tailed in the following algorithm.
Algorithm 2: Computation of C(x1, x2, tm).

1. Compute mj(x1, x2) for j = 0, 1, · · · , N − 1 using (34).

2. Construct ms and mc using the properties of mj ’s.

3. Compute u(Vj(tm)) for j = 0, 1, · · · , N − 1 using (31).

4. Construct us by padding N zeros to u(Vj(tm)).

5. Msu = D−1{ D(ms) · D(us) }.

6. Mcu = reverse{ D−1{ D(mc) · sgn · D(us) }}.

7. C(x1, x2, tm) = e−r∆t/πIm {Msu + Mcu}.

Note that the operation D(us) is computed only once.
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Remark 1.1 (Efficient computation). It is worth mentioning that the computation of the
exponentials takes significantly more computer clock cycles than additions or multiplica-
tions. One can however benefit from some special properties of the mj’s, like m−j = −mj

and, for j 6= 0,

mj+N =
exp

(

iN (x2−a)π
b−a

)

· exp
(

ij (x2−a)π
b−a

)

− exp
(

iN (x1−a)π
b−a

)

· exp
(

ij (x1−a)π
b−a

)

j +N
.

So, in order to construct ms and mc, the factors exp
(

ij (x2−a)π
b−a

)

and exp
(

ij (x1−a)π
b−a

)

, for

j = 0, 1 · · · , N − 1, need to be computed only once.
Also, the DFT of uc and of us need not be computed separately, as the shift property of

DFTs gives D(uc) = sgn · D(us) with sgn = [1,−1, 1,−1, · · · ]T .
Remark 1.2 (Use of FFT algorithm). In the main loop of the CONV method from [31],
the FFT algorithm is also called five times, and the length of the input vectors is halve
compared to the COS method. Therefore, the CONV method would be approximately twice
as fast, if we would not take the method’s accuracy into account. However, for models
characterized by density functions in C∞[a, b], the COS method exhibits an exponential
convergence rate, which is superior to the second order convergence of the CONV method.
For the same level of accuracy, the COS method is therefore significantly faster than the
CONV method.

Remark 1.3 (The Greeks). To compute the Greeks, one only needs to modify the final
step in Algorithm 1, from t1 to t0, as the Greeks can be approximated by

∆̂ = e−r∆t 2

b− a

∑′N−1

k=0
Re

{{

ϕ

(

kπ

b− a

)

eikπ x−a
b−a

ikπ

b− a

}}

Vk(t1)

S0
(36)

and

Γ̂ = e−r∆t 2

b− a

∑′N−1

k=0
Re

{{

ϕ

(

kπ

b− a

)

eikπ x−a
b−a

[

− ikπ

b− a
+

(

ikπ

b− a

)2
]}}

Vk(t1)

S2
0

. (37)

1.4 Discretely-Monitored Barrier Options

Discretely-monitored “out” barrier options are options that cease to exist if the asset price
hits a certain barrier level, H , at one of the pre-specified observation dates. If H > S0,
they are called “up-and-out” options, and “down-and-out” otherwise. The payoff for an
up-and-out option reads

v(x, T ) = (max(α(ST −K), 0) − Rb)1{Sti
<H} +Rb, (38)

where α = 1 for a call and α = −1 for a put, Rb is a rebate, and 1A is the indicator
function,

1A =

{

1 A is not empty,
0 otherwise.

.
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With the set of observation dates, T = {t1, · · · , tM}, t1 < · · · < tM−1 < tM = T , the price
of an up-and-out option, monitored M times, satisfies the following recursive formula















c(x, tm−1) = e−r(tm−tm−1)
∫

R
v(x, tm)f(y|x)dy

v(x, tm−1) =

{

e−r(T−tm−1)Rb, x ≥ h,

c(x, tm−1), x < h,

(39)

where h := ln(H/K) and m = M,M − 1, · · · , 2.
Note that the recursive pricing formula (39) is very similar to that for the Bermudan

options. What makes barrier pricing easier is that the root-searching algorithm is not
needed as the barrier points are known in advance. Thus, similar to Bermudan options,
discrete barrier options can be priced in two steps:

1. Recovery of the Fourier-cosine series coefficients of the option value at t1,

2. The COS formula for European options given by (14).

Based on the derivation for Bermudan options, we have the following lemma:

Lemma 1.1 (Backward Induction for Discrete Barrier Options). By backward recursion
we find the following solution for discretely monitored barrier options: For m = M−1,M−
2, · · · , 1,

Vk(tm) = Ck(a, h, tm) + e−r(T−tm−1)Rb
2

b− a
ψk(h, b) (40)

with Ck(x1, x2, tm) and ψk(x1, x2) given by (30) and (24), respectively. If h < 0, we have

Vk(tM) =

{

2Rbψk(h, b)/(b− a) for a call,

Gk(a, h) + 2Rbψk(h, b)/(b− a) for a put.
(41)

For h ≥ 0, we find

Vk(tM ) =

{

Gk(0, h) + 2Rbψk(h, b)/(b− a) for a call,

Gk(a, 0) + 2Rbψk(h, b)/(b− a) for a put.
(42)

A similar recursion formula for a down-and-out option can be derived easily.

Proof. The proof is straightforward, as it goes along the lines of the proof of Theorem 1.1.

The computation of C(a, h, tm) via (30) is less expensive than that of C(a, x∗m, tm) for
Bermudan options, because h is known in advance, and consequently, ψk(h, b), Mc and Ms

in (30) are known before the recursion step. Therefore, the FFT technique only needs to
be applied three times.

Barrier options with an “in” barrier can be priced as easily with the COS method.
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2 Error Analysis

In [21], convergence and error analysis, when pricing European options, were presented for
the COS method. Here we summarize the main conclusions. The generalization especially
to barrier options (as we do not take the Newton step explicitly into account) is done in
Subsection 2.2.

2.1 Convergence for European Options

In the derivation of the COS formula for European options, errors are introduced in three
steps: truncation of the integration range of the risk-neutral valuation formula (4); sub-
stitution of the series coefficients of the density function by an approximation depending
on the characteristic function (11); truncation of the infinite summation of the series (12).
The insights in these errors in [21] were the following:

1. The integration range truncation error:

ǫ1 :=

∫

R\[a,b]

v(y, T )f(y|x)dy. (43)

Apparently, the larger the truncation range, the smaller ǫ1 gets.

2. The series truncation error,

ǫ2 :=
1

2
(b− a)e−r∆t

∞
∑

k=N

Ak(x) · Vk, (44)

converges exponentially for probability density functions in the class C∞([a, b]), i.e.

|ǫ2| < P · exp(−(N − 1)ν), (45)

where ν > 0 is a constant and P is a term that varies less than exponentially with
N . When the underlying density has a discontinuous derivative, the Fourier-cosine
expansion converges algebraically, i.e.

|ǫ2| <
P̄

(N − 1)β−1
, (46)

where P̄ is a constant and β ≥ n ≥ 1 (and n is the algebraic index of convergence of
the series coefficients).

3. The error of approximating Ak(x)

ǫ3 = e−r∆t
∑′N−1

k=0
Re

{
∫

R\[a,b]

eikπ y−a

b−a f(y|x)dy
}

Vk, (47)
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can be bounded by:
|ǫ3| < |ǫ1| +Q |ǫ4| . (48)

Here, Q is some constant independent of N and

ǫ4 :=

∫

R\[a,b]

f(y|x)dy = ǫ1.

So, a large integration range reduces the size of both ǫ1 and ǫ3.

The numerical error of the COS method for European options, denoted by ǫ, can
therefore be bounded by

|ǫ| ≤ 2 |ǫ1| + |ǫ2| + |ǫ4| , (49)

meaning that, with a properly chosen range of integration, component ǫ2, i.e., the series
truncation error, dominates.

2.2 Error Propagation in the Backward Induction

When the coefficients Vk(t1) are recovered recursively, backwards in time, the error, ǫ, may
propagate in time. It is therefore necessary to analyze the method’s stability through time.

Let us assume that Vk(tm+2) is exact, implying that ĉ(x, tm+1) obtained by the COS
method contains error ǫ from (49). This error introduces, by substituting ĉ(x, tm+1) in
formula (18) for Ck(x1, x2, tm+1), the error, ε(k), defined as

ε(k) :=
2

b− a

∫ x2

x1

ǫ cos

(

kπ
x− a

b− a

)

dx =
2ǫ

b− a
ψk(x1, x2).

Error ε(k) can be interpreted as the product of error ǫ and the Fourier-cosine series coef-
ficients of the following function a(x):

a(x) =

{

1, x ∈ [x1, x2] ⊂ [a, b]
0, x ∈ R\[x1, x2].

Let us denote the Fourier-cosine series coefficients of a(x) by Âk, then we have

ε(k) = ǫÂk.

Error ε(k) is present in the computation of Vk(tm+1) in (13), which is therefore not exact.
As a result, an additional error component originates from the computation of ĉ(x, tm), i.e.

ǫ5 := ǫ e−r∆t
∑′N−1

k=0
Re

{

ϕ

(

kπ

b− a

)

eikπ x−a
b−a

}

Âk. (50)

Equation (50) can be viewed as an application of the COS method to a European option
with a(x) as the payoff function. We denote the exact value of this artificial option by
va(x), and find, based on the error analysis for European options, that

|ǫ5| = |ǫ||va(x) + ǫ|.
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With the risk-neutral valuation formula, va(x) can be bounded by

er∆tva(x) =

∫

R

f(y|x)a(y)dy =

∫ x2

x1

f(y|x)dy ≤
∫

R

f(y|x)dy = 1,

indicating that va(x) is less than e−r∆t. Putting the pieces together, we obtain the following
bound:

|ǫ5| ≤ |ǫ| e−r∆t (1 + |ǫ|) ∼ e−r∆t |ǫ| ,
i.e., the local error remains of the same order, which is an indication for the COS method’s
stability.

Remark 2.1 (Comparison to Hilbert transform method). The complexity of the COS
method is O((M − 1)N log2(N)), as the length of the induction loop (whereby FFT is
employed) is M − 1, and the finalization step uses N operations. Additionally, error con-
vergence is exponential for models with density function in the class C∞([a, b]). Considering
both complexity and error convergence, the COS method is as efficient as the Hilbert trans-
form method in [22]. However, that method cannot be used to price Bermudan options, as
the information of the early-exercise points is not known in advance. Moreover, the COS
method uses more-or-less the same CPU time for different types of barrier options, which
is not the case for the method in [22].

2.3 Choice of Truncation Range

The insight from the error analysis in Section 2 is that the overall error consists of two
parts: The series truncation error, which only depends on N and converges exponentially
for processes whose density function belongs to C∞([a, b]) (and algebraically otherwise),
and the integration range error. We propose to use the following formula to define the
range of integration in (3):

[a, b] :=

[

(c1 + x0) − L
√

c2 +
√
c4, (c1 + x0) + L

√

c2 +
√
c4

]

, (51)

where x0 := ln(S0/K) and L depends on the user-defined tolerance level, TOL, as given
in (3). c1, . . . , c4 are the cumulants, based on the characteristic function, and detailed in
Appendix A.

Cumulant c4 is included in (51), because, for short maturities, the density functions
of many Lévy processes have sharp peaks and flat tails, and this behavior can be well
captured by the inclusion of c4.

Here, we analyze the relation between TOL and L in (51) via numerical experiments,
aiming to determine one proper value of L for different exponential Lévy asset price pro-
cesses . We present the observed error for different values of L in Figure 1. With N large,
e.g. N = 214, the series truncation error is negligible and the integration range error,
which has a direct relation to the user-defined TOL, dominates. The results in Figure 1
can therefore be used as a guidance for setting parameter L, given a tolerance TOL. In the
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figure, as well as throughout this paper, BS denotes the Black-Scholes model (Geometric
Brownian Motion), VG stands for Variance Gamma model [32], CGMY denotes the model
from [12], NIG is short for the Normal Inverse Gaussian Lévy process [5], Merton denotes
the jump-diffusion model developed in [33], and Kou is the jump-diffusion model from
[29]. We see in Figure 1 that the integration range error decreases exponentially with L.
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Figure 1: L versus the logarithm of the absolute errors for pricing calls by the COS method
with N = 214, T = 1 year and three different strike prices.

Figure 1 indicates that L = 6 is sufficiently large for the BS and NIG models. However,
we prefer to give one value for L for all asset price processes, which is L = 8. This value
is used in all numerical experiments to follow. For larger L we need a larger value for N
to obtain the same level of accuracy, since with a large domain of integration, the density
function appears as a somewhat peaked function.

Via experiments, we found that formula (51), together with a proper choice of L, defines
an appropriate truncation range for any maturity time longer than 0.1 years. For extremely
short maturity times, e.g. T = 0.001 years, one can either include c6 in addition to c4, or
use a larger value of L.

3 Numerical Results

We will show the method’s impressive convergence by pricing Bermudan, American and
discretely-monitored barrier options. In the following, we present numerical results for
the BS, CGMY and NIG models. Extensive tests (not given here) have demonstrated
that the COS method also shows excellent performance under other Lévy processes. The
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characteristic functions as well as the cumulants for many exponential Lévy asset price
processes are listed in Appendix A.

The computer used has an Intel Pentium 4 CPU, 2.80GHz with cache size 1024 KB; The
code is written in Matlab 7.4. The CPU times for all experiments to follow are averaged
over 100 repeated tests.

In order to observe the exponential error convergence, we define a ratio,

ratio =
ln

(
∣

∣err(2d+1)
∣

∣

)

ln (|err(2d)|) , d ∈ Z
+, (52)

where err(2d) denotes the error, between reference solution and approximation obtained
with N = 2d. If err(N) = C1 exp(−P1N) with C1 and P1 not depending on N , this ratio
should be equal to 2; If the error convergence is algebraic, i.e. err(N) = C2N

−P2 with C2

and P2 independent of N , this ratio should equal (d+ 1)/d.

3.1 Bermudan and American Options

Next to the series and the integration range truncation error, another error for Bermudan
options comes from the stopping criterion of the root-searching algorithm, i.e., Newton’s
method. With an initial guess x∗m+1 = x∗m, m = M − 2, . . . , 2 (x∗M−1 = 0), this error
becomes sufficiently small, of O(10−7) by 4 Newton steps and even of O(10−10) by 5 steps.
In the experiments to follow, we use 5 steps but for engineering purposes 4 steps can be
sufficient, making the method a bit faster.

Here we price Bermudan put options with 10 exercise dates. Test parameters for two
test cases are given in Table 1.

Table 1: Test parameters for pricing Bermudan options

Test No. Model S0 K T r σ Other Parameters

1 BS 100 110 1 0.1 0.2 –
2 CGMY 100 80 1 0.1 0 C = 1, G = 5, M = 5, Y = 1.5

The CPU times are reported in milliseconds, and all reference values are obtained by
another method, i.e., the CONV method from [31], setting N = 220.

The first test is for the classical BS model with as the reference value 10.479520123. In
Figure 2a it is shown that a highly accurate solution is obtained in less than 2 milliseconds
with exponential convergence (the log-error plot shows a straight line). Compared to the
quadrature-rule based CONV method, which exhibits a second-order convergence, we see
a significant improvement in the CPU time.

As the second test, we consider a Lévy process of infinite activity, i.e., the CGMY
model with Y > 1 (Test 2 in Table 1). For this set of CGMY parameters it is now well-
known that PIDO-based methods have convergence difficulties [2, 41]. The reference value
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(b) CGMY with Y = 1.5 (Test No. 2)

Figure 2: Error versus CPU time for pricing Bermudan put options under (a) BS and (b)
CGMY model, comparing the COS and the CONV method.

is found to be 28.829781986 . . .. The performance of the COS method for this test, shown
in Figure 2b is highly efficient. Again, in less than 2 milliseconds, the solution is accurate
to 9 digits, compared to the reference value. Also here, we observe the exponential error
convergence of the COS method.

Remark 3.1 (VG and Algebraic convergence). In [21] it was shown that for certain sets of
parameters the Variance Gamma (VG) process gives rise to a probability density function
which is not in C∞(R), and thus exhibits only an algebraic convergence. This was especially
observed for contracts with a short time to maturity, like T = 0.1. When dealing with
Bermudan options this also implies that we will encounter algebraic convergence when the
time, ∆t, between two exercise dates gets small, like ∆t = 0.1, independent of the value of
T .

Remark 3.2 (American options and repeated Richardson extrapolation). The prices of
American options can be obtained by applying a repeated Richardson extrapolation on prices
of a few Bermudan options with small M ’s [23], as demonstrated, for example, in [31]. Let
v(M) denote the value of a Bermudan option with M early exercise dates, then we can
rewrite the 3-times repeated Richardson extrapolation scheme as

vAM(d) =
1

12

(

64v(2d+3) − 56v(2d+2) + 14v(2d+1) − v(2d)
)

, (53)

where vAM(d) denotes the approximated value of the American option.

Now we price American options using (53) with a 3-times repeated Richardson extrap-
olation on Bermudan puts and vary the number of exercise dates. In order to reproduce
the results by some PIDO methods in literature, e.g. [1, 41], we use the parameters, which
are summarized in Table 2. Furthermore, we deal with the pure Lévy jump model (σ = 0)
and no dividend payment (q = 0). The parameters from Test No. 3 are taken from [1],
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Table 2: Parameters for American put options under the CGMY model

Test No. S0 K T r Other Parameters

3 1 1 1 0.1 C = 1, G = 5, M = 5, Y = 0.5

4 90 98 0.25 0.06 C = 0.42, G = 4.37, M = 191.2, Y = 1.0102

and those in Test No. 4 from [41]. The reference values given in those papers are 0.112152
for the former and 9.225439 for the latter experiment.

We set N = 512, so that the accuracy of the American option prices depends solely on
the value of d in the extrapolation formula (53). High values of d give accurate results,
as demonstrated in Table 3. The results in the table also show that the COS method, in
combination with repeated Richardson extrapolation, gives a satisfactory accuracy within
50 milliseconds.

Table 3: Errors and CPU times for pricing American puts under CGMY model

d in Eq. (53)
Test No. 3 Test No. 4

error time (millisec.) error time (millisec.)

0 4.41e-05 5.61 -2.80e-03 5.70

1 7.69e-06 11.16 -7.42e-04 11.21

2 9.23e-07 22.39 -2.49e-04 22.33

3 3.04e-07 44.65 -1.62e-04 44.47

3.2 Barrier Options

Now we price monthly-monitored (M = 12) up-and-out call and put options, (UOC) and
put (UOP), down-and-out call and put options (DOC) and (DOP) by the COS method.
The test parameters are in Table 4. We solve the same problems as in [22] with the barrier
level, H = 120 for the up-and-out and H = 80 for the down-and-out options.

Table 4: Test parameters for pricing barrier options

Test No. Model S0 K T r q Other Parameters

5 CGMY 100 100 1 0.05 0.02 C = 4, G = 50, M = 60, Y = 0.7

6 NIG 100 100 1 0.05 0.02 α = 15, β = −5, δ = 0.5

The numerical results under the CGMY model (Test 5) are presented in Table 5. The
CPU times are again measured in milliseconds, and the reference values are obtained by

18



the CONV method [31], with L = 10 and N = 215. As expected, the COS method is more
efficient for discrete barrier options than for Bermudan options, because the barrier levels
are known in advance.

Exponential error convergence is observed, as the ratios (52) are around 2, in less than
0.5 milliseconds with the results accurate up to 7 decimal places.

Table 5: Errors and CPU times for pricing monthly-monitored barrier options under the CGMY model
(Test No. 5)

Option Type Ref. Val. N time (millisec.) error ratio

DOP 2.339381026

24 0.28 2.23e-1 –

25 0.27 1.98e-2 2.6

26 0.34 3.23e-4 2.0

27 0.46 7.20e-9 2.3

DOC 9.155070561

24 0.27 5.06e-2 –

25 0.29 5.67e-3 1.7

26 0.33 1.99e-4 1.6

27 0.47 5.55e-9 2.2

UOP 6.195603554

24 0.30 5.58e-2 –

25 0.29 8.98e-3 1.6

26 0.36 1.96e-4 1.8

27 0.48 2.23e-8 2.1

UOC 1.814827593

24 0.28 3.38e-1 –

25 0.28 1.24e-2 4.0

26 0.35 3.45e-6 2.9

27 0.47 1.93e-8 1.4

Next, we focus on the NIG model (Test 6) and repeat the barrier option tests in Table
6. To reach the same level of accuracy as for CGMY, we need a slightly larger value
of N under the NIG model. This is because the NIG density function is more peaked,
with the parameters from Table 4, as shown in Figure 3a. Consequently, one typically
requires some more terms in the series expansion to reconstruct the density function from
its Fourier-cosine series expansion. Nevertheless, the performance of the COS method is
still excellent: In less than one millisecond, the accuracy is up to the 10th decimal.

Remark 3.3 (Peaked density functions). Note that, the smaller the value of ∆t, the larger
the value of N is required to reach the same level of accuracy. This is because many Lévy
processes have highly peaked density functions for very small ∆t. An example is presented
in Figure 3b, where the recovered density functions of the NIG model for monthly-, weekly-
and daily-monitored barrier options are plotted. We can see that for ∆t = 1/252 the density
is highly peaked, so we require a larger value of N compared to ∆t = 1/12 to reach the same
accuracy. Nevertheless, as long as the density function is in C∞(R), the error convergence
rate is exponential.
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Table 6: Errors and CPU times for pricing monthly-monitored barrier options under the NIG model
(Test No. 6)

Option Type Ref. Val. N time (millisec.) error ratio

DOP 2.139931117

26 0.31 4.25e-2 –

27 0.37 1.28e-3 2.1

28 0.54 4.65e-5 1.5

29 0.84 1.39e-7 1.6

210 1.47 1.38e-12 1.7

DOC 8.983106036

26 0.31 1.26e-2 –

27 0.37 1.09e-3 1.6

28 0.53 3.99e-5 1.5

29 0.83 9.47e-8 1.6

210 1.48 5.61e-13 1.7

UOP 5.995341168

26 0.34 4.84e-3 –

27 0.37 1.14e-3 1.3

28 0.53 7.50e-5 1.4

29 0.83 1.52e-7 1.7

210 1.47 1.24e-12 1.7

UOC 2.277861597

26 0.31 3.83e-2 –

27 0.37 1.10e-3 2.1

28 0.55 8.67e-5 1.4

29 0.86 7.98e-8 1.7

210 1.51 7.38e-13 1.7

Related to Remark 3.3 above, we now price daily-monitored DOP and DOC options
under the NIG model with the parameters from Test 6 in Table 4. The reference values
are taken from [22]. Our results with the COS method are summarized in Table 7. We
observe that, as expected, the convergence rate of the COS method is exponential, but the
values of N are somewhat larger than in the previous numerical experiments. The almost
linear computational complexity of the method can clearly be seen in this table.

Compared to the results of the Hilbert transform method, reported in [22], the COS
method exhibits the same computational complexity and exponential error convergence for
the NIG model. The COS method is as fast in terms of CPU time (although we have a
slower CPU and the code is written in Matlab). For results accurate up to the 4th digit,
the COS method needs about 0.2 seconds for the daily-monitored DOP as well as for the
DOC.

Remark 3.4 (Richardson extrapolation for barrier options). The values of the daily-
monitored barrier options can also be approximated with the help of extrapolation tech-
niques. Here, however, we need a cubic spline extrapolation method in order to obtain
an accurate approximation. In Table 8, we present the spline extrapolation results for the
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Figure 3: The recovered density functions for (a) the NIG and the CGMY models and
monthly-monitored barrier options and (b) the NIG model for monthly-, weekly- and daily-
monitored barrier options.

Table 7: Errors and CPU times for pricing daily-monitored (M = 252) barrier options under the NIG
model (Test 6).

Option Type Ref. Val. N time (sec.) error ratio

DOP 1.88148753

29 0.13 1.25e-2 –

210 0.23 2.20e-3 1.4

211 0.46 1.32e-4 1.5

212 1.17 1.98e-6 1.5

213 2.56 4.70e-8 1.3

DOC 8.96705248

29 0.14 3.67e-4 –

210 0.23 9.18e-5 1.2

211 0.46 3.14e-5 1.1

212 0.95 2.00e-6 1.3

213 2.43 5.73e-9 1.4

approximation of the daily-monitored barrier options by 32-, 64-, and 128-times monitored
barrier option prices. Compared to the results of the same accuracy in Table 7, only a
small gain in CPU time is achieved by the extrapolation. It is, moreover, not at all straight-
forward to achieve a higher accuracy with an extrapolation scheme than the one presented
in Table 2.
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Table 8: Error and CPU time (msec) for approximation of a daily-monitored DOP option by extrapola-
tion, under the NIG model (Test 6).

N 26 27 28 29

error -3.53e-01 -1.28e-01 -1.70e-02 1.26e-03

CPU time (msec.) 4.74 5.85 8.09 13.69

4 Conclusions and Discussion

In this paper, we have generalized the COS option pricing method, based on Fourier-cosine
expansions, to Bermudan and discretely-monitored barrier options. The method can be
used whenever the characteristic function of the underlying price process is available (i.e.,
for regular affine diffusion processes and, in particular, for exponential Lévy processes).

The main insights in the paper are that the COS formula for European options from [21]
can be used for pricing, if the series coefficients of the option values at the first early-
exercise (or monitoring) date are known. These coefficients can be recursively recovered
from those of the payoff function. The computational complexity is O((M − 1)N log2N),
for a Bermudan (or a barrier) option with M exercise (or monitoring) dates. The COS
method exhibits an exponential convergence in N for density functions in C∞[a, b] and an
impressive computational speed. With a small N , it typically produces highly accurate
results. For example, with N = 128, results are accurate up to the 8th digit in less than
2 milliseconds, for 10-time exercisable Bermudan options (and less than 1 millisecond for
monthly-monitored barrier options).

However, the smaller the time interval between two consecutive dates, the more peaked
the underlying density function, and thus a larger value of N is required for a similar
accuracy. Nonetheless, with small time intervals, like daily-monitored barrier options, the
COS method shows a similar performance as the Hilbert transform based method [22]. The
advantage of the COS method is that the CPU time required is consistent over different
types of options.

Compared to the CONV method [31], which is one of the faster methods for Bermudan
options, the COS method convergence significantly faster to the same level of accuracy.
Pricing American options can be done by a repeated Richardson extrapolation method on
Bermudan options with a varying number of exercise dates.
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A Characteristic Functions and Cumulants

The information that the COS method requires from the underlying process is its char-
acteristic function. The method fits therefore well to exponential Lévy models, whose
characteristic functions are available in closed-form. The motivation behind using general
Lévy processes for the underlying is the fact that the Black-Scholes model is not able to
reproduce the volatility skew or smile present in most financial markets, whereas it has
been shown that several exponential Lévy models can, at least to some extent.

In exponential Lévy models the asset price is modeled as an exponential function of a
Lévy process L(t):

S(t) = S(0) exp(L(t)). (54)

A process L(t) on (Ω,J , P ), with L(0) = 0, is a Lévy process if:
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1 it has independent increments;

2 it has stationary increments;

3 it is stochastically continuous, i.e., for any t ≥ 0 and ǫ > 0 we have

lim
s→t

P(|L(t) − L(s)| > ǫ) = 0. (55)

Each Lévy process can be characterized by a triplet (µ, σ, ν) with µ ∈ R, σ ≥ 0 and ν a
measure satisfying ν(0) = 0 and

∫

R

min (1, |x|2)ν(dx) <∞. (56)

In terms of this triplet the characteristic function of the Lévy process is available in closed
form, due to the celebrated Lévy-Khinchine formula. We recall the formulae for the char-
acteristic function for several exponential Lévy processes in Table 9. For more background
information on these processes we point you to [15, 38] for the usage of Lévy processes in
a financial context and to [37] for a detailed analysis of Lévy processes in general.

Table 9: Characteristic functions of ln(St/K) for various models.

BS ϕ(ξ, t) = exp (iξµt − 1
2σ2ξ2t)

NIG ϕ(ξ, t) = exp (iξµt − 1
2σ2ξ2t)φNIG(ξ, t; α, β, δ)

φNIG(ξ, t; α, β, δ) = exp
[

δt
(

√

α2 − β2 −
√

α2 − (β + iξ)2
)]

Kou ϕ(ξ, t) = exp (iξµt − 1
2σ2ξ2t)φKou(ξ, t; λ, p, η1, η2)

φKou(ξ, t; λ, p, η1, η2) = exp
[

λt
(

pη1

η1−iξ − (1−p)η2

η2+iξ − 1
)]

Merton ϕ(ξ, t) = exp (iξµt − 1
2σ2ξ2t)φMerton(ξ, t; λ, µ̄, σ̄)

φMerton(ξ, t) = exp
[

λt
(

exp(iµ̄ξ − 1
2 σ̄2ξ2) − 1

)]

VG ϕ(ξ, t) = exp (iξµt)φV G(ξ, t; σ, ν, θ)

φV G(ξ, t; σ, ν, θ) = (1 − iξθν + 1
2σ2νξ2)−t/ν

CGMY ϕln(St/K)(ξ, t; x) = exp (iξµt − 1
2σ2ξ2t)φCGMY (ξ, t; C, G, M, Y )

φCGMY (ξ, t; C, G, M, Y ) = exp(CtΓ(−Y )[(M − iξ)Y − MY + (G + iξ)Y − GY ])

Given the characteristic functions, the cumulants, defined in [15], can be computed via

cn(X) =
1

in
∂n(tΨ(ξ))

∂ξn

∣

∣

∣

∣

ξ=0

,

where tΨ(ξ) is the exponent of the characteristic function ϕ(ξ, t), i.e.

ϕ(ξ, t) = etΨ(ξ), t ≥ 0.

The formulae for the cumulants are summarized in Table 10.
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Table 10: Cumulants of ln(St/K) for various models.

BS c1 = (µ − 1
2σ2)t, c2 = σ2t, c4 = 0

NIG c1 = (µ − 1
2σ2 + w)t + δtβ/

√

α2 − β2

c2 = δtα2(α2 − β2)−3/2

c4 = 3δtα2(α2 + 4β2)(α2 − β2)−7/2

w = −δ(
√

α2 − β2 −
√

α2 − (β + 1)2)

Kou c1 = t
(

µ + λp
η1

+ λ(1−p)
η2

)

c2 = t
(

σ2 + 2λp
η2

1

+ 2λ(1−p)
η2

2

)

c4 = 24tλ
(

p
η4

1

+ 1−p
η4

2

)

w = λ
(

p
η1+1 − 1−p

η2−1

)

Merton c1 = t(µ + λµ̄) c2 = t
(

σ2 + λµ̄2 + σ̄2λ
)

c4 = tλ
(

µ̄4 + 6σ̄2µ̄2 + 3σ̄4λ
)

VG c1 = (µ + θ)t c2 = (σ2 + νθ2)t

c4 = 3(σ4ν + 2θ4ν3 + 4σ2θ2ν2)t w = 1
ν ln(1 − θν − σ2ν/2)

CGMY c1 = µt + CtΓ(1 − Y )
(

MY −1 − GY −1
)

c2 = σ2t + CtΓ(2 − Y )
(

MY −2 + GY −2
)

c4 = CtΓ(4 − Y )
(

MY −4 + GY −4
)

w = −CΓ(−Y )[(M − 1)Y − MY + (G + 1)Y − GY ]

where w is the drift correction term that satisfies exp(−wt) = ϕ(−i, t).
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