
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 08-12

Parallel Scientific Computing on Loosely Coupled Networks
of Computers

Tijmen Collignon and Martin B. van Gijzen

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2008

Copyright 2008 by Delft Institute of Applied Mathematics Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands.

Parallel Scientific Computing on Loosely
Coupled Networks of Computers

Tijmen P. Collignon and Martin B. van Gijzen

Abstract Efficiently solving large sparse linear systems on loosely coupled net-
works of computers is a rich and vibrant field of research. The induced heterogeneity
and volatile nature of the aggregated computational resources present numerous al-
gorithmic challenges. Designing efficient numerical algorithms for said systems is a
complex process that brings together many different scientific disciplines. This book
chapter is divided into two distinct parts. The purpose of the first half (Sect. §2–§4)
is to give a bird’s view of the issues pertaining to designing efficient numerical algo-
rithms for Grid computing. It kicks off by clearly stating the problem and exposing
the various bottlenecks, subsequently followed by the presentation of potential so-
lutions. Thus, the stage is set and Sect. §3 proceeds by detailing classical iterative
solution methods, along with the concept of asynchronism, which is a highly fa-
vorable quality in the context of Grid computing. The first half is wrapped up by
explaining how asynchronism can be introduced into faster but more complicated
subspace methods. The general idea is that by using an asynchronous method as a
preconditioner, the best of both worlds can be combined. The advantages and disad-
vantages of this approach are discussed in minute detail. The second half (Sect. §5)
contains discussions on the various intricacies related to implementing the proposed
algorithm on Grid computers. Section §6 gives some concluding remarks along with
suggestions for further reading.

T. P. Collignon
Delft University of Technology, Delft Institute of Applied Mathematics and J. M. Burgerscentrum,
Mekelweg 4, 2628 CD Delft, the Netherlands, e-mail: t.p.collignon@tudelft.nl

M. B. van Gijzen
Delft University of Technology, Delft Institute of Applied Mathematics and J. M. Burgerscentrum,
Mekelweg 4, 2628 CD Delft, the Netherlands, e-mail: m.b.vangijzen@tudelft.nl

1

2 Tijmen P. Collignon and Martin B. van Gijzen

1 Introduction

Solving extremely large sparse linear systems of equations is the computational bot-
tleneck in a wide range of scientific applications. Examples include airflow around
wind turbine rotor blades, weather prediction, options pricing, and search engines.
Although the computing power of a single processor continues to grow, fundamental
physical laws place severe limitations on sequential processing. This fact accompa-
nied by an ever increasing demand for more realistic simulations has intensely stim-
ulated research in the field of parallel and distributed computing. By combining the
power of multiple processors and sophisticated numerical algorithms, simulations
can be performed that perfectly imitate physical reality.

Traditional parallel processing was and is currently performed using sophisti-
cated supercomputers, which typically consist of thousands of identical processors
linked by a high–speed network. They are often purpose–built and highly expensive
to operate, maintain, and expand.

A poor man’s alternative to massive supercomputing is to exploit existing nonded-
icated hardware for performing parallel computations. With the use of cost–effective
commodity components and freely available software, cheap and powerful parallel
computers can be built. The Beowulf cluster technology is a good example of this
approach [49]. A major advantage of such technology is that resources can easily be
replaced and added. However, this introduces the problem of dealing with hetero-
geneity, both in machine architecture and in network capabilities. The problem of
efficiently partitioning the computational work became an intense topic of research.

The nineties of the previous century ushered in the next stage of parallel com-
puting. With the advent of the Internet, it became viable to connect geographically
separate resources — such as individual desktop machines, local clusters, and stor-
age space — to solve very large–scale computational problems. In the mid–1990s
the SETI@home project was conceived, which has established itself as the prime
example of a so–called Grid computing project. It currently combines the compu-
tational power of millions of personal computers from around the world to search
for extraterrestrial intelligence by analysing massive quantities of radio telescope
data [1].

In analogy to the Electric Grid, the driving philosophy behind Grid computing
is to allow individual users and large organisations alike to access casu quo supply
computational resources without effort by plugging into the Computational Grid.
Much research has been done in Grid software and Grid hardware technologies,
both by the scientific community and industry [29].

The fact that in Grid computing resources are geographically separated implies
that communication is less efficient compared to dedicated parallel hardware. As
a result, it is naturally suited for so–called embarrassingly parallel applications
where the problem can be broken up easily and tasks require little or no interpro-
cessor communication. An example of such an application is the aforementioned
SETI@home project.

For the numerical solution of linear systems of equations, matters are far more
complicated. One of the main reasons is that inter–task communication is both un-

Parallel Scientific Computing on Loosely Coupled Networks of Computers 3

avoidable and abundant. For this application, developing efficient parallel numerical
algorithms for dedicated homogeneous systems is a difficult problem, but becomes
even more challenging when applied to heterogeneous systems. In particular, the
heterogeneity of the computational resources and the variability in network perfor-
mance present numerous algorithmic challenges. This book chapter highlights the
key difficulties in designing such algorithms and strives to present efficient solu-
tions.

One of the latest trends in parallel processing is Cell or GPU computing. Mod-
ern gaming consoles and graphics cards employ dedicated high–performance pro-
cessors for specialised tasks, such as rendering high–resolution graphics. In com-
bination with their inherent parallel design and cheap manufacturing process, this
makes them extremely appropriate for parallel numerical linear algebra [60]. The
Folding@Home project is a striking example of an embarrassingly parallel applica-
tion where the power of many gaming consoles is used to simulate protein folding
and other molecular dynamics [28].

Nowadays, multi–core desktop computers with up to four cores are becoming
increasingly mainstream. An obvious application is the field of parallel scientific
computing. Furthermore, many existing user software such as graphics editors and
computer games cannot benefit from these additional resources effectively. Such
software often needs to be rewritten from scratch and this has also become an inten-
sive topic of research.

The book chapter is divided into two distinct parts. The purpose of the first half
(Sect. §2–§4) is to give a bird’s view of the issues pertaining to designing efficient
numerical algorithms for Grid computing and is aimed at a general audience. The
second half (Sect. §5) deals with more advanced topics and contains detailed dis-
cussions on the issues related to implementing said algorithm on Grid computers.
Section §6 gives some concluding remarks along with suggestions for further read-
ing.

2 The problem

Large systems of linear equations arise in many different scientific disciplines, such
as physics, computer science, chemistry, biology, and economics. Their efficient
solution is a rich and vibrant field of research with a steady supply of important
results. As the demand for more realistic simulations continues to grow, the use of
direct methods for the solution of linear systems becomes increasingly infeasible.
This leaves iterative methods as the only practical alternative.

The main characteristic of such methods is that at each iteration step, information
from one or more previous iteration steps is used to find an increasingly accurate
approximation to the solution. Although the design of new iterative algorithms is
a very active field of research, physical restrictions such as memory capacity and
computational power will always place limits on the type of problem that can be
solved on a single processor.

4 Tijmen P. Collignon and Martin B. van Gijzen

Table 1 Parallel and distributed computing on cluster and Grid hardware.

Cluster computing Grid computing

local–area–networks wide–area networks
dedicated non–dedicated
special–purpose hardware aggregated resources
fast network slow connections
synchronous communication asynchronous communication
fine–grain coarse–grain
homogeneous heterogeneous
reliable resources volatile resources
static environment dynamic environment

The obvious solution is to combine the power of multiple processors in order to
solve larger problems. This automatically implies that memory is also distributed.
Combined with the fact that iterations may be based on previous iterations, this
suggests that some form of synchronisation between the processors has to be per-
formed.

Accumulating resources in a local manner is typically called cluster comput-
ing. Neglecting important issues such as heterogeneity, this approach ultimately has
the same limitations as with sequential processing: memory capacity and computa-
tional power. The next logical step is to combine computational resources that are
geographically separated, possible spanning entire continents. This idea gives birth
to the concept of Grid computing. Ultimately, the price that needs to paid is that of
synchronisation.

Table 1 lists some of the classifications that may be associated with cluster and
Grid computing, respectively. In real life, things are not as clear–cut as the Table
might suggest. For example, a cluster of homogeneous and dedicated clusters con-
nected by a network is considered a Grid computer. Vice versa, a local cluster may
consist of computers that have varying workload, making the annotations ‘dedi-
cated’ and ‘static environment’ unwarranted.

The high cost of global synchronisation is not the only algorithmic hurdle in
designing efficient numerical algorithms for Grid computing. In Tab. 2 the main
problems are listed, along with possible solutions. Clearly there are many aspects
that need to addressed, requiring substantial expertise from a broad spectrum of
mathematical disciplines.

When designing numerical algorithms for general applications, a proper balance
should be struck between robustness (consistent performance with few parameters)
and efficiency (optimal scalability, both algorithmic and parallel). At the risk of triv-
ialising these two highly important issues, the ultimate numerical algorithm wish-
list for Grid computing contains the following additional items: coarse–grain, asyn-
chronous communications, minimal number of synchronisation points, resource–
aware, dynamic, and fault tolerant. The ultimate challenge is to devise an algorithm
that exhibits all of these eight features.

Parallel Scientific Computing on Loosely Coupled Networks of Computers 5

Table 2 Main difficulties and possible solutions associated with designing efficient numerical al-
gorithms in Grid computing.

Difficulties and challenges Possible solutions

− Frequent synchronisation. One of the
reasons for synchronisation is global
reduction. Compared to the overhead, the
data that is being exchanged is relatively
small, making this an extremely expensive
operation in Grid environments. The most
important example is the computation of an
inner product.

− Coarse–grained. Communication is expen-
sive, so the amount of computation should be
large in comparison to the amount of communi-
cation.
−Asynchronous communication. Tasks should
not have to wait for specific information from
other tasks to become available. That is, the al-
gorithm should be able to incorporate any newly
received information immediately.
− Minimising synchronisation points. Many
iterative algorithms can be modified in such
a manner that the number of synchronisation
points is reduced. These modifications include
rearrangement of operations [15], truncation
strategies [50], and the type of reorthogonalisa-
tion procedure [21].

− Heterogeneity. Resources from many
different sources may be combined,
potentially resulting in a highly
heterogeneous environment. This can apply
to machine architecture, network
capabilities, and memory capacities.

− Resource–aware. When dividing the work,
the diversity in computational hardware should
be reflected in the partitioning process. Tech-
niques from graph theory are extensively used
here [52].

− Volatility. Large fluctuations can occur in
things like processor workload, processor
availability, and network bandwidth. A huge
challenge is how to deal with failing network
connections or computational resources.

− Dynamic. Changes in the computational en-
vironment should be detected and accounted for,
either by repartitioning the work periodically or
by using some type of diffusive partitioning al-
gorithm [52].
− Fault tolerant. The algorithm should some-
how be (partially) resistant to failing resources in
the sense that the iteration process may stagnate
in the worst case, but not break down.

3 The basics: iterative methods

The goal is to efficiently solve a large algebraic linear system of equations,

Ax = b, (1)

on large heterogeneous networks of computers. Here, A denotes the coefficient ma-
trix, b represents the right–hand side vector, and x is the vector of unknowns.

6 Tijmen P. Collignon and Martin B. van Gijzen

Fig. 1 Depiction of the oceans of the world, divided into two separate computational subdomains.

3.1 Simple iterations

Given an initial solution x(0), the classical iteration for solving the system (1) is

x(t+1) = x(t) +M−1(b−Ax(t)), t = 0,1, . . . , (2)

where M−1 serves as an approximation for A−1. For practical reasons, inverting the
matrix M should be cheap and this is reflected in the different choices for M. The
simplest option would be to choose the identity matrix for M, which results in the
Richardson iteration. Another variant is the Jacobi iteration, which is obtained by
taking for M the diagonal matrix having entries from the diagonal of A. Choices
that in some sense better approximate the matrix A naturally result in methods that
converge to the solution in less iterations. However, inverting the matrix M will be
more expensive and it is clear that some form of trade–off is necessary.

The iteration (2) can be generalised to a block version, which results in an algo-
rithm closely related to domain decomposition techniques [46]. One of the earliest
variants of this method was introduced as early as 1870 by the German mathe-
matician Hermann Schwarz. The general idea is as follows. Most problems can be
divided quite naturally into several smaller problems. For example, problems with
complicated geometry may be divided into subdomains with a geometry that can be
handled more easily, such as rectangles or triangles.

Consider the physical domain Ω shown in Fig. 1. The objective is to solve some
given equation on this domain. For illustrative purposes, the domain is divided into
two subdomains Ω1 and Ω2. The matrix, the solution vector, and the right–hand side
are partitioned into blocks as follows:

Parallel Scientific Computing on Loosely Coupled Networks of Computers 7

Algorithm 1 Block Jacobi iteration for solving Ax = b.
OUTPUT: Approximation of Ax = b;
1: Initialize x(0);
2: for t = 0,1, . . . , until convergence do
3: for i = 1,2, . . . , p do

4: Solve Aiix
(t+1)
i = bi −

p

∑
j=1, j 6=i

Ai jx
(t)
j ;

5: end for
6: end for

A =
[

A11 A12
A21 A22

]
, x =

[
x1
x2

]
, b =

[
b1
b2

]
. (3)

The two matrices on the main diagonal of A symbolise the equation on the subdo-
mains themselves, while the coupling between the subdomains is contained in the
off–diagonal matrices A12 and A21.

Block Jacobi generalises standard Jacobi by taking for M the block diagonal
elements, giving

M =
[

A11 ∅
∅ A22

]
. (4)

This results in the following two iterations for the first and second domain respec-
tively, x(t+1)

1 = x(t)
1 +A−1

11

(
b1−A11x(t)

1 −A12x(t)
2

)
;

x(t+1)
2 = x(t)

2 +A−1
22

(
b2−A21x(t)

1 −A22x(t)
2

)
,

t = 0,1, (5)

On a parallel computer, these iterations may be performed independently for each
iteration step t. This is followed by a synchronisation point where information is
exchanged between the processors. Algorithm 1 shows the general case for p pro-
cessors and/or subdomains. An extra complication is that the block matrices located
on the diagonal need to be inverted. In most cases these matrices have the same
structure as the complete matrix. Therefore, systems involving these matrices are
usually solved using some other iterative method, possibly block Jacobi. Another
important issue is how accurately these systems should be solved.

3.2 Impatient processors: asynchronism

Parallel asynchronous algorithms can be considered as a generalisation of simple
iterative methods such as the aforementioned block Jacobi method. Instead of ex-
changing the most recent information with other processes at each iteration step, an
asynchronous algorithm performs their iterations based on information that is avail-

8 Tijmen P. Collignon and Martin B. van Gijzen

Fig. 2 Time line of a certain
type of asynchronous algo-
rithm, showing three (Jacobi)
processes. Newly computed
information is send at the
end of each iteration step and
newly received information is
used only at the start of each
iteration. The schematic is
inspired by [3].

able at that particular time. Therefore, the iteration counter t loses it global meaning.
The classification asynchronous pertains to the type of communication.

In Fig. 2 a schematic is given which illustrates some of the important features of
a particular type of asynchronous algorithm. Time is progressing from left to right
and communication between the three (Jacobi) iteration processes is denoted by
arrows. The erratic communication is expressed by the varying length of the arrows.
At the end of an iteration step of a particular process, locally updated information
is sent to its neighbour(s). Vice versa, new information may be received multiple
times during an iteration. However, only the most recent information is included at
the start of the next iteration step. Other kinds of asynchronous communication are
possible [4, 5, 19, 31, 36]. For example, there exists asynchronous iterative methods
that immediately incorporate newly received information.

Thus, the execution of the processes does not halt while waiting for new informa-
tion to arrive from other processes. As a result, it may occur that a process does not
receive updated information from one of its neighbours. Another possibility is that
received information is outdated in some sense. Also, the duration of each iteration
step may vary significantly, caused by heterogeneity in computer hardware and net-
work capabilities, and fluctuations in things like processor workload and problem
characteristics.

Some of the main advantages of parallel asynchronous algorithms are sum-
marised in the following list.

• Reduction of the synchronisation penalty. No global synchronisation is per-
formed, which may be extremely expensive in a heterogeneous environment.

• Efficient overlap of communication with computation. Erratic network behaviour
may induce complicated communication patterns. Computation is not stalled
while waiting for new information to arrive and more Jacobi iterations can be
performed.

• Coarse–graininess. Techniques from domain decomposition can be used to ef-
fectively divide the computational work and the lack of synchronisation results
in a highly attractive computation/communication ratio.

In extremely heterogeneous computing environments, these features can poten-
tially result in improved parallel performance. However, no method is without dis-
advantages and asynchronous algorithms are no exception. The following list gives
some idea on the various difficulties and possible bottlenecks.

Parallel Scientific Computing on Loosely Coupled Networks of Computers 9

• Suboptimal convergence rates. Block Jacobi–type methods exhibit slow conver-
gence rates. Furthermore, if no synchronisation is performed whatsoever, pro-
cesses perform their iterations based on potentially outdated information. Conse-
quently, it is conceivable that important characteristics of the solution may prop-
agate rather slowly throughout the domain.

• Non–trivial convergence detection. Although there are no synchronisation points,
knowing when to stop may require a form of global communication at some
point.

• Partial fault tolerance. If a particular Jacobi process is terminated, the complete
iteration process will effectively break down. On the other hand, a process may
become unavailable due to temporary network failure. Although this would delay
convergence, the complete convergence process would eventually finish upon
reinstatement of said process.

• Importance of load balancing. In the context of asynchronism, dividing the
computational work efficiently may appear less important. However, significant
desynchronisation of the iteration processes may negatively impact convergence
rates. Therefore, some form of (resource–aware) load balancing could still be
appropriate.

4 Acceleration: subspace methods

The major disadvantage of block Jacobi–type iterations — either synchronous or
asynchronous — is that they suffer from slow convergence rates and that they only
converge under certain strict conditions. These methods can be improved signifi-
cantly as follows. Using a starting vector x0 and the initial residual r0 = b−Ax0,
iteration (2) may be rewritten as

Muk = rk, ck = Auk, xk+1 = xk +uk, rk+1 = rk − ck, k = 0,1, (6)

Instead of finding a new approximation using information solely from the previous
iteration, subspace methods operate by iteratively constructing some special sub-
space and extracting an approximate solution from this subspace. The key difference
is that information is used from several previous iteration steps, resulting in more
efficient methods. This is accomplished by performing (non–standard) projections,
which suggests that inner products need be to computed. As mentioned before, in
the context of Grid computing this is an expensive operation and should be avoided
as much as possible.

Some popular subspace methods are: the Conjugate Gradient method, GCR, GM-
RES, Bi–CGSTAB, and IDR(s) [27, 33, 40, 47, 57]. Roughly speaking, these meth-
ods differ from each other in the way they exploit certain properties of the underly-
ing linear system. Purely for illustrative purposes, the Conjugate Gradient method
is listed in Alg. 2, which is designed for symmetric systems. The four main building
blocks of a subspace method can be identified as follows.

10 Tijmen P. Collignon and Martin B. van Gijzen

Algorithm 2 The preconditioned Conjugate Gradient method.
INPUT: Choose x0; Compute r0 = b−Ax0;
OUTPUT: Approximation of Ax = b;

1: for k = 1,2, . . . , until convergence do
2: Solve Mzk−1 = rk−1;
3: Compute ρk−1 = (rk−1,zk−1);
4: if k = 1 then
5: Set p1 = z0;
6: else
7: Compute βk−1 = ρk−1/ρk−2;
8: Set pk = zk−1 +βk−1 pk−1;
9: end if

10: Compute qk = Apk;
11: Compute αk = ρk−1/(pk,qk);
12: Set xk = xk−1 +αk pk;
13: Set rk = rk−1 −αkqk;
14: end for

1. Vector operations. These include inner products and vector updates. Note that
classical methods lack inner products.

2. Matrix–vector multiplication. This is generally speaking the most computation-
ally intensive operation per iteration step. Therefore, the total number of itera-
tions until convergence is a measure for the cost of a particular method.

3. Preconditioning phase. The matrix M in the iteration (6) is sometimes viewed
as a preconditioner. The ancient and secret art of preconditioning is to find the
optimal trade–off between the cost of solving systems involving M and the effec-
tiveness of the newly obtained update uk. That is, an effective but costly precon-
ditioner will reduce the number of (outer) iterations, but the cost of solving said
systems may be too large. Vice versa, applying some cheap preconditioner may
be fast, but the resulting number of outer iterations may increase rapidly.

4. Convergence detection. Choosing an appropriate halting procedure is not entirely
trivial. This has two main reasons: (i) the residual rk that is computed does not
need to resemble the actual residual b−Axk, and (ii) computing the norm of the
residual requires an inner product.

For most applications, finding an efficient preconditioner is more important than
the choice of subspace method and it may be advantageous to put much effort in the
preconditioning step. A popular choice is to use so–called incomplete factorisations
of the coefficient matrix as preconditioners, e.g., ILU and Incomplete Cholesky.
Another well–known strategy is to approximate the solution to Aε = r by performing
one or more iteration steps of some iterative method, such as block Jacobi or IDR(s).
Algorithms that use such a strategy are known as inner–outer methods.

A direct consequence of the latter approach is that the preconditioning step may
be performed inexactly. Unfortunately, most subspace methods can potentially break
down if a different preconditioning operator is used in each iteration step. An ex-
ample is the aforementioned preconditioned Conjugate Gradient method. Methods

Parallel Scientific Computing on Loosely Coupled Networks of Computers 11

that can handle a varying preconditioner are called flexible, e.g., GMRESR [56],
FGMRES [38], and flexible Conjugate Gradients [2, 37, 44]. A major disadvantage
of some flexible methods is that they can incur additional overhead in the form of
inner products.

4.1 Hybrid methods: best of both worlds

The potentially large number of synchronisation points in subspace methods make
them less suitable for Grid computing. On the other hand, the improved parallel
performance of asynchronous algorithms make them perfect candidates.

To reap the benefits and awards of both techniques, the authors propose in [17]
to use an asynchronous iterative method as a preconditioner in a flexible iterative
method. By combining a slow but coarse–grain asynchronous preconditioning iter-
ation with a fast but fine–grain outer iteration, it is believed that high convergence
rates may be achieved on Grid computers.

For their particular application the flexible method GMRESR is used as the outer
iteration and asynchronous block Jacobi as the preconditioning iteration. The pro-
posed combined algorithm exhibits many of the features that are on the algorithmic
wishlist given in Sect. §2. These include the following items.

• Coarse–grained. The asynchronous preconditioning iteration can be efficiently
performed on Grid hardware with the help of domain decomposition techniques.

• Minimal amount of synchronisation points. When using this approach, a distinc-
tion has to be made between global and local synchronisation points. Global
synchronisation occurs when information is exchanged between the precondi-
tioning iteration and the outer iteration, whereas local synchronisation only takes
place within the outer iteration process. By investing a large amount of time in
the preconditioning iteration, the number of expensive global synchronisations
can be reduced to a minimum. Subsequently, the number of outer iterations also
diminishes, reducing the number of local synchronisation points.

• Multiple instances of asynchronous communication. Within the preconditioning
iteration asynchronous communication is used, allowing for efficient overlap of
communication with computation. Furthermore, the outer iteration process does
not need to halt while waiting for a new update u to arrive. It may continue to
iterate until a new complete update can be incorporated.

• Resource–aware and dynamic. A simple static partitioning scheme may be used
for the preconditioner and repartitioning can be performed each outer iteration
step. Any load imbalance that may have occurred during the preconditioning
iteration will then automatically be resolved.

• Increased fault tolerance. In the preconditioning phase, each server iterates on a
unique part of the vector u. In heterogeneous computing environments, servers
may become temporarily unavailable or completely disappear at any time, poten-
tially resulting in loss of computed data. If the asynchronous process is used to

12 Tijmen P. Collignon and Martin B. van Gijzen

solve the main linear system, these events would either severely hamper conver-
gence or destroy convergence completely. Either way, by using the asynchronous
iteration as a preconditioner — assuming that the outer iteration is performed on
reliable hardware — the whole iteration process may temporarily slow down in
the worst case, but is otherwise unaffected.

In addition, the proposed algorithm has several highly favorable properties.

• No expensive asynchronous convergence detection. By spending a fixed amount
of time on preconditioning in each outer iteration step, there is no need for a —
possibly complicated and expensive — convergence detection algorithm in the
asynchronous preconditioning iteration.

• Highly flexible and extendible iteration scheme. The algorithm allows for many
different implementation choices. For example, highly recursive iteration schemes
may be used. That is, it could be possible to solve a sub–block from a block Ja-
cobi iteration step in parallel on some distant non–dedicated cluster. Another
possibility is that the processors that perform the preconditioning iteration do not
need to be equal to the nodes performing the outer iteration.

• The potential for efficient multi–level preconditioning. The spectrum of a co-
efficient matrix is the set of all its eigenvalues. Generally speaking, the speed
at which a problem is iteratively solved depends on three key things: the itera-
tive method, the preconditioner, and the spectrum of the coefficient matrix. The
second and third component are closely related in the sense that a good precon-
ditioner should transform (or precondition) the linear system into a problem that
has a more favorable spectrum. Many important large–scale applications involve
solving linear systems that have highly unfavorably spectra, which consist of
many large and many small eigenvalues. The large eigenvalues can be efficiently
handled by the asynchronous iteration. On the other hand, the small and more
difficult eigenvalues require advanced preconditioners, which can be neatly in-
corporated in the outer iteration. In this way, both small and large eigenvalues
may be efficiently handled by the combined preconditioner. This is just one ex-
ample of the possibilities.

Naturally, the algorithm is not perfect and there are several potential draw–backs.
The main bottlenecks are as follows.

• Robustness issues. There are several parameters which have a significant impact
on the performance of the complete iteration process. Determining the optimal
parameters for a specific application may be a difficult issue. For example, find-
ing the ideal time spend on preconditioning is highly problem dependent. Fur-
thermore, it may be advantageous to vary the amount of preconditioning in each
iteration step.

• Algorithmic and parallel efficiency issues. The preconditioning operator varies
in each outer iteration step. In most cases this implies that a flexible method has
to be used, which can introduce additional overhead in the outer iteration. In
order to avoid potential computational bottlenecks, the outer iteration has to be
performed in parallel as well. In addition, it is well–known that block Jacobi–type

Parallel Scientific Computing on Loosely Coupled Networks of Computers 13

Fig. 3 This experiment is
performed using ten servers
on a large heterogeneous and
non–dedicated local cluster
during a normal working
day. The Figure shows the
number of Jacobi iterations
— broken down for each
server — during each outer
iteration step. Here, a fixed
amount of time is devoted
to each preconditioning step.
After the sixth outer iteration
several nodes begin to exhibit
an increased workload, its
effect clearly noticeable.

0 2 4 6 8 10 12 14 16 18
0

200

400

600

800

1000

1200

outer iteration number
nu

m
be

r
of

 J
ac

ob
i s

w
ee

ps

methods are slowly convergent for a large number of subdomains. In the current
context of large–scale scientific computing, this problem needs to be addressed
as well.

Despite these crucial issues, the proposed algorithm has the potential to be highly
effective in Grid computing environments.

4.2 Some experimental results

In order to give a rough idea on the effect a heterogeneous computing environment
may have on the performance of the proposed algorithm, two illustrative experi-
ments will be discussed. Figure 3 shows the effect heterogeneity can have on the
number of Jacobi iterations performed by each server. The effect of the variability
in computational environment on the amount of work is clearly visible.

The second experiment illustrates the potential gain of desynchronising part of
a subspace method, i.e., in this case the preconditioner. In Fig. 4 some problem
is solved using both an asynchronous and a synchronous preconditioner. For this
particular application, the use of asynchronous preconditioning nearly cuts the total
computing time in half.

These experiments conclude the first and general part of the chapter. The second
part of the chapter contains more advanced topics and deals with specific implemen-
tation issues.

14 Tijmen P. Collignon and Martin B. van Gijzen

Fig. 4 In this experiment
a comparison is made be-
tween synchronous and asyn-
chronous preconditioning.
The problem to be solved
consists of one million equa-
tions using four servers within
a heterogeneous computing
environment. Each point rep-
resents a single outer iteration
step. By devoting a significant
(and fixed) amount of time to
asynchronous precondition-
ing, the number of expensive
outer iterations is reduced
considerably, resulting in re-
duced total computing time.

0 500 1000 1500 2000 2500
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

elapsed time (in seconds)

lo
g(

re
si

du
al

)

synchronous
a−synchronous

5 Efficient numerical algorithms in Grid computing

The implementation of numerical methods on Grid computers is a complicated pro-
cess that uniquely combines many concepts from mathematics, computer science,
and physics. In the second part of this chapter the various facets of the whole
process will be discussed in detail. Most of the concepts given here are taken
from [16, 17, 18].

Four key ingredients may be distinguished when implementing numerical algo-
rithms on Grid computers: (i) the numerical algorithm, (ii) the Grid middleware, (iii)
the target hardware, and last but not least, (iv) the application. Choosing one particu-
lar component can have great consequences on the other components. For example,
some middleware may not be suitable for a particular type of hardware. Another
possibility is that some applications require that specific features are present in the
algorithm.

The discussion will take place within the general framework of the aforemen-
tioned proposed algorithm, i.e., a flexible method in combination with an asyn-
chronous iterative method as a preconditioner. As previously argued, it possesses
many features that make it perfectly suitable for Grid computing. Furthermore, two
important classes of Grid middleware will be discussed and correspondingly, two
types of target hardware. Although the current approach is applicable to a wide
range of scientific applications, the main focus will be on problems originating from
large–scale computational fluid dynamics.

The exposition is concluded by briefly mentioning several more advanced tech-
niques.

Parallel Scientific Computing on Loosely Coupled Networks of Computers 15

Table 3 Several characteristics of two types of Grid middleware.

CRAC GridSolve

dedicated hardware non–dedicated hardware
direct communication bridge communication
asynchronous iterative algorithms general algorithms
miscellaneous applications embarrassingly parallel problems
data persistence non–persistent data
no fault tolerance fault tolerant

5.1 Grid middleware

One of the primary components in Grid computing is the middleware. It serves as
the key software layer between the user and the computational resources. The mid-
dleware is designed to facilitate client access to remote resources and to cope with
issues like heterogeneity and volatility. In which manner the middleware handles
these important issues will be briefly discussed.

Although Grid middleware comes in many different shapes and sizes, the fo-
cus will be on two leading examples, i.e., GridSolve [26, 61] and CRAC [20]. Ta-
ble 3 lists some prototypical classifications pertaining to both middleware. Most of
these classifications are directly related in the sense that some middleware are better
suited for particular applications than others. As an example, the bridge communica-
tion used in GridSolve would make it more appropriate for embarrassingly parallel
problems.

5.1.1 Brief description of GridSolve

GridSolve is a distributed programming system which uses a client–server model
for solving complex problems remotely on global networks. It is an instantiation
of the GridRPC model, a standard for a Remote Procedure Call (RPC) mechanism
on Grid computers [42]. The GridRPC Application Programming Interface (API)
is defined within the Global Grid Forum [35]. Other projects that implement the
GridRPC API are DIET [14], NetSolve [43], Ninf–G [51], and OmniRPC [41].

Software environments such as GridSolve are often called Network Enabled
Servers (NES). These systems typically consist of six components: clients, agents,
servers, databases, monitors, and schedulers. In the context of the current version
of GS1 (see Fig. 5) these components will be discussed in detail. The GS servers
(component 3) are software components that are started on each computational node
which may consist of a single CPU or a cluster. The server monitors the workload of
the node and keeps an updated list of the services (or tasks) that are installed on the

1 Latest version is v0.17.0 as of May 4th, 2008.

16 Tijmen P. Collignon and Martin B. van Gijzen

Fig. 5 Schematic overview of GridSolve. The dashed line symbolises (geographical) distance be-
tween the client and servers.

server. For example, a task can be a single dgemm or a parallel MPI job. Services
can be easily added or modified without restarting the server.

A single GridSolve agent (component 2) actively monitors the server properties
such as CPU speed, memory size, computational services, and availability. These
properties are stored in a database on the agent node and are periodically updated.
When a GridSolve client program (component 1) written in either C, Fortran, or
Matlab uses the GridRPC API to initiate a GS call to a remote problem, the GS
middleware first contacts the agent. Based on the problem complexity, size of the
input parameters, and the available computational resources, the agent then returns
a list of servers sorted by minimum completion time. The client resorts the list after
performing a quick network performance test. Input parameters are sent to the first
server on the list and the task, which can be either blocking or non–blocking, is
executed on the server. The result (if any) is then sent back to the client. If a task
should fail it is transparently resubmitted to the next server on the list.

The main advantages of GridSolve are that it is easy to use, install, maintain, and
that it is a standard for programming on Grid environments. Nevertheless, the cur-

Parallel Scientific Computing on Loosely Coupled Networks of Computers 17

rent implementation has several limitations. For example, the remote servers cannot
communicate directly. In the current GridSolve model, separate tasks communicate
data through the client, resulting in bridge communication. As a result, input and
output data associated with a task are continuously being sent back and forth be-
tween the client and the server using a possibly slow network connection. Also,
any data that are read or generated locally during the execution of a task is lost af-
ter it completes. Several strategies such as data persistence and data redistribution
have been proposed to tackle these deficiencies for different implementations of the
GridRPC API [13, 12, 34, 62, 22]. Furthermore, a proposal for a Data Management
API within the GridRPC is currently being developed.

In GridSolve there is a partial solution to the data management problem called
the Distributed Storage Infrastructure (DSI). At the Logistical Computing and In-
ternetworking (LoCI) Laboratory of the University of Tennessee the IBP (Internet
Backplane Protocol) middleware has been developed based on this approach [6].
To avoid multiple transmissions of the same data between the client and the server,
the client can upload data to an IBP data depot which is in close proximity to the
computational servers. Subsequently a data handle is sent to the server and the task
can fetch and update the data on the IBP depot (see component (4) in Fig. 5). Using
the DSI can be considered as programming for a shared memory model.

5.1.2 Brief description of CRAC

The Grid middleware CRAC (Communication Routines for Asynchronous Com-
putations) was developed by Stéphane Domas at Laboratoire d’Informatique de
Franche–Comté (LIFC) and is specifically designed for efficient implementation
of parallel asynchronous iterative algorithms. It allows for direct communication
between the processors, both synchronous and asynchronous.

The CRAC library is primarily intended for dedicated parallel systems consisting
of geographically separated computational resources. For this reason there are no
built–in facilities for detecting properties like varying workload or other types of
heterogeneity in computational hardware. However, the object orientated approach
of the software ensures that such functionalities can be easily incorporated.

In the current version of CRAC2, there are no countermeasures in place for han-
dling resources that have completely failed. It is the responsibility of the algorithm
designer to make sure that such an event does not destroy the convergence process.
Furthermore, it is not yet possible to add or remove computational resources during
an iteration process.

18 Tijmen P. Collignon and Martin B. van Gijzen

N a t i o n a l a n dI n t e r n a t i o n a lc o n n e c t i v i t y
D A S 3

D A S 3D A S 3

D A S 3
D A S 3

Fig. 6 The DAS–3 supercomputer and StarPlane.

5.2 Target hardware

There exists numerous computing platforms that may be qualified as Grid comput-
ing hardware. However, for the purpose of this chapter the focus will be on the
following two architectures.

1. Local networks of non–dedicated computers associated with organisations, such
as universities and companies. These networks typically consists of the comput-
ers used daily by employees. Such hardware may considerably differ in speed,
memory size, and availability. An example of such a cluster is the network at the
Numerical Analysis department at the Delft University of Technology.

2. Cluster of dedicated clusters linked by a high–speed network. For example, the
Dutch DAS–3 national supercomputer is a cluster of five clusters, located at four
academic institutions across the Netherlands, connected by specialised fiber optic
technology (i.e., StarPlane [48]). It is designed for dedicated parallel computing
and although each cluster separately is homogeneous, the system as a whole can
be considered heterogeneous. For more specific details on the architecture see
Tab. 4 and Fig. 6.

2 Latest version is v1.0 as of May 4th, 2008.

Parallel Scientific Computing on Loosely Coupled Networks of Computers 19

Table 4 DAS–3: five clusters, one system.

Cluster Nodes Type Speed Memory Storage Node HDDs Network

VU 85 dual–core 2.4 GHz 4 GB 10 TB 85 x 250 GB Myri-10G and GbE
LU 32 single–core 2.6 GHz 4 GB 10 TB 32 x 400 GB Myri-10G and GbE
UvA 41 dual–core 2.2 GHz 4 GB 5 TB 41 x 250 GB Myri-10G and GbE
TUD 68 single–core 2.4 GHz 4 GB 5 TB 68 x 250 GB GbE (no Myri-10G)
UvA-MN 46 single–core 2.4 GHz 4 GB 3 TB 46 x 1.5 TB Myri-10G and GbE

Not surprisingly, the most likely candidates for these types of Grid hardware are
GridSolve and CRAC, respectively.

5.3 Parallel iterative methods: building blocks revisited

The next vital step in implementing numerical algorithms on Grid computers is to
revisit the four building blocks of subspace methods as mentioned in Sect. §4. Where
appropriate, each item will be discussed in the context of the aforementioned types
of target architectures.

Dividing the work is an essential aspect of parallel iterative methods. Traditional
load balancing aims to divide the computational work as evenly as possible under
the constraint of minimal communication. In most cases, this is achieved by a form
of hypergraph partitioning algorithm, such as Mondriaan [54]. In addition, the cur-
rent methodology dictates that the load balancer incorporates properties related to
the heterogeneity of the computational hardware into the partitioning process [52].
Also, the computational effort involved with the partitioning process itself is far
from negligible and may be performed in parallel as well [23].

It is not unlikely that the preconditioning iteration is performed on completely
different hardware as the outer iteration. Taking the DAS–3 architecture as an ex-
ample, the outer iteration may be performed on a single cluster, while the precon-
ditioning iteration is performed utilising all five clusters. The point is that the data
distribution used in the outer iteration may be different from the data distribution
used in the preconditioning iteration.

Depending on the type of Grid middleware, it may be advantageous to perform
the preconditioning iteration on the same hardware as the outer iteration in order to
preserve data locality.

5.3.1 Matrix–vector multiplication

Partitioning the matrix–vector multiplication may be done in numerous ways. In
the current type of application, the number of non–zeros on each row of the coef-
ficient matrix is roughly the same. A simple but effective distribution is the one–

20 Tijmen P. Collignon and Martin B. van Gijzen

Fig. 7 Heterogeneous one–dimensional block–row partitioning for four servers of a two–
dimensional Poisson problem. The input (shown at the top) and output (shown left) vectors are
partitioned identically.

dimensional block–row partitioning, depicted in Fig. 7. When performing the paral-
lel matrix–vector multiplication only nearest–neighbour communication is required.
Nevertheless, nothing prevents the algorithm designer from using more advanced
partitioning algorithms in the outer iteration, such as the aforementioned hypergraph
partitioner.

The bulk of the computational work in the outer iteration is comprised of the
matrix–vector multiplication. Taking into account the fact that the general idea is to
minimise the total number of outer iterations, it is unlikely that this operation will be
the computational bottleneck of the complete algorithm. As a result, efficient load
balancing of the matrix–vector multiplication appears less crucial.

5.3.2 Vector operations

In every subspace method, a newly obtained vector from a preconditioning step is
orthogonalised against one or more previous vectors. This is done by an orthogo-
nalisation procedure, such as classical Gram–Schmidt. Although this procedure has
good parallel properties, it may suffer from numerical instabilities. This may be
remedied by using a selective reorthogonalisation procedure [11, 21].

Parallel Scientific Computing on Loosely Coupled Networks of Computers 21

5.3.3 Preconditioning step

An efficient and robust preconditioner is crucial for rapid convergence of iterative
methods. Generally speaking, preconditioners fall into three different classes.

1. Algebraic techniques. These methods exploit algebraic properties of the coeffi-
cient matrix, such as sparsity patterns and size of matrix elements. For example,
incomplete factorisations such as Incomplete Cholesky and block ILU [39].

2. Domain decomposition techniques. Most applications in scientific computing in-
volving solving some partial differential equation on a computational domain.
Often, the domain can be divided quite naturally into subdomains that may be
handled more efficiently. Examples include block Jacobi and alternating Schwarz
methods [46].

3. Multilevel techniques. Solutions often contain both slow varying and high vary-
ing components. By solving the same problem at different scales in a recursive
manner, these components can be efficiently captured. Example of such meth-
ods are multigrid, deflation, and domain decomposition with coarse grid correc-
tion [30, 59].

Efficient parallelisation of a preconditioner is a difficult problem, especially in ex-
tremely heterogeneous computational environments. A possible solution is to use
an asynchronous iterative method as a preconditioner. In addition, by using a flex-
ible method as the outer iteration, the preconditioning operator is allowed to vary
in each outer iteration step and the preconditioning iteration may be performed on
unreliable computational hardware.

In the context of asynchronism, efficient load balancing of the preconditioning
iteration appears less important. Nevertheless, significant desynchronisation of the
Jacobi processes may result in suboptimal convergence rates and some form of load
balancing may be appropriate.

The bulk of the computational work in the preconditioning iteration consists of
solving the block diagonal system in each Jacobi iteration step. As opposed to the
work performed by the outer iteration, this amount is difficult to predict. The reason
is that the local linear systems are solved iteratively and in most cases inexactly.
Furthermore, problem characteristics may cause highly erratic convergence rates.
These issues make efficient load balancing highly problematic.

5.3.4 Convergence detection

The final but essential component of iterative methods is knowing when to stop. In
the proposed algorithm a distinction has to be made between convergence detection
in the preconditioning iteration and convergence detection in the outer iteration. In
most cases, the outer iteration is performed on reliable hardware in a local manner
and as a result, convergence detection in the outer iteration is relatively straightfor-
ward.

22 Tijmen P. Collignon and Martin B. van Gijzen

Matters are far more complicated for the preconditioning step. If the precondi-
tioning iteration is performed on unreliable computational hardware as may be the
case with GridSolve in combination with a local network of non–dedicated hard-
ware, it is difficult to construct a robust and efficient convergence detection algo-
rithm. In this case, some form of time–dependent stopping criteria may be more
appropriate. An obvious disadvantage is that determining the ideal amount of said
time may be extremely problem–dependent.

On the other hand, if the preconditioning iteration is performed on dedicated but
geographically separated hardware such as the DAS–3 architecture, some sophisti-
cated decentralised convergence detection algorithm may have to be employed [55].
In analogy to the aforementioned case, determining how accurate one should solve
the preconditioning iteration is far from trivial.

5.4 Applications

Many important large–scale problems from computational fluid dynamics are solved
on highly refined meshes in conjunction with large jumps in the coefficients. The
arising linear systems are often severely ill–conditioned and finding efficient (par-
allel) preconditioners for these systems is vital to fast solution methods. Examples
of said applications are swimming of fish, airflow around wind turbine rotor blades,
and bubbly flow.

The presence of many large and many small eigenvalues severely hampers con-
vergence rates, which can only be remedied by using sophisticated multi–level pre-
conditioners. As previously mentioned, such preconditioners can be efficiently in-
corporated in the proposed algorithm.

For these type of multiphase flow applications, the so–called Immersed Bound-
ary Method (IBM) is extremely appropriate. Although IBMs come in many different
flavours, they all share one common characteristic. Instead of adapting the computa-
tional mesh to the (possibly complex and moving) boundary, an IBM immerses the
boundary on simple Cartesian meshes and modifies the governing equations in the
vicinity of the boundary. The use of fixed and structured meshes expedites the im-
plementation of numerical algorithms immensely, particularly in a parallel context.
For a more thorough discussion on IBMs the reader is kindly referred to the chapter
elsewhere in this book.

5.5 Advanced techniques

Block Jacobi iterations and domain decomposition techniques are closely related.
Combined with the large–scale size of the linear systems involved, some type of
coarse grid correction within the asynchronous preconditioning iteration may be-
come appropriate. However, the inherently global nature of these techniques may

Parallel Scientific Computing on Loosely Coupled Networks of Computers 23

not suit the current context of asynchronism. Nevertheless, this approach warrants
further investigation.

There exists a large number of multi–level preconditioning methods, some more
robust than others. Finding the most efficient technique for the current application
is also a vital research question.

6 Concluding remarks and further reading

In the early days of iterative methods, Jacobi and Gauss–Seidel iterations for solv-
ing linear systems were quite popular. However, their slow convergence rates and
strict convergence conditions severely limited the applicability of such methods to
the constantly increasing pool of computational problems. This was followed by
the discovery of subspace methods in conjunction with incomplete factorisations as
preconditioners, which immensely boosted the popularity of iterative methods for
solving large sparse linear systems from a wide variety of applications.

Then came the era of parallel and vector processing, which rekindled the interest
in classical methods as highly parallel block preconditioners. The need for increas-
ingly realistic simulations motivated using the aggregated power of computational
resources, which introduced the problem of dealing with heterogeneity. The lack of
any synchronisation and coarse–graininess in parallel asynchronous classical itera-
tions motivated the idea of using these methods for solving linear systems on large
heterogeneous networks of computers.

Nowadays, history is repeating itself and said asynchronous iterations are being
used — again as parallel preconditioners — in flexible subspace methods, where the
preconditioner is allowed to change in each iteration step. By combining the best
of worlds, extremely large sparse linear systems may be solved on extremely large
heterogeneous networks of computers.

Designing efficient numerical algorithms for Grid computing is a complex pro-
cess that brings together many different scientific disciplines. By using an asyn-
chronous iterative method as a preconditioner in a flexible iterative method, an al-
gorithm is obtained that has the potential to reap the benefits and awards of both
cluster and Grid computing. In this chapter a comprehensive study is made of the
various advantages and disadvantages of said approach. Some of the advantages in-
clude coarse–graininess and fault tolerance, while potential robustness issues war-
rant further investigation.

In addition, the efficient implementation of these algorithms on Grid computers
depends on many aspects related to the type of target hardware, Grid middleware,
and the application. Some of these aspects were also discussed in detail. It is be-
lieved that the proposed algorithm has the potential to perform efficient large–scale
numerical simulations on loosely coupled networks of computers in various fields
of science.

Large sparse linear systems are emerging from a constantly growing number of
scientific applications and finding efficient preconditioners for these problems is be-

24 Tijmen P. Collignon and Martin B. van Gijzen

coming increasingly important. This observation has partly motivated the decision
of using an asynchronous iterative method as a preconditioner. However, there are
many other potential applications of this kind of preconditioner. For example, an
asynchronous iterative method could be used as a so–called smoother in Multigrid,
which in itself is often used as a preconditioner. Another possibility is using an asyn-
chronous method to approximate the correction equation in large–scale eigenvalue
problems.

It is evident that there are many interesting applications and that much research
is still needed. It is hoped that the reader has gained some understanding of the com-
plexities related to the design of efficient numerical algorithms for Grid computers.

For the interested reader, the book by Dimitri Bertsekas and John Tsitsiklis con-
tains a wealth of information on parallel asynchronous iterative algorithms for var-
ious applications [9]. Furthermore, more extensive discussions on various aspects
of parallel scientific computing may be found in the excellent book by Rob Bissel-
ing [10].

For a comprehensive discussion on iterative methods for solving linear systems,
the classic book by Gene Golub and Charles van Loan is greatly recommended, as
well as the more recent book by Henk van der Vorst [32, 58]. More on domain de-
composition techniques can be found in [46, 53]. For more technical details on Grid
hardware and Grid software technologies, the reader is referred to [8, 24, 25, 29].
The recent overview article on iterative methods by Valeria Simoncini and Daniel
Szyld is also highly recommended [45]. Another excellent overview article by
Michele Benzi discusses various types of preconditioning techniques [7].

Extensive experimental results and specific implementation details pertaining to
implementing numerical algorithms on Grid computers may be found in [16, 17,
18].

Acknowledgements The work of the first author was financially supported by the Delft Centre
for Computational Science and Engineering. This work is performed as part of the research project
“Development of an Immersed Boundary Method, Implemented on Cluster and Grid Computers,
with Application to the Swimming of Fish.” and is joint work with Barry Koren and Yunus Hassen
from CWI. The Netherlands Organisation for Scientific Research (NWO) is gratefully acknowl-
edged for the use of the DAS–3. The authors would like to thank the GridSolve team for their
prompt response pertaining to our questions and also Stéphane Domas for his prompt and extensive
responses pertaining to our questions regarding the CRAC programming system. They also thank
Hans Blom for information on the performance of the DAS–3 network system and Kees Verstoep
for answering questions regarding DAS–3 inner workings. Figure 6 was kindly donated by Xu Lin,
whilst Fig. 8 has been provided by Tobias Baanders. Paulo Anita kindly provided information on
the communication patterns induced by the algorithm on the DAS–3 cluster.

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: an ex-
periment in public–resource computing. Commun. ACM 45(11), 56–61 (2002). DOI
http://doi.acm.org/10.1145/581571.581573

Parallel Scientific Computing on Loosely Coupled Networks of Computers 25

Fig. 8 Artist’s Impression of Fishes in Immersed Boundaries.

2. Axelsson, O.: Iterative solution methods. Cambridge University Press, New York, NY, USA
(1994)

3. Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Evaluation of the asynchronous iterative al-
gorithms in the context of distant heterogeneous clusters. Parallel Comput. 31(5), 439–461
(2005). DOI http://dx.doi.org/10.1016/j.parco.2005.02.009

4. Baz, D.E.: A method of terminating asynchronous iterative algorithms on message passing
systems. Parallel Algorithms and Applications 9, 153–158 (1996)

5. Baz, D.E., Spiteri, P., Miellou, J.C., Gazen, D.: Asynchronous iterative algorithms with flex-
ible communication for nonlinear network flow problems. J. Parallel Distrib. Comput. 38(1),
1–15 (1996). DOI http://dx.doi.org/10.1006/jpdc.1996.0124

6. Beck, M., Arnold, D., Bassi, A., Berman, F., Casanova, H., Dongarra, J., Moore, T., Obertelli,
G., Plank, J., Swany, M., Vadhiyar, S., Wolski, R.: Middleware for the use of storage in com-
munication. Parallel Comput. 28(12), 1773–1787 (2002). DOI http://dx.doi.org/10.1016/
S0167-8191(02)00185-0

7. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys.
182(2), 418–477 (2002). DOI http://dx.doi.org/10.1006/jcph.2002.7176

8. Berman, F., Fox, G., Hey, A.J.G.: Grid Computing: Making the Global Infrastructure a Reality.
John Wiley & Sons, Inc., New York, NY, USA (2003)

9. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Prentic Hall, Englewood Cliffs NJ (1989)

26 Tijmen P. Collignon and Martin B. van Gijzen

10. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach Using BSP and MPI.
Oxford University Press (2004)

11. Björck, Å.: Solving linear least squares problems by Gram–Schmidt orthogonalization. BIT
7, 1–21 (1967)

12. Brady, T., Konstantinov, E., Lastovetsky, A.: SmartNetSolve: High level programming system
for high performance Grid computing. IEEE Computer Society, Rhodes Island, Greece (2006).
CD-ROM/Abstracts Proceedings

13. Caron, E., Del-Fabbro, B., Desprez, F., Jeannot, E., Nicod, J.M.: Managing data persistence
in network enabled servers. Sci. Program. 13(4), 333–354 (2005)

14. Caron, E., Desprez, F.: DIET: A scalable toolbox to build network enabled servers on the Grid.
International Journal of High Performance Computing Applications 20(3), 335–352 (2006)

15. Chronopoulos, A.T., Gear, C.W.: S–step iterative methods for symmetric linear systems. J.
Comput. Appl. Math. 25(2), 153–168 (1989). DOI http://dx.doi.org/10.1016/0377-0427(89)
90045-9

16. Collignon, T.P., van Gijzen, M.B.: Implementing the Conjugate Gradient Method on a grid
computer. In: Proceedings of the International Multiconference on Computer Science and
Information Technology, Volume 2, October 15–17, 2007, Wisla, Poland, pp. 527–540 (2007)

17. Collignon, T.P., van Gijzen, M.B.: Solving large sparse linear systems efficiently on Grid com-
puters using an asynchronous iterative method as a preconditioner. Tech. rep., Delft University
of Technology, Delft, the Netherlands (2008). DUT Report 08–08

18. Collignon, T.P., van Gijzen, M.B.: Two implementations of the preconditioned Conjugate Gra-
dient method on a heterogeneous computing grid with applications to 3D bubbly flow prob-
lems. Tech. rep., Delft University of Technology, Delft, the Netherlands (2008). DUT Report
08–??

19. Couturier, R., Denis, C., Jézéquel, F.: GREMLINS: a large sparse linear solver for grid envi-
ronment. Parallel Computing (2008)

20. Couturier, R., Domas, S.: CRAC: a Grid Environment to solve Scientific Applications with
Asynchronous Iterative Algorithms. In: 21th IEEE and ACM Int. Symposium on Parallel and
Distributed Processing Symposium, IPDPS’2007, p. 289 (8 pages). IEEE computer society
press, Long Beach, USA (2007)

21. Daniel, J., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and stable algo-
rithms for updating the Gram–Schmidt QR factorization. Mathematics of Computation 30,
772–795 (1976)

22. Desprez, F., Jeannot, E.: Improving the GridRPC model with data persistence and redistri-
bution. In: ISPDC ’04: Proceedings of the Third International Symposium on Parallel and
Distributed Computing/Third International Workshop on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks (ISPDC/HeteroPar’04), pp. 193–200. IEEE
Computer Society, Washington, DC, USA (2004)

23. Devine, K., Boman, E., Heaphy, R., Bisseling, R., Catalyurek, U.: Parallel hypergraph par-
titioning for scientific computing. In: Proc. of 20th International Parallel and Distributed
Processing Symposium (IPDPS’06). IEEE (2006)

24. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A. (eds.):
Sourcebook of Parallel Computing. Morgan Kaufmann (2003)

25. Dongarra, J., Lastovetsky, A.: An overview of heterogeneous high performance and Grid com-
puting. Engineering the Grid: Status and Perspective (2006)

26. Dongarra, J., Li, Y., Shi, Z., Fike, D., Seymour, K., YarKhan, A.: Homepage of Net-
Solve/GridSolve (2007)

27. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for nonsymmetric
systems of linear equations. SIAM J. Numer. Anal. 20, 345–357 (1983)

28. Folding: Folding@home distributed computing. http://folding.stanford.edu/
29. Foster, I., Kesselman, C.: The Grid: Blueprint for a new Computing Infrastructure, second

edn. Morgan Kaufman Publishers (2004)
30. Frank, J., Vuik, C.: On the construction of deflation–based preconditioners. SIAM J. Sci.

Comput. 23(2), 442–462 (2001). DOI http://dx.doi.org/10.1137/S1064827500373231

Parallel Scientific Computing on Loosely Coupled Networks of Computers 27

31. Frommer, A., Szyld, D.B.: Asynchronous iterations with flexible communication for linear
systems. Calculateurs Parallèles Réseaux et Systèmes Répartis 10, 421–429 (1998)

32. Golub, G.H., Van Loan, C.F.: Matrix Computations (Johns Hopkins Studies in Mathematical
Sciences). The Johns Hopkins University Press (1996)

33. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for solving linear systems. Jour-
nal of Research of National Bureau Standards 49, 409–436 (1952)

34. Lastovetsky, A., Zuo, X., Zhao, P.: A non–intrusive and incremental approach to enabling
direct communications in RPC–based grid programming systems. Tech. rep. (2006)

35. Lee, C., Nakada, H., Tanimura, Y.: GridRPC Working Group (2007). http://forge.
ogf.org/sf/projects/gridrpc-wg/

36. Miellou, J.C., Baz, D.E., Spiteri, P.: A new class of asynchronous iterative algorithms with
order intervals. Math. Comput. 67(221), 237–255 (1998). DOI http://dx.doi.org/10.1090/
S0025-5718-98-00885-0

37. Notay, Y.: Flexible conjugate gradients. SIAM Journal on Scientic Computing 22, 1444–1460
(2000)

38. Saad, Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.
14(2), 461–469 (1993)

39. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (2003)

40. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

41. Sato, M., Boku, T., Takahashi, D.: OmniRPC: a Grid RPC system for parallel programming in
cluster and Grid environment. In: CCGRID ’03: Proceedings of the 3st International Sympo-
sium on Cluster Computing and the Grid, pp. 206–213. IEEE Computer Society, Washington,
DC, USA (2003)

42. Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee, C., Casanova, H.: Overview of
GridRPC: A Remote Procedure Call API for Grid Computing. In: GRID ’02: Proceedings of
the Third International Workshop on Grid Computing, pp. 274–278. Springer–Verlag, London,
UK (2002)

43. Seymour, K., YarKhan, A., Agrawal, S., Dongarra, J.: NetSolve: Grid enabling scientific com-
puting environments. In: L. Grandinetti (ed.) Grid Computing and New Frontiers of High
Performance Processing. Elsevier (2005)

44. Simoncini, V., Szyld, D.B.: Flexible inner–outer Krylov subspace methods. SIAM J. Numer.
Anal. 40(6), 2219–2239 (2002). DOI http://dx.doi.org/10.1137/S0036142902401074

45. Simoncini, V., Szyld, D.B.: Recent computational developments in Krylov subspace methods
for linear systems. Numerical Linear Algebra with Applications 14, 1–59 (2007)

46. Smith, B.F., Bjørstad, P.E., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

47. Sonneveld, P., van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving
large nonsymmetric linear systems. Tech. rep., Delft University of Technology, Delft, the
Netherlands (2007). DUT Report 07–07

48. StarPlane: Application-specific management of photonic networks (2007). http://www.
starplane.org/

49. Sterling, T., Lusk, E., Gropp, W. (eds.): Beowulf Cluster Computing with Linux. MIT Press,
Cambridge, MA, USA (2003)

50. de Sturler, E.: Truncation strategies for optimal Krylov subspace methods. SIAM J. Numer.
Anal. 36(3), 864–889 (1999). DOI http://dx.doi.org/10.1137/S0036142997315950

51. Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumura, T., Matsuoka, S.: Ninf–G: A reference im-
plementation of RPC–based programming middleware for Grid computing. Journal of Grid
Computing 1(1), 41–51 (2003)

52. Teresco, J.D., Devine, K.D., Flaherty, J.E.: Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, chap. Partitioning and Dynamic Load Balancing for the Numer-
ical Solution of Partial Differential Equations. Springer–Verlag (2005)

53. Toselli, A., Widlund, O.B.: Domain Decomposition: Algorithms and Theory, vol. 34. Springer
Series in Computational Mathematics, Springer, Berlin, Heidelberg (2005)

28 Tijmen P. Collignon and Martin B. van Gijzen

54. Vastenhouw, B., Bisseling, R.H.: A two–dimensional data distribution method for parallel
sparse matrix-vector multiplication. SIAM Rev. 47(1), 67–95 (2005). DOI http://dx.doi.org/
10.1137/S0036144502409019

55. Vernier, F., Bahi, J.M., Contassot-Vivier, S., Couturier, R.: A decentralized convergence de-
tection algorithm for asynchronous parallel iterative algorithms. IEEE Trans. Parallel Distrib.
Syst. 16(1), 4–13 (2005). DOI http://dx.doi.org/10.1109/TPDS.2005.2

56. van der Vorst, H., Vuik, C.: GMRESR: a family of nested GMRES methods. Num. Lin. Alg.
Appl. 1(4), 369–386 (1994)

57. van der Vorst, H.A.: Bi–CGSTAB: A fast and smoothly converging variant of Bi–CG for the
solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Comput-
ing 13(2), 631–644 (1992)

58. van der Vorst, H.A.: Iterative Krylov Methods for Large Linear systems. Cambridge University
Press, Cambridge (2003)

59. Wesseling, P.: An Introduction to Multigrid Methods. John Wiley & Sons, Chichester (1992)
60. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: The potential of the

cell processor for scientific computing. In: CF ’06: Proceedings of the 3rd conference on
Computing frontiers, pp. 9–20. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/
10.1145/1128022.1128027

61. YarKhan, A., Seymour, K., Sagi, K., Shi, Z., Dongarra, J.: Recent Developments in GridSolve.
International Journal of High Performance Computing Applications (IJHPCA) 20(1), 131–141
(2006)

62. Zuo, X., Lastovetsky, A.: Experiments with a software component enabling NetSolve with
direct communications in a non–intrusive and incremental way. In: Proceedings of the 21st
International Parallel and Distributed Processing Symposium (IPDPS 2007). IEEE Computer
Society, Long Beach, California, USA (2007)

