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A geometric multigrid method based on L-shaped
coarsening for PDEs on stretched grids

H. bin Zubair ∗, S.P. MacLachlan † and C. W. Oosterlee ‡

SUMMARY

In this work, we present a geometric multigrid method for PDEs discretized on stretched
grids. The emphasis is on geometric L-shaped coarsening techniques that we have developed
in this context. The presented method is matrix free, in contrast with alternatives such
as Algebraic Multigrid (AMG) or certain preconditioned Krylov-subspace based solution
methods. For a Poisson model problem, we explain, both visually and in a descriptive
way, how the stretched fine grid may yield a sequence of coarser grids so as to maintain the
complementarity between relaxation and coarse-grid correction. We also present complexity
estimates of the method, thus demonstrating its efficiency. Through figures and numerical
experiment tables, we provide convergence histories for the model problem discretized -and
solved- on various stretched grids with our method.
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1. Introduction

Many real-life application problems have discontinuities or kinks at specific regions
of the domain and, therefore, the selection of a discretization grid is usually dictated
by specific accuracy requirements in these regions. The regions are often restricted
locally to certain parts of the domain, thereby requiring a higher concentration
of grid points there. This saturation of grid points in certain areas of the domain
gives rise to anisotropy in the resulting linear system. This anisotropy -due to
strongly varying connection strengths in the discrete operator- poses well-known
convergence problems for standard multigrid with point-wise smoothing [1, 2].
There are two broad categories of remedy for this issue; either keep standard
coarsening and modify the smoother (using block-smoothing, for example), or keep
point-wise smoothing and modify the coarsening in a way so that complimentarity
between the smoothing process and the coarse-grid correction process is preserved.
The former approach is well-developed and precisely known [1, 3], although
its practical use is not very viable when problem dimensionality increases. The
latter approach is open to development and numerous works have surfaced in this
context, see [4, 5, 6, 7].

Higher grid resolution may be obtained from two geometrically different ideas,
AMR (Adaptive Mesh Refinement) [8, 9, 10, 11] and Grid Stretching; both approaches
may give rise to structured and unstructured grids. For geometric classification, we
refer the grids arising from locally adapted mesh refinement as amr-type grids,
while those resulting from the use of a global stretching parameter (detailed in
Section 2.3) as str-type grids. Structured str-type grids form the main theme in
this paper. Solution methods for unstructured grids usually make use of quad -or
oct tree data structures [12, 13]. Uniform grid stretching occurs when mesh sizes
are equidistant throughout a particular dimension but are non-equidistant across
different dimensions. On the contrary, non-uniform grid stretching can be defined
as the case where the grid has variable mesh sizes even within a single dimension.
These grids are often the result of a coordinate transform of the grid variables.

In [14], we showed that for uniformly stretched grids, partial coarsening along
the stretched dimensions gave an optimal multigrid algorithm. In this work, we
consider non-uniformly stretched grids for a two-dimensional model problem. The
grid-stretching that we treat in this paper is called Power-law grid stretching. The
domain is rectangular, and the grid is Cartesian, which lends a specific structure to
be exploited for efficiency.

A well known alternative to geometric multigrid treatment of grid stretching is
the use of algebraic multigrid (AMG) algorithms [15, 16]. This falls in the category
of solution techniques employing point-based relaxation and seeking to coarsen
the grid in a way so that errors on the coarse grid appear geometrically smooth.
AMG starts out with a given matrix (embodying the sparse algebraic equations)
and constructs all of the multigrid components algebraically, through variational
principles, during the actual solution process. This entails a setup phase (which,
consequently, has a cost attached to it) in which these components are set up, in the
form of matrix operators, for use during the iterative solution phase. The capability
to construct multigrid components straight from the algebraic equations without
knowledge of the discretization grid renders AMG very robust. AMG is, thus, a
solution method of choice, whenever the geometric counterpart is too difficult (or
impossible) to apply due to the complex underlying geometry of the problem.
However, the price of this robustness is an extra cost both in terms of storage as
well as computation. Ironically, the very robustness of AMG comes at the price
of compromising any geometric structure that the given problem might have to
offer, and which, in turn, might be exploited for efficiency and better storage costs.
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Naturally then, for problems that are geometrically tractable, the aim should be to achieve
the excellent multigrid convergence that AMG has to offer without compromising the
benefits of the geometrical structure in the discrete problem.

In this work, we present one method of circumventing the drawbacks of AMG
while still ensuring its excellent convergence factors for PDEs on stretched grids.
We introduce a hybrid technique that uses a coarsening pattern inspired by AMG,
in a geometric multigrid setting. This coarsening pattern for the stretched grids
under consideration is along so-called L-shaped lines. The key idea in this work
is to gradually relax grid-anisotropies by employing this coarsening pattern, in a
completely geometric multigrid method based on point smoothing. This allows
us to exploit the structure that a square domain and a Cartesian grid have to
offer. We combine this L-shaped coarsening with point smoothing, piece-wise
constant restriction and bi-linear interpolation and present a geometric method
that converges very well for the Poisson model problem.

An outline of the paper is as follows. In Section 2, we specify the model
problem, the Power-law grid-stretching scheme, and the cell-centered finite-
volume discretization that we use. Section 3 follows, with details of the geometric
multigrid components for the new method. Here, we explain in precise detail the
L-shaped grid-coarsening technique, along with a visual display of the coarsened
grids obtained. The discretization-coarse-grid (DCG) operator (see [3]) comes next,
and is followed by the description of the transfer operators. In Section 4, we do
a complexity analysis for this method. This is followed by Section 5, in which we
provide numerical experiments based on 1d and 2d grid stretching. A simple jump
discontinuity experiment and an experiment on amr-type grids are also performed
to test the robustness of the method. Convergence histories are presented both
in tabular and in visual displays; finally, in the last section, some conclusions are
drawn from the work. An appendix follows, where we derive the flux balance
equations completely for two example cases, thus demonstrating how we carry out
coarse-grid correction in practice.

2. The model problem, the cell-centered FVM, and grid stretching

2.1. The model problem

We have chosen a 2d scalar Poisson-type equation as our model problem. It provides
a consistent model upon which new numerical solvers can be tested without
delving too deeply into the complications of many application problems. This
two-dimensional Poisson-type equation (on a unit square, with Dirichlet boundary
conditions) is given as:

−∇ ·A∇u(x, y) = fΩ(x, y), (x, y) ∈ Ω = (0, 1)× (0, 1)
u(x, y) = f Γ(x, y), (x, y) ∈ S⇒ x ∈ {0, 1} or y ∈ {0, 1} (1)

where

A =

[

a1(x, y) 0
0 a2(x, y)

]

and a1 and a2 are smoothly varying functions.

2.2. The cell-centered finite-volume scheme

To define a cell-centered finite-volume scheme, the entire domain is divided into
rectangular control volumes, with nodes in the center of the cells. Each node
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represents the value of the unknown averaged over the control volume. Therefore,
after integrating both sides of Equation (1), and then applying the Gauss Divergence
theorem, the result can be written in the form of the following sum,

∑

m

{

−
3

∑

k=0

∫

Smk

(A∇umk
) · n̂k dSmk

=

∫

Ωm

fΩdΩm

}

, (2)

where m indexes a rectangular control volume, Smk
denotes the kth face of the

boundary of control volume m, um is the value of u averaged over the control
volume, m, and (∇umk

) refers to the gradient of um computed at the midpoint of Smk
.

Ωm is the volume of the mth cell, such that Ω = ∪ Ωm. Equation (2) is satisfied by
ensuring that Eqn. (3) holds for all m,

−
3

∑

k=0

∫

Smk

(A∇umk
) · n̂k dSmk

=

∫

Ωm

fΩdΩm (3)

Eqn. (3) is the foundation equation of FVM here, which can be approximated in a
number of ways, one of which is detailed in Section 3. When this is done for all
values of m, the result is an (m ×m) system of linear equations.

2.3. Grid stretching and the Power-law scheme

In many application problems, grid stretching is motivated by the need of greater
accuracy requirements in specific portions of the domain.

• In [17], for example, the diffusive Maxwell equations on very large 3D
domains are investigated. The particular accuracy requirements in this work
force the use of a stretched Cartesian grid. The stretching is brought about
with the Power-law scheme. In this paper, multigrid convergence, with point-
wise smoothing and standard coarsening, deteriorates significantly on these
grids.

• It is well-known that the convection-diffusion equation with Dirichlet
boundary conditions, which is often used in modelling the flow during
reservoir-fills, may give rise to steep boundary layers (see [1], Section 7.1).
For an accurate simulation, the grid density has to be substantially higher in
these regions, leading to a stretched grid with unknowns saturated around
the boundary layers.

• For computing the flow around an airfoil, stretched grids, often referred to
as c-grids, are used. (See [1], Section 9.6)

• Scattering applications in quantum mechanics [18] may require
transformation of the Schrodinger equation to a more tractable Helmholtz-
type equation. The wavenumber in this application is spatially dependent and
grows strongly at the boundary. This gives rise to the so-called evanescent
waves in the solution, which may require L-shaped grid concentration near
the boundaries.

This emphasizes that efficient multigrid methods on stretched grids are required
and, therefore, treated in this paper. We stay, however, with model problem
experiments on Cartesian grids and focus on a novel coarsening technique.

In this work, we treat multigrid for a specific variety of str-type grid-stretching,
called the Power-law grid stretching. In what follows, we use the terms left and
right to indicate the decreasing and the increasing directions -respectively- along a
particular dimension. xstr is the point from where the stretching ensues. Dirichlet
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(a) West edge (b) North east corner (c) Center (d) All corners

Figure 1. (str-type grids): A depiction of different str-type concentrations of control volumes, obtained
through (4) with α = 1.07

boundaries are pinned down first, and then we divide the segment to the left
and the right of the stretching point into a specified number of control volumes.
The mesh sizes along each dimension are generated by the 1-dimensional formula
presented in Eqn. (4). In the following, xmin, xmax are the domain boundaries along
the ith dimension, so that xmin ≤ xstr ≤ xmax holds. NL and NR are the specified
number of cells on the left and the right of xstr, respectively. Similarly αL and αR are
the stretching parameters -to be used- respectively on the left and the right of xstr.
When this is provided, we choose:

hk =

{

(xstr − xmin)/

(

α
NL
L
−1

αL−1

)}

× α(NL−1−k)
L

, k = 0 · · · (NL − 1);

hk =

{

(xmax − xstr)/

(

α
NR
R
−1

αR−1

)}

× α(k−NL)
R

, k = NL · · · (NL +NR − 1);

(4)

Using this, we can generate a host of stretched grids, some of which are depicted
in Figure 1. In Section 5, we experiment both with one -and two -dimensional
grid stretching. For two-dimensional stretching, the method that we present in
this paper has been developed for grids having control volume concentration at a
domain corner. However, we point out that the other two-dimensional stretchings
(i.e., those having concentrations either at the center or at all the four corners of
the domain) are merely unions of the types that we treat here and, therefore, the
results carry over to them as well.

3. Multigrid with L-shaped grid coarsening, the DCG, restriction, and
prolongation operators

3.1. The enumeration-scheme and L-shaped coarsening

In this paper, we focus on domains that are stretched with the same parameter
for both x and y dimensions (i.e., α = αx = αy). This allows us to use symmetry
advantageously for storage purposes. The entire domain is divided into L-shaped
control-volume strips. In general, an L-strip consists of a vertex-cell, a vertical segment
consisting of control volumes, and likewise, a horizontal segment. The different L-
strips in the discrete domain have different number of cells, each of which has a
different volume. The different L-strips are ordered in priority of cell density, so
that the most densely saturated strip comes first, and the strips with descending
saturation of control-volumes follow. The last strip invariably consists of only the
vertex control volume, being devoid of horizontal -and vertical segments.

Example 1. (Enumeration of the L-strips and ordering of the cells) Consider Figure
2. (a) shows a simple stretched Cartesian grid with 4 × 4 control volumes. In (b), these
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(a) A 4 × 4 stretched grid
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Figure 2. Grid enumeration in L-shaped strips

control volumes are enumerated into the 4 L-strips, L0 · · ·L3, and nodes are placed in the
center of each control volume. The dissectioning is virtual and only shown as a depiction
of the enumeration. Note the ordering of the control volumes. Each L-strip complies with
the general description in this section. (c) shows the same grid as in (a) but with the grid
enumerated in L-strips and control volumes carrying the described ordering. In the cell-
indices in (c), the larger digit represents the index of the L-strip, while the smaller ones
represent the indices of the control volumes within it.

Grid coarsening in this setting is performed by agglomeration of control volumes
on the fine grid [19, 20]. Selection of prospective fine-grid cells to agglomerate is
done by virtually isolating two L-lines and comparing the different mesh aspect
ratios that we seek to improve through the coarsening process. The mesh aspect
ratio, mar, of a cell is defined as:

mar =
h

w
,

where h and w represents the height and the width of the cell, respectively.

The global guiding principle in selecting fine-grid cells to agglomerate is that the
newly constructed coarse-grid cell should reflect an improvement in the mesh-
aspect ratio over other prospective fine-cell agglomerations. A pair of L-strips
is virtually isolated and inspected cell by cell. The process is guided by the
enumeration scheme of our method. Coarsening starts by visiting the cells near
the vertex and agglomerating them. This agglomeration always gives a perfectly
square coarse cell. Then the vertical segment is inspected, 4 cells at a time, i.e., 2
cells of each adjacent vertical strip; and a choice is made between horizontal-semi-
coarsening (2 × 1) or full-coarsening (2 × 2). This choice is not solely dependent
on the mesh aspect ratios; in fact, it is biased in favour of full coarsening if this
comes within limits of a particular bound, SQTOL, that we set experimentally. The
decisions are stored and automatically carried over to the horizontal segment due to
symmetry. A pair of fine-grid L-strips thus gives a coarse-grid L-strip. This process
of inspecting fine-grid L-strips in pairs is continued until the grid is depleted.
It is important to note that this particular coarsening process leads us to store a
connection structure which has exactly half the number of elements as the control
volumes in the given grid. The following example is provided to elaborate on this
process in greater detail.

Example 2. (L-shaped coarsening) Consider the grids in Figure 3. The grid in Figure
3(b) represents the coarse grid chosen for the fine grid in Figure 3(a). To illustrate the
process, we inspect L0 and L1 together, in Figure 3(a). First, we agglomerate the vertex cells,
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Figure 3. (a) shows an (8 × 8) grid concentrated at the lower-left corner. The stretching parameter used
along both dimensions is α = 1.07 and xstr = 0.0. Thin lines connecting the nodes emphasize that -unlike
coarser levels- all nodes on the finest grid are aligned horizontally and vertically (there are no hanging
nodes). The heavy stair-case line shows the symmetry of the grid which is advantageous both from
a storage as well as a computational point of view. (b) displays the first coarse-grid constructed from
(a) using the technique described in this section. Note that there may be hanging nodes on the coarser

levels.

0, 1, 8, 15, and then move up the vertical segment. Two different prospective agglomerations
to consider next are either combining Cells 2, 3, 16, 17 together, called prospect 1, or
combining Cells 2 and 16, called prospect 2. The coarsening pattern that we employ is
such that individually agglomerating Cell 2 with Cell 3 and Cell 16 with Cell 17 is not
an option, nor is not agglomerating at all. Put simply, we rule that while traversing the
vertical segment, the decision has to be made between semicoarsening in the x-direction or
full-coarsening, depending on mar1 and mar2, which are the mesh aspect ratios of the two
propects, respectively. This ensures that nodes stay aligned along 1 dimension and reduces
unnecessary book-keeping. We define the difference, di, for the ith coarsening prospect as
di = |1 − mari|. Although it seems relatively simple to pick the prospect with the smaller
difference, we point out that this does not lead to an optimal reduction of complexity. As
mentioned earlier, we set a priority criterion in favour of prospect 1, as it allows a greater
reduction of unknowns, compared with prospect 2. We choose a value, SQTOL, such that if
d1 ≤ SQTOL then prospect 1 is selected and prospect 2 dropped, even if d2 < d1; however,
if comparison with SQTOL fails, then the prospect with the lesser d is selected straight
away. On the coarser grids, there is an additional check; if a situation such as depicted by
Cells 2, 3, 12 of Figure 3(b) arises, then we simply carry out this 3-cell agglomeration and
do not venture to fatten the prospective coarse-grid cell any further. In particular, this check
ensures that the boundary of the coarsened cell is shared with its neighbour in the adjacent
L-strip.

On the finest grid, the coarsening process detailed above results automatically in
full coarsening along a particular tie-shaped central portion of the grid and in semi
coarsening as the proximity to the domain edges grow. All coarser grids add a band
of (full-coarsened) cells to the right and the left of this tie-shaped portion, adding
up to complexity reduction. Figure 4 gives the complete sequence of coarse grids
generated for a 642 fine grid stretched with α = 1.03. In Section 5, we solve the
model problem on this sequence of grids and demonstrate the convergence of the
resulting multigrid solver.
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(a) Level 1 (b) Level 2 (c) Level 3

(d) Level 4 (e) Level 5 (f) Level 6

Figure 4. The complete sequence of coarse grids obtained by coarsening a 642 grid stretched with
α = 1.03, by the described algorithm

Remark 1. (Aspect-ratio bound for good multigrid convergence) We would like
to highlight that the aspect ratio of a particular cell is tolerable up to a value of 1.3 from
the point of view of multigrid convergence [14]. Seeking the value 1.0 for prospective
agglomerations is idealistic and impractical, often leading to coarsening choices that imply
very poor reduction of unknowns per grid level. This observation leads us to use an SQTOL
value of 0.3 in our numerical experiments.

Remark 2. (Nodal position on the coarened grid) After the coarsening process is over
and the coarse grid is constructed, we place the nodes (i.e., unknowns) in the center of the
coarse-grid control volumes.

3.2. The DCG operator and point-based relaxation

3.2.1. The DCG operator On the coarse grids, we use a matrix-free discretization
coarse-grid operator. Another choice (matrix based), would be the GCG (the Galerkin
Coarse-Grid operator). As the name implies, the DCG operator is obtained by direct
discretization on the coarse grids. The discretization scheme on the coarse grids is
the same as that on the finest grid, i.e. the cell-centered FVM. Consider Figure 3(b);

if the mth control volume is defined by the rectangle ABCD, then;

∫ B

A

a2
∂um

∂y
dxm −

∫ C

B

a1
∂um

∂x
dym −

∫ D

C

a2
∂um

∂y
dxm +

∫ A

D

a1
∂um

∂x
dym =

∫

Ωm

fΩdΩm (5)

follows directly from (3). The right-hand side of (5) can be approximated simply
by the point value of the source function multiplied by the volume of the cell. Each
first-order derivative on the left-hand side is approximated by the central O(h2)
FDM if the particular kth face of the control-volume boundary is not a portion of
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the domain boundary. However, if it is, then the derivative is approximated by the
O(h) one-sided FDM. For a uniform equidistant-grid layout, this scheme results in
second-order accuracy [21].

For the finest grid, it is important to point out that the discretization of the
derivatives in Eqn. (5) -being through finite differences- is trivial due to the perfect
alignment of the nodes with their horizontal and vertical neighbours. However, on
coarser grids, this becomes more involved due to the presence of hanging nodes.

Example 3. (Coarse-grid stencil for the hanging nodes) In Figure 3(b), Nodes 2 and
3 do not have horizontal neighbours and, therefore, make use of ghost points g1 and g2,
respectively, which, in turn, are linearly interpolated from the points directly above and
beneath them. In effect, this means that (on the east side) Node 2 is connected with Nodes
11 and 12, while Node 3 is connected with Nodes 12 and 13. The same applies to Nodes 7
and 8 in the horizontal segment. As a general rule, whenever a node is missing, we linearly
interpolate it from its collinear neighbours.

The only general guiding principle for constructing a successful DCG operator is
the conservation of flux through each face of the control volume. We define the flux
as the net flow through a particular face of the cell; for example, the flux through
the east face of the mth control volume is:

Feast
m =

∫ C

B

a1
∂um

∂x
dym

Remark 3. (Alternative flux definition) In contrast to our definition of the flux as the
net flow through a boundary, flux is also often defined as the rate of flow, i.e., without
incorporating the length of the boundary segment (dym in this case) in the definition. This
is useful where flux has to be averaged across control volumes such as might be encountered
in an AMR setting [1]. In our work, however, defining flux as the net flow is more helpful.
Mathematically the two definitions are equally acceptable.

Example 4. (Conservation of flux) For Nodes 2, 3, and 12 of Figure 3(b), conservation
of flux would mean that the following equality holds:

Fwest
12 = − (Feast

2 + Feast
3 )

For the purpose of illustration and completeness, we derive the discrete flux balance
equations for Nodes 2 and 12 in the Appendix. The same method carries over to all control
volumes found in any of the coarse grids, with or without hanging nodes in their proximity.

3.2.2. Point-based relaxation The relaxation process in our multigrid method is a
variant of the lexicographical point-based Gauss-Seidel. The variation is only in
terms of the pattern in which the domain is traversed. The smoothing properties
of a stationary iterative method, such as Gauss-Seidel, are not invariant of the
relaxation pattern in which the unknowns are visited. The traversal pattern in this
work, trivially, is in L-shaped strips following the enumeration of the domain in
these structures, and the ordering of the control volumes within them. Each L-strip
is visited in the enumeration order. Within each strip, first the node in the vertex
control volume is relaxed, then each of the nodes (in enumeration order) in the
control volumes in the vertical segment, and finally the nodes in the horizontal
segment of an L-strip. The observed smoothing properties are superior to those of
classical lexicographic Gauss-Seidel and slightly inferior to Red-Black Gauss Seidel;
however, they are sufficiently good to provide excellent multigrid convergence in
this set-up.
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3.3. The transfer operators

3.3.1. The restriction operator We use piece-wise constant restriction to transfer grid
functions from finer grid levels to coarser grid levels. In our cell-centered setting,
due to variable mesh sizes, this requires careful averaging across cells that are
greatly different in volume. Therefore, we use a volume-average based restriction.

Here, we explain the method through which fine-grid cells are restricted to coarse-
grid cells. We denote by m the index of a subset of control volumes of the finer level,
which would be agglomerated to form the control volume, M, after the coarsening
decision has taken place.

Nodes m of fine level l contain values averaged over their respective control
volumes, i.e.:

um =

∫

Ωm
u dΩm

|Ωm|
, (6)

and, similarly, Node, M, should contain a value representing the average over the
control volume M of coarse level (l + 1),

uM =

∫

ΩM
u dΩM

|ΩM|
(7)

which gives:

uM =

(

∑

Ωm ∈ ΩM

∫

Ωm

u dΩm

)

/ |ΩM|

=

(

∑

m ∈ M

um |Ωm|
)

/ |ΩM|

This averaging formula contains a contribution from each of the fine-grid cells
in this subset, respective to their volumes. This cumulative contribution is then
distributed over the coarse-grid cell volume, to represent an average value within
it. All fine to coarse transfers in our work make use of this restriction.

3.3.2. The prolongation operator We use simple node-position based bilinear
interpolation for transfering grid functions from coarse to fine levels. From a
global perspective, the nodes are ordered into horizontal and vertical segments
of L-strips. Each fine-grid horizontal or vertical segment has a similarly oriented
coarse-grid segment to its left and right. In general, the nodes on these left and right
neighbours are not aligned with the fine-grid nodes and, therefore, first have to
produce linearly interpolated values which are collinear with the fine-grid nodes.
After these values have been interpolated in one dimension, the fine-grid nodes are
subsequently interpolated from them. The interpolation (analogous to restriction) is
based on the actual relative distancing of the nodes, and not on the fixed component
prolongation stencils. This process ensures that each fine-grid node is interpolated
with 4 coarse nodes (from all four surrounding sides), and that the interpolation
process is never uni-directional.

Example 5. (Interpolating a fine-grid L-strip) Consider Figure 5. Grid-levels 3 and 4
of a particular grid sequence are superimposed to elaborate on how bilinear interpolation
takes place in the L-shaped setting. The coarse grid is represented by thick grey lines, and the
fine-grid by fine black lines. L1 and L2 strips of the coarse-grid are shown shaded along with
their nodes, represented by hollow grey circles. These coarse-grid L-strips enclose L3 and L4

strips of of the fine-grid, containing solid black and solid white -shaded nodes, respectively.
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(a) (b)

(c) (d) (e)

Figure 5. (a) and (b) represent the third and the fourth levels respectively of a 322 grid stretched with
α = 1.06, respectively. In (c), (d), and (e), these levels are superimposed to demonstrate the prolongation
for level 3 from level 4. Each fine-grid node is interpolated by information from all 4 surrounding sides.

In the figure, the interpolation for the black nodes is demonstrated; white nodes are only
there to emphasize that they too would have to be interpolated from the same set of coarse
nodes. The black crosses represent ghost positions, collinear both with the coarse-grid nodes
and (black) fine-grid nodes. The interpolation takes place in two stages. Proceeding from (c),
first the crosses are interpolated linearly from the coarse-grid nodes (hollow grey circles).
Once these ghost points are populated, the original coarse-grid nodes have no role left. They
are deliberately not shown in (e) to depict this. At this stage, the black fine-grid nodes are
finally interpolated linearly from the crosses with which they are collinear. This scheme
gives bilinear accuracy. Note that interpolation of the solid white fine-grid nodes would
employ the same coarse-grid nodes, but the position of the crosses would change and reflect
collinearlity with the white nodes.

The interpolation coefficients are only computed for the vertical segment and are
retained for use with the horizontal segment to take advantage of symmetry. Each
L-strip (and, subsequently, each control volume in it) is treated in the enumeration
order. The nodal values adjacent to the domain boundary are interpolated from
coarse-grid values on one side and from the boundary value on the other side. This
scheme turns out to be a better transfer than interpolating the boundary nodes
linearly from only one side.

Remark 4. (Final assembly into the multigrid algorithm) The actual solution process
has a small setup phase in which all of the coarse grids are constructed and stored. The
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storage complexity for any grid never exceeds the number of control volumes in it. This is
managed through a data structure embodying the L-shape enumerated grid, which yields
all grid parameters, including the mesh sizes, the nodal positions, symmetry information,
etc., and is, therefore, indexed to point to a particular member within a family of grids. It is
important to point out that the natural form of discretization of FVM or FEM (unlike FDM)
has the right-hand side scaled. This implies that the residual also has the same scaling, and,
therefore, must be neutralized and re-scaled both before and after restriction to the coarse
grid.

4. Complexity

We measure the complexity of our multigrid method in terms of the computational
work which, at grid level k, is given recursively as:

Wk =Wk+1
k + γk+1Wk+1; k = 0, 1, 2, · · · , l − 1

where γi is the cycle index to be used on the ith level, and Wk+1
k

is the amount of

work required during a 2-grid cycle involving the kth and the (k + 1)th grid levels
[1]. Wk+1

k
involves pre -and post- smoothing and subsequent grid transfers to and

from the kth grid level. For most reasonable choices of the multigrid components,
it is justified to assume that:

Wk+1
k ≤ C Mk; k = 0, 1, 2, · · · , l − 1 (8)

where C is a small constant, and Mk represents the number of unknowns that exist
on grid level k. Computational work is measured in work-units, wu, which we
define as C times the cost of 1 relaxation on the finest grid, Ω0. i.e.,

1 wu = C M0 (9)

Freezing the cycle index to a fixed value, the total work, W is bounded by:

W 6 C
[

M0 + γM1 + γ
2M2 + · · · + γl−1Ml−1

]

. (10)

Observing the method from a 2-grid perspective helps in estimating its complexity.
In Figure 6, the grid reduction in a 2-grid setting is displayed. The specific tie-
shapes are the regions where 4-cell agglomerations take place, whereas in the darker
regions close to the domain edges, semicoarsening in either direction is performed.
It has already been discussed that this hybrid behaviour pays off in the form of
better complexity values. In this particular figure, the grid sizes range from 82 to
2562, and α ranges from 1.01 to 2.0. Although these grids appear greatly different in
their layout, they have a common denominator, as they share a common measure
of the worst aspect ratio (which has been deliberately brought about by specific
combinations of grid sizes and stretching parameters). In turn, all of them display a
grid reduction factor around 2.34. This directly suggests that the coarsening factor
depends greatly on the maximal aspect ratio. For a closed form estimate of the
complexity in a 2-grid setting, we consider the first two grids. The control volumes
on the fine grid are aligned both horizontally and vertically and, therefore, the cell
index i runs from 0 to (

√
M0 − 1) in both directions. The mesh-sizes are governed

by Equation (4), and after a slight modification, are given by;

hi =
xmax

(

αM0−1
α−1

)αi, i = 0, · · · , n, · · · , (M0 − 1)
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(a) 642 grid, α = 1.04 (b) 322 grid, α = 1.09

(c) 162 grid, α = 1.20 (d) 82 grid, α = 2.00

Figure 6. A variety of fine and coarse grids with a reduction factor ≈ 2.34

During the inspection of the vertical segment for coarsening decisions (as outlined
in Section 3.1), the index of the last cell (on the first strip L0) chosen for full (2 × 2)
coarsening, is represented by n. Once n is picked, it is fairly straight forward to
connect the first two grids in a closed form formula.

Let c1 denote the number of cells in the coarse grid that were obtained by
agglomerating 4 cells (2×2 coarsening) of the fine grid, and c2 denote the remaining
coarse-grid cells, obtained from semi-coarsening. c1 depends on the value of n
picked by the coarsening algorithm, which always reports the form of c1 given in
Equation (11). The connection between the first two grids is given as;

c1 =

{

(M0 − n + 1)n +

(n−1)
∑

i=1

(n − i)
}

c2 = 2(M0 − 4c1)
M0 = (4c1 + 2c2)M1

(11)

For estimating the computational complexity of a multigrid method with a
sequence of l grids, i.e., (Ω0,Ω1, · · · ,Ωl−1), all grids in the sequence have to be
taken into account. However, in this situation, a grid-reduction function, τ(M0, α),
in closed form is not apparent. The relation between the fine-grid level, k, and the
coarse-grid level, (k + 1), is as follows:

Mk = τ(M0, α) Mk+1, k = 0, 1, 2 · · · , (l − 1) (12)

Thus Equation (12) and (10) yield:

W ≤ τ(M0, α)

τ(M0, α) − γ C M0 (13)

which can be used to evaluate the required work units for a given discrete problem.

Values of τ(M0, α) averaged over l grids, for varying combinations of grid sizes and
stretching parameters are shown in Table I.

Remark 5. (Compromise between efficiency and grid-reduction) An efficient
multigrid method is always a compromise between grid reduction and the number of
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α
M0 1.00 1.02 1.04 1.06 1.08 1.10
42 4 4 4 4 4 4
82 4 4 4 4 3.28 3.29
162 4 4 3.50 3.51 3.58 3.23
322 4 3.62 3.40 3.22 2.96 2.87
642 4 3.52 3.17 2.72 2.64 2.50

1282 4 3.22 2.72 2.45 2.36 2.34
2562 4 2.77 2.37 2.29 2.27 2.26

Table I. A closed form for τ(M0, α) is not readily available and, therefore, discrete (empirically observed)
values -averaged over a sequence of l grids- are shown for a diverse combination of grid sizes and α

α
M0 1.00 1.02 1.04 1.06 1.08 1.10
42 1.33 1.33 1.33 1.33 1.33 1.33
82 1.33 1.33 1.33 1.33 1.44 1.44
162 1.33 1.33 1.40 1.40 1.39 1.45
322 1.33 1.38 1.42 1.45 1.51 1.53
642 1.33 1.40 1.46 1.58 1.61 1.67

1282 1.33 1.45 1.58 1.69 1.73 1.75
2562 1.33 1.56 1.73 1.77 1.79 1.79

Table II. Work estimates, W, computed from (13), and measured in work units, wu.
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Figure 7. A 3d representation of the complexity of the presented method against the grid size and the
stretching parameter.
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iterations that the method takes to converge. Increasing grid reduction would imply cheaper
cycles, but higher multigrid convergence factors implying -in turn- a large number of
iterations. Decreasing grid reduction implies just the opposite, i.e., relatively lesser number
of cycles with each cycle relatively more expensive. The art of designing a good multigrid
method depends a great deal on successfully choosing a good compromising strategy.

For a geometric multigrid method (with standard coarsening) on an equidistant
2d grid, the computational work-per-cycle is bounded by 4

3 . In contrast, a method
that only employs semi-coarsening throughout the grid will yield work-per-cycle
equal to 2. It is then natural to expect that the method presented here lies between
these bounds, as parts of the grid undergo 2 × 2 agglomeration while other parts
only 2 × 1. In Table II and Figure 7, we present the work estimates for V-cycles
(γ = 1) obtained from substituting the averaged values of the grid-reduction factor
τ in (13). The unit of measurement for these estimates is a work unit, wu, as defined
in (9). Work-units for grid sizes ranging from 82 to 2562 are shown against values
of the stretching parameter α ranging from 1.0 (i.e. no stretching) to 1.1. It is well
known that with semi-coarsening-only multigrid algorithms, W-cycle methods do
not yield an optimal complexity [1]; however, we see that although our method
gets relatively expensive with severe stretching (and consequently bad mesh aspect
ratios), the average value of the grid-reduction factor, τ(M0, α), always stays above
2.00. This is due to the fact that a semi-coarsening-only strategy is never employed
when a grid is being reduced. The computational complexity grows directly with
the mesh aspect ratio, which -in our case- is directly related to α as well as the
grid size. Quite apparently for a 2562 grid, stretching with α = 1.01 and α = 1.02 is
quite sufficient for local grid refinements in practical applications. The complexity
in this situation is around 1.5, whereas for an unrealistically high stretching with
α = 1.1 on 2562 grid, the complexity is 1.79, still well under the bound set by
semicoarsening-only algorithms.

5. Numerical experiments and results

In this section, we demonstrate the presented method at work, by solving boundary
value problems based on the model problem described in Section 2. Through the
PDE, we approximate the following test function:

u(x, y) =
sin(2π2x) + sin(2π2 y)

(2π + x + y)
(14)

The results include the residual decay and the achieved multigrid convergence
factors. These quantities are displayed against the number of multigrid V-cycles
required for convergence. The stopping criterion for convergence is defined by the
relative residual going below the tolerance value set at 10−8.

Experiments with 2 kinds of grid stretching are performed. 1-dimensional stretching,
i.e., grids stretched only along the x-axis and equidistant along the y-axis; and
2-dimensional stretching, i.e., grids stretched along both the axes with the same
stretching parameter, α. The multigrid convergence factor is measured empirically
by making use of the defect vectors, dk

h
. If an experiment takes m V-cycles to

converge, we measure it’s quality by the number, q̂(m), which depicts the average
defect reduction for m cycles;

q̂(m) =
(m)

√

‖ dm
h
‖

‖ d0
h
‖

(15)
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(a) Level 1 (b) Level 2 (c) Level 5 (d) Level 6

Figure 8. The first two and the last two grids of the sequence for a 642 grid stretched only along the
x-axis with α = 1.01

αx → 1.00 1.02 1.04 1.06 1.08 1.10
Grid
↓

162 0.13 / 7 0.13 / 7 0.14 / 7 0.15 / 7 0.13 / 7 0.13 / 7
322 0.12 / 7 0.15 / 8 0.14 / 7 0.13 / 7 0.13 / 7 0.11 / 7
642 0.12 / 7 0.15 / 8 0.12 / 7 0.12 / 7 0.09 / 6 0.08 / 6

1282 0.11 / 7 0.13 / 7 0.09 / 6 0.09 / 6 0.08 / 6 0.09 / 6

Table III. Multigrid convergence factors against the number of V-cycles (separated by obliques) for
different values of α. Grid stretching in these experiments was only along the x-axis.

5.1. Experiments with 1-dimensional grid stretching

The results of 1-dimensional stretching are presented first. The coarsening
technique, as described earlier for the 2-dimenional grid stretching, virtually
isolates two vertical strips and makes decisions about the different prospective
agglomerations. Figure 8 gives the complete grid sequence for an example problem
with a 642 grid and α = 1.01. The guiding principle for building the coarse grids
is the same as described in Section 3.1; a prospective agglomeration should relax
the tense aspect ratios. The only notable difference (with the 2-dimensional grid
stretching case) is that the control-volume strips are vertical and not L-shaped.
The rest of the process is similar. Multigrid convergence factors for a variety of
stretching parameters, α, are displayed in Table III.

We highlight that certain numbers look better than others even for higher values
of α. For example, in Table III, the multigrid convergence factor (for the 642 grid)
for α = 1.02 is around 0.15, while for α = 1.10, it is around 0.08. This is not an
anomaly, -see Remark 5- rather, it points to the fact that the grid reduction for the
α = 1.10 has been slightly poor in comparison with α = 1.02, which implies that
more coarse-grid values were available for the interpolation of fine-grid values
(on average) and, therefore, the multigrid convergence factors appear somewhat
superior at the expense of complexity.

5.2. Experiments with 2-dimensional grid stretching

5.2.1. The Model problem The results of experiments with 2-dimensional grid
stretching are shown in Table IV. The multigrid convergence factors are quite
satisfactory for different α-values giving a range of moderate to severe stretchings.
The residual decay for 2-dimensional grid-stretching experiments are presented in
Figure 9. Besides good convergence, all of the experiments display a good linear
reduction of the residual (measured in the discrete L2-norm), around an order of
magnitude per V-cycle. This suggests that a full-multigrid algorithm starting on
the coarsest grid will converge to the discretization accuracy in just 1 or 2 cycles.
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α→ 1.02 1.04 1.06 1.08 1.10
Grid
↓
82 0.13 / 6 0.13 / 7 0.14 / 7 0.14 / 7 0.14 / 7
162 0.17 / 8 0.17 / 8 0.17 / 7 0.15 / 7 0.15 / 7
322 0.18 / 8 0.16 / 7 0.16 / 7 0.15 / 7 0.14 / 7
642 0.15 / 7 0.14 / 7 0.12 / 6 0.11 / 6 0.11 / 6

Table IV. Multigrid convergence factors and the number of V-cycles (separated by obliques) for different
values of α. These experiments are based on 2-dimensional grid stretching

α→ 1.01 1.02 1.03 1.04
Grid
↓

1282 0.15 / 7 0.13 / 6 0.11 / 6 0.10 / 6
2562 0.12 / 6 0.09 / 5

Table V. Multigrid convergence factors for 1282 and 2562 grids, displayed against the number of V-cycles
(separated by obliques) for different values of α. These 2-dimensional grid stretching experiments are
presented separately because the discretization scheme breaks down for higher values of α for these

larger grids.
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Figure 9. Residual decay for 2-dimensional stretching, against the number of V cycles employed.

The convergence history for grid-sizes 1282 and 2562 (for 2-dimensional stretching)
are presented separately in Table V. As these grids are sufficiently fine, they do not
allow higher values of α, because it becomes difficult to represent the operator in
double precision. The experiments in Table V were performed in 128-bit storage
types, to control the round-off errors dominating the computations.

Remark 6. (Stress test) Figure 10 shows a kind of stress-test. A 322 grid is stretched
with α = 5.0, and the model problem is solved on this grid with the presented method for
the purpose of checking if the method withstands such severe grid stretching. The residual
decay is, however, exceptional, around 20 orders of magnitude in 25 iterations, confirming
that the method does not break down. 128-bit floating-point storage and an artificially low
tolerance (equal to machine precision) were used in this experiment.
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Figure 10. Residual decay for 2-dimensional stretching, against the number of V cycles employed. Note
the particularly high stretching for the 322 grid

(a) Domain divided into a
square, and an L-shaped sub-
domains

(b) The coarsest grid L-strip is
constructed with the interface
line

Figure 11. The subdomains used in the test with a jump discontinuity

5.2.2. The model problem with a simple jump discontinuity In this part, we perturb the
model problem slightly, by dividing the domain into two parts, as shown in Figure
11(a). The domain is partitioned into an L-shaped subdomain, and the remaining
square portion, as demarked by the interface line (solid L-line in Figure 11(a)); so
that the Poisson-type equation has different constant coefficients in the different
parts of the domain but the same analytic solution everywhere. From Equation (1);

a1 = a2 = d1, (x, y) ∈ Region I

a1 = a2 = d2, (x, y) ∈ Region II

The interface line is used in forming the coarsest grid L-strip, which thereby
ensures that the interface line never gets annihilated during the construction of
coarse grids. As a consequence, prolongation and restriction across this bounding
line (discontinuity) takes place at each grid level, moreover, we stay with the
prolongation and restriction described in Section 3.3 and do not use operator-
dependent transfer operators; neither do we need the Galerkin coarse-grid operator.
Table VI shows the V(1, 1)-cycle results of the presented method when tested with
this problem.

We see that the method performs fairly well even with severe jumps across the
interface line.

5.2.3. The model problem on amr-type grids Here, we experiment with the model
problem on some amr-type grids. We show that the methods developed in this
paper for str-type grids work nicely for certain variants of the amr-type grids as
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d1/d2 → 2 101 102 103 104 105

Grid / α
↓

642 / 1.03 0.16 / 7 0.33 / 13 0.40 / 16 0.40 / 16 0.40 / 16 0.40 / 16
2562 / 1.009 0.15 / 7 0.30 / 12 0.35 / 14 0.29 / 12 0.29 / 12 0.29 / 12

Table VI. Multigrid convergence factor for 642 and 1282 problem with jump discontinuity across sub-
domain interface

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Figure 12. The grid sequence for the amr-type grid, (8 × 2, 2). The finest grid has 8 layers, with 2 cells
tiled in each. Cells in adjacent layers are at a volume proportion of 4.

(n × c, p)→ (4 × 2, 2) (8 × 2, 2) (8 × 4, 2) (4 × 32, 2) (2 × 64, 2)

q̂(m) / m→ 0.16 / 7 0.16 / 7 0.16 / 7 0.16 / 7 0.16 / 7

Table VII. Multigrid convergence factors for different amr-type grids.

well. In these amr-type grids, there are no perturbed mesh aspect ratios to improve,
and, therefore, the coarsening is always standard, implying a grid reduction
factor of at least 4 on all levels. In the present work, we do not perform any
implementational adjustments, and simply run the problem on a different grid-
sequence. The enumeration is L-shaped and no multigrid components have been
altered. The convergence pattern is almost identical to that of str-type grids.

The shape of the amr-type grids that we use depends on 3 parameters. The number
of layers (of different-sized control volumes), the number of control volumes
tiled between adjacent layers, and the proportion of cell-volume between cells
of adjacent layers; denoted respectively, by n, c, and p. Thus the representation,
(n× c, p), describes a particular amr-type grid completely. In Figure 12, the complete
grid sequence is shown for the finest grid represented by (8×2, 2). The coarse grids
look quite similar to the ones in Figure 4, the only difference being that, except on
the coarsest grid, all the grids in the amr-type sequence have the same cell volume
within each L-strip. The results of the experiments on these grids are displayed in
Table VII, and appear quite satisfactory and stable.

6. Conclusions

A geometric multigrid method based on L-shaped coarsening has been developed
and presented in this paper. The method shows near-optimal multigrid
convergence with standard components, such as piece-wise constant restriction,
simple bi-linear interpolation and a stationary Gauss-Seidel point-based relaxation
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scheme. The numerical experiments demonstrate that the methods works fine
for problems on 2d str-type grids, and strongly suggest that the method can be
successfully developed to incorporate AMR on structured grids. The complexity of
the method is comparable with well known approaches like FAC and MLAT; the
main difference with these approaches is that we coarsen the mesh in all regions
of the computational domain simultaneously, and this leads to a better complexity
measure. A smooth 3d extension of the presented work would imply coarsening
decisions proceeding along 3d L-shaped geometric structures. Each of these
structures would be composed of 3 half (or partial) planes parallel to the coordinate
planes. Similarly to the 2d case, comparisons for coarsening would be between
2d partial coarsening and 3d full coarsening for prospective agglomerations. The
results are expected to possess the usual scalability for dimensional extensions of
the Poisson equation on equidistant grids.

APPENDIX

Derivation of the discrete equations for Nodes 2 and 12 of Figure 3

To illustrate completely how the discrete coarse grid operator is built, we derive,
in this appendix, the discrete flux-balance equations for Nodes 2 and 12 of Figure
3. In the following, k indicates a face of the control volume; specifically, the values
0, 1, 2, 3 point to the south, east, north, and west faces, respectively. Fk

m denotes
the outward flux through the kth face of the mth control volume. fΩm is the source
function, fΩ, computed at (xm, ym), which is the Cartesian position of node m. hx

m

and h
y
m are the width and the height (i.e. mesh-sizes along x and y) of the mth control

volume, respectively.
For Node m = 2 of Figure 3(b), Equation (5) yields:
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Then, from the flux balance equation (16), we get:
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Similarly, for node m = 12, we get from (5):
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11 u11 + β
1
12 u18 + β

2
12 u13 + β

1
2 c1 u11 + β

1
3 c4 u13 (19)

Equations (17) and (19) lay emphasis on the way we ensure flux balance in the
system. The flux through the south face of Cell 2 is the same quantity computed
as Cell 1’s north-face flux. Similarly, the flux through the west face of Cell 12 is
the cummulative flux flowing in from its west neighbours, i.e. Cells 2 and 3. We
reiterate that traversal of the L-strips is in such a fashion that the required fluxes are
already available if they have been computed previously. Particularly in connection
with this example, note that Cell 1 would be treated earlier than Cell 2, hence its
north-face flux is available for use as Cell 2’s south-face flux. Similarly Cell 2 and
Cell 3 (due to the enumeration scheme) would be treated earlier than Cell 12 and,
therefore, their east-face fluxes are already available to add up into the west-face
flux of Cell 12.
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