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Abstract

A generalisation of the theta time discretisation scheme is proposed for advection problems with

strongly varying meshes and velocity profiles.

Starting point is the theta upwind scheme, which is conservative, stable, positivity-preserving,

and free of spurious oscillations for any given time step, provided that theta is sufficiently large.

The main disadvantage of this scheme is the accompanying numerical diffusion, which increases

with theta. Because theta is a constant, the ‘worst’ local properties bring down the effectiveness

of the scheme in the entire computational domain. The presented generalisation of the theta

scheme to the local theta scheme uses a space- and time-dependent theta coefficient, instead of

a constant value. Based on local mesh and velocity properties, the local theta coefficients are

chosen as small as possible, to minimize the numerical diffusion, but sufficiently large, to ensure

that the scheme is stable, positivity-preserving, and non-oscillatory without restricting the time

step. To improve the accuracy even more, the flux corrected transport algorithm is incorporated

into the scheme. For a sufficiently small time step, the resulting local theta upwind FCT scheme

coincides with an original Euler forward upwind FCT scheme. For a larger time step, for which

the latter is no longer applicable, the local theta upwind FCT scheme achieves a remarkably

high accuracy, as is illustrated by numerical examples.

Altogether, the generalisation of the theta scheme to the local theta scheme provides new

flexibility in the construction of numerical schemes for advection problems.

Key words: advection equation, theta scheme, upwind discretisation, flux corrected transport,
numerical diffusion, stability, positivity, wiggles, conservation, discrete maximum principle



1. Introduction

Unphysical numerical diffusion errors seem inescapable in the design of a numerical dis-
cretisation of advection terms, if the scheme needs to be Conservative, Stable, Positivity-
preserving, and free of spurious Wiggles (CSPW) for any time step. Reversely, without
restricting the time step, it seems impossible to obtain a method that suffers hardly from
numerical diffusion and that is CSPW at the same time.

This is problematic for many real-life advection dominated problems, for which the
velocity profile is usually strongly varying, and for which the complex geometry of the
spatial domain often requires a variety of sizes and shapes in the numerical mesh. Un-
favourable local properties of the mesh or the velocity profile can lead to to an unaccept-
able inaccuracy in the entire spatial domain, or to an infeasible computational time.

Before moving on to the suggested solution, the problem is substantiated by discussing
certain existing finite volume schemes for the advection equation. For an extensive
overview, see e.g. [6,7,12,17].

The Euler forward upwind scheme (see e.g. [12, p. 73]) can be considered to be the most
basic scheme that approximates the solution to the advection equation. An important
disadvantage of this scheme is that the time step needs to be restricted in order for the
scheme to be CSPW (see also Section 2 later on). Roughly speaking, the upperbound for
the time step is determined by the single cell for which the velocity is largest in proportion
to the size of the cell volume. This condition is also known as the CFL condition, which is
named after Courant, Friedrichs, and Lewy [3], and which “simply states that the method
must be used in such a way that information has a chance to propagate at the correct
physical speeds” [12, p. 68]. A second drawback of the Euler forward upwind scheme is
the accompanying numerical diffusion, which lowers the accuracy (for an illustration, see
e.g. [11, p. 26] or Section 6).

To improve the accuracy of the first-order upwind scheme above, it seems straightfor-
ward to use a higher-order spatial discretisation. However, higher order schemes have a
tendency to create spurious wiggles and unphysical negative results. Godunov’s order bar-
rier theorem (see e.g. [17, p. 341]) states that linear (explicit or implicit) one-step second-
order accurate schemes for the advection equation cannot be monotonicity-preserving
(unless the so-called CFL number is a natural number). Indeed, numerical examples [11,
p. 20-32] show that higher-order methods such as Lax-Wendroff, Fromm, higher-order
upwind(-biased), and higher-order central schemes show spurious oscillations.

To tackle this problem, Boris and Book [2] have devoped the Flux Corrected Trans-
port (FCT) algorithm, which has been generalised to multi-dimensional problems by
Zalesak [18]. The main idea is to update the Euler forward upwind solution with a non-
linear limited flux correction that is based on a higher order scheme. The pupose of the
limiter is to prevent the introduction of new local extrema. Ever since, many different
limiters have been developed. A large class of limiters is based on Harten’s [5] concept
of Total Variation Non-Increasing (TVNI) schemes, which later on became known as
Total Variation Diminishing (TVD) schemes. The idea is that a TVD scheme is also
monotonicity-preserving. An overview of a large number of TVD limiters has been given
by Sweby [14]. Nonetheless, although the FCT algorithm improves the accuracy of the
Euler forward upwind scheme, the restriction on the time step remains unchanged.

A scheme that does not have this drawback is the theta upwind scheme (see e.g. [6,
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p. 35, 215]), which reduces to the Euler forward upwind scheme if the parameter theta
is equal to zero. This scheme is CSPW for any given time step, provided that theta is
sufficiently large (see also Section 2 later on). The single cell for which the velocity is
largest in proportion to the size of the cell volume now determines a lowerbound for
theta, instead of an upperbound for the time step. The main disadvantage of this scheme
is, again, the accompanying numerical diffusion, which grows with theta.

Similar to the Euler forward upwind scheme, the numerical diffusion of the theta
upwind scheme can be reduced with the help of an FCT approach. Kuzmin et al. [9,8,10]
have suggested such a strategy, which includes an iterative method to deal with the
implicit flux correction. However, they use a fixed value of theta in combination with
adaptive time step control, which means that the time step is restricted again.

This article proposes a generalisation of the theta scheme to the local theta scheme, which,
in combination with an FCT approach, for advection problems with strong variations in
the mesh or the velocity profile, is efficient in the sense that it is Conservative, Stable,
Positivity-preserving, and free of spurious Wiggles (CSPW) without a restriction on the
time step, and that is also accurate in the sense that it introduces a locally minimised
amount of numerical diffusion.

The outline of this paper is as follows. First of all, the cause of the problem mentioned at
the beginnning of this section is illustrated by the relation between numerical diffusion
and the requirements to be CSPW for the one-dimensional theta upwind scheme (Section
2). This relation reveals why a constant value of theta is unsuitable for problems with
strong variations in the mesh or the velocity. The proposed solution is to make theta
space- and time-dependent, which leads to the local theta scheme (Section 3). Moreover,
theoretical conditions for the local theta coefficients are derived for which the scheme is
CSPW. After that, a practical strategy to choose the coefficients is provided in terms of
explicit expressions, which leads to the local theta upwind scheme (Section 4). To increase
the accuracy even more, the FCT algorithm is incorporated into the scheme (Section 5).
The performance of the resulting local theta upwind FCT scheme is illustrated by means
of two test cases (Section 6). Finally, a number of conclusions is given (Section 7).

2. Theta upwind scheme: revealing the disadvantages of a constant theta

The previous section described the problem under consideration as a trade-off between
numerical diffusion and a restriction on the time step.

This section illustrates the cause of this problem by considering the relation between
numerical diffusion and the requirements to be CSPW for the one-dimensional theta
upwind scheme.

To this end, consider the following one-dimensional advection problem with a constant
velocity u > 0:

∂c

∂t
+ u

∂c

∂x
= 0.

Application of the theta upwind scheme (for more details, see Definition 4.1 later on for
the one-dimensional case, a constant theta and x1 < x2 < ... < xI) yields:
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cn+1
i − cn

i

∆t
+ θu

cn+1
i − cn+1

i−1

∆x
+ (1 − θ)u

cn
i − cn

i−1

∆x
= 0, (1)

where ∆t denotes the constant time step, ∆x indicates the constant cell width, and
θ ∈ [0, 1] is a constant parameter.

The theta upwind scheme is CSPW, provided that the following relation is satisfied
(for the proof, see Theorem 3.14 later on):

θ ≥ 1 −
∆x

u∆t
. (2)

In other words, either θ should be sufficiently large, or the time step needs to be suffi-
ciently small.

The lowest order error of the theta upwind scheme has the character of diffusion. The
corresponding numerical diffusion coefficient can be computed by means of the modified
equation (for the proof, see Proposition A.1 later on):

‘numerical diffusion coefficient’ =
u∆x

2

(

1 − (1 − 2θ)
u∆t

∆x

)

. (3)

Note that the numerical diffusion grows with θ.
Figure 1 shows a contour plot of the scaled numerical diffusion coefficient 1−(1−2θ)u∆t

∆x

as a function of the parameter θ and the so-called CFL-number u∆t
∆x

. The white line
indicates the circumstances for which the numerical diffusion is zero. Underneath (and
on the right of) this line, the numerical diffusion is positive. Above the line, the numerical
diffusion is negative, which can usually be associated with instability. Below (and on the
right of) the black line, the scheme is CSPW according to (2). Apparently, this latter
condition forces the numerical diffusion to be large.

Altogether, a certain amount of numerical diffusion is inescapable in order for the theta
upwind scheme to be CSPW. By satisfying (2) for a minimal value of θ, the scheme is
unconditionally CSPW at the cost of the least possible amount of numerical diffusion.
However, because θ is a constant, in case of a non-equidistant mesh, the smallest cell
determines the value of θ in the entire computational domain. For the larger cells, this
value is unnecessarily large. As a consequence, the numerical diffusion is unnecessarily
large for these cells. This effect becomes stronger as the variations in the mesh are larger.
Similarly, for multi-dimensional problems, high variations in the velocity profile can lead
to needless inaccuracy.

A remedy is to make theta space and time dependent, which is dicussed in the next
section.

3. Local theta scheme: benefitting from a space- and time-dependent theta

The previous section discussed how strong variations in the mesh or the velocity profile
can lead to unnecessary diffusion errors in the theta upwind approximation, if the scheme
is required to be CSPW.

This section proposes a generalisation of the theta scheme to the local theta scheme
(Definition 3.3), which is designed to prevent the introduction of unnecesary numerical
diffusion. Moreover, theoritical conditions for the local theta coeffients are derived for
which the scheme is CSPW (Theorem 3.14).

6



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

u∆
 t/

∆ 
x

θ

 

 

−2

−1

0

1

2

3

Fig. 1. Contour plot of the scaled numerical diffusion coefficient (3). The white line corresponds to zero
numerical diffusion. The black line indicates the border of the region where the scheme is CSPW (2).

First of all, a mathematical discription of the advection problem under consideration
is formulated (Definition 3.1). Next, notational aspects of a general one-step numerical
scheme for an unstructured mesh are introduced (Case 3.2). After that, this framework
is used to formulate the local theta scheme (Definition 3.3), which simply follows from
the theta scheme by replacing theta by a space- and time-dependent coefficient.

Subsequently, theoritical conditions for the local theta coeffients are derived for which
the scheme is CSPW. To be precise, a scheme is called CSPW if it is conservative (Defi-
nition 3.4), absolutely stable (Definition 3.5), positivity-preserving (Definition 3.6), and
if it satisfies the local discrete maximum principle (Definition 3.7). The local discrete
maximum principle states that each concentration cn

i lies between the minimum and the
maximum of the concentrations that it depends on. As a consequence, it excludes local
extrema in the interior of the discrete space-time domain.

To show that a scheme is CSPW, the concept of the global discrete maximum principle
(Definition 3.8) is usefull. The global discrete maximum principle states that, for each
concentration cn

i , there exists a path in the space-time stencil to either an initial or a
boundary value such that the concentrations along the path are non-decreasing. A similar
principle applies for non-increasing values. Hence, each concentration cn

i lies between the
minimum and the maximum of the discrete initial and boundary conditions. As a con-
sequence, a scheme that satisfies the global discrete maximum principle is automatically
absolutely stable and positivity-preserving (Theorem 3.9). Conveniently, for a scheme of
positive type (Definition 3.11) that has a unique solution, the local discrete maximum
principle implies the global discrete maximum principle (Lemma 3.10, Theorem 3.12),
in which case the scheme is also absolutely stable and positivity-preserving by virtue of
Theorem 3.9.

With the help of this conclusion, the local theta scheme is CSPW if it is conservative
and of positive type, and if the scheme has a unique solition. The corresponding condi-
tions for the local theta coefficients (Lemma 3.10 and Theorem 3.14) include a CFL-like
condition.

Altogether, unlike the traditional theta scheme, the local theta scheme uses a different
value of theta for each time step and for each face in the mesh. This provides more
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flexibility in the conditions under which the scheme is CSPW, which can lead to a more
efficient scheme.

The next section provides a practical strategy to choose optimal coefficients in terms
of explicit expressions.

Definition 3.1 (Advection model)
Consider a substance with a concentration c(x, t) that is dissolved in a fluid with a
divergence-free velocity profile u(x, t). Suppose that the transport of the substance is
governed by the advection equation:

∂c(x, t)

∂t
+ ∇ ·

(
u(x, t)c(x, t)

)
= 0, t ∈ [0, T ], x ∈ D.

The spactial domain D ⊂ R
m (m = 1, 2, 3) is assumed to be compact and connected.

Additionally, an initial condition at t = 0, a Dirichlet boundary condition at the inflow
boundary, and a Neumann boundary condition at the closed part of the boundary are
assumed to be specified. y

Case 3.2 (Linear one-step scheme)
Consider the advection equation (Definition 3.1). Subdivide the spatial domain D into
m-dimensional simple polygons V1, ...,VI ⊂ D. To be precise, these volumes are chosen
such that the union of all volumes is equal to D, and that the intersection of two dif-
ferent volumes is equal to the intersection of their boundaries. Next, suppose that the
intersection of precisely K volumes Vi1 , ..., ViK

with the inflow boundary is non-empty
and connected, and introduce the corresponding adjacent boundary elements:

VI+k = Vik
∩ ∂D 6= ∅, k = 1, ..., K.

For a volume V , the notation |V| will be used to indicate the volume of V , the surface
area of V , the length of V , or 1, depending on the nature of V . Moreover, in favour of
notational brevity, if V contains only a single element of D, the integral of a function
over V is defined as the evaluation of that function in that element of D.

Moreover, let xi ∈ D be the center of mass of Vi (for all i = 1, ..., I + K) and let Ji

contain the indices of the neighbors of Vi:

Ji ={j ∈ {1, ..., I + K} \ {i}|Sij := ∂Vi ∩ ∂Vj 6= ∅}, i =1, ..., I.

Next, discretise the time domain according to

0 < t0 < t1 < ... < tN < T,

and define the following averages of the concentration and the velocity (for all i = 1, ..., I+
K and n = 0, 1, ..., N):

cn
i =

1

|Vi|

∫

Vi

c(x, tn) dx,

un
ij =

1

tn − tn−1

∫ tn

tn−1

(

1

|Sij |

∫

Sij

u(x, t) · nij dx

)

dt, n 6= 0, j ∈ Ji,

where nij is the unit normal vector on Sij that points in the direction of Vj . Note that

un
ij is averaged over the time imterval [tn−1, tn]. Next, consider a linear one-step scheme

of the form (for i = 1, .., I):
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an
iic

n
i +

∑

j∈An
i

an
ijc

n
j =

∑

j∈Bn
i

bn
ijc

n−1
j , an

ij 6=0 (j ∈ An
i ∪ {i}), bn

ij 6= 0 (j ∈ Bn
i ), (4)

where Ai ⊂ Ji and Bi ⊂ Ji ∪ {i}. The scheme can also be written as a linear system of
the following form:

A








cn
1

...

cn
I








︸ ︷︷ ︸

=:cn

= B

















cn−1
1

...

cn−1
I+K

cn
I+1

...

cn
I+K

















, (5)

where A ∈ R
I×I and B ∈ R

I×(I+2K) are matrices. y

Definition 3.3 (Local theta scheme)
Consider Case 3.2. The local theta scheme reads (for n = 1, ..., N):

|Vi|c
n
i − |Vi|c

n−1
i

tn − tn−1
=
∑

j∈Ji

−|Sij |
( (

1 − θn
ij

)
φ

n,n−1
ij + θn

ijφ
n,n
ij

)

︸ ︷︷ ︸

=:Φn
ij

. (6)

Here, φ
n,m
ij is a numerical flux function that is assumed to be of the form:

−|Sij |φ
n,m
ij = − γn

jic
m
i + γn

ijc
m
j . (7)

The coefficients θn
ij ∈ [0, 1] are free to be chosen such that the scheme has nice

properties.

Definition 3.4 (Conservative)
Consider Case 3.2. The scheme is called conservative if the scheme can be written in the
form

|Vi|c
n
i − |Vi|c

n−1
i

tn − tn−1
=
∑

j∈Ji

|Sij |Ψ
n
ij , i = 1, ..., I,

where Ψn
ij is anti-symmetric:

Ψn
ij = −Ψn

ji, i = 1, ..., I; j ∈ Ji.

As a consequence, in the absence of an open boundary, the total change in mass is equal
to zero. If a certain part of the boundary is open, the total change in mass is equal to
the transport over the open boundary. A similar definition for one-dimensional schemes
can be found in [4, p. 250] or [15, p. 171]. y
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Definition 3.5 (Absolutely stable)
Consider Case 3.2. The scheme is called absolutely stable with respect to a norm ‖.‖, if
there exist constants k, τ > 0 (τ may depend on the spatial mesh size) such that, if

tn − tn−1 ≤τ, ∀n =1, ..., N,

then,

‖wn‖ ≤k‖w0‖, ∀n = 1, ..., N,

for any perturbation w0 of the initial condition c0 that yields a perturbation wn of cn.
See also [17, p. 168]. y

Definition 3.6 (Positivity-preserving)
Consider Case 3.2. The scheme is called positivity-preserving, if the solution is nonnegative

cn
i ≥0, i =1, .., I; n = 1, ..., N,

whenever the initial and boundary condtions are nonnegative

c0
i ≥0, i =1, ..., I,

cn
i ≥0, i =I + 1, ..., I + K; n = 0, ..., N.

See also [6, p. 118-122] or [4, p. 292]. y

Definition 3.7 (Local discrete maximum principle)
Consider Case 3.2. The scheme satisfies the local discrete maximum principle if, for any
solution to the scheme, either

cn
i =cn

j = cn−1
k , j ∈ An

i , k ∈ Bn
i , (8)

or

min

{

min
j∈An

i

cn
j , min

j∈Bn
i

cn−1
j

}

< cn
i < max

{

max
j∈An

i

cn
j , max

j∈Bn
i

cn−1
j

}

, (9)

for all i = 1, ..., I and for all n = 1, .., N . A similar concept for explicit Euler forward
schemes can be found in [1, p. 12-13]. y

Definition 3.8 (Global discrete maximum principle)
Consider Case 3.2. The scheme satisfies the global discrete maximum principle if, for any
solution to the scheme, for all i = 1, ..., I and for all n = 0, ..., N , a non-decreasing path to
an initial or a boundary value exists in the sense that there are j1, j2, ..., jE ∈ {1, ..., I+K}
and m1, m2, ..., mE ∈ {0, 1, ..., N} such that

– je+1 ∈ Ame

je
∪ Bme

je
,

– me+1 ≤ me,
– either mE = 0 or jE ∈ {I + 1, ..., I + K},
– cn

i ≤ cm1

j1
≤ ... ≤ cmE

jE
,

and if, similarly, a non-increasing path exists. As a consequence, the scheme satisfies:

cmin ≤ cn
i ≤ cmax, i = 1, ..., I; n = 0, ..., N, (10)

where
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cmin :=min






min

j=1,...,I
{c0

j}, min
j=I+1,...,I+K

n=0,...,N

{cn
j },






,

cmax :=max






max

j=1,...,I
{c0

j}, max
j=I+1,...,I+K

n=0,...,N

{cn
i }






,

A similar concept for explicit Euler forward schemes can be found in [1, p. 12-13]. y

Theorem 3.9
Consider Case 3.2. If the global discrete maximum principle (Definition 3.8) is satisfied,
then, the scheme is positivity-preserving (Definition 3.6) and absolutely stable (Defini-
tion 3.5) with respect to ‖.‖∞.

Proof:

A similar proof can be found in [17, p. 170-171]. That the scheme is positivity-preserving
is an immediate consequence of Definition 3.8. That the scheme is absolutely stable with
respect to ‖.‖∞ can be shown as follows. Let w0 be a perturbation of the initial condition
c0 that yields a perturbation wn of cn. As both cn and cn+wn satisfy the (linear) scheme,
subtraction yields that wn also satisfies the scheme. Apply the global discrete maximum
principle (10) to obtain:

min
j

{w0
j } ≤ wn

i ≤ max
j

{w0
j}.

Hence,

‖wn‖∞ ≤ ‖w0‖∞.

As a result, the scheme is absolutely stable with respect to ‖.‖∞ (use k = 1 in 3.5).

Lemma 3.10
Let γj and cj (j = 1, ..., J ; J ≥ 2) be reals satisfying

J∑

j=1

γjcj =0, (11)

J∑

j=1

γj =0, (12)

γ2, ...γJ <0.

Then, either

c1 = c2 = ... = cJ

or

min
j=2,...,J

cj < c1 < max
j=2,...,J

cj .

Proof:

See also [17, Lemma 4.4.1]. First of all, note that

γ1 = −

J∑

j=2

γj > 0.
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Hence, (11) can be rewritten to obtain:

c1 =

J∑

j=2

−γj

γ1
︸︷︷︸

>0

cj .

Using (12), it follows that

J∑

j=2

−γj

γ1
=

γ1

γ1
= 1.

Apparently, c1 is a convex combination of c2, .., cJ . As a result,

cmin := min
j=2,...,J

cj ≤ c1 ≤ max
j=2,...,J

cj =: cmax.

Now, there are two options.

(i) If cmin = cmax, then, c1 = c2 = ... = cJ .
(ii) If cmin < cmax, then there exist jmin, jmax ≥ 2 such that

cjmin
= cmin < cmax = cjmax

.

As a result,

c1 =
J∑

j=2

−γj

γ1
cj

≤

J∑

j=2,j 6=jmin

−γj

γ1
cmax +

−γjmin

γ1
cmin

<

J∑

j=2

−γj

γ1
cmax = cmax

Similarly, it can be shown that c1 > cmin.

Definition 3.11 (Positive type)
Consider Case 3.2. The scheme is said to be of positive type, if

an
ii > 0

an
ij < 0, j ∈ An

i ,

bn
ij > 0, j ∈ Bn

i ,

an
ii +

∑

j∈An
i

an
ij +

∑

j∈Bn
i

−bn
ij = 0, (13)

for all i = 1, ..., I. See also [17, p. 170]. y

Theorem 3.12
Consider Case 3.2. If the scheme is of positive type (Definition 3.11), then it satisfies the
local discrete maximum principle (Definition 3.7). If, furthermore, the matrix A in (5) is
invertible, then the scheme also satisfies the global maximum principle (Definition 3.8),
and, by virtue of Theorem 3.9, the scheme is also positivity-preserving and absolutely
stable with respect to ‖.‖∞.
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Proof:

The local discrete maximum principle follows with the help of Lemma 3.10. For a given
concentration cn

i , choose γ1 = aii > 0 and c1 = cn
i . Furthermore, for the coefficients

c2, ..., cJ , choose the concentrations cn
j with j ∈ An

i and cn−1
j with j ∈ Bn

i . The values of
γ2, ..., γJ are the corresponding coefficients an

ij and bn
ij . By applying Lemma 3.10 in this

manner for each concentration cn
i , the local discrete maximum principle follows.

The global discrete maximum principle is shown with the help of induction. To this
end, note that, by definition, the non-decreasing paths exist for n = 0. Next, suppose
that the claim is true to up to time tn−1 and consider cn

i for some i ∈ {1, ..., I}. Now, the
following iterative argument applies. First of all, note that the local discrete maximum
principle (Definition 3.7) leads to one of the following two options:

1. (9) holds. There are two options:
i. cn

i < cn−1
j for some j ∈ Bn

i . As a path with non-decreasing values exists for cn−1
j ,

the same path can be used for cn
i and the claim is true.

ii. cn
i < cn

j for some j ∈ An
i . If j indicates a boundary element, a non-decreasing

path to the boundary has been found, in only one step. If j indicates an interior
element, this iterative argument can be repeated without visiting this index again,
because cn

i < cn
j is a strict inequality.

2. (8) holds. Again, there are two options:
(a) Bn

i is not empty. Hence, cn
i = cn−1

j for some j ∈ Bn
i . As a path with non-

decreasing values exists for cn−1
j , the same path can be used for cn

i and the claim
is true.

(b) Bn
i is empty. Then, there must be an index j ∈ An

i for which a non-decreasing
path exists. To show this claim, in search of a contradiction, assume that there
is no j ∈ An

i for which a non-decreasing path exists. Then, there must be an
isolated set of cells in the sense that (5) can be reordered as




A1 0

0 A2








cn
1

cn
2



 =




0

B1





















cn−1
1

...

cn−1
I+K

cn
I+1

...

cn
I+K

















,

where the vector cn
1 contains the concentrations of the isolated cells. Because

A is invertible, also A1 is invertible, which leads to the following unique trivial
solution:

cn
1 = 0.

This contradicts the fact that each constant should be a solution:
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cn
1 =








C

...

C








, for all C ∈ R.

The latter can be seen by considering (13) for each of the isolated cells and
multiplying the equation with the arbitrary constant C. Here, it is crucial that
the isolated cells do not depend on the boundary elements. Indeed, there must
be an index j ∈ An

i for which a non-decreasing path exists.

In conclusion, a path with non-decreasing values can be found for all i = 1, ..., I and all
n = 0, ..., N . Similarly, a path with non-increasing values can be found. Thus, the global
discrete maximum principle is satisfied.

Remark 3.13 (Unique solution)
If each solution depends on the previous time in the sense that Bn

i is non-empty for all
i = 1, ..., I and n = 1, ..., N , then, it follows from (13) that the matrix A is (strictly)
diagonally dominant, thus invertible. However, it is not a necesary condition. y

Theorem 3.14
Consider the local theta scheme (Definition 3.3). Suppose that, for all i = 1, ..., I

and j ∈ Ji:

(i) the flux coefficients are nonnegative:

γn
ij ≥ 0, (14)

(ii) the flux coefficients satisfy:
∑

j∈Ji

(

− γn
ji + γn

ij

)

= 0, (15)

(iii) the local theta coefficients are symmetric:

θn
ij = θn

ji, (16)

(iv) the coefficients satisfy the following CFL-like condition:

|Vi| −
∑

j∈Ji

(tn − tn−1)(1 − θn
ij)γ

n
ji ≥ 0. (17)

(v) the matrix A in the form (5) is invertible.

Then, the scheme is conservative (Definition 3.4), absolutely stable (Defini-
tion 3.5) with respect to ‖.‖∞, and positivity-preserving (Definition 3.6), and
it satisfies the local discrete maximum principle (Definition 3.7). So, the scheme
is CSPW.

Proof:

First, it will be shown that the scheme is conservative (Definition 3.4). To this end,
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consider the form (6) and observe that the flux function φ
n,m
ij is anti-symmetric:

−|Sij |φ
n,m
ij = −γn

jic
m
i + γn

ijc
m
j = |Sji|φ

n,m
ji = |Sij |φ

n,m
ji . (18)

Since, the local theta coefficients are symmetric, the flux Φn
ij is also anti symmetric:

Φn
ji = (1 − θn

ji)|Sji|φ
n,n−1
ji + θn

ji|Sji|φ
n,n
ji

(16)
= (1 − θn

ij)|Sij |φ
n,n−1
ji + θn

ij |Sij |φ
n,n
ji

(18)
= −(1 − θn

ij)|Sij |φ
n,n−1
ij − θn

ij |Sij |φ
n,n
ij = −Φn

ij . (19)

As a result, the scheme is conservative.
To show the rest of the claim, the scheme is written in the form (4) where

an
ii =|Vi| + (tn − tn−1)

∑

j∈Ji

θn
ijγ

n
ji > 0,

An
i =

{

j ∈ Ji | a
n
ij := −(tn − tn−1)θn

ijγ
n
ij 6= 0

}

,

Bn
i =

{

j ∈ Ji ∪ {i} | bn
ij := (tn − tn−1)(1 − θn

ij)γ
n
ij 6= 0 (j 6= i),

bn
ii := |Vi| − (tn − tn−1)

∑

j∈Ji

(1 − θn
ij)γ

n
ji 6= 0

}

.

Observe that the scheme is of positive type (Definition 3.11) under the given circum-
stances. Hence, Theorem 3.12 implies that the local discrete maximum principle and
the global discrete maximum principle are satisfied and that the scheme is positivity-
preserving and absolutely stable with respect to ‖.‖∞.

4. Local theta upwind scheme: choosing the coefficients in practice

The previous section introduced the local theta scheme and derived theoretical conditions
for the local theta coefficients that ensure that the scheme is CSPW.

This section provides a practical strategy to choose the coefficients in terms of explicit
expressions, which results in the local theta upwind scheme (Definition 4.1).

The local theta upwind scheme (Definition 4.1) combines the local theta time discretisa-
tion with first order upwind flux functions, so that (14) is satisfied. Moreover, the local
theta coefficients are chosen (nearly) as small as possible, to minimise the amount of
numerical diffusion (cf. Section 2), but large enough to ensure that the CFL-like condi-
tion (17) and the symmetry condition (16) are satisfied. If, additionally, the scheme has
a unique solution and if the velocity profile is conservative so that (15) is satisfied, it
follows immediately from Theorem 3.14 that the local theta upwind scheme is CSPW
(Theorem 4.4).

Altogether, the local theta upwind scheme is a practical version of the local theta scheme
that is CSPW without a restriction on the time step. Additionally, the scheme suffers
minimally from numerical diffusion in the sense that the local theta coeffcients are chosen
as small as possible.

The next section incorporates the flux corrected transport algorithm into the model,
to improve the accuracy even more.
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Definition 4.1 (Local theta upwind scheme)
Consider Case 3.2. The local theta upwind scheme results from the local theta
scheme (Definition 3.3) by using first order upwind flux functions:

γn
ij = |Sij |max{un

ji, 0}. (20)

Note that (14) is satisfied in this case. Moreover, the local theta coefficicients
are chosen as follows. First, an auxiliary coefficient θn

i is chosen such that the
the CFL-like condition (17) is satisfied for cell Vi, if the local theta coefficients
are equal to this vale θn

i at each face of the cell, i.e. if θn
ij = θn

i for all j ∈ Ji:

θn
i = 1 −

|Vi|

(tn − tn−1)
∑

j∈Ji
γn

ji

.

The local theta coefficients are now chosen as the following maximum:

θn
ij = max

{
0, θn

i , θn
j

}
,

in order to satisfy the symmetry condition (16).

Example 4.2
Case 3.2 for m = 1 and a constant velocity u > 0, so that the advection equation reduces
to:

∂c

∂t
+ u

∂c

∂x
= 0.

In this case, the local theta upwind scheme (Definition 4.1) reads:

∆xic
n
i − ∆xic

n−1
i

∆t
= − (1 − θn

i,i+1)u(cn−1
i + cn−1

i−1 ) − θn
i,i+1u(cn

i + cn
i−1),

θn
i+1,i =θn

i,i+1 = max

{

0, 1 −
∆xi

u∆t

}

,

where ∆t is the constant time step and ∆xi is the width of cell Vi. y

Remark 4.3
In the local theta upwind scheme (4.1), θn

i ‘blames’ each face of cell i equally if (17) is not
satisfied. Alternatively, only the face with the largest incoming flux could be blamed, by
using a relatively large nonzero local theta coefficient for that face only. After that, the
coefficients need to be updated to ensure symmetry. Another strategy is to use weighted
coefficients in accordance with the size of the incoming flux. In other words, there remains
a certain amount of freedom in the way that the coefficients are chosen. y

Theorem 4.4
Consider the local theta upwind scheme (Definition 4.1). Suppose that the scheme has a
unique solution (cf. Remark 3.13) and that the given discrete velocity profile un

ij is mass
conservative in the sense that

∑

j∈Ji

|Sij |u
n
ij = 0. (21)
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Then, the scheme is conservative (Definition 3.4), absolutely stable (Definition 3.5) with
respect to ‖.‖∞, and positivity-preserving (Definition 3.6), and it satisfies the local dis-
crete maximum principle (Definition 3.7). In other words, the scheme is CSPW.
Proof:

This follows immediately from Theorem 3.14.

5. Local theta upwind FCT scheme: increasing the accuracy even more

The previous section proposed the local theta upwind scheme, which is CSPW for any
time step, and prevents unnecesary numerical diffusion as much as possible due to its
local approach. However, the order of accuracy of the scheme is not higher than one.
This originates from the wish for a CSPW scheme, which is in conflict with the tendency
of higher order schemes to create spurious wiggles and negative results.

Fortunately, similar problems have been tackeled before with the help of the Flux
Correct Transport (FCT) algorithm. This algorithm combines a non-oscillatory first-
order flux function with an accurate higher-order flux function by means of a nonlinear
limiter, whose purpose it is to keep wiggles under control. Roughly speaking, it uses a
convex combination of the two flux functions, instead of just one of them. This strategy
can also be described as updating the first-order flux with a limited correction flux. This
section improves the accuracy of the the local theta upwind scheme by incorporating an
FCT approach into the scheme (Definition 5.1).

To upgrade the local theta upwind scheme with a an FCT approach, two elements are
needed: a flux correction and a limiter.

The local theta upwind FCT scheme (Definition 5.1) uses the limiter that was proposed
by Zalesak [18]. This limiter (practically) preserves the local discrete maximum principle,
which implies that the scheme remains CSPW (see also Section 3).

The flux correction is obtained by computing the difference of the first-order upwind
flux and a flux that corresponds to a stable higher-order scheme. The local theta upwind
FCT scheme uses a combination of the Lax-Wendroff scheme and the central scheme in
the following manner.

Lax-Wendroff is a popular flux corrector, as its first-order error (numerical diffusion)
is equal to zero (cf. Proposition A.2 later on). However, the scheme is unstable if the
‘traditional’ CFL-condition is not satisfied. Therefore, in the local theta upwind FCT
scheme, Lax-Wendroff flux correction should only be applied at the explicit faces (θn

ij =
0).

An alternative flux correction is obtained with the help of the theta central scheme with
θ = 1

2 . Similar to the Lax-Wendroff scheme, it can be shown that this scheme does not
introduce numerical diffusion (cf. Proposition A.2 for θ = 1

2 later on). Additionally, the
scheme is unconditionally stable, so it could be applied in the entire domain. Nonetheless,
a new difficulty arises. The flux correction now depends on the unknown solution at the
new time. Here, it is chosen to avoid the necessity of solving an implicit nonlinear system
by approximating the flux correction at the new time with the help of the first-order
local theta upwind approximation. This way, the flux correction can be approximated
in an explicit manner. Because this strategy introduces an unknown error, central flux
correction is only applied at implicit faces. At explicit faces, Lax-Wendroff flux-correction
is applied.
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Altogether, for a sufficiently small time step, the local theta upwind FCT scheme coin-
cides with the original explicit FCT scheme of Boris and Book [2]. For a larger time step,
for which the latter is no longer applicable, the local theta upwind FCT scheme remains
CSPW and should achieve a higher accuracy than the (local) theta upwind scheme.

The next section illustrates the performance of the local theta upwind (FCT) scheme
by means of two numerical examples.

Definition 5.1 (Local theta FCT upwind scheme)
Consider Case 3.2. A local theta upwind FCT approximation of cn

i can be
obtained as follows.

(i) Compute a (first-order) local theta upwind approximation ĉn
i by means

of the local theta upwind scheme (Definition 4.1).
(ii) Compute the flux correction ∆Φn

ij = Ψn
ij −Φn

ij with the help of a (higher-
order) scheme of the form:

|Vi|c
n
i − |Vi|c

n−1
i

tn − tn−1
=
∑

j∈Ji

−|Sij |Ψ
n
ij .

At explicit faces (θn
ij = 0), Lax-Wendroff-based flux correction is applied:

Ψn
ij =Φn

ij +

(
1

2
−

uij(t
n − tn−1)

2‖xj − xi‖2

)

un
ij

(
cn−1
j − cn−1

i

)
. (22)

At the implicit faces (θn
ij > 0), the flux correction is based on central

discretisation in combination with a Crank-Nicolson approach:

Ψn
ij =

1

2
un

ij

cn−1
i + cn−1

j

2
+

1

2
un

ij

cn
i + cn

j

2
. (23)

The flux correction ∆Φn
ij may depend on the unkown cn

i . An explicit
expression for the flux correction is obtained by using the approximation
cn
i ≈ ĉn

i .
(iii) Compute the flux limiter lnij (see also [18]):

i. Since ∆Φn
ij often corrects the numerical diffusion of the first-order

flux, it is sometimes referred to as anti-diffusion. Because an anti-
diffusion term should not behave as a diffusion term, put ∆Φn

ij = 0
if

∆Φn
ij(ĉ

n
i − ĉn

j ) > 0.

If this prelimiting step is not performed, the flux correction may
smooth the low-order solution, or it may cause small-scale numerical
ripples [9, p.541]. Since it is unphysical for an anti-diffusion term to
be directed from a higher concentration to a lower concentration, the
effect of the adjustment above is minimal in practice [18, p. 342].
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ii. Define an upper and a lower bound for cn
i by means of the first-order

approximation ĉn
i :

cmax
i = max

j∈Ji∪{i}
{ĉn

j },

cmin
i = min

j∈Ji∪{i}
{ĉn

j }.

The flux limiter will be such that cn
i is bounded by these limits.

iii. The amount of mass that flows into cell Vi as a result of the flux
correction (without the limiter) reads:

λ+
i =

∑

j∈Ji

(tn − tn−1)|Sij |max{0,−∆Φn
ij}.

The allowed mass increase is, however:

µ+
i = |Vi| (c

max
i − ĉn

i ) .

Thus, the fraction of mass that is allowed to flow into the cell is given
by:

ν+
i =







min

{

1,
µ+

i

λ+
i

}

, λ+
i > 0,

0, λ+
i = 0,

Introduce analogue quantities for mass decrease:

λ−
i =

∑

j∈Ji

(tn − tn−1)|Sij |max{0, ∆Φn
ij},

µ−
i =|Vi|

(
ĉn
i − cmin

i

)
,

ν−
i =







min

{

1,
µ−

i

λ−
i

}

, λ−
i > 0,

0, λ−
i = 0.

iv. The limiter is the mass fraction that is allowed by both adjacent cells:

lnij :=

{

min{ν+
j , ν−

i }, ∆Φn
ij ≥ 0,

min{ν+
i , ν−

j }, ∆Φn
ij < 0.

(iv) Compute the local theta FCT solution by means of:

|Vi|c
n
i − |Vi|ĉ

n
i

tn − tn−1
=
∑

j∈Ji

−|Sij |l
n
ij∆Φn

ij . (24)
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6. Numerical examples: putting the local theta scheme to the test

The previous section incorprated the FCT algorithm into the local theta upwind scheme
to improve the accuracy.

This section illustrates the performance of the resulting local theta upwind FCT scheme
by means of two periodic advection test problems. A three-dimensional real-life appli-
cation in the form of salinity transport in an estuary near Hong Kong can be found in
[13].

First, consider a one-dimensional advection problem with constant velocity u = 1 (ms−1) .
The boundary conditions are chosen to be periodic, so the exact solution is the translation
of the initial condition with a period of 10 (s) . Figure 2 shows the results after one and five
periods, so the initial condition coincides with the displayed exact solution. Furthermore,
the grid is illustrated below the chart. The gray cells are implicit in the sense that at
least one of their faces uses a strictly positive local theta coefficient.

Figure 2 compares the results of the local theta upwind scheme (see Example 4.2)
with the Euler forward upwind scheme (see Example 4.2 for local theta coefficients that
are all equal to zero), and the mimimal theta upwind scheme (see Example 4.2 for the
smallest possible constant value of theta for which the scheme is CSPW). The explicit
upwind scheme requires a much smaller time step in order to be CSPW, and, as a
consequence, many more time steps. The local theta upwind scheme suffers least from
numerical diffusion without the restriction on the time step. Nonetheless, improvement
of the accuracy by means of the flux corrected transport algorithm remains desirable.

Figure 3 displays the performance of the local theta upwind FCT scheme (see Def-
inition 5.1) in comparison to the explicit FCT scheme of of Boris and Book [2] (see
Definition 5.1 for local theta coefficients that are all equal to zero). Even though the
latter uses a much larger time step, the accuracy of the schemes is quite comparable. As
a matter of fact, the local theta upwind FCT scheme may achieve even higher accuracy
than the explicit scheme, especially if the implicit part of the domain is not too large.
This can be explained by the fact that the local theta upwind scheme forms a better
starting point for the flux correction than the explicit upwind scheme, as is illustrated
by Figure 2.

Next, the same schemes are applied for a two-dimensional advection problem with a
constant angular velocity. The velocity is chosen such that the exact solution is the
clockwise rotation of the initial condition with a period of six hours. An illustration of
the initial condition, the grid, and the local theta coefficients can be found in Figure 4.
The results after one and four periods are displayed in Figure 5 and Figure 6. At first
glance, the performance of the schemes is comparable to that for the one-dimensional
test case. However, this test case reveals a difference in behaviour of the FCT schemes
in the explicit and implicit part of the spatial domain.

The explicit part of the spatial domain is at the center, because the velocity is relatively
low in that area. This is also illustrated by Figure 4. As a consequence, aside from the
time step, the two FCT schemes coincide in this area. At the same time, the local theta
FCT scheme appears to perform better than the explicit FCT scheme. This can only be
explained by the only difference between the two schemes: the fact that the local theta
FCT scheme uses larger time step. Indeed, by considering Figure 1 for θ = 0, it becomes
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Fig. 2. Performance of the local theta upwind scheme for a one-dimensional advection problem with a
constant velocity and periodic boundary conditions after one (left) and five (right) periods

clear that a larger time step corresponds to less numerical diffusion. As a result, the local
theta FCT scheme has a better starting point before the flux correction is applied.

In the implicit part of the spatial domain, the FCT schemes behave differently as far as
diffusion and disperion errors are concerned. The explicit FCT scheme exhibits a larger
diffusion error, whereas the local theta FCT scheme shows a larger dispersion error. A
different limiter might lead to better dispersion characterics, but this is not investigated
in this paper.

Altogether, the two numerical examples illustrate that the accuracy of the local theta
upwind FCT scheme can measure up to that of the expensive explicit FCT scheme.

7. Conclusion

The local theta upwind FCT scheme (Definition 5.1) has been proposed for advec-
tion problems with strongly varying meshes and velocity profiles. The scheme is stable,
positivity-preserving and free of spurious wiggles for any time step. Because the numer-
ical diffusion is locally minimised, the accuracy can measure up to that of an expensive
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Fig. 3. Performance of the local theta upwind FCT scheme for a one-dimensional advection problem
with a constant velocity and periodic boundary conditions after one (left) and five (right) periods

(a) grid (b) Local theta coefficients (c) initial condition

Fig. 4. Two-dimensional advection problem with a constant angular velocity

explicit FCT scheme. Nevertheless, there are several possibilities to improve the perfor-
mance of the scheme even more.

First of all, a different FCT approach could be used. There is a large variety of limiters
and higher-order schemes available that may lead to better results.

Moreover, the flux correction, which depends on the unknown new solution, could
be computed in more advanced manner to obtain higher accuracy. This paper simply
substitutes the known first-order local theta upwind solution. Alternatively, an iterative
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(f) Local theta upwind (240 times steps)

Fig. 5. Performance of the local theta upwind scheme for a two-dimensional advection problem with a
constant angular velocity after one (left) and four (right) periods

approach similar to that of Kuzmin et al. [9,8,10] could be applied.
Additionally, there is a certain amount of freedom in the way that the local theta

coefficients can be chosen. A different choice may lead to a better accuracy. For instance,
the local theta coefficients could be chosen in accordance with the flux (cf. Remark 4.3).
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Fig. 6. Performance of the local theta upwind FCT scheme for a two-dimensional advection problem
with a constant angular velocity after one (left) and four (right) periods

Finally, the nature of the local theta coefficients can be exploited when solving the
linear system that results from the local theta upwind scheme. The linear system could
be reordered to obtain a smaller implicit system and an explicit system. Such a reordering
strategy may reduce the overall computational costs, especially when the explicit system
is large. The latter is the case, if there are only a few cells for which the velocity is large
in proportion to the size of the cell volume, which is typical for real-life applications.

Altogether, the local theta scheme is a time integration scheme that introduces new
flexibility that can be explored and exploited in many ways.
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Appendix A. Modified equation: revealing the nature of the lowest order
error

Here, the modified equation equation [16] is derived for the theta upwind scheme, the
Lax-Wendroff scheme, and the theta central scheme. This provides more inside into the
nature of the errors of these schemes.

Proposition A.1
Consider Case 3.2 for one-dimensional case (m = 1), a constant velocity u > 0, a constant
cell width ∆x > 0 and a constant time step ∆t > 0. Furthermore, consider the theta
upwind scheme:

cn+1
i − cn

i

∆t
+ θu

cn+1
i − cn+1

i−1

∆x
+ (1 − θ)u

cn
i − cn

i−1

∆x
= 0.

Let η(x, t) be a smooth function such that η(xi, t
n) = cn

i . Then, the corresponding
modified equation reads

∂η

∂t
(xi, t

n) + u
∂η

∂x
(xi, t

n) =
u∆x

2

(

1 − (1 − 2θ)
u∆t

∆x

)

︸ ︷︷ ︸

Numerical diffusion coefficient

∂2η

∂x2
(xi, t

n)

+ O
(
∆t2

)
+ O

(
∆x2

)
+ O(∆x∆t).

Proof:

Because η(xi, t
n) = cn

i ,

η(xi, t
n+1) − η(xi, t

n)

∆t

+θu
η(xi, t

n+1) − η(xi−1, t
n+1)

∆x

+(1 − θ)u
η(xi, t

n) − η(xi−1, t
n)

∆x
= 0.

Using a Taylor expansion of η around tn results in:

∂η

∂t
(xi, t

n) +
∆t

2

∂2η

∂t2
(xi, t

n) +
∆t2

6

∂3η

∂t3
(xi, τ1)

+θu

(
η(xi, t

n) + ∆t∂η
∂t

(xi, t
n) + ∆t2

2
∂2η
∂t2

(xi, t
n) + ∆t3

6
∂3η
∂t3

(xi, τ2)

∆x

−
η(xi−1, t

n) + ∆t∂η
∂t

(xi−1, t
n) + ∆t2

2
∂2η
∂t2

(xi−1, t
n) + ∆t3

6
∂3η
∂t3

(xi−1, τ3)

∆x

)

+(1 − θ)u
η(xi, t

n) − η(xi−1, t
n)

∆x
= 0,

for certain τ1, τ2, τ3 ∈ [tn, tn+1]. Using a Taylor expansion of η around xi yields:
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∂η

∂t
(xi, t

n) +
∆t

2

∂2η

∂t2
(xi, t

n) +
∆t2

6

∂3η

∂t3
(xi, τ1)

+θu

(
∂η

∂x
(xi, t

n) −
∆x

2

∂2η

∂x2
(xi, t

n) +
∆x2

6

∂3η

∂x3
(ξ1, t

n)

+∆t
∂

∂x

∂η

∂t
(xi, t

n) −
∆t∆x

2

∂2

∂x2

∂η

∂t
(ξ2, t

n)

+
∆t3

6∆x

∂3η

∂t3
(xi, τ2) −

∆t3

6∆x

∂3η

∂t3
(ξ3, τ3)

)

+(1 − θ)u

(
∂η

∂x
(xi, t

n) −
∆x

2

∂2η

∂x2
(xi, t

n) +
∆x2

6

∂3η

∂x3
(ξ4, t

n)

)

= 0,

for certain ξ1, ξ2, ξ3, ξ4 ∈ [xi−1, xi]. Rewriting gives:

∂η

∂t
(xi, t

n) + u
∂η

∂x
(xi, t

n) =
u∆x

2

∂2η

∂x2
(xi, t

n)

−
∆t

2

∂2η

∂t2
(xi, t

n) − θu∆t
∂

∂x

∂η

∂t
(xi, t

n)

−
∆t2

6

∂3η

∂t3
(xi, τ1)

−θu

(
∆x2

6

∂3η

∂x3
(ξ1, t

n) −
∆t∆x

2

∂2

∂x2

∂η

∂t
(ξ2, t

n)

+
∆t3

6∆x

∂3η

∂t3
(xi, τ2) −

∆t3

6∆x

∂3η

∂t3
(ξ3, τ3)

)

−(1 − θ)u
∆x2

6

∂3η

∂x3
(ξ4, t

n).

Note that

∂η

∂t
(xi, t

n) = −u
∂η

∂x
(xi, t

n) + O(∆t) + O(∆x)

∂2η

∂t2
(xi, t

n) = u2 ∂2η

∂x2
(xi, t

n) + O(∆t) + O(∆x).

Substitution yields:

∂η

∂t
(xi, t

n) + u
∂η

∂x
(xi, t

n) =
u∆x

2

∂2η

∂x2
(xi, t

n)

−
u2∆t

2

∂2η

∂x2
(xi, t

n) + θu2∆t
∂2η

∂x2
(xi, t

n)

+ O
(
∆t2

)
+ O

(
∆x2

)
+ O(∆x∆t).

Rewriting ends the proof.

Proposition A.2
Consider Case 3.2 for one-dimensional case (m = 1), a constant velocity u > 0, a constant
cell width ∆x > 0 and a constant time step ∆t > 0. Furthermore, consider the Lax-
Wendroff scheme:

∆x
cn
i − cn−1

i

∆t
+ u

cn−1
i+1 − cn−1

i−1

2
−

u2∆t

2

cn−1
i−1 − 2cn−1

i + cn−1
i+1

∆x
= 0.
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Let η(x, t) be a smooth function such that η(xi, t
n) = cn

i . Then, for all i = 1, ..., I and
for all n = 1, ..., N :

∂η

∂t
(xi, t

n) + u
∂η

∂x
(xi, t

n) = O
(
∆t2

)
+ O

(
∆x2

)
+ O(∆x∆t).

As a consequence, the numerical diffusion is zero.

Proof:

The proof is similar to the proof of Proposition A.1.

Proposition A.3
Consider Case 3.2 for one-dimensional case (m = 1), a constant velocity u > 0, a constant
cell width ∆x > 0 and a constant time step ∆t > 0. Furthermore, consider the theta
central scheme:

∆x
cn
i − cn−1

i

∆t
+ θu

cn
i+1 − cn

i−1

2
+ (1 − θ)u

cn−1
i+1 − cn−1

i−1

2
= 0.

Let η(x, t) be a smooth function such that η(xi, t
n) = cn

i . Then, for all i = 1, ..., I and
for all n = 1, ..., N :

∂η

∂t
(xi, t

n) + u
∂η

∂x
(xi, t

n) =

(

θ −
1

2

)

u2∆t

︸ ︷︷ ︸

Numerical diffusion coefficient

∂2η

∂x2
(xi, t

n)

+ O
(
∆t2

)
+ O

(
∆x2

)
+ O(∆x∆t).

As a consequence, the numerical diffusion is zero for θ = 1
2 .

Proof:

The proof is similar to the proof of Proposition A.1.
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