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Abstract

Automated history matching methods, or data assimilation algorithms, can be
used to support decision-making tools in closed-loop reservoir management. In vari-
ational data assimilation, the discrepancy between observed measurements and their
model predicted antitheses is minimized with respect to parameters that underlie the
reservoir model. Assuming that there are no uncertainties in addition to the unknown
parameters, methods exist that can efficiently calculate the gradient of the discrep-
ancy to changes in the parameters. Usually many different parameter sets exist that
locally minimize the discrepancy, so the gradient must be regularized before it can
be used by gradient-based minimization algorithms. In the presence of model errors,
more advanced methods must be employed, like the Representer Method (RM).

This article proposes a variational method to estimate the permeability of a reser-
voir rock from static and time-lapse seismic data, that simultaneously estimates the
model errors in the reservoir simulator. Unlike in the (classic or modified) RM, the
regularization and the computation of the gradient are decoupled, which can save a
lot of computation time. An analytical gradient is available, whereas the RM uses
an approximated one.

First the Variational Parameter Estimation method with Model-driven Regular-
ization (VPERM) is introduced and the relation to the RM is explained. Then
experiments are shown, using three different data sets. The first data set contains
synthetic pressure measurements in the injection and production wells, the second
and third data sets contain P-wave impedance data in addition to pressure data. The
second data set contains the baseline survey and the monitor, the third one contains
the baseline and the difference.
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VPERM produces results that are similar to the results of the RM, but in less
computation time. Both methods produce good results when only pressure data
obtained from the wells are available. Sometimes seismic data removes outliers from
the ”history-future” crossplot; better predictions are obtained from models that are
not necessarily better history matched. In other cases, seismic data gives better
history-matched models and better predictions.

1 Introduction

This article investigates the applicability of a weak constraint variational method to es-
timate reservoir permeability from 3D or 4D seismic data with a reservoir simulator that
contains model errors. Sections 1.1 and 1.2 introduce the variational parameter estimation
and weak constraints approaches. [Skjervheim et al., 2005] used the Ensemble Kalman
Filter (EnKF) [Evensen, 2003] to estimate permeability from seismic data in the presence
of model errors. In order to do so, a non-linear rock physics model was augmented to
the non-linear reservoir model to predict changes in seismic response from changes in fluid
pressure and mixture. A weak constraint variational method is promising, since [Rommelse
et al., 2008] showed that for a linear measurement operator the Representer Method (RM)
[Bennett and McIntosh, 1982; Eknes and Evensen, 1997; Bennett, 2002; Valstar et al.,
2004; Baird and Dawson, 2005; Janssen et al., 2006; Przybysz et al., 2007] outperformed
the EnKF in terms of two quality measures; root mean square difference between esti-
mated and synthetic true permeability, and the ability to predict water breakthrough in
production wells.

1.1 Variational parameter estimation

Data assimilation methods aim to improve numerical models by comparing actual measure-
ments of a physical system with the numerical model predictions of these measurements. As
the parameters of the numerical model are changed, so do the predicted state variables and
the predicted measurements. The discrepancy between the ”measured measurements” and
the ”predicted measurements” can be used to update the parameters in order to decrease
this discrepancy. In variational methods, the discrepancy is formulated as an objective
function that has to be minimized, often using the Euclidean norm. Usually, the dynamic
model that relates parameters to state variables, is adjoined to the objective function with
the aid of Lagrange multipliers [Bennett, 2006]. In reservoir management, the dynamic
model is implemented in the form of a reservoir simulator, the parameters of interest can
for example be porosity or permeability, and the state of the system is typically described
by pressure and saturation values in all grid blocks. The first or higher order variations
are iteratively used to improve the parameter estimate. Gradients can be approximated
or efficiently calculated by an adjoint reservoir simulator [Rommelse et al., 2007]. Usually
reservoir simulators use time-implicit numerical schemes and first order derivatives, Jaco-
bians, are used to speed up the non-linear solvers. Even when the Jacobians are available
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in a reservoir simulator, it is quite a task to construct the adjoint simulator. Higher order
derivatives are usually not available. In the LBFGS [Gao and Reynolds, 2006; Ulbrich,
2002] minimization algorithm used in this article, second order derivatives are approxi-
mated by monitoring the first order derivatives over successive iterations and used in a
Gauss-Newton scheme.

1.2 Model errors; strong and weak constraints

Often, the discrepancy between measured measurements and predicted measurements is
formulated using the Euclidean norm. The objective of the data assimilation is then to
minimize the square of this norm with respect to the model parameters while the numerical
model is used as a (strong) constraint.

However, there is an additional phenomenon that may cause the discrepancy; the model
is an approximation, so even if the parameters were known, the model might still produce
incorrect output. These errors can be modelled as extra parameters, which are also added
to the objective function using the 2-norm. The model is then used as a weak constraint
in the minimization problem.

1.3 Regularization

Variational methods often get trapped in local minima. Regularization methods must be
employed to reduce the number of local minima. When model errors are taken into account,
these can be modelled as additional model parameters to turn the weak constraint mini-
mization problem into a strong constraint problem of much higher order. Regularization
then becomes increasingly important.

The RM [Bennett and McIntosh, 1982; Bennett, 2002; Valstar et al., 2004] turns the
weak constraint problem into a strong constraint problem of the same order as the number
of measurements. The regularization is part of the minimization scheme and the basis func-
tions are recalculated at every iteration. [Rommelse et al., 2007] proposes an approximated
gradient and an additional reduction of the dimension of the parameter space.

This article proposes a Variational Parameter Estimation algorithm that uses Model-
driven Regularization (VPERM, section 2), similar to the RM. The regularization is de-
coupled from the minimization scheme. Basis functions can be updated at any iteration,
or not. The weak constraint problem is reduced to a strong constraint problem of an order
that is much lower than the number of measurements. Assimilating seismic data would
not have been feasible otherwise. The gradient is analytical if the basis functions are kept
fixed, unlike the approximated gradient of the RM.

2 The VPERM method

This section introduces the VPERM method; Variational Parameter Estimation Regular-
ized by Model-driven basis functions.
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2.1 High dimensional gradient of the weak constraint problem

The state variables, pressures and saturations in all grid blocks, at time ti are denoted
by xi, i ∈ {0, · · · , n}. Running the reservoir simulator and predicting measurements is
denoted by

g (xi,xi−1, θ, εi) = 0 , y = h
(
x{0,··· ,n}

)
, (1)

where the model parameters are collected in the vector θ and the model errors on interval
[ti−1, ti] are contained in the vector εi. The initial states may be part of the parameter
estimation process, so x0 = x0 (θ). The minimization relies on the availability of the first
(mean) and second (covariance) order statistics of the model parameters and model errors.
These are denoted by θprior, Pθ, ε

prior
i = 0 and Pεi

.
The objective function that has to be minimized is

J =
1

2

(
h
(
x{0,··· ,n}

)
− m

)T
P−1

y

(
h
(
x{0,··· ,n}

)
− m

)
+ (2)

+
1

2

(
θ − θprior

)T
P−1

θ

(
θ − θprior

)
+

1

2

n∑

i=1

εT
i P−1

εi
εi+

+
n∑

i=1

λT
i g (xi,xi−1, θ, εi) ,

where m contains the actual physical measurements, possibly taken at different times, and
h is the measurement operator that operates on all state variables at all time steps. Py

represents the uncertainty in the measurements in the form of an error covariance matrix.
The last term of Eq. (2) represents the system equations g that have been adjoined to the
objective function with the aid of Lagrange multipliers λi in the usual fashion [Bennett,
2006].

The derivatives of Eq. (2) with respect to λi, xi, θ and εi are

(
∂J

∂λi

)T

= g (xi,xi−1, θ, εi) , (3)

(
∂J

∂xi

)T

=

(
∂h
(
x{0,··· ,n}

)

∂xi

)T

P−1

y

(
h
(
x{0,··· ,n}

)
− m

)
+ (4)

+

(
∂g (xi,xi−1, θ, εi)

∂xi

)T

λi +

(
∂g
(
xi+1,xi, θ, εi+1

)

∂xi

)T

λi+1,

(
∂J

∂θ

)T

= P−1

θ

(
θ − θprior

)
+

n∑

i=1

(
∂g (xi,xi−1, θ, εi)

∂θ

)T

λi, (5)

(
∂J

∂εi

)T

= P−1

εi
εi +

(
∂g (xi,xi−1, θ, εi)

∂εi

)T

λi. (6)
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Setting the first two derivatives equal to zero gives the reservoir simulator, Eq. (1) and
the adjoint reservoir simulator

(
∂h
(
x{0,··· ,n}

)

∂xi

)T

P−1

y

(
m − h

(
x{0,··· ,n}

))
(7)

=

(
∂g (xi,xi−1, θ,0)

∂xi

)T

λi +

(
∂g (xi+1,xi, θ,0)

∂xi

)T

λi+1.

So, for the weak constraint case, the gradient
[

∂J
∂θ

∂J
∂ε1

· · · ∂J
∂εn

]T
is calculated by running

the simulator and the adjoint simulator, using the current estimates of the parameters and
model errors as input, and substituting the results in Eq. (5) and Eq. (6). The gradient
can be used in any gradient-based search algorithm to find a local minimum of the objective
function.

2.2 Low dimensional gradient of a strong constraint problem

The low dimensional problem is parameterized by a vector b. In this low dimensional
space, there is no model and hence no model errors; the model is only defined in the high
order space. From the low order parameters b, the high order parameters θ are constructed
by

θ = θ̃ + Rθb, (8)

and the high order model errors are constructed by

εi = ε̃i + Rεi
b. (9)

The columns of the matrices Rθ and Ei contain the parameter and model error basis
functions. Whenever these basis functions are calculated, they are based on the results of
the last iteration θ̃ and ε̃i and the low order parameters are reset to b = 0. Before the
first iteration, θ̃ is initialized to θ̃ = θprior and ε̃i is initialized to ε̃i = 0. The RM also
introduces state representers Rxi

as

xi = x̃i + Rxi
b, (10)

and adjoint representers Rλi
as

λi = λ̃i + Rλi
b. (11)

The RM does not update θ̃, ε̃i and λ̃i = 0, meaning that the quality of the parameterization
decreases as parameters move further away from the prior. x̃i is formed from the results
of the last iteration plus a correction term that is updated at every iteration. Effectively
x̃i is never updated, and it is obtained by running the reservoir simulator on the prior pa-
rameters θprior without model errors. [Rommelse et al., 2007] also introduced measurement
representers

h
(
x{0,··· ,n}

)
= h̃ + Ryb. (12)
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Using the basis functions, Eq. (8) and Eq. (9), the low order gradient
(

∂J
∂b

)T
is calcu-

lated as

(
∂J

∂b

)T

=

(
∂θ

∂b

)T (
∂J

∂θ

)T

+
n∑

i=1

(
∂εi

∂b

)T (
∂J

∂εi

)T

= (13)

= RT
θ

(
∂J

∂θ

)T

+
n∑

i=1

RT
εi

(
∂J

∂εi

)T

,

with
(

∂J
∂θ

)T
and

(
∂J
∂εi

)T

from Eq. (5) and Eq. (6).

2.3 Choosing the basis functions

To find new basis functions Rθ and Rεi
, equations Eq. (5) and Eq. (6) are set to zero and

linearized around
(
θ̃, x̃i, λ̃i, ε̃i

)
. The results are:

Rθ = −Pθ

n∑

i=1

(
∂g (xi,xi−1, θ, εi)

∂θ

)T

Rλi
(14)

and

Rεi
= −Pεi

(
∂g (xi,xi−1, θ, εi)

∂εi

)T

Rλi
. (15)

Obviously, first basis functions Rλi
for the adjoint variables must be chosen. Similar to

Eq. (14) and Eq. (15), equations for the adjoint basis functions can be found

−
(

∂h
(
x{0,··· ,n}

)

∂xi

)T

P−1

y

∂h
(
x{0,··· ,n}

)

∂xi

Rxi
=

(
∂g (xi,xi−1, θ, εi)

∂xi

)T

Rλi
+ (16)

+

(
∂g
(
xi+1,xi, θ, εi+1

)

∂xi

)T

Rλi+1
,

which depend on the state variable basis functions Rxi
, that can be calculated from

∂g

∂xi

Rxi
+

∂g

∂xi−1

Rxi−1
+

∂g

∂θ
Rθ= O. (17)

In the RM, Eq. (16) and Eq. (17) can be solved sequentially, while here they are coupled
through Eq. (14). If an estimate of the basis functions Rθ for the parameters θ is available,
for example from a previous iteration, then new basis functions can be calculated by
sequentially solving Eq. (17), Eq. (16) and Eq. (14). This can be used in a Picard
iteration scheme. Here a different approach is taken; Rxi

in Eq. (16) is obtained by a

5



singular value decomposition:

(
∂h
(
x{0,··· ,n}

)

∂xi

)T

P−1

y

∂h
(
x{0,··· ,n}

)

∂xi

Rxi
(18)

= UΣVTXi = UΣ

[
VT

1

VT
2

]
V1 = UΣ

[
I

O

]
.

When the left-most columns of UΣ are substituted in Eq. (16) to replace the left-hand-
side, the resulting equation can be used to find approximations for Rλi

. Thereafter, these
can be used in Eq. (14) and Eq. (15).

2.4 Quadratic line search

After the objective J0 = J (θ) and the gradient g0 = dJ
dθ

have been evaluated, a step must
be taken in the direction of the gradient or a modified direction d. If the step size is
parameterized by s, then J̃ (s) = J (θ−sd) must be minimized. The gradient is not only
used to find the direction of the line search, but it also helps in finding the step size, as
is the case with Wolfe conditions [Nocedal and Wright, 1999]. However, here a different
approach is taken:

1. Choose some potential step size sp.

2. Evaluate the objective J̃ (sp) = J (θ−spd).

3. If J̃ (sp) ≤ J̃ (0) − gT
0 d, then accept sp and end line search.

4. Calculate a new potential step size

s̃p :=
1

2
sp

gT
0 dsp

gT
0 dsp + Jsp

− J0

. (19)

5. Goto 2 if J̃ (s̃p) > J̃ (0).

Comments:

• Eq. (19) minimizes the parabola that is defined by J̃ (0) = J0, J̃ (sp) = Jsp
, and

dJ̃
ds

(0) = −gT
0 d.

• If Jsp
= J0, then s̃p := sp

2
, unless ‖g0‖ = 0 (but if that were the case, then J (θ) is a

local minimum of J).

• In step 2, the objective function is evaluated. In step 5 it is evaluated again. However,
in numerical experiments [section 4], the step from 5 to 2 is never made.
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3 The models

3.1 Weak constraint reservoir simulator

A 2-phase (water/oil) reservoir simulator can be represented symbolically as

d

dt
(f1 (x)) = f2 (x, θ) , (20)

where x contains the water saturation and water pressure (equal to oil pressure) for every
grid block and θ contains the permeabilities of all grid blocks. f1 describes the presence
of water and oil mass in the grid blocks and f2 models the flow through the grid block
interfaces. Injection/production is modelled as sources/sinks, which are included in f2.
Eq. (20) is formed by mass balance and Darcy equations [Aziz and Settari, 1979].

A fully implicit time discretization results in

g̃ (xi,xi−1, θ) = f1 (xi) − (ti − ti−1) f2 (xi, θ) − f1 (xi−1) = 0. (21)

The model errors are introduced as additional sources/sinks in all grid blocks. In other
words; after xi has been solved from Eq. (21), the water and oil masses in the grid blocks
have not correctly been predicted and must still be modified. The prediction gets worse as
the time step (ti − ti−1) gets larger. Therefore the correction is modelled proportional to
(ti − ti−1). If the additional sources become too strong, then unrealistically high pressures
will be observed. If the additional sinks become too strong, then saturations outside [0, 1]
will occur. In this article, the additional sinks are non-linearly constrained by f1. The
stochastic reservoir simulator has the form

g (xi,xi−1, θ, εi) (22)

= f1 (xi) − (ti − ti−1) f2 (xi, θ) − f1 (xi−1) + min {f1 (xi) , (ti − ti−1) εi} = 0.

3.2 Rock-physics model

In addition to production data, seismic data can be used to estimate parameters in a
reservoir simulation model, even though acoustic wave propagation is a totally different
physical phenomenon than multiphase fluid flow. Seismic data can consist of travel time
data and amplitude data, recorded by geophones or hydrophones. Travel time data is
available as the difference between the time at which human-made sources initiate acoustic
waves that travel into the subsurface and the time at which the reflected waves are recorded;
usually at the surface, but sometimes inside wellbores. In ”passive seismic”, the travel
time data is the difference between recordings of the same acoustic wave by different sets
of geophones in different well bores. In this case ”mother nature” is used instead of a
human-made source.

Like reservoir engineers use reservoir simulators to predict the flow of fluids through
the subsurface, geophysicists use wave propagation simulators to predict how acoustic
waves travel through the subsurface. And like history matching in reservoir engineering,
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in geophysics inverse methods are applied that bring the predictions of wave simulations
closer to the actual recorded waves by changing the parameters of the wave simulator.
The parameter sets of both simulators have some overlap. For example, porosity is an
important parameter in both simulators. Theoretically, seismic data and production data
could be merged into one big dataset and the parameter sets of both simulators could
be merged to create one big inversion or parameter estimation problem. This has never
been done; usually one inversion problem is solved partially, and the results are used as
pseudo-data in the other inversion problem.

In this article, it is assumed that the seismic data has been inverted partially, until the
level of seismic impedance. The P-wave impedance is augmented to the production data to
help the history matching of the reservoir simulation model. Besides a reservoir simulator,
also an impedance simulator is needed so seismic impedance can be predicted from fluid
pressures and saturations. This dependence is shown in Fig (1) and described in the rest
of this section.
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Figure 1: The dependence of the P-wave impedance on the fluid pressure and water satu-
ration.

The P-wave impedance Zp [kg m−2 s−1]and S-wave impedance Zs [kg m−2 s−1]are de-
fined as the velocities of the P and S-waves through the subsurface, Vp [m s−1]and VS

[m s−1], multiplied by the density of the (fluid-filled reservoir) rock ρb [kg m−3], which is
a weighted average of the densities of the sandstone, ρs [kg m−3], and the fluids

ρb = φ (Swρw + Soρo) + (1 − φ) ρs. (23)
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Including the dependence of the velocities on the fluid filled bulk modulus Kff [Pa]and
shear modulus µm [Pa], the impedances can be written as

Zp =

√(
Kff +

4

3
µm

)
ρb , Zs =

√
µmρb. (24)

The fluid filled bulk modulus Kff is calculated according to Gassmann [Mavko et al., 1998]

Kff = Ks




1 − Km

Ks
+ Kmφ

(
1

Kf
− 1

Ks

)

1 − Km

Ks
+ Ksφ

(
1

Kf
− 1

Ks

)


 , (25)

or with α = φ
(

1

Kf
− 1

Ks

)
and β = 1 − Km

Ks
:

Kff = Ks

(
Kmα + β

Ksα + β

)
, (26)

which combines the bulk moduli of the sandstone, Ks [Pa], the dry-frame Km [Pa]and the
fluid Kf [Pa]. This last modulus is calculated from the bulk modulus of oil, Ko [Pa]and
bulk modulus of water, Kw [Pa], by

Kf =
1

Sw

Kw
+ So

Ko

=
KwKo

SwKo + SoKw

. (27)

The elastic moduli, the porosity and the densities are assumed uncertain. However,
deterministic values are used and noise is added to the synthetic P-wave impedance, rather
than to the underlying parameters separately, section [3.3].

3.3 Measuring impedance with synthetic noise

After the true impedance has been synthesized, noise is added. However, this is done in
such a way that the difference of impedance measured at different times contains less noise
than the separate measurements. So

Z̃t1 = Zt1 + ed + et1 , (28)

Z̃t2 = Zt2 + ed + et2 , (29)

Z̃t1 − Z̃t2 = Zt1 − Zt2 + et1 − et2 . (30)

.
If the error in the impedance measurements is modelled by a Gaussian distribution

ed + et1 v N
(
0, σ2

Z

)
, (31)
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and so is the error in the impedance difference

et1 − et2 v N
(
0, σ2

dZ

)
, (32)

then et1 , et2 and ed are also Gaussian

et1 , et2 v N

(
0,

σ2
dZ

2

)
, (33)

ed v N

(
0, σ2

Z − σ2
dZ

2

)
. (34)

The uncertainty in the baseline survey σ2
Z , the monitor σ2

Z and the difference σ2
dZ are

parameters of interest in the numerical experiments. The uncertainties in the synthetic

noise,
σ2

dZ

2
and σ2

Z − σ2
dZ

2
, are derived from these.

4 Numerical experiments

Twin experiments were done on a horizontal 2D 2phase waterflooding application with
two different permeability and well configurations; a 5-spot with vertical wells (5SPOT)
and 2 horizontal wells perpendicular to two high-permeable streaks (2STREAKS). Syn-
thetic pressure and impedance data was generated by running a reservoir simulator on a
”synthetic truth” permeability field. The synthetic truths for 5SPOT and 2STRAKS are
shown in Fig. (2) and Fig. (3). The well configurations for both experiments are shown
in Fig. (4).
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Figure 2: Synthetic truth permeability field for 5SPOT.

Water is injected at a rate of one pore volume per year and the production wells are
constrained to 0.25 (5SPOT) or 1 (2STREAKS) pore volumes per year. The state of
the reservoir is described by pressure and water saturation in all 21x21x1 grid blocks of
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Figure 3: Synthetic truth permeability field for 2STREAKS.
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Figure 4: Well configurations. One vertical injector and four vertical producers for 5SPOT
and two horizontal wells for 2STREAKS
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10x10x20 m each. Capillary pressure is ignored, as well as gravity effects. For 5SPOT, the
true permeability is picked as one realization out of a database of 1000 realizations. The
others realizations are used to construct a covariance matrix that is used in the objective
function that has to be minimized. For 2STREAKS, the truth is an academic caricature
and realizations were sampled from a covariogram [Vossepoel and Douma, 2008]. The
synthetic true model errors were sampled as white noise, Fig. (5).
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Figure 5: Synthetic model errors.

The state variables of the synthetic truth, located at the well positions, are shown in Fig.
(6) for 5SPOT and Fig. (7) for 2STREAKS as functions of time. The synthetic pressure
measurements are the reservoir pressures in the grid blocks that are penetrated by wells
at 100 and 200 days of the simulation, resulting in 10 measurements for 5SPOT and 84 for
2STREAKS. Measurement errors are sampled and added to the synthetic measurements.
Fig. (8) and Fig. (9) show the state variables after 200 days of simulation. The 882
impedance measurements, including measurement noise, are shown in Fig. (10) and Fig.
(11).

Fig. (12) and Fig. (13) show some permeability estimates and the objective function
during 38 iterations of VPERM on 5SPOT. Fig. (14) shows the estimated well responses.
Fig. (15), Fig. (16) and Fig. (17) show the same for 2STREAKS. All iterations use
the pressure data from the grid blocks that are penetrated by wells. Baseline and time-
lapse data is used starting from iteration 20. If impedance data is used from the first
iteration, then a different local minimum of the objective function is found, usually one
that gives a worse history match. Fig. (18) shows the objective function of RM for the
cases where seismic data is used in all iterations or only after the twentieth iteration. The
first case converges much slower than the second. Moreover, the root-mean-square-error
(RMSE) between the true and the estimated parameters is better for the second case;
0.5660 compared to 0.7536. If a history matching workflow without seismic data gives
reasonable results, then it is not yet a trivial exercise to add seismic data. Additional data
does potentially give more information, but it also increases the dimensionality of the non-
linear estimation problem. Using impedance data from the twentieth iteration instead of
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Figure 6: State variables of the synthetic truth for 5SPOT. Only the 5 grid blocks that are
penetrated by the injection well and the north west (NW), SW, NE and SE production
wells are shown. The top plot also shows synthetic pressure measurements prior to adding
measurement noise, indicated by the asterisks.
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Figure 7: State variables of the synthetic truth for 2STREAKS. Only the 42 grid blocks
that are penetrated by the horizontal injector and producer are shown. The top plot also
shows synthetic pressure measurements prior to adding measurement noise, indicated by
the asterisks.
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Figure 8: State variables after 200 days of simulation for 5SPOT.
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Figure 9: State variables after 200 days of simulation for 2STREAKS.
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Figure 10: Impedance measurements for 5SPOT.
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Figure 11: Impedance measurements for 2STREAKS.
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the first one is a practical trick to get a variational history matching workflow to work with
impedance data. The extra seismic data introduces new local minima in the neighborhood
of the initial/prior estimate. Modifications to get an Ensemble Kalman Filter to work with
saturation data for 2STREAKS were investigated by [Vossepoel and Douma, 2008].
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Figure 12: Permeability estimate during 38 iterations with VPERM for 5SPOT. Pressure
data in the wells is used for all iterations, baseline and time-lapse impedance data is used
in iterations 21 and up.

Once a history matching workflow is set up to work with or without seismic data, then
the influence of the seismic data can be assessed. In this research seismic data never had
a negative effect and usually had a positive effect. In order to assess the effect of seismic
data, crossplots were made between the history match and the ”future match”, Fig. (19),
Fig. (20) and Fig. (21), where the history matching workflows were repeated with different
priors/initial estimates, and with three different datasets. All datasets contain the pressure
data in the grid blocks that are penetrated by wells. The second and third dataset contain
the baseline impedance data. The second dataset contains the monitor impedance data
and the third dataset contains the time-lapse impedance data. The ”history match” is
quantified by the Root Mean Square Error (RMSE) between the estimated permeability
and the synthetic truth permeability. The ”future match” is quantified by looking at the
accuracy of the water breakthrough curves; in fact, it is the square of the 2-norm of a

16



0 10 20 30 40
0

100

200

300

400

500

O
bj

ec
tiv

e

Iteration number
25 30 35

463.9

463.95

464

464.05

464.1

464.15

464.2

464.25

O
bj

ec
tiv

e

Iteration number

0 10 20 30
0

100

200

300

400

500

O
bj

ec
tiv

e

Cumulative product of step size and gradient norm

26.7 26.8 26.9

463.95

464

464.05

464.1

464.15

464.2

464.25

O
bj

ec
tiv

e

Cumulative product of step size and gradient norm

Figure 13: Objective function during 38 iterations with VPERM for 5SPOT. Pressure data
in the wells is used for all iterations, baseline and time-lapse impedance data is used in
iterations 21 and up. The plots on the right are close-ups of the plots on the left.
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Figure 14: Estimated well response after 38 iterations with VPERM for 5SPOT. Pressure
data in the wells is used for all iterations, baseline and time-lapse impedance data is used
in iterations 21 and up.

vector that contains the time shifts of the estimated well responses to best match the
synthetic well responses. For 5SPOT, Fig. (19), 3D seismic data does contribute to better
history-matched models, although these models do not have better predictive capability
than models that were history-matched without seismic data. 4D seismic data reduces
the outliers in the crossplot, meaning that the models do have a better future predictive
ability, without being better history matched. This is also the message of [Walker and
Lane, 2007]. It must be noted that 3D seismic data is actually 2D, and 4D is actually 3D,
since the reservoir model is only 2D and not 3D. For 2STREAKS, Fig. (21), 3D seismic
data has hardly any effect. 4D seismic data gives better history matched models as well as
better ”future-matched” models. Fig. (20) is a combination of 5SPOT and 2STREAKS;
2STREAKS is used as the synthetic truth, and realizations were created by subtracting
the mean from 5SPOT, adding the synthetic truth of 2STREAKS and performing some
random shuffle operations on the permeability fields. Again, having seismic data available
removes the outliers in the crossplot.

The VPERM method turns a high-dimensional weak constraint parameter estimation
problem into a lower dimensional strong constraint parameter estimation problem by choos-
ing basis functions for the parameters and the model errors inspired by the representer
method. In the absence of model errors, it is very common to reduce the dimensionality
of the strong constraint problem by choosing basis functions for the parameters, for ex-
ample by calculating the principal components of the parameter covariance using SVD.
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Figure 15: Permeability estimate during 37 iterations with VPERM for 2STREAKS. Pres-
sure data in the wells is used for all iterations, baseline and time-lapse impedance data is
used in iterations 21 and up.
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Figure 16: Objective function during 37 iterations with VPERM for 2STREAKS. Pressure
data in the wells is used for all iterations, baseline and time-lapse impedance data is used
in iterations 21 and up. The plots on the right are close-ups of the plots on the left.
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Figure 17: Estimated well response after 37 iterations with VPERM for 2STREAKS.
Pressure data in the wells is used for all iterations, baseline and time-lapse impedance data
is used in iterations 21 and up.
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Figure 18: Objective function of 5SPOT using RM. Top: all iterations use pressure data
and baseline and time-lapse impedance data. Bottom: impedance data is only used after
iteration 20.
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Figure 19: History-match future-match crossplot for 5SPOT using 25 different priors and
3 different datasets.
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Figure 20: History-match future-match crossplot for 2STREAKS/5SPOT using 25 different
priors and 3 different datasets.
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Figure 21: History-match future-match crossplot for 2STREAKS using 25 different priors
and 3 different datasets.

Optionally, these basis functions may also be used for the parameters in a VPERM work-
flow. Sometimes this even results in faster convergence or convergence to a better local
minimum, Fig. (22).

5 Conclusions

In this article, a weak constraint Variational Parameter Estimation algorithm with Model-
driven Regularization (VPERM) is introduced. The regularizations turns the high order
weak constraint parameter estimation problem into a lower order strong constraint prob-
lem. The basis functions that perform the regularization are model-driven, like in the
Representer Method (RM). However, if the basis functions are kept fixed in the VPERM,
then an analytical gradient can be obtained, whereas the gradient in the RM is merely an
approximation; it is the direction of a step in an iterative scheme with Picard iteration
that is not proven to converge. In the RM, basis functions, or representers, are calculated
in every iteration. In VPERM, the basis functions are not updated at every iteration.
This reduces computation time per iteration, but it might also increase the total number
of iterations.

Experiments were done with VPERM, attempting to assimilate production data, base-
line and monitor P-wave impedance data and difference P-wave impedance data. From
these experiments, the following can be concluded:
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Figure 22: Top: VPERM for 5SPOT without seismic data. Bottom: parameter basis
functions replaced using SVD.

• VPERM produces results that are similar to the results of the RM, but in less com-
putation time per iteration. Most figures in this article show VPERM results and
only Fig. (18) shows RM results. However, many experiments were done with both
methods. In fact VPERM was developed when RM provided disappointing results
(slow convergence, too high history match RMSE) with seismic data, but then per-
formed similar to RM. Both methods produce good results when only pressure data
obtained from the wells are available.

• If a data assimilation workflow gives reasonable results without seismic data, then
adding seismic data is not a trivial exercise. Although additional data does poten-
tially give more information, it also increases the dimensionality of the parameter
estimation problem. The seismic data introduced new local minima of the objective
function in the neighborhood of the initial estimate. Perturbing the initial estimate
in a random direction will improve the seismic impedance predictions in some grid-
blocks, but will also move predicted impedance values away from the true impedance
in other grid blocks. In a mean-square-difference type of objective function these
effects are cancelled out if there are as many improvements as deteriorations. In the
direction of the objective function gradient there are only improvements, as long as
the step size is small enough. In the neighborhood of the initial estimate the step
size must be chosen so small, that improvement is only marginal and even below rea-
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sonable thresholds. In this research, using pressure data in all iterations and using
seismic data from the 20th iteration gave good results. Similar modifications must
be used for other data assimilation workflows. For example, [Vossepoel and Douma,
2008] investigated modifications for the Ensemble Kalman Filter to give good results
with saturation data on the 2STREAKS model that was also used in this article.

• Using seismic data with VPERM never gives worse results than not using seismic
data.

• In some cases, assimilating seismic data does not result in better history-matched
models, whereas the models do give better future predictions; outliers in the history-
future crossplot are removed. This was earlier reported by [Walker and Lane, 2007].
In other cases, both the history match and the ”future match” are improved by
seismic data.

• Sometimes convergence can be improved, or a better local minimum of the objective
function can be found, if the parameter basis functions are overwritten with the
principal components of the prior parameter covariance.
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