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Notation

In the thesis tensors are utilized for the governing equations as it is common practice
in structural mechanics. There are many different variations on the original tensor
notation. The notation introduced in the book of dr. A. Scarpas [10] will be the
notation utilized here. Vectors and matrices can be seen as 1st and 2nd order
tensors respectively. Sometimes classic linear algebraic notation will be used, e.g.
the transpose of a second order tensor (Aij)

T = Aji.

Symbols

Tensors with index notation.

• 1st order tensor: Ai (vector)

• 2nd order tensor: Aij (matrix)

• 3rd order tensor: Aijk

• 4th order tensor: Aijkl

All tensors without index notation are written bold and with capitals, e.g. fourth
order elasticity tensor, C.

Operation Index notation Tensor notation
multiply AijBij = c A : B = c

AikBkj = Cij A ·B = C
AijBj = Ci A ·B = C
aibi = c a · b = c

AijBik = Cjk AT ·B = C
AijBkl = Cijkl A⊗B = C

derivative ∂xi
∂Xj

= Aij
∂x
∂X = A

∂Xi
∂Xj

= δij
∂X
∂X = I

∂Xij

∂Xkl
= δikδjl = Cikjl X⊗ ∂

∂X = C
kronicker-delta δklδlj = δkj I · I = I

δijδkl = δijkl I⊗ I
δikδjl I

Table 1: Tensor and index notation
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A : B = B : A

A : B = AT : BT

(A ·B)T = BT ·AT

(A ·B) : C =
(
CT ·A

)
: BT

(A ·B) : C = B :
(
AT · C

)
a⊗ b = (b⊗ a)T

a⊗ b = a · (I⊗ b)

A : (b⊗ C) = b · (A : (I⊗ C))

Table 2: Basic tensor computations.



Introduction

Interest in mechanics based approaches for pavement engineering design has recently
grown considerably, both nationally and internationally. A typical example of this
change in design philosophy is the recent Empirical-Mechanistic Design Guide on
pavement design, in which the finite element method in combination with advanced
material constitutive models for all layers and characterization techniques constitute
the backbone of the whole design process.

By accounting for the idiosyncrasies of pavement material response and by en-
abling the visualization of the internal distributions of stresses and strains in the
body of a pavement, the finite element method constitutes a valuable tool in un-
derstanding the mechanisms and the processes leading to pavement deterioration.
In addition, the method enables the quantification of the interaction between the
material and the geometric characteristics of a pavement.

Unfortunately, because of the dependence of pavement engineering materials on
the state of stress, on the rate of loading and on the temperature, they constitute
some of the most difficult and computational intensive materials for finite element
simulation. In addition, in pavement engineering, very few, if any, realistic situations
can be encountered which are truly three-dimensional.

Unfortunately the use of three-dimensional Finite Element models is both, time
and resource consuming. Especially so if the non-linear nature of the materials and
the processes concerned is considered. Nevertheless, when such models become avail-
able, utilization of the method can result to significant time and financial savings in
laboratory and field-testing.

Since the early 90s, the group of Mechanics of Structural Systems of the Fac-
ulty of Civil Engineering and Geosciences of TU Delft has been closely cooperating
with other national and international teams towards the development of tools and
procedures capable of addressing realistically the response characteristics of a wide
range of pavement engineering materials.

In the framework of this cooperation, CAPA-3D has been developed as a finite
element based platform to serve the computational needs of the pavement research
community. Over the years, it has evolved into a fully fledged finite element system
for static or dynamic analysis of very large scale three dimensional pavement and soil
engineering models. It consists of a sophisticated user interface, a powerful band-
optimizing mesh generator, high quality user controlled graphical output, several
material and element types, and a variety of specialized algorithms for the more
efficient analysis of pavement constructions. Among others, these include a moving
load simulation algorithm and a contact algorithm.

Ever since its inception in the early 90s, the system has been under continuous
update and development. Invariably developments were dictated by the research
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needs of the progressively growing groups of researchers/users. In the development
of the CAPA-3D system the need for powerful, albeit expensive, computational fa-
cilities has been addressed temporarely by segmenting the system into subsystems.
However, at the core of the CAPA-3D systems lies the algorithm for updating the
external and internal forces acting on and within materials respectively. For simu-
lations requiring very large numbers of degrees of freedom and loading cycles more
sophisticated algorithms will have to be developed as memory size and CPU power
limits the scale of the simulations that can be handled.

Modern iterative and direct solvers are capable of handling large systems of equa-
tions resulting from 3D models which was unthinkable ten years ago. Still, even with
the power of CPUs increasing every year and the introduction of multiple computing
cores on one CPU, the demand for efficient, parallel computing algorithms is higher.
Well proven techniques like the Krylov subspace methods, multigrid and direct so-
lution methods are mashed up in all forms of hybrid (iterative) solvers. Due to the
overwhelming amount of open source software, solvers have become available for
every engineer with a modern desktop computer. Unfortunately, as mixing different
medicine to cure an unknown disease isn’t likely to work, mashing up numerical
methods is also not a guarantee for an efficient, fast and moreover robust solver.
The particularities of each numerical method and the way they influence one an-
other is often not well understood. Extensive analysis of the underlying physical
phenomena, the discretization and meshing techniques lie at the base of a succesful
solving algorithm. A good recipe.can only be written if it is understood what, and
especially, how to cure.



Chapter 1

Basics structural mechanics

What is structural mechanics all about? Most of all, structural mechanics is about
deformation. How does a body of material, or like in most cases, a combination
of different materials respond to an externally applied load. Natural responses
are compression, dilatation and also cracking. However, the rate of deformation
is probably less important than the reason of deformation. Why is the material
showing cracks after a period of constant loading? Where has the material to be
reinforced to avoid cracking or too much compression.

It will become clear that the underlying physical processes of these models are
all based on the balance of forces. When an external force is applied, the material
will respond with an internal stress evidently. An important material property is
stiffness, the relation between strain and stess. Stiffness can be seen as the resistance
of a material to compression or stretching. For instance, steel is a very stiff material.
Bending a plate of steel of significant thickness at room temperature requires an
enormous load (force). In contrary to the compression of a soft rubber ball, which
needs hardly any force at all.

In this chapter a mathematical framework will be introduced to describe the
quantities stress and strain. The balance of forces and companying mechanical laws
will be introduced and a brief overview on the most important material properties,
elasticity, plasticity and viscosity is provided.

1.1 Continuum model

Imagine a body of material, V and from a certain moment in time a distributed
force Fext is applied at the top of the material.

Compare a current configuration of the system at a certain point in time with
the reference configuration of the system at time zero. The following quantities are
introduced:

X , position vector in reference configuration
x , position vector in current configuration

(1.1)

They relate as:

dx = FdX (1.2)

in which F is known as the deformation gradient tensor and is defined by
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Figure 1.1: Schematic representation of test situation

F =
∂x
∂X

(1.3)

=


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3


The displacement between position vectors x and X can be expressed as u:

x = X + u (1.4)

dx = dX + du (1.5)

1.1.1 Strain

Write the deformation gradient tensor as

F = I +
∂u
∂X

(1.6)

or in index notation

Fij = δij +
∂ui
∂Xj

(1.7)

Hence the right Cauchy-Green deformation tensor can be introduced.

C = FTF (1.8)

=
(

I +
∂u
∂X

)T (
I +

∂u
∂X

)
= I +

(
∂u
∂X

)T ( ∂u
∂X

)
+
(
∂u
∂X

)T
+
(
∂u
∂X

)
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In addition to the right Cauchy-Green deformation tensor introduce the Lagrangian-
Green strain tensor E,

E =
1
2

(C− I) (1.9)

or in index notation

Eij =
1
2

(FkiFkj − δij) , i, j ∈ {1, 2, 3} (1.10)

The main diagonals of 2nd order tensor E in terms of the displacements,

Eii =
∂ui
∂Xi

+
1
2

[(
∂u1

∂X1

)2

+
(
∂u2

∂X2

)2

+
(
∂u3

∂X3

)2
]

(1.11)

and the off diagonals,

Eij =
1
2

[
∂ui
∂Xj

+
∂uj
∂Xi

+
∂u1

∂Xi

∂u1

∂Xj
+
∂u2

∂Xi

∂u2

∂Xj
+
∂u3

∂Xi

∂u3

∂Xj

]
, i 6= j (1.12)

Here only large strain deformations are considered.

1.1.2 Stress

Forces applied to a surface area of the material are expressed as pressure and have
the derived quantity of Pascal (Pa = N

m2 ). The forces per unit area are called
stress.

Figure 1.2: Traction t acting on an infinitesimal element

In figure 1.2 the traction force t acting on an infinitesimal element da has been
illustrated. Express t as

t = lim
da→0

dq
da

(1.13)

where dq is the infinitesimal force (N). Now introduce the Cauchy stress tensor
σ [Pa] in the current configuration
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t = σ · n (1.14)

where n is the normal vector on element da. The Cauchy stress is referred to the
current, yet unknown configuration, hence the use of a stress measure that refers to
the reference configuration makes more sense. So introduce the stress states in the
reference configuration which result from a pullback operation on the Cauchy stress
tensor to the reference configuration. The First Piola-Kirchhoff stress tensor P,

T = P ·N (1.15)

where T is the traction vector with respect to the reference configuration. The
stress tensor P relates to the Cauchy stress tensor σ as

P =J ·σ · F−T (1.16)

here J is the Jacobian for transformation between the current and the reference
configuration. Because the stress tensor P can lead to ill conditioned asymmetric
systems, introduce the symmetric Second Piola-Kirchhoff stress tensor S

S = J ·F−1·σ · F−T (1.17)

It is emphasized that the Piola-Kirchhoff stress tensors have no direct physical
interpretation but are necessary to compute the Cauchy stress. The first and second
Piola-Kirchhoff stresses relate as P = FS.

1.2 Equilibrium equation: balance of forces

First of al the laws a material has to obey are introduced. At a fixed moment in
time all forces exerted on a body and the reaction forces within the body must be
in balance. This is the balance of forces which is a direct result of the balance of
momentum. This rule can be expressed as follows (strong formulation):∫

v
div(σ) + f − ρgdv = 0 (1.18)

where σ represents the forces acting on the body, f are body forces which can
be considered as source terms and ρg is the gravitational force with density ρ.

When the system is not (yet) in balance, i.e. external and internal forces are
different, this is expressed with the residual equation,

r =div(σ) + f − ρg (1.19)

In order to get a balance of forces it makes sense that the residual equation is
to be minimized. In other words, the residual equation must be zero to obtain force
balance.
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Now assume to be at a fixed moment in time. Instead of using the residual
equation it is more convenient to use the energy these forces generate when applied
to a virtual displacement δu. This energy is the virtual work,

[J ] = [N ][m]=̂r · δu (1.20)

When using a virtual velocity instead of the virtual displacement and integrating
over the whole body, introduce the virtual work per unit volume per unit time,

δW =
∫
v
r · δudv (1.21)

Back to the more general formulation, the virtual work in the current configu-
ration for an arbitrary virtual displacement is,

δW (x) = −
∫
v
σ : δḋdv +

∫
v
f · δvdv +

∫
a
t · δvda−

∫
v
ρg · δvdv (1.22)

And for the reference configuration,

δW (X) = −
∫
V

P : δḞdV +
∫
V

f0 · δvdV +
∫
A

t0 · δvdA−
∫
V
ρ0g · δvdV (1.23)

Discriminate the virtual work induced by internal and external forces,

δWint (X) =
∫
V

P : δḞdV (1.24)

δWext (X) =
∫
V

f0 · δvdV +
∫
A

t0 · δvdA−
∫
V
ρ0g · δvdV (1.25)

where δḞ is the virtual deformation rate. Because the external forces do not
vary in time (or load step) rewrite the external work as

δWext (X) = δv · fext (1.26)

with

fext =
∫
V

f0dV +
∫
A

t0dA−
∫
V
ρ0gdV. (1.27)

And of course at equilibrium,

δW (X) = δWint (X)− δWext (X) = 0 (1.28)

Due to the response and the geometry of the material the virtual work equi-
librium equation becomes non-linear. A Newton-Raphson iteration can be used to
solve the non-linear system of equations. Keep in mind that at a fixed point in time
the balance of forces must be satisfied between two time steps. An expression for the
balance of forces in terms of virtual work together with Newton-Raphson iterations
will result into the balance the forces algorithm.
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1.3 Balancing forces

At equilibrium the virtual work must equal zero as shown by equation 1.28. This is
equation becomes non-linear for hyper-elastic, plastic and viscous materials. There-
fore equation 1.28 must be linearized in order to solve it. First introduce the deriva-
tive on an arbitrary function g in the direction of a vector ∆u,

D∆u [g (x)] = lim
ε→0

(
∂g (x + ε∆u)

∂ε

)
(1.29)

The directional derivative D∆u complies to the following rules of differentiation
where A,B and X are arbitrary tensors,

D∆u [A : B] = D∆u [A] : B + A : D∆u [B] (1.30)

D∆u [A] =
∂A
∂X

: D∆u [X] (1.31)

Assume that at a certain moment in time and space, δW (X0) > 0 where X0

is the spatial vector. Also assume that with a step in the direction of ∆u the
equilibrium has been reached, i.e. δW (X0 + ∆u) = 0. Hence linearize the virtual
work equation around X0 in the direction of ∆u,

δW =̃δW (X0) +D∆u [δW (X0)] (1.32)

Of course the linearized virtual work equation must equal to zero at the equilib-
rium also,

δW (X0) +D∆u [δW (X0)] = 0. (1.33)

Write equation 1.33 as,

δWint (X0)− δWext (X0) +D∆u [δWint (X0)]−D∆u [δWext (X0)] = 0 (1.34)

where δWint, δWext as defined in 1.24 and

D∆u [δWint (X0)] =
∫
V
D∆u [P] : δḞdV +

∫
V

P : D∆u

[
δḞ
]
dV (1.35)

D∆u [δWext (X0)] = 0

Expand the directional derivative of the internal work for the two integrals seper-
ately. First the directional derivative of the first Piola-Kirchoff,

D∆u [P] =
∂P
∂F

: D∆u [F] (1.36)

with,
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D∆u [F] = D∆u

[
∂x
∂X

]
= lim

ε→0

∂

∂X

(
∂x + ε∆u

∂ε

)
=
∂∆u
∂X

= ∇0∆u (1.37)

and in [10] it is shown that,

∂P
∂F

= I⊗ S + F · C · FT . (1.38)

where C is the fourth order elasticity tensor and is defined as C = ∂S
∂E .

The next term in the first integral of equation 1.35 that has to be expanded is
the virtual deformation rate δḞ. It can be expressed as,

δḞ =Dδv

[
∂v
∂X

]
= lim

ε→0

∂

∂X

(
∂v + εδv

∂ε

)
=
∂δv
∂X

= ∇0δv (1.39)

The second integral of equation 1.35 contains the directional derivative of the
virtual deformation rate δḞ which is zero by definition,

D∆u

[
δḞ
]

= D∆u

[
∂δv
∂X

]
= 0 (1.40)

Substitution of the expressions for D∆u [P] , δḞ and D∆u

[
δḞ
]
into equation

1.35 yields,

D∆u [δWint (X0)] =
∫
V

(
I⊗ S + F · C · FT

)
: ∇0∆u :∇0δvdV + 0

=
∫
V

(
(∇0∆u : (I⊗ S)) +

(
∇0∆u : F · C · FT

))
: ∇0δvdV

=
∫
V

(∇0∆u · S) : ∇0δvdV +∫
V

(
∇0∆u : F · C · FT

)
: ∇0δvdV (1.41)

Hence, after substitution of an expression for δḞ and rearranging terms the
linearized virtual work equation at equilibrium is,

∫
V

(∇0∆u · S) : ∇0δvdV +
∫
V

(
∇0∆u : F·C · FT

)
: ∇0δvdV

= δv · fext −
∫
V

P : ∇0δvdV (1.42)

1.4 Material response

Now that a model is obtained to balance the forces within a fixed time step, a
model for the response of the material to external loads is necessary. In general
three different material response models are distinguished,
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• Elasticity

• Plasticity

• Viscosity

In real-life simulations the bodies will often consist of different types of material
and hence a combination of the three models, elasto-visco-plasticity, is used.

In the next sections a outline on the formal definition of elasticity, plasticity and
viscosity is given.

1.4.1 Elasticity

The effect of elasticity is illustrated best with a simplified version of a purely elas-
tic material. Hence, imagine a one dimensional spring attached to two moveable
boundaries at initial positions x0 and x1.

Figure 1.3: Simplified representation of elastic material.

When an external pressure σ is applied to the boundary at position x1 the,
spring stretches to a new boundary at position x2.

Figure 1.4: Simplified representation of elastic material in stretched state.

The difference between x2 and x1 is the strain ε of the spring. When the relation
between the external pressure σ and the strain σ is a linear function in time the
spring (i.e. material) shows elastic behavior. However, this linear behavior must be
valid for both the loading and unloading phase. In other words, the material must
return to its original state. In this case, during unloading, the boundaries of the
spring must return to positions x0 and x1 respectively.
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1.4.2 Plasticity

The principle of plasticity is based on the fact that a material can have memory
properties. This is best explained by a small mind experiment. Imagine a cube
of elastic material. When the two sides of this cube are pulled apart the material
will stretch, i.e. deform. When the applied force is not too large the material will
regain its original shape after unloading. This effect is elasticity as described in the
previous section. However, after a certain threshold the applied force becomes too
large and the material will yield. During unloading the material has been deformed
permanently. For instance, the body can show an increase of volume. Together
with the law of conservation of mass this implies that the density of the body has
changed. This effect can is illustrated by figure 1.5.

Figure 1.5: Example of relation between strain and stress.

There is a linear (elastic) relation between the strain ε and stress σ for small
stresses. After a certain point, the elastic limit or yield point, plasticity can be
observed. The strain-stress relation is no longer linear and when stretched too
much, the material will eventually crack (break point). Plasticity has two phases,
the hardening and softening phase. The hardening phase is spanning the range
from zero stress to the ultimate response. Clearly, the softening phase represents
the spanning from the ultimate response to the break point.

When utilizing plasticity within the balancing of forces, the admissible forces
have to be predefined so it is known after which point plastic behavior is observed.
Hence, introduce the plastic response surface, a domain of admissible stresses which
is illustrated in figure 1.6. Suppose that a displacement of the body u has been com-
puted. The plastic response surface is a function of time, stress and displacement.
This means that the surface will move in time/iterations.

For uniaxial compression tests as illustrated in figure 1.1 the stress path is de-
picted by the dotted line in figure 1.6. Here I1 is the first invariant and represents
the normal stress components, σxx,σyy and σzz. These are also known as the vol-



10 Chapter 1. Basics structural mechanics

Figure 1.6: Example of plastic yield surface.

umetric stress components. Also,
√
J2 is the second invariant and represents the

relation between shear stress components, σxy, σxz and σyz and the normal stress
components, σxx,σyy and σzz.

These are also known as the deviatoric stress components. From figure 1.6 it is
apparent that for an uniaxial test the ratio between the shear and normal stress is
constant. In this particular case the ratio is equivalent to an angle of 60◦.

The total stress, that consists of a normal and shear component, will show
elastic behavior when it is still in the domain of admissible stresses. This phase
corresponds to the elastic response curve of figure 1.5. However, when the stress
reaches the plastic response curve the material will start to building up plasticity.
This is the yield point. At first hardening of the material takes place until the point
of ultimate plastic response has been reached. From this point the material will no
longer harden but it will soften. A more physical interpretation is that the material
starts to show micro cracks in its internal structure. When too much pressure is
applied the material will eventually crack.

Each phase is characterized by its own hardening and softening parameters that
are unique to each material. Note that the stress-strain relation illustrated in figure
1.5 comes from a return mapping procedure that utilizes the plastic response surface.
In preempt to Section 1.5 it is easily understood how this surface relates to the stress-
strain relation of figure 1.5. As mentioned before, after the yielding point plasticity
is being built up. In the return mapping procedure elastic behavior of the material
is assumed and the corresponding plastic behavior is back calculated.

1.4.3 Viscosity

The phenomena of viscosity can best be described by a small example. When in
calm water it still takes effort to paddle a rowboat. This is because of the viscous
effects, or in other words, internal friction in a fluid. All visous fluid tend to cling to
a solid surface in contact with it. Consider the situation of figure 1.7. A viscous fluid
is flowing between two plates. The upper plate moves with constant velocity v and
the lower plate is fixed. Because of the visosity the fluid in contact with each surface
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has the same velocity as the surface. Hence, the fluid is moving with velocity v near
the upper plate and is stationary near the lower plate. Now consider the portion
of fluid in the area abcd. of figure 1.7. After a certain moment of time the portion
of fluid will transform into shape abc′d′ and a moment later the portion of fluid
will become even more distorted. Moreover, the fluid is in a state of continously
increasing shear strain. The shear strain is defined as the ratio of the displacement
dd′ to the length of the flow.l.To keep the upper plate moving with velocity v apply
force F at its right boundary. To keep the lower plate stationary and apply the
same force F in the opposite direction at its left boundary. If A is the surface area
between the two plates, the ratio F

A represents the shear stress exerted on the fluid.

Figure 1.7: Simplified example of viscous laminar flow..

Define the viscosity η of a fluid as the ratio of the shear stress to the change of
shear strain.

η =
F/A

∆dd′/l
=
F/A

v/l
(1.43)

The viscosity of a material strongly depends on the temperature. For higher
temperatures materials tend to be more viscous. We could think of asphaltic mate-
rials during hot summer days. The upper layer of the asphalt asborbs much sunlight
(heat) and the temperature wihtin the material rises quickly. Hence, the asphalt
becomes more viscous and more fluid like. The same effect can be seen by applying
heavy forces to a material. Due to pressure the material will become more viscous
and will soften.

Analogue to plasticity, viscosity is being build up within the material. In Section
1.5 the algorithms for calculting the deformation corresponding to the viscous prop-
erties will appear to be similar to the elasto-plastic material response algorithms.

1.5 Implementation of material response

How do the material models relate to the balance of forces of section 1.3. A math-
ematical framework to implement elasto-visco-plasticity is constructed.
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The balance of forces and the material models can be linked with the physical ef-
fect of ‘dissipation of energy’. The dissipation of energy will provide the constitutive
relations for the material models.

1.5.1 Dissipation of energy

The response of the material to the external forces applied is being expressed in the
energy-dissipation equation. True dissipation of energy is only valid for inelastic
systems. Because of this inelastic behavior (plasticity, viscosity), energy (heat) is
dissipated all over the system when the material responds to the applied forces.
In other words, when forces are being applied to the system, mechanical processes
within the material are initiated. For purely elastic materials these processes are
reversible. Here the stress is only a function of the deformation (and temperature).
and the system will return to its original state during unloading. However, for plastic
and viscous materials the stress becomes a function of deformation and variables
associated with the memory properties of the material. From a certain point in time
(yielding point), with endured loading, the mechanical processes are irreversible. For
instance, when plasticity applies, the system will experience permanent deformation.

This loss of energy ( e.g. heat) has been captured in the Clausis-Planck inequal-
ity. At any point in the system and at all times the internal dissipation D should
be non-negative.

D = P : Ḟ− Ψ̇ ≥ 0 (1.44)

Where P : Ḟ represents the work per unit volume and Ψ is known as the
Helmholtz free-energy function or, when solely a function of the deformation gradient
F, the strain energy function. The Helmholtz free energy function is a potential,
i.e. (virtual) work per unit volume.

1.5.2 Multiplicative decomposition

When we combine the three material models it is necessary to extend our current
framework of the sole deformation gradient. We need to measure and compute
the effects of elasticity, plasticity and viscosity separately. Hence, we introduce the
multiplicative decomposition of the deformation gradient.

Again we have the following relation between the current and undeformed con-
figuration,

dx = F·dX (1.45)

As shown in figure 1.8 the deformation gradient of a material in which the
elastoplastic and viscoelastic components act in parallel can be decomposed as,

F = F∞·Fp (1.46)

F = Fe·Fv (1.47)
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Figure 1.8: Schematic representation of multiplicative decomposition.

In which,
F∞ = the elastic component of the deformation gradient of the elastoplastic

element
Fp = the plastic component of the deformation gradient of the elastoplastic

element
Fe = the elastic component of the deformation gradient of the viscoelastic ele-

ment
Fv = the viscous component of the deformation gradient of the viscoelastic

element
Furthermore the following definitions hold for plasticity,

C∞ = FT
∞·F∞ (1.48)

Cp = FT
p ·Fp (1.49)

and also viscosity,

Ce = FT
e ·Fe (1.50)

Cv = FT
v ·Fv (1.51)

Therefore,

C = FT ·F (1.52)

= FT
p ·C∞·Fp (1.53)

= FT
v ·Ce·Fv (1.54)

The relation between the Cauchy stress σ and the second Piola-Kirchhoff S for
plasticity,
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J−1
∞ ·F∞·S∞·FT

∞ = σ = J−1·F · S · FT (1.55)

and also viscosity,

J−1
e ·Fe·Se·FT

e = σ = J−1·F · S · FT (1.56)

hence it is sufficient to compute just the values of S∞ and F∞ to compute the
value of S.

1.5.3 Generalized model local dissipation

The Helmholtz free energy function for a elasto-visco-plastic material model can be
expressed as,

Ψ = Ψv (Ce) + Ψp (C∞, ξp) (1.57)

Here ξp is a measure of the plastic deformation. The Clausius-Planck inequality
of 1.44 leads to,

S :
1
2
Ċ−

[
∂Ψp

∂C∞
: Ċ∞ +

∂Ψp

∂ξp
·ξ̇p
]
−
[
∂Ψv

∂Ce
: Ċe

]
≥ 0 (1.58)

It has been shown in [10] that inequality 1.58 can be reformulated as,

[
S− 2F−1

v ·
∂Ψv

∂Ce
·F−Tv − 2F−1

p ·
∂Ψp

∂C∞
·F−Tp

]
:

1
2
Ċ (1.59)

+
[
2F∞·

∂Ψp

∂C∞
·FT
∞·F−T∞ : F∞·lp −

∂Ψ
∂ξp
·ξ̇p
]

(1.60)

+
[
2Fe·

∂Ψv

∂Ce
·FT
e ·F−Te : Fe·lv

]
≥ 0 (1.61)

By standard arguments the stress tensor S can be additively decomposed into a
viscoelastic Sv and a plastic component Sp,

S = 2F−1
v ·

∂Ψv

∂Ce
·F−Tv + 2F−1

p ·
∂Ψp

∂C∞
·F−Tp (1.62)

= Sv + Sp (1.63)

And hence the following inequalities (constitutive relations) are obtained[
2F∞·

∂Ψp

∂C∞
·FT
∞·F−T∞ : F∞·lp −

∂Ψ
∂ξp
·ξ̇p
]
≥ 0 (1.64)

[
2Fe·

∂Ψv

∂Ce
·FT
e ·F−Te : Felv

]
≥ 0 (1.65)
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1.5.4 Plastic response

In [8] an algorithm is given for computing the plastic response. In the intermediate
configuration, for the elastoplastic component of the model, the Helmholtz free
energy can be set up as

Ψ = Ψ (C∞, ξ) (1.66)

Ψ̇ =
∂Ψ
∂C∞

: Ċ∞ +
∂Ψ
∂ξ

: ξ̇ (1.67)

Rewrite equation 1.67 with respect to the deformation gradients as,

Ψ̇ = 2F∞·
∂Ψ
∂C∞

·F−Tp : Ḟ− 2C∞·
∂Ψ
∂C∞

·F−Tp : Ḟp −
∂Ψ
∂ξ

: ξ̇ (1.68)

So that the Clausius-Planck local dissipation inequality reads

D = P : Ḟ− Ψ̇ (1.69)

=
[
P− 2F∞·

∂Ψ
∂C∞

·F−Tp
]

: Ḟ + 2C∞·
∂Ψ
∂C∞

: lp + qξ̇ ≥ 0 (1.70)

from which by standard argumentation the first Piola-Kirchhoff stress tensor is
obtained as

P = 2F∞·
∂Ψ
∂C∞

·F−Tp (1.71)

And the dissipation inequality,

Σ : lp + qξ̇ ≥ 0 (1.72)

Where Σ =2C∞ ∂Ψ
∂C∞ is the Mandel stress and S∞ is the second Piola-Kirchhoff

stress tensor defined in the intermediate configuration.
On the basis of inequality 1.72 the following constrained minimization statement

can be set up

min −
(
Σ : lp + qξ̇

)
(1.73)

s.t. f (Σ, q) (1.74)

Which is equivalent to the following set of plastic evolution equations

lp = Ḟp·F−1
p = λN (1.75)

ξ̇ = λ
∂f

∂q
(1.76)

λ ≥ 0 ; f (Σ, q) ≤ 0 ; λf (Σ, q) = 0 (1.77)



16 Chapter 1. Basics structural mechanics

In which λ is the plastic consistency parameter, N = ∂f
∂Σ and f (Σ, q) is a plastic

response surface. The flow rule expressed by 1.75 can be written as

∂Fp

∂t
= λN · Fp (1.78)

In section 1.5.2 it was indicated that to obtain the second Piola-Kirchhoff stress
in the reference configuration we need to compute the elastic deformation gradient,

Ft+∆t
∞ = Ft+∆t·

(
Ft+∆t
p

)−1 (1.79)

If we assume no plastic deformation takes place during a motion in the time
interval [t, t+ ∆t] then,

Ft+∆t
p = Ft

p, (1.80)

ξt+∆t = ξt. (1.81)

We introduce an approximation for the elastic deformation gradient F∞,

F̃t+∆t
∞ = Ft+∆t·

(
Ft
p

)−1 (1.82)

Solve the evolution laws of equation 1.78 for the time interval [t, t+ ∆t] analyt-
ically,

Ft+∆t
p =

[
e∆λN

]t+∆t
Ft
p (1.83)

hence,

Ft+∆t
∞ = Ft+∆t·

(
Ft
p

)−1
[
e−∆λN

]t+∆t
(1.84)

= F̃t+∆t
∞

[
e−∆λN

]t+∆t
(1.85)

The exponential can be approximated by a first order Taylor expansion,

e−∆λN = I−∆λN+
(∆λ)2

2!
N2+... (1.86)

Elaborate equation 1.84 with the use of expression 1.86 and ignoring the second
order term further to,

Ft+∆t
∞ = F̃t+∆t

∞ −∆λWt+∆t (1.87)

where,

Wt+∆t = F̃t+∆t
∞ ·Nt+∆t (1.88)

It is apparent that equation 1.87 constitutes an elastic predictor – plastic cor-
rector solution for the elastic right Cauchy-Green tensor.
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Also on the basis of equation 1.75 a backward Euler integration scheme results
to the following algorithmic scheme for the hardening rule,

ξt+∆t = ξt +
[
∆λ

(
∂f

∂q

)]t+∆t

(1.89)

A system of residual equations can be formulated using equations 1.87 and 1.89
,

R =
(
RF∞

Rf

)
=

(
Ft+∆t
∞ − F̃t+∆t

∞ + ∆λWt+∆t

[f (Σ, q)]t+∆t

)
(1.90)

Note that the residual Rf is equal to the plastic response surface [f (Σ, q)]t+∆t.
This corresponds to the objective of reducing the (trial) elastic stress state to the
plastic response surface as described in section 1.4.2. Hence, the plastic response on
time t+ ∆t is desired to be zero.

Use a Newton-Raphson procedure [2] to solve the preceding residual equations,

(
Ft+∆t
∞

[∆λ]t+∆t

)
r+1

=
(

Ft+∆t
∞

[∆λ]t+∆t

)
r

−
((

[J ]t+∆t
)−1

)
r

(
[RF∞ ]t+∆t

[Rf ]t+∆t

)
r

(1.91)

where,

((
[J ]t+∆t

)−1
)
r

=



∂(RF∞ )11
∂(F∞)11

∂(RF∞ )11
∂(F∞)12

· · · ∂(RF∞ )11
∂(F∞)33

∂(RF∞ )11
∂(∆λ)

∂(RF∞ )12
∂(F∞)11

∂(RF∞ )12
∂(F∞)12

· · · ∂(RF∞ )12
∂(F∞)33

∂(RF∞ )12
∂(∆λ)

...
...

. . .
...

...
∂(RF∞ )33
∂(F∞)11

∂(RF∞ )33
∂(F∞)12

· · · ∂(RF∞ )33
∂(F∞)33

∂(RF∞ )33
∂(∆λ)

∂(Rf )
∂(F∞)11

∂(Rf )
∂(F∞)12

· · · ∂(Rf )
∂(F∞)13

∂(Rf )
∂(∆λ)


(1.92)

1.5.5 Viscoelastic response

Similar to the elastoplastic component, the formulations for the viscoelastic com-
ponent in the intermediate configurations need to be set-up. In the intermediate
configuration, for the viscoelastic component of the model, the Helmholtz free energy
function can be set up as

Ψ = Ψ (Ce) (1.93)

Since the Helmholtz free energy function of the viscoelastic component only
depends on the strain tensor, it can also be referred to as a Strain Energy function.
Its time derivative can therefore be found as

Ψ̇ =
∂Ψ
∂Ce

: Ċe (1.94)
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By means of expression 1.50, equation 1.94 can be further elaborated as

Ψ̇ = 2Fe·
∂Ψ
∂Ce
·F−Tv : Ḟ− 2Ce·

∂Ψ
∂Ce
·F−Tv : Ḟv (1.95)

Hence the Clausius-Planck local dissipation inequality reads

D = P : Ḟ− Ψ̇ (1.96)

=
[
P− 2Fe·

∂Ψ
∂Ce
·F−Tv

]
: Ḟ + 2Ce·

∂Ψ
∂Ce

: lv ≥ 0 (1.97)

with lv = ḞvF−1
v . From which by standard argumentation the first Piola-

Kirchhoff stress tensor is obtained as

P = 2Fe·
∂Ψ
∂Ce
·F−Tv (1.98)

and the dissipation inequality

Σ : lv ≥ 0 (1.99)

Where Σ =2Ce ∂Ψ
∂Ce

is the Mandel stress and Se is the second Piola-Kirchhoff
stress tensor defined in the intermediate configuration. The following evolution law
can be found

lv = C−1
v : Σ (1.100)

With

C−1
v =

1
2ηD

(
I− 1

3
I ⊗ I

)
+

1
9ηV

I ⊗ I (1.101)

While ηD and ηV are the deviatoric and volumetric viscosities which may be
deformation dependent

ηD = ηD (Σ) > 0, (1.102)

ηV = ηV (Σ) > 0 (1.103)

Therefore

lv = ḞvF−1
v = C−1

v : Σ (1.104)

Which can be written as

∂Fv

∂t
=
(
C−1
v : Σ

)
·Fv (1.105)

In section 1.5.2 it was indicated that to obtain the second Piola-Kirchhoff stress
in the reference configuration we need to compute the elastic deformation gradient,
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Ft+∆t
e = Ft+∆t·

(
Ft+∆t
v

)−1 (1.106)

If we assume no further viscous deformation takes place during a motion in the
time interval [t, t+ ∆t] then,

Ft+∆t
v = Ft

v (1.107)

We introduce an approximation for the elastic deformation gradient Fe,

F̃t+∆t
e = Ft+∆t·

(
Ft
v

)−1 (1.108)

Now solve the evolution laws of equation 1.105 for the time interval [t, t+ ∆t]
analytically,

Ft+∆t
v =

[
e∆C−1

v :Σ
]t+∆t

Ft+∆t
v (1.109)

where ∆C−1
v = C−1

v ∆t. Hence,

Ft+∆t
e = Ft+∆t·

(
Ft+∆t
v

)−1
[
e−∆C−1

v :Σ
]t+∆t

(1.110)

= F̃t+∆t
e

[
e−∆C−1

v :Σ
]t+∆t

(1.111)

The exponential can be approximated by a first order Taylor expansion,

e−∆C−1
v :Σ = I−∆C−1

v : Σ+

(
∆C−1

v

)2
2!

Σ2+ (1.112)

Elaborate equation 1.110 with the use of expression 1.112 and ignoring the second
order term to,

Ft+∆t
e = F̃t+∆t

e −∆C−1
v : Wt+∆t (1.113)

where,

Wt+∆t = F̃t+∆t
e Σt+∆t (1.114)

A system of residual equations can be formulated using equation 1.113,

R=RFe = Ft+∆t
e − F̃t+∆t

e + ∆C−1
v : Wt+∆t (1.115)

We use a Newton-Raphson procedure to solve the preceding residual equations,

(
Ft+∆t
e

)
r+1

=
(
Ft+∆t
e

)
r
−
((

[J ]t+∆t
)−1

)
r

(
[RFe ]t+∆t

)
r

(1.116)

where,
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((
[J ]t+∆t

)−1
)
r

=


∂(RFe )11
∂(Fe)11

∂(RFe )11
∂(Fe)12

· · · ∂(RFe )11
∂(Fe)33

∂(RFe )12
∂(Fe)11

∂(RFe )12
∂(Fe)12

· · · ∂(RFe )12
∂(Fe)33

...
...

. . .
...

∂(RFe )33
∂(Fe)11

∂(RFe )33
∂(Fe)12

· · · ∂(RFe )33
∂(Fe)33

 (1.117)



Chapter 2

Discretization

In order to solve the systems of equations in algorithm 1 we need to discretize in
space and time. For static mechanics time plays no role and the external load steps
are increased by discrete quantities already. For dynamic mechanics time plays a
vital role, as the system can change between two load steps. The discretization
for static and dynamic mechanics will be introduced separately. The spatial dis-
cretization will be based on the finite elements (FE) approach [1] which has been an
industry standard for many years. In the FE approach the choice of elements and
shape functions affects the stability and accuracy of the numerical solution. Hence,
the focus is on these two aspects of FE. In preempt to dynamic mechanics, time will
be discretized with a Newmark integration scheme [11].

2.1 Finite elements

In general in CAPA-3D arbitrary geometrical objects are subjected to stress simula-
tion tests. In figure 2.1 such an arbitrary shape, e.g. a column of asphaltic material,
is illustrated. The body is being sliced into thin layers of material and each layer
is converted into a mesh of elements. In the right part of figure 2.1 a meshed layer
is presented. Note that the elements in figure 2.1 have a triangular shape but it
is not mandatory. One may observe various different shaped elements within the
FE approach. The CAPA-3D software can handle triangular (tetrahedrals for 3D)
as well as rectangular (cubes for 3D) shaped elements. It is apparent that meshes
consist of elements and elements are made out of nodes and vertices. Obviously,
the solution of the mathematical model for structural mechanical problems benefits
from more refined meshes as approximations of the stresses and strains will be more
accurate. Hence, large systems of equations can be observed regularly for even small
physical experiment simulations.

2.1.1 Element and shape functions

Without loss of generality we introduce a tetrahedral element with a new local
coordinate system (ξ, η, ζ) and is illustrated in figure 2.2(a).

For discretization of the spatial coordinates we use shape functions to interpo-
late the coordinates between the element nodes. In figure 2.2(b) first order shape
functions are drawn for a 1D element. The new local coordinate system, (ξ), cor-
responds with the two nodes of the element, x1 and x2. Every coordinate in the
interval [x1, x2] can now be written as a function of the node coordinates as follows
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Figure 2.1: Finite element mesh applied to computer model of asphalt column.

(a) Tetrahedral element with local co-
ordinate system (ξ, η, ζ)

(b) Linear shape function for 1D ele-
ment.

x = N1 (ξ)x1 +N2 (ξ)x2 (2.1)

where N1 and N2 are the linear shape functions. It is apparent that for each
type of element and choice of shape functions we must have

m∑
k=1

Nk (ξ) = 1 (2.2)

where m is the number of nodes and thus shape functions of an element and ξ
is the local coordinate vector.

Now extend this philosophy to 3D elements. The tetrahedral element of figure
2.2(a), has four nodes and hence four shape functions are introduced. The coordinate
vector x is expressed as

x =
4∑
i=1

Ni (ξ, η, ζ) · xi (2.3)

where,
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N1(ξ, η, ζ) = 1− ξ − η − ζ (2.4)

N2 (ξ, η, ζ) = ξ (2.5)

N3 (ξ, η, ζ) = η (2.6)

N4 (ξ, η, ζ) = ζ (2.7)

Use an isoparametric formulation, hence discretize the displacement vector u
and position vector x with the same shape functions.

u =
4∑
i=1

Ni (ξ, η, ζ) · ui (2.8)

2.1.2 Gauss points and numerical integration

One of the major advantages of the FE approach is numerical evaluation of integrals.
Consider a continuous function f defined in the domain Ω. Hence, the integral If
of f over Ω is defined as

If =
∫

Ω
fdΩ (2.9)

The domain Ω is meshed into n tetrahedral elements, therefore Ω =
⋃n
i=1 Ωi and

write If as

If =
∫

Ω1

fdΩ1 + · · ·+
∫

Ωn

fdΩn =
n∑
i=1

∫
Ωi

fdΩi (2.10)

Use numerical integration to evaluate the integrals of the elements. The relation
between the local and the natural coordinate system is represented by the Jacobian
J , 

∂
∂ξ
∂
∂η
∂
∂ζ

 = J

 ∂
∂x
∂
∂y
∂
∂z

 =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ


 ∂

∂x
∂
∂y
∂
∂z

 (2.11)

Hence write Ifi
=
∫

Ωi
fdΩi as

Ifi
=

∫
Ωi
fdΩi

=
∫

Ωi
fdxdydz

=
∫ 1

0

∫ 1−ξ
0

∫ 1−ξ−η
0 f |J | dξdηdζ

(2.12)

For the numerical evaluation of 2.12 we introduce Gauss points. A well known
technique for the approximation of integrals is Gaussian integration. The integral
in (ξ, η, ζ) space of equation 2.12 can be approximated by
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∫ 1
0

∫ 1−ξ
0

∫ 1−ξ−η
0 f |J | dξdηdζ = f (ξa, ηa, ζa) |J |

∫ 1
0

∫ 1−ξ
0

∫ 1−ξ−η
0 dξdηdζ

=̃ f (ξa, ηa, ζa) |J | 1
6

= Ĩfi

(2.13)

where (ξa, ηa, ζa) is the Gauss point of element Ωi. For each different geometrical
shaped element one can calculate the optimal position of the Gauss point such that
error

∣∣∣Ifi
− Ĩfi

∣∣∣ is minimized. It is apparent that adding more Gauss point to an
element will increase the accuracy of the numerical evaluation of the integral. Again,
optimal positions for Gauss points have been calcultated for many types of elements
and the values can be found in textbooks.

2.2 Discretization balancing of forces

In the previous sections we discussed the balancing of forces and introduced analyt-
ical expressions for the stiffness matrix and the internal and external forces acting
on the material. With the FE approach of the preceding we have a powerful tool to
evaluate the integrals numerically and operate in discretized space. The balancing
of forces algorithm 1 only describes static mechanics. This means that between to
load steps time is not a variable. Hence, velocity of the material bodies was not
embedded in the algorithm. In most real-life applications time does play a role,
so velocity and acceleration will be taken into account. As both types of tests are
common practice, the discretization of time and space are considered separately.
For static mechanics, there is only spatial discretization in contrary to dynamic me-
chanics where time will be discretized too. Furthermore, this section will evaluate
a few examples of static and dynamic simulations.

2.2.1 Static mechanics

In section 1.3 we have derived the linearized virtual work equation at the equilibrium.
This equation applies to every point in body V . In previous sections we have seen
how to divide body or domain V into n subdomains Vi. When the subdomains
represent grid cells resulting from a mesh the finite elements formulation of Section
2.1.1 is applied to the linearized virtual work equation,

∫
V

(∇0∆u · S) : ∇0δvdV +
∫
V

(
∇0∆u : F · C · FT

)
: ∇0δvdV

= δv · fext −
∫
V

P : ∇0δvdV (2.14)

In this way a discretized linearized virtual work equation is derived.
Assume that we are working on an element with arbitrary shape and N nodes,

e.g. a tetrahedral. Therefore we have N shape functions, Nk as desribed in Section
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2.1.1. Because we have an isoparametric formulation the following quantities can
be derived,

∇0∆u =
N∑
k=1

∆uk ⊗∇0Nk=
N∑
k=1

∆uk ⊗
∂Nk

∂X
(2.15)

∇0δv =
N∑
k=1

δvk ⊗∇0Nk=
N∑
k=1

δvk ⊗
∂Nk

∂X
(2.16)

in which ∆u and δv are the displacement increment and virtual velocity respec-
tively. Subtitute former expression into equation 2.14. and we obtain expressions
for all integrals.

First, the virtual internal work.

δWint =
∫
V P : ∇0δvdV

=
∫
V P :

(∑N
k=1 δvk ⊗

∂Nk
∂X

)
dV

=
∑N

k=1 δvk
∫
V P :

(
I⊗ ∂Nk

∂X

)
dV

=
∑N

k=1 δvk
∫
V P : B0dV

(2.17)

The derivative in the direction of the incremental displacement of the internal
work,

D∆uδWint =
∫
V

(∇0∆u · S) : ∇0δvdV +
∫
V

(
∇0∆u : F · C · FT

)
: ∇0δvdV

=
∫
V

(∇0∆u · S) : ∇0δvdV +
∫
V

(
C : FT ·∇0∆u

)
: FT ·∇0δvdV

=
∫
V

((
N∑
l=1

∆ul ⊗
∂Nl

∂X

)
S

)
:

(
N∑
k=1

δvk ⊗
∂Nk

∂X

)
dV

+
∫
V

FT

(
N∑
l=1

∆ul ⊗
∂Nl

∂X

)
: C : FT

(
N∑
k=1

δvk ⊗
∂Nk

∂X

)
dV (2.18)

Because it holds that (Appendix [?]),(
∆ul ⊗

∂Nl

∂X

)
·S :

(
δvk ⊗

∂Nk

∂X

)
= ∆ul·

∂Nl

∂X
·S·∂Nk

∂X
·I·δvk (2.19)

and also,

FT ·
(

∆ul ⊗
∂Nl

∂X

)
= ∆ul·

(
F⊗ ∂Nl

∂X

)
(2.20)

rewrite equation 2.18 as,
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D∆uδWint = δvk
N∑
l=1

N∑
k=1

∫
V

∂Nl

∂X
·S·∂Nk

∂X
·IdV

+
∫
V

(
F⊗ ∂Nl

∂X

)
: C :

(
F⊗ ∂Nk

∂X

)
dV∆ul

= δvk
N∑
l=1

N∑
k=1

∫
V
∇0Nl·S·∇0Nk·IdV +

∫
V

(BL)l : C : (BL)k dV∆ul

(2.21)

where,

∇0Nl =
∂Nl

∂X
(2.22)

(BL)l =
(

F⊗ ∂Nl

∂X

)
(2.23)

At last the discretized form of the external virtual work is expressed as,

δWext =
N∑
k=1

δvk · (fext)k . (2.24)

This leads to the final form of the discretized, linearized virtual work equation
at equilibrium,

δvk
N∑
l=1

N∑
k=1

∫
V
∇0Nl·S·∇0Nk·IdV +

∫
V

(BL)l : C : (BL)k dV∆ul

= δvk
N∑
k=1

(fext)k − δvk
N∑
k=1

∫
V

P : B0dV.

(2.25)

Cleary equation 2.25 must hold for all δvk by definition, hence eliminate δvk
from the equation. Write the discrete equilibrium equation as,

(Kσ + Kc) ·∆u = ∆f ext −∆fint (2.26)

Define K = Kσ + Kc as the stiffness matrix.This matrix represents the reaction
of the material to a change/misbalance in/of forces. It is a unique material property.
Here Kσ,Kc represent the internal forces and correspond with the geometrical stress
components and the constitutive components respectively.

Finally, the balancing of forces algorithm is constituted by equation 2.26 and
given by Algorithm 1. Note that the computation of the material response, which is
represented by f iint results from the algorithm that have been introduced in Section
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1.5.2. The external force f iext results from the evaluation of δW (X0) and the term
Kt ·∆up where ∆up are the prescribed displacements of the body. Furthermore, it
must be emphasized that time plays no visible role in these algorithms, as we are
dealing with load steps instead of time steps. But of course these load steps endure
a fixed period of time. The first step in Algorithm 1 is the appliance of an external
load to the body. This is either stress or strain regulated. The second step is the
calculation of the displacements as a response to the external load, which is equal
to solving linear system equation 2.26. The third and last step is the appliance of
the material properties, i.e. the calculation of the non-linear internal stresses.

Algorithm 1 Balancing of forces
for t = 0...tend do
Compute external load f text
for i = 0 until convergence do
Assemble stiffnessmatrix Kt,i

if i = 0 then
f0
int = 0 and ∆f0 = f0

ext − f0
int

Solve system Kt,i∆ui = ∆f i

Update displacements, ui+1 = ui + ∆ui

Compute internal force, f i+1
int and ∆f i+1 = f i+1

ext − f i+1
int

Test for convergence, ∆f i+1

∆f0 < ε

2.2.2 Dynamic mechanics

The static mechanics theory can be extended to the time domain yielding dynamic
mechanics. In time space not only the displacement field but also velocity and
acceleration of the body have to be taken into account. Consider the linearized
virtual work equation extended to the time domain in 2.27. In addition to the
static virtual work equation damping matrix C, mass matrix M , velocity v and
acceleration a have been added.

Ku + Cv +Ma = fext (2.27)

It is apparent that equation 2.27 is a second order differential equation and
will have to be solved numerically. Introduce the Newmark integration scheme for
solving equation 2.27. The virtual work equation is still solved for the unknown
displacement field u, hence the acceleration and velocity are written as function of
displacement.

ut+∆t = ut + ∆tvt + (∆t)2 [(1
2 − β

)
at + βat+∆t

]
vt+∆t = vt + ∆t

[
(1− γ) at + γat+∆t

] (2.28)

Introduce predictor values at beginning of time step t using those terms of equa-
tion 2.28 that refer to the end of the previous time step,
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ūt+∆t = ut + ∆tvt + (∆t)2 (1
2 − β

)
at

v̄t+∆t = vt + ∆t (1− γ) at
(2.29)

Rewrite equation 2.28 by substitution of equation 2.29,

ut+∆t = ūt+∆t + (∆t)2 βat+∆t

vt+∆t = v̄t+∆t + ∆tγat+∆t (2.30)

In addition to the velocity an expression for the acceleration is obtained from
equation 2.30,

at+∆t =
1

(∆t)2 β

(
ut+∆t − ūt+∆t

)
(2.31)

For every timestep ∆t a new force equilibrium has to be computed, hence the
Newmark integration scheme has to be embedded into the Newton-Raphson iteration
scheme of Algorithm 1 in order to solve system 2.27. Define the displacements,
velocity and accelration for time t+ ∆t at Newton-Raphson iteration number k+ 1
as,

ut+∆t
k+1 = ut+∆t

k + ∆ut+∆t
k

vt+∆t
k+1 = v̄t+∆t + γ

(∆t)β

(
ut+∆t
k+1 − ūt+∆t

)
at+∆t
k+1 = 1

(∆t)2β

(
ut+∆t
k+1 − ūt+∆t

) (2.32)

where ut+∆t
0 = ūt+∆t. Substitution of the expressions from equation 2.32 into

equation 2.27 yields,

K∗∆ut+∆t
k+1 = f̃ t+∆t

ext,k+1 − f t+∆t
int,k+1 (2.33)

where,

K∗ = K + γ
∆tβC + 1

(∆t)2β
M

f̃ t+∆t
ext,k+1 = f t+∆t

ext − Cvt+∆t
k −Mat+∆t

k

f t+∆t
int,k+1 = Kut+∆t

k

2.3 Non-linear material properties

When plasticity or viscosity builds up the stiffness of the body changes the initial
stiffness matrix does not represent the stiffness of the body at an arbitrary load step.
The approximation of the stiffness matrix affects the performance of the Newton-
Raphson method and yields bad convergence rates and a large number of iterations.
To reduce the number of iterations modification of the stiffness matrix is required,
preferably every iteration of the Newton-Raphson scheme in Algorithm 1.
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(d) Newton-Raphson convergence pat-
tern with initial stiffness approach.

(e) Newton-Raphson convergence pat-
tern with modified stiffness approach.





Chapter 3

Problems arising in structural
mechanics

3.1 Problem sizes

In the previous section we have set up a computational framework for structural
mechanics. This framework is implemented within the CAPA-3D software. In the
field of structural mechanics and pavement engineering in particular, the scale of the
problems we handle are of major importance. Roughly, we distinguish fours levels
of modeling the materials.

Figure 3.1: The four levels of modeling materials

At macro level, we consider the body as a multi-phase, homogenous material but
in reality it consists of more than one material.. This material has just one specific
stiffness and one set of plasticity and viscosity parameters. In the context of the
finite elements approach, each element will have the same material properties.

At meso level, the body is a non-homogenous material. In other words, consider
the body as a mixture of different materials. The body can be divided in smaller
bodies, made of homogenous materials.

Figure 3.2: Division of material into smaller bodies.

Each of the sub bodies has a specific material property and multiply bodies
consist of the same material. A good example in pavement engineering is asphalt.
This is material is a mixture of aggregates, bitumen and air voids. In the context of
the finite elements approach, material properties can vary per element. These grid
variations will have a big impact on the development of new solvers.
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At micro level we no longer use bodies of material but clusters of molecules. A
well known cluster of molecules is the crystal shape.

At nano level the cluster approach is abandoned and individual molecules are
modeled.

Unfortunately, the current generation of computers are not capable of running
any meaningful tests with micro and nano level approaches. The molecular scale
asks for too much grid points and hence matrices will be extremely large and un-
manageable. The micro and nano level approaches will come into play when local
effects have to be treated and problem sizes remain small. Evidently CAPA3D will
handle macro and meso level problem sizes only. However, as CPU power and mem-
ory sizes increase every year, micro and nano level computations will be feasible in
the nearby future.

The aim of improving this software will be the ability of handling fine meshes
with a larger number of degrees of freedom. Obviously this will imply a large
computational effort when it comes to the evaluation of the outer iteration loop
(K∆u = ∆f) as well as the inner iteration loop (return mapping procedure, compute
Fint) of the () algorithm.

3.2 Improvements algorithm

In general, three parts of the CAPA3D software have to be improved. First the
existing Gaussian-elimination of solving the system K∆u = ∆f has to be replaced
by an efficient (parallel)direct or iterative solver. Secondly, the newly developed
solver has to accommodate rescaling of our problem definition. In practice this
means that the use of finer meshes still requires the same amount of CPU power and
memory size. The third and last part will be the improvement of the inner iteration
loop. The inner iteration loop is a pre-determined Newton-Raphson procedure and
therefore we focus on the efficiency instead of scaling.

3.3 Development issues

Now that the specifications of the new solver are defined, the possible difficulties
that lie ahead can be addressed.

3.4 Singularity of the stiffness matrix

Singularity of the stiffness matrix is one of the most challenging problems. In two
cases we the stiffness matrix K can have singularities.

In preceding sections the stress-strain curve that can be found for every material
was introduced. When not only purely elastic effects but also plasticity and viscosity
effects tribute to the stress-strain relation, a point of maximum stress within the
curve can be observed. At this point the differential of the stress, ∆σ, tends to zero
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and remains small in the neighborhood of this point. This is illustrated best by the
following relation which is valid for small strains,

σ = Dε→ ∆σ = D∆ε→ D =
∆σ
∆ε
→ D−1 =

∆ε
∆σ

(3.1)

Also for small strains the stiffness matrix K is defined as,

K =
∫
V
BTDBdV (3.2)

which establishes the fact thatK becomes (almost) singular for very small values
of ∆σ. When realize that the relation between strain and stress depends on time, this
point of maximum stress can be avoided by increasing the time steps. However, this
is a rule of thumb and gives no guarantee that this point can be passed without any
problems (singularities). One way of tackling this effect is the arc length approach
and can be found in [arc. length reference hier!!]

The second reason of singularity is the difference of material properties. The
finite elements approach determines the assembly of the stiffness matrix. When two
elements of the mesh represent two different materials with enormous differences
in stiffness, this can yield a singularity in the stiffness matrix. In preempt to later
sections, these singularities can also occur when an interface is applied between two
materials. Usually these interfaces have a very high normal stiffness coefficient and
smaller tangential sitffness coefficient. When embedded in the stiffnesmatrix K the
differences between stiffness coefficients can lead to an ill-conditioned system.

Figure 3.3: Interface elements

Another way of embedding interface elements is to add new constraints to the
system. Expand the original system with constraint matrices L and M and put
constraints on the displacements.

K∆u =
[
K̂ L

LT M

] [
∆û
∆σ̂

]
=
[

∆F
a∗

]
(3.3)

Where K̂ is the stiffness matrix without the interface elements with correspond-
ing displacements ∆û and M is the stiffness matrix of the interface elements with
corresponding stress ∆σ̂. Inevitable the matrix K will become nearly singular when
Kij �Mij .
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As singularity is a well known reason for breaking down direct solution methods
it can have a negative influence on the convergence rates of iterative methods as
well. Many of these methods utilize direct methods within their iteration loops.
Also grid dependent operators within these methods can have problems with local
singularities.

3.5 Misbalancing due to plasticity and viscosity

In the previous sections it has become clear that plastic and viscous behavior is
extremely difficult to model correctly. The return mapping procedures for both
plasticity and viscosity models have a major drawback on computation times, with
the amount of work per iteration equal to O (N) , where N is the number of grid
cells. Parallelization of the algorithm and the use of sub domains or coarser grids
have the potential to reduce the computation times considerably. Unfortunately,
these methods depend strongly on the balancing of forces. Small distortions of
the real displacements can easily result into divergence of the balancing of forces
algorithm.

3.5.1 Plastic response surface

In the preceding discussion about plasticity the importance of the plastic response
surface became clear. When plasticity is being built up (hardening) the stress can
be calculated and with the return mapping procedure, the admissible stress state
at the plastic response surface can be reached. However, when too much load is
being applied and the increase of the stress is too large the corresponding maximum
response can be miscalculated. This effect is illustrated in figure 3.4.

Figure 3.4: Example of miscalculation of plasticity.

A direct consequence of these miscalculations is that the resulting displacements
are miscalculated also. Hence, in the next step again the wrong load is being applied
and chances are high that the plastic response is miscalculated also. It is apparent
that all these miscalculations contribute to a major distortion of the real solution
and could result into divergence of the balancing of forces algorithm. The initial
load could be induced by wrong initialization of a sub domain or coarser grid.
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3.5.2 Viscosity

The viscosity effects also contribute to the stiffness matrix. This effect can be
easily addressed for small strain problems. Consider an arbitrary material with the
following stiffness coefficient,

E

(1− 2ν) (1 + ν)
(3.4)

where E is the Youngs’ modules and v the poisson ratio. When the material
becomes more viscous the poisson ratio ν tends to 1

2 hence the material becomes
almost incompressible. For large strain models this effect is somehow more difficult
to address but the philosophy remains the same. Apparently, when using differ-
ent materials within one body and thus finite elemtent mesh, viscosity parameters
can differ from element to element. Therefore large differences between stiffness
coefficients can occur and the stiffness matrix can become ill-conditioned.

3.6 Domain decomposition and multiple grids

Some of the solution methods depend on domain decomposition or use multiple
grids. In other words, the division of the original mesh into sub domains or coarser
grids. In this case we distinguish between domain decomposition and multi(ple)
grid methods.

The first type is a true domain decomposition and cuts the existing domain in
a number of (equal) sub domains. As an arbitrary point in the system has a direct
or indirect link to every other point, there must be communication between the sub
domains. Also the interfaces between the domains must be defined. The grid is
moving in time, hence either the domains must be moving as well or there must be
a rule to assign grid points to a specific domain.

A second way is the introduction of coarse and fine grids. If the grid is defined
as a set of grid points, then a coarse grid is a subset of these points. In practice,
multiple cells are glued together to form one bigger, super grid cell. For instance,
when using tetrahedral shaped cells, combining three cells into one yields the removal
of 12− 4 = 8 grid points from the fine grid.

Figure 3.5: Combining grid cells of triangular mesh.

In the notion of coarse grids, combining grid cells is a difficult operation. When
utilizing the finite elements method shape functions interpolate the values of the
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unknowns through the element. If we use first order, linear shape functions, the grid
cells must be small to obtain good convergence rates. Otherwise the approximation
of stress and strain in an element becomes to poor and there will be no balance of
forces. However, when coarser grids are defined linear shape functions could prove
to be insufficient for yielding good approximations. Hence, the choice of shape
functions must be taken into account.

Another side effect of gluing grid cells together comes from the choice of coarser
grid cells. From figure () it is apparent that the gray, coarser grid cell is not a
one-to-one projection of the fine grid to the coarse grid. The vertices of the coarse
grid cell do coincide with the fine grid but the boundaries of the cell do not lie
on the boundaries of the fine grid at all. We need a smart algorithm that can
construct a coarse grid that follows the shape of the fine grid wherever it is possible.
Furthermore, in preempt to the introduction of iterative methods that use coarser
grids, we will see that because coarse and fine grids do not coincide, the propagation
of material properties is far from trivial. When elements are combined that consists
of different materials we need to determine what the material properties will be of
this coarser element.



Chapter 4

Basics numerical computations
and analysis

In previous sections we have introduced the basics of structural mechanics, set up
a framework to do finite elements analysis and discussed the current limitations
of the () algorithms. For this purpose a number of numerical solution methods are
considered so more insight in how and where algorithm () will have to be adapted will
be obtained. This Section emphasizes on best-practice numerical methods. In order
to fully comprehend more advanced methods like multigrid and Krylov subspace
methods a brief and general introduction to numerical analysis is provided. This
introduction is based on the works of [13], [9] and [14]. More elaborated readers can
shift directly to subsections (4.5) till (??).

In general a linear system of equations will be solved,

Ax = b, (4.1)

where A is a matrix of dimension n× n and x, b represent vectors of dimension
n. Note that in many engineering problems the system of equation (4.1) often results
from discretization or linearization of the governing equations of your model. For
solving system (4.1) there are many suitable methods available but they can be
discriminated as two groups. The direct solution methods of Section (4.1) and
the iterative methods of Sections (4.2) to (4.4). The main difference rests in the
underlying mathematical philosophy Where direct solution methods invert matrix
A of (4.1) to obtain a solution x instantaneously, the iterative methods need (many)
iteration sweeps to converge to a solution with tolerated error. Both approaches have
their limitations, hence it is common practice that both methods go hand-in-hand
to form one integrated solver.

Not only is there a difference between direct- and iterative solution methods,
but there lies a massive spectrum of different solvers within these two methods. For
direct solvers there are LU decomposition, Schwarz and Schur complements and also
rearranging algorithms to speed up the decomposition process. The iterative solvers
span a world of their own. There are methods based on the discretization of the
model like domain decomposition and multigrid. Many methods are distinguished
based on the splitting of the matrix, like Jacobi, Gauss-Seidel and SSOR. There
are Krylov subspace methods that construct a new space with the residuals of the
iterations as basis vectors. Finally, algorithms for conditioning of the matrix play
an important role in the robustness and efficiency of the iterative solution methods.
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Despite this vast number of possible solution methods, the charaterisation of A
often determines your method of choice. For ill-conditioned systems, direct solution
methods break down. On the other hand, an iterative method like multigrid needs
smooth quantities in the solution to be a robust and stable solver. The system that
has to be solved constitutes the method of choice and hence it is of great importance
that stability, robustness and efficiency issues within our numerical recipes as well
as in the system itself are addressed.

The first Section (4.1) will discuss direct methods and Section (4.2) will introduce
the iterative methods. At the end of this chapter, Section (??) will discuss different
advanced iterative methods.

4.1 Direct solution methods

The most straightforward approach for solving system 4.1 would be a direct inversion
of matrix A. The LU decomposition of matrix A is a well known technique for
computing the inverse. In fact, the inverse will not be computed at all but the LU
decomposition yields the same result as the real inversion of matrix A. For small
matrices the LU decomposition can be done on a single computing node. However,
for large systems lack of memory and limited CPU power increase computation times
significantly. Above certain limits the LU decomposition will not fit into memory
anymore and other (parallel) approaches will have to be used.

Not only physical barriers limit the use of direct solution methods. With ill
conditioned systems the matrix will be (nearly) singular. From () we know that for
these systems an inverse matrix does not exist or is very hard to compute without
exact arithmics. In those cases we need to pre-condition the system when inverting
the matrix remains the method of choise.

Section () will introduce parallel direct solution methods that rely on the same
principle as LU decomposition but can handle much larger systems.

4.1.1 LU decomposition

For matrix A is non-singular there are Gauss transformations M1...Mk−1 such that
the matrix U given by,

Mn−1Mn−2 · · ·M2M1A = U (4.2)

is upper triangular [14]. It can be derived that the inverse of Mn−1...M1 can be
given by,

L = (M1...Mn−1)−1 (4.3)

which implies that A = LU . The matrix L is lower traingular and diag(L) = I.
Once the LU decomposition is obtained Ax = b is easily solved. First solve Ly = b

and then the upper triangular system Ux = y.
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The algorithm for finding matrices L and U is called the Gaussian elimination
algorithm 2.

Algorithm 2 Gaussian elimination algorithm
Compute A = LU with A ∈ Rn×n
for k = 1, ..., n− 1 do
if akk = 0 then

quit
else
for i = k + 1, ..., n do
η = aik

akk

aik = η

for j = k + 1, ..., n do
aij = aij − ηakj

Take into account that due to round off errors and machine precision Gaussian
elemination can give arbitrary poor results, even for well conditioned systems. With
partial or complete pivoting or by applying iterative improvements the algorithm
of table 2 can be improved significantly. Implementations of the LU decomposition
that can be found in freely available LAPACK software package make use of these
enhanced algorithms. Hence, in general stability of this solution method for well
conditioned systems should be ensured.

4.1.2 Cholesky factorization

In Chapter 2 we seen that the matrix resulting from the discretization of the virtual
work equation was both positive definite and symmetric. For these matrices there
exists an unique lower triangular R ∈ Rn×n with positive diagonal entries such
that A = RRT . This is the Cholesky factorization. Because of the symmetry
of A only the upper part has to be stored. In general the computation of the
Cholesky factorization takes halve the amount of work and memory compared to
the Gaussian elemination. In later sections (incomplete) Cholesky factorization is
used for preconditioning.

4.2 Basic iterative methods

We recall the system of equation (4.1),

Ax = b.

Many iterative methods are based on the fixed point iteration for solving system
(4.1),

xk+1 = Gxk + f (4.4)
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where xk is an approximation of the exact solution x of system (4.1). Here
G is the iteration matrix and f is the source vector. Matrix M and vector s are
determined by our method of choice. When utilizing an iterative method it is
important that we introduce a proper stopping criterion Otherwise our method
could iterate until infinity (k → ∞) or stop too early. One common used stopping
criterion is the relative norm of the residual and is defined as,∣∣∣∣b−Axk

∣∣∣∣
||b||

< ε (4.5)

for which ||·|| is a norm and ε is the tolerance. Also important is the initial guess
x0, one often uses the zero vector.

In order to measure the efficiency of an iterative method we compare the rates of
convergence. We say that the rate of convergence of the general method in equation
(4.4) is characterized by the spectral radius ρ (G) and is defined as,

ρ (G) = max {|λ| : λ eigenvalue G} . (4.6)

In fact, the spectral radius is the asymptotic convergence factor of the iteration
[13]. Asymptotically, i.e. for k →∞, we have

∣∣∣∣x− xk+1
∣∣∣∣ ≤ ρ (G) ·

∣∣∣∣x− xk
∣∣∣∣.

There are many ways to construct an iteration matrix G, leading to different
solvers and eventually all baisc iterative methods can be expressed as the system in
(4.4). This section will only discuss one example of a basic iterative method based
on the splitting of matrix A in (4.1).

4.2.1 Splitting of matrix

Introduce the splitting of the matrix A,

A = M −N (4.7)

When xk+1,xk are close to x we have xk+1=̃xk=̃x hence it makes sense to
introduce the following iteration scheme,

Mxk+1 = Nxk + b (4.8)

Rewrite this in terms of system (4.1),

G = M−1N = M−1 (M −A) = I −M−1A (4.9)

f = M−1b (4.10)

In many engineering applications we see a reoccurrence of two splitting-based
iterative methods, Gauss-Seidel and Jacobi. These methods are cheap in terms of
computing resources and converge conditionally. Furthermore, in more sophisticated
iterative methods like multigrid and Krylov subspace solvers these methods play an
important role in reducing and smoothing error components or as preconditioner.
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Therefore both methods are only discussed briefly. We should emphasize that these
methods are not enhanced enough to handle ill-conditioned systems of equations
and convergence rates can be very poor.

4.2.1.1 Jacobi

The choice of M = D and N = − (L+ U) leads to the Jacobi iteration, where D
contains the diagonal elements of A and L,U contain the lower and upper diagonal
elements of A respectively. Hence, write Jacobi as,

xk+1 = D−1 (L+ U) xk +D−1b (4.11)

The Jacobi algorithm [14] is described in (3). It is apparent that the Jacobi
iteration is very efficient with respect to the storage of matrices and vectors. There
is no need for extra storage with respect to the splitting of matrix A. Hence, the
Jacobi method is a memory efficient algorithm and one iteration costs approximately
as much work as a matrix vector product. The Jacobi method converges for any
start vector x0 if matrix A is non-singular and ρ

(
M−1N

)
< 1. A proof can be

found in [14].

Algorithm 3 Jacobi algorithm
for i = 1...n do
xk+1
i =

(
bi −

∑n
j=1,j 6=i aijx

k
j

)
/aii

4.2.2 Gauss-Seidel

The Gauss-Seidel (GS) method is given byM = D+L and N = −U where D,L and
U contain the same elements of A as for the Jacobi method described previously.
Write the GS method as,

xk+1 = (D + L)−1 Uxk + (D + L)−1 b (4.12)

The GS algorithm [14] is described in (3). The GS method is a little bit cheaper
in terms of memory because we do not need an extra storage vector for solution xk.
However, the order of work remains the same. The method converges for any start
vector x0 when matrix A is symmetric and positive definite, i.e. ∀i 6= j, Aij = Aji
and ∀x ∈ Rn, x 6= 0, (Ax,x) > 0 respectively. The GS iteration scheme is
often extended with a relaxation parameter which results into the Succesive-over-
relaxation (SOR) and Symmetric-succesive-over-relaxation schemes. By accounting
for the weight of historic information (xk,xk−1, ...,x0) the iteration scheme can be
accelerated. The SOR is defined as,

xk+1 = M−1
ω Nωxk +M−1

ω b (4.13)
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where, Mω = D + ωL, Nω = (1− ω)D − ωL and ωA = Mω − Nω. The SOR
algorithm is described in (5). It can be shown that the SOR method converges for
0 < ω < 2 when A is symmetric and positive definite. A smart choice of ω can
minimize ρ

(
M−1
ω Nω

)
and speed up the iteration process.

Algorithm 4 Gauss-Seidel algorithm
for i = 1...n do
xk+1
i =

(
bi −

∑i−1
j=1,j 6=i aijx

k+1
j −

∑n
j=i+1,j 6=i aijx

k
j

)
/aii

Algorithm 5 Succesive-over-relaxation (SOR) algorithm
for i = 1...n do
xk+1
i = ω

(
bi −

∑i−1
j=1,j 6=i aijx

k+1
j −

∑n
j=i+1,j 6=i aijx

k
j

)
/aii + (1− ω)xki

4.3 Preconditioning

In preceeding Sections () and () we have seen that the stiffness matrix K of equation
(2.26) will be ill conditioned despite its symmetric and positive-definite properties.
Obviously the system of (2.26) can be rewritten in terms of system (4.1). Hence,
in this section we will refer to the matrix A of (4.1) instead of stiffness matrix K.
We have seen in Section () that especially asphaltic materials consists of elements
that can vary in stiffness significantly. Hence, the spectral decomposition of A yields
presumably large differences in eigenvalues and therefore the condition number of
A will be relatively high. This means that when utilizing non-customized iterative
methods the rate of convergence will probably be low, yielding slow convergence.
Preconditioning of the system can be a convenient way of accelerating the iterative
method. The philosophy of preconditioning is the reduction of the condition number
of the preconditioned system, thus matrix A of system (4.1). This is best illustrated
by an example. Observe a system analogue to equation (4.1). Suppose that matrix
A is ill conditioned, i.e. the condition number is high. We could transform the
system as follows,

M−1Ax = M−1b (4.14)

whereM−1 is the (left) preconditioner. For a smart choice ofM we could achieve
a much lower condition number of the systemM−1 compared to the condition num-
ber of A. As a result M−1A could be more solvable for basic iterative methods.
Hence, a smaller ρ

(
I −M−1A

)
.may result in better convergence rates. In preempt

to later sections we will see that Krylov subspace methods benefit highly from pre-
conditioned systems. These methods will play an important role in the development
of a large scale algebraic solver.

Unfortunately, choosing a proper M is a challenging task and in most cases
far from trivial. It is apparent that for M = A we obtain a solution of x in one
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step. Therefore it makes perfect sense to use an approximation for matrix A as a
preconditioner. However, introducing a preconditioner will yield extra work when
multiplying M−1 with a vector. So we must choose M−1 such that the amount of
work does not increase significantly with respect to the solution method of choice
and the system M−1A still has a favorable distribution of eigenvalues. This Section
will discuss three simple choices for preconditioning to be familiarized with this
concept. In later sections more sophisticated choices of M are developed and the
use of multigrid and domain decomposition as preconditioners is investigated.

Note that the system of equation (4.14) does not preserves its symmetry for
most choices of M . However, the matrix product M−1A is selfadjoint for the
adapted M -inner product (x,y)M ≡ (Mx,y) = (x,My) , ∀x,y ∈ Rn, hence(
M−1Ax,y

)
M

= (Ax,y) = (x, Ay) =
(
x,M

(
M−1A

)
y
)

=
(
x,M−1Ay

)
M
. When

the M -inner product is utilized within for instance the CG method of Section (),
we regain a symmetric system and the algorithms do not have to be adapted. In
later sections it will become clear that the evaluation ofM -inner product is also not
neccesary and the Euclidean inner product can still be used. Another approach for
preserving symmetry is to let M = PP T , where P is a non-singular matrix. The
preconditioned system of equation (4.14) transforms into,

P−1AP−T x̃ = P−1b (4.15)

where x̃ = P−Tx. Stick to the notation of equation (4.14).

4.3.1 Basic iterative methods

The principle behind Gauss-Seidel or Jacobi preconditioners lies within the splitting
of matrix A of system (4.1). Again, we introduce the general splitting of A = M−N .
The basic iterative methods are based on the fixed point iteration xk+1 = Gxk + f .
We have seen that in the case of splitting G = M−1N = I − M−1A and f =
M−1b. Obviously preceding fixed point iteration applies also on the linear system
(I −G) x = f which for preceding G = I−M−1A transforms intoM−1Ax = M−1b.
Hence, the definition of preconditioning and splitting of matrix A in combination
with the fixed point iterations are mathematically equivalent.

4.3.1.1 Diagonal scaling (Jacobi)

One of the most obvious choices of M based on an approximation of A is Mii = Aii,

Mij = 0 for i 6= j. In other words, M = D and contains only the main diagonal ele-
ments of A. Multiplying M−1 and A yields scaling of the main diagonal elements of
A to ones only. A major advantage of this approach is the easy calculation ofM−1A,
because M is a diagonal matrix. However, this method is still performing badly for
most ill conditioned systems, though it is a good initial test for benchmarking the
response of different numerical methods to preconditioning.
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4.3.1.2 Gauss-Seidel

Using basic iterative methods like Gauss-Seidel as preconditioner is also common
practice. These methods comply to the speed condition of preconditioners. In other
words, they are cheap to compute in terms of CPU and memory. Use one sweep of
Gauss-Seidel as preconditioner or, to preserve the symmetry of the system, use two
sweeps with opposite directions.

4.3.2 Incomplete factorization

LU decomposition methods generate a lower triangular matrix L and upper triangu-
lar matrix U such that A = LU . The Gaussian elimination of Section (4.1) provides
us with such L and U . However, because of the fill in, complete decomposition
of an arbitrary large, sparse matrix is often expensive in terms of CPU time and
memory size Recall that a good preconditioner must be cheap to apply and still be
a reasonable approximation of matrix A. Hence, it makes sense to use a splitting
A = LU − R where R 6= ∅ and A ≈ LU . The simplest form of this incomplete
decomposition is zero fill-in LU factorization or in abbreviation ILU(0).

4.3.2.1 ILU(0) decomposition

The idea behind ILU(0) decomposition is to find L, U such that Aij = (LU)ij for
Aij 6= 0 and Rij = (LU)ij for Aij = 0. This means that R = A − LU is zero in
the non-zero entries of A. In general there exist many pairs of L and U that satisfy
these requirements. Table (6) holds an algorithm that produces one possible ILU(0)
decomposition for given A. Clearly an advantage of using ILU(0) is that the zero
pattern of A determines the number of extra memory positions needed to perform
the decomposition.

Algorithm 6 ILU(0) algorithm
for i = 2...n do
for k = 1...i− 1 and (i, k) ∈ NZ(A) do
aik = aik

akk

for j = k + 1...n and (i, j) ∈ NZ(A) do
aij = aij − aikakj

4.4 Krylov subspace methods

In preceding sections we have discussed direct solution methods as well as basic
iterative methods. Where direct solution methods break down for ill conditioned
systems, the basic iterative methods show low convergence rates. Hence, an exten-
sion to the existing basic iterative methods will be needed.

We introduce the Krylov subspace Km,
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Km (A,v) = span
{
v, Av, A2v, ..., Am−1v

}
(4.16)

where ∀x ∈ Km (A,v) , x = λ0v + λ1Av + ... + λm−1A
m−1v with λk ∈ R. For

every basic iterative method we have xk+1 = xk + δdk where Mδdk = rk with M
an approximation of matrix A. Substitution leads to xk+1 = xk + M−1rk. Thus
starting with an arbitrary initial vector x0 the following series can be deduced,

x0, r0 = b−Ax0 (4.17)

x1 = x0 +M−1r0 (4.18)

x2 = x1 +M−1r1 (4.19)

= x0 +M−1r0 +M−1r1 (4.20)

= x0 + 2
(
M−1r0

)
−M−1A

(
M−1r0

)
(4.21)

Clearly xk can be written as a polynomial of M−1r0. Moreover, all xi ∈ x0 +
span

{
M−1r0,M

−1A
(
M−1r0

)
, ...,

(
M−1A

)i−1 (
M−1r0

)}
which is in fact a Krylov

subspace, x0 + Km
(
M−1A,M−1r0

)
. We observe that the solution is a linear com-

bination of the start vector x0 and
(
M−1A

)i−1 (
M−1r0

)
. The objective of a Krylov

subspace method is to construct a basis
{
r0, Ar0, ..., A

m−1r0

}
to obtain a solution

for Ax = b. At the base of these techniques lies the Arnoldi’s procedure [9] for
building an orthonormal basis for a Krylov subspace. This Section will discuss
the conjugated gradient method as well as the preconditioned conjugated gradient
method.

4.4.1 Conjugated gradient method

The conjugated gradient (CG) method is the most famous Krylov subspace method.
The CG method is also well known for its performance with respect to sparse, sym-
metric positive definite problems. The idea behind the CG method is to construct a
solution vector xk that minimizes the error ||x− xk||22. An obvious way to minimize
the latter is to start searching in the direction for which ||x− xk||22 is relatively
small. We reformulate this into a proper minimization problem [14]. The first it-
erate x1 can be written as x1 = α0r0. Hence we have the following minimization
problem,

min
α0

||x− x1||22 = (4.22)

min
α0

(x− α0r0)T (x− α0r0) (4.23)

Solve (4.22) analytically to obtain an exact solution for α0,

∂

∂α0

(
xTx− 2α0rT0 x + α2

0r
T
0 r0

)
= 0⇐⇒ α0 =

rT0 x
rT0 r0

(4.24)
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The expression for α0 does not provide us with a solution as the unknown vector
x is what we want to solve for. Hence, we introduce a different norm ||·||A and inner
product (·, ·)A which are defined as,

||x||2A = xTAx (4.25)

(x,y)A = xTAy (4.26)

Rewrite the minimization problem of (4.22) as,

min
α0

||x− x1||2A = (4.27)

min
α0

(x− α0r0)T A (x− α0r0) (4.28)

So,

α0 =
rT0 Ax
rT0 Ar0

=
rT0 b

rT0 Ar0
(4.29)

Now α0 provides us with a (local) minimum. Extend [9] this philosophy to a
general iteration step,

xk+1 = xk + αkpk (4.30)

where pk = rk + βk−1pk−1 is the direction vector. In the first step of the CG
algorithm p0 = r0, thus we start searching in the direction of the initial residual. In
(7) we present the full CG algorithm.

Algorithm 7 Conjugated gradient algorithm
Start with r0 = b−Ax0, p0 = r0

rk 6= 0
for k = 0, 1, ... do
αk = rT

k rk

pT
k Apk

xk+1 = xk + αkpk
rk+1 = rk − αkApk
βk =

rT
k+1rk+1

rT
k rk

pk+1 = rk+1 + βkpk

4.4.2 Preconditioned conjugated gradient method

We have seen in Section (4.3) that for ill-conditioned systems of equations (basic)
iterative methods can be improved by using a preconditioner. The same applies
for the Krylov subspace methods. The reliability of the Krylov methods depends
more on the quality of the preconditioner than on the Krylov subspace accelarators
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used [9]. It is apparent that preconditioned conjugated gradient is likely to perform
better with a preconditioner when solving ill conditioned systems.

The preconditioner for the CG method must meet a number of requirements.
The preconditioner M must be a symmetric positive definite matrix, as the CG
method is designed specificially for symmetric systems and perfoms best for positive
definite matrices. Also, we must find a decent approximation of the system matrix A
and it should be easy to solveMy = s as it will be solved every iteration step. Recall
from Section (4.3) that the preconditioned system is of the form M−1Ax = M−1b
and that in order to preserve symmetry we introduce the M -inner product. When
we replace the Euclidean inner product with the M -inner product and rewrite the
CG algorithm of table (7) we obtain the preconditioned CG method. This algorithm
can be found in (8). Note that just one extra line of computation is added to the
original algorithm, zk+1 = M−1rj+1, hence preconditioned CG is fairly easy to
implement.

Algorithm 8 Preconditioned conjugated gradient algorithm
Start with r0 = b−Ax0, z0 = M−1r0 and p0 = z0

rk 6= 0
for k = 0, 1, ... do
αk = rT

k zk

pT
k Apk

xk+1 = xk + αkpk
rk+1 = rk − αkApk
zk+1 = M−1rk+1

βk =
rT

k+1zk+1

rT
k zk

pk+1 = zk+1 + βkpk

4.5 Multigrid

Multigrid has found its way into many engineering applications because of its agility
and performance. In Chapter 2 we have derived the discretization of the virtual work
equation based on a finite element approach. Where multigrid has become famous
for its performance on solving discretized elliptic equations on structured grids, it
is also suitable for solving complicated problems on unstructured grids.

The main philosophy behind multigrid is to solve a set of equations on a fine
grid by using an approximation obtained on much coarser grids and transfering it
back with some particular iterative proces. This approach works two ways, first by
reducing the number of equations that need to be solved and second by increasing
the grid sizes that can be handled with the same amount of computing resources.

Unfortunately, constructing a working multigrid solver is somewhat more in-
volved than it appears to be. Within the multigrid framework we distinguish four
key components that determine the convergence speed, stability and robustness of
the multigrid method. We have the coarse grid specification, smoother, restric-
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tion operator and prolongation operator. As it is well known how to find the best
operators for the discretized elliptic equations, its not so easy for general, linear
equations on unstructured grids. After the introduction of multigrid basics, the
right components for these type of problems are discussed.

For ease of understanding multigrid equidistant, structured grids are used in the
examples.

4.5.1 Basics multigrid (two-grid)

Consider the following discretization Ah of an arbitrary equation on a grid with
spatial mesh size h, Ωh:

Ahxh = bh (4.31)

If the solution of this equation is approximated by xmh , the error δx
m
h and residual

rmh are as follows:

δxmh : = xh − xmh
rmh : = bh −Ahxmh

This results in the defect equation which is equivalent to the original equation
because xh = δxmh + xmh :

Ahδxmh = rmh

If a basic iterative method, like Jacobi or Gauss-Seidel, is used to solve the
equation and the error is computed, then it appears that the error becomes smooth
after several iteration steps. In that case, the iteration formula can be interpreted as
an error averaging process. This error-smoothing is one of the two basic principles
of the multigrid approach. The other principle is based on the fact that a quantity
that is smooth on a certain grid can also be approximated on a coarser grid. So
if the error of the approximation of the solution has become smooth after several
relaxation sweeps, then this error can be approximated with a suitable procedure
on a coarser grid.

Suppose that the matrix Ah can be approximated by a more easy to invert
matrix Âh then:

Âhδx̂mh = rmh −→ xm+1
h = xmh + δx̂mh

The idea of multigrid is to approximately solve the defect equation on a coarser
grid with spatial mesh size, e.g. H := 2h. Obviously, this will take less time and
work than a conventional direct method on a grid with spatial mesh size h.

AHδx̂mH = rmH (4.32)
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Assume that A−1
H exists. As xmH and δx̂mH are grid functions operating on the

coarser grid, we introduce two (linear) transfer operators:

IHh : G(Ωh) −→ G(ΩH), IhH : G(ΩH) −→ G(Ωh)

These functions are necessary to restrict and prolongate the residuals and ap-
proximations of the error to different coarser and finer grids. This yields,

rmH : = IHh rmh , restrict rmh to ΩH

δx̂mh : = IhHδx̂
m
H , prolongate δê

m
H to Ωh

One choice for IHh can be the injection operator. For instance, the residual on a
fine grid Ωh will be mapped directly to the coarser grid ΩH . No weighting has been
applied. Other operators are based on (full) weighting (IHh ) and linear or bilinear
interpolation for IhH . In section (4.5.2) these operators will be described in more
detail.

Unfortunately coarse grid correction alone is not enough to obtain a good,
smooth approximation of the solution on the fine grid. The operator Ah has different
eigenmodes which correspond to low and high frequency error components in the
solution. In general, where restriction reduces the low frequency error components,
the prolongation of coarse grid corrections reintroduces high frequency error com-
ponents on the fine grid [13] One common approach to reduce the high frequency
errors is applying one or more smoothing sweeps before and after the coarse grid
correction. These sweeps are known as pre- and post-smoothing. When developing
a multigrid method that needs to perform and is robust we need to take a closer
look at the eigenmodes of the operator Ah. The analysis of the spectrum of Ah can
give us an indication on how to choose the smoother as well as the restriction and
prolongation operators.

4.5.1.1 Multigrid cycle

The multigrid idea starts from the observation that in a well converged two-grid
method (section 4.5.1) it is neither useful nor necessary to solve the coarse grid
defect equation (4.32) exactly. Instead, without loss of convergence speed, one
may replace δx̂mH by a suitable approximation. A natural way to obtain such an
approximation is to apply the two-grid idea to (4.32) again, now employing an ever
coarser grid than ΩH .

This is possible, as obviously the coarse grid equation (4.32) is of the same form
as the original equation (4.31). If the convergence factor of the two-grid method is
small enough, it is sufficient to perform only a few, say γ, two-grid iteration steps
to obtain a good enough approximation to the solution of (4.32). This idea can, in
a straightforward manner, be applied recursively, using coarser and coarser grids,
down to some coarsest grid. On this coarsest grid any solution method may be
used (e.g. a direct method or some relaxation-type method if it has sufficiently
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good convergence properties on that coarsest grid). In ideal cases, the coarsest grid
consists of just one grid point.

For a formal description of multigrid methods use a sequence of coarser and
coarser grids Ωhk

, characterized by a sequence of mesh sizes hk:

Ωhl
,Ωhl−1

, ...,Ωh0

The coarsest grid is characterized by the mesh size h0 whereas the index l cor-
responds to the finest grid Ωh : h = hl. For simplicity, replace the index hk by k in
the following. For each Ωk, assume that linear operators

Ak : G(Ωk)→ G(Ωk), Sk : G(Ωk)→ G(Ωk), (4.33)

Ik−1
k : G(Ωk)→ G(Ωk−1), Ikk−1 : G(Ωk−1)→ G(Ωk) (4.34)

are given, where the Ak correspond to Ωk for k = l, ..., 0, and where the original
equation (4.31) reads

Alxl = bl (Ωl) (4.35)

and is the discrete problem to solve. The operators Sk denote the linear it-
eration operator corresponding to given smoothing methods on Ωk. Performing ν
smoothing steps (applied to any discrete problem of the form Akxk = bk with initial
approximation xmk ) resulting in the approximation x̄mk will denoted by

x̄mk = SMOOTHν (xmk , Ak,bk)

Now introduce multigrid cycle, more precisely an (l + 1)-grid cycle, to solve
(4.35) for a fixed l ≥ 1. Using the operators Ak (k = l, l − 1, ..., 0) as well as
Sk, I

k−1
k , Ikk−1 (k = l, l − 1, ..., 1), assuming parameters v1, v2 (the number of pre-

and postsmoothing iterations) and γ to be fixed and starting on the finest grid k = l,
the calculation of a new iterate xm+1

k from given approximation xmk to the solution
xk proceed as presented in (9).

The different number of two-grid iterations steps determine the structure of a
multigrid cycle. Possibilities are the V-cycle (γ = 1), W-cycle (γ = 2) or F-cycle
(γ = γk). The main differences between these approaches are the number of pre-
and post-smoothing steps and the different number of coarser grids used.

4.5.2 Multigrid Components

As described above, the following multigrid components have to be chosen,

• Coarse grid specification

• Smoother
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Algorithm 9 Multigrid cycle xm+1
k = MGCYC(k, γ,xmk , Ak,bk, v1, v2)

1. Presmoothing
- Compute x̄mk by applying v1(≥ 0) smoothing steps to xmk
x̄mk = SMOOTHν1 (xmk , Ak,bk)

2. Coarse grid correction
- Compute the defect r̄mk := bk −Akx̄mk
- Restrict the defect r̄mk−1 := Ik−1

k r̄mk
- Compute an approximate solution δx̄mk−1 of the defect equation on Ωk−1

Ak−1δxmk−1 = r̄mk−1 (∗)
by

If k = 1 then use a direct or fast iterative solver for (∗)
If k > 1 then solve (∗) approximately by performing γ(≥ 1) k-grid cycles using
the zero grid function as a first approximation
δxmk−1 = MGCYCγ

(
k − 1, γ, 0, Ak−1, r̄mk−1, v1, v2

)
- Interpolate the correction δxmk := Ikk−1δx

m
k−1

- Compute the corrected
approximation on Ωk xm,after CGC

k = x̄mk + δxmk

3. Postsmoothing
- Compute xm+1

k by applying v2(≥ 0) smoothing steps to xm,after CGC
k

xm+1
k = SMOOTHν2

(
xm,after CGC
k , Ak,bk

)

• Restriction operator

• Prolongation operator

4.5.2.1 Coarse grid specification

For structured, equidistant grids it is straightforward how to find the coarser grid.
Where the finest grid has mesh size h, we could have H := 2h as a logical choice.
However, the problems that we observe within structural mechanics do not have
structured grids due to the irregular shapes of the materials. In this case we have
several options. The first option is to predetermine a sequence of coarser grids before
any computations.are done. Either construct a coarser grid by taking a subset of
the original grid nodes as the coarse grid nodes, as illustrated in figure (3.5). Or
use a mesh generator to obtain a coarser grid with much less grid nodes than the
fine grid. These methods are easy to implement and allow for an easy choice of the
restriction and prolongation operators. However, these methods can be a problem
when the grid is cracking as the original cohesion will dissapear. Note that for each
load step a new sequence of coarse grids needs to be constructed.
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The second option is to use algebraic multigrid (AMG). In this case we do
not have to define the coarser grid explicitly. AMG does not distinguish between
grid points but operates on subsets of the solution vector x. and corresponding
entries within A. Another advantage of AMG is that both the restriction and the
prolongation operators are part of the AMG algorithm. But also AMG has tailored
(grid) operators and is not a black-box multigrid solver.

4.5.2.2 Smoother

The smoother has two vital tasks. First, it acts as a smoother. The high-frequency
error components on the fine grids are smoothed down. Secondly, locally it computes
a new approximation for the solution xH of AHxH = bH , withH the coarsest spatial
mesh size.

Multigrid methods are motivated by the fact that many iterative methods, es-
pecially if they are applied to elliptic problems, have a smoothing effect on the error
between an exact solution and a numerical approximation. A smooth discrete error
can be well represented on a coarser grid, where its approximation is much cheaper.

There are many iterative solvers that can act as a smoother. When we have
large systems of equations we want the smoother to be cheap in terms of computing
memory and CPU power. Basic iterative methods like Gauss-Seidel and Jacobi are
an obvious choice but often lack efficiency because of the complexity or conditioning
of the system. We need many smoothing sweeps to see some effect on the smoothness
of the error. More sophisticated, krylov subspace, methods like CG and GMRES
are a good choice for they are cheap and can handle a variety of problems. Finding
the right smoother is a trial and error process but with the aid of standard software
like LAPACK and matlab it is not hard to try different methods.

4.5.2.3 Restriction operator

The restriction operator, together with the prolongation operator, is probably the
most important multigrid component. The restriction operator has two tasks. First,
it transfers the error from one grid to a coarser grid. Second, it reduces the low
frequency error components which correspond to the slow converging parts of the
solution. When using structured grids the restriction operator is often a weighting
process. This is illustrated in figure (4.1) where the small black dots represent the
nodes of the fine grids which are being restricted to the encircled nodes on the coarse
grid. The distance between the grid nodes determines the weight of restriction. The
weights at each coarse grid nodes must add up to one.

Similar techniques can also be applied at an unstructured FE grid.

4.5.2.4 Prolongation operator

After computing the exact or approximate solution of the discrete equations on
the coarse grids, the solutions need to be interpolated back to the fine grid and
added to the fine-grid solutions. A natural prolongation operator is the scaled
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Figure 4.1: Restriction of neighbouring fine grid nodes to coarse grid nodes.

transpose of the restriction operator. This means that the same weights are applied
as with the restriction operater. This operator is identical to constant interpolation
in the coordinate direction of the component and bilinear interpolation in the other
coordinate directions.

4.6 Domain decomposition

In preceding sections several techniques for handling large, sparse matrices that
result from a finite difference or finite element discretization have been discussed.
Also, it became clear that one of the bottlenecks of traditional direct solution meth-
ods and (basic) iterative methods lies within the hardware needed for computations
instead of the mathematics behind it. As hardware is improving over the recent
years memory size still dictates the maximum problem size that can be handled.
Also due to the ’memory wall ’ and physical limitations, there is not enough band-
with between the CPU(s) and memory to process the huge amounts of data needed
for heavy computations. Unless groundbraking new technology like MRAM (micro
RAM) - which has significant higher read/write capabilities, bandwith and storage
size - becomes available, clusters of computing units shall be our method of choice.
Hence, when handling large systems of equations on parallel machines mathemati-
cal methods that embed parallelism into its algorithms have to be developed. With
the availability of parallel software packages like SCALAPACK the parallelization
of linear algebra operations has become less difficult. So Krylov subspace methods
like the conjugated gradient algorithm can be parallelized with relative ease but still
need (parallel) preconditioners for good convergence rates.

More involved is the parallelization of direct solution methods, but as we have
seen in Section (3.2) there are excellent parallel software packages available which
can do the job.

In previous section we have also introduced the multigrid method, which is a
very advanced tool to reduce the number of degrees of freedom in our system and
still keep a decent level of accuracy. However, we have also seen that developing a
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multigrid method is very involved and we have to overcome many difficulties like
proper restriction and prolongation operators, coarse grid selection, good smoothers
and a smart choice for the multigrid cycle. Also the finite element discretization
can produce ’difficult ’ grids as (standard) multigrid operators are very sensitive to
local grid refinements and grid stretching. With respect to the parallelisation of
multigrid, the scattering of elements or slicing of the domain for assignment to the
computing nodes is not a trivial operation.

The complexity of multigrid and the scaling issues with Krylov subspace al-
gorithms leads us to domain decomposition methods. The domain decomposition
methods combine techniques for solving PDE’s, standard linear algebra, mathe-
matical analysis and techniques from graph theory [9]. The idea behind domain
decomposition is very straightforward. In the case of Section (2) we have a domain
that consists of a number of elements that make up the mesh. Instead of using the
full system matrix A of equation (4.1) the computations are only done on subdo-
mains, i.e. submatrices of A. Each subdomains contains a set of elements and the
unification of these subdomains (sets) returns the full domain (matrix). Clearly,
mapping these subdomains to the computing nodes available is a trivial operation.
And of course many techniques can be found that will ensure a proper workload for
given subdomains and computing resources available. Domain decompostion is par-
allel by nature and is therefore an ideal candidate for preconditioning of for instance
Krylov subpace algorithms.

This section will discuss the element-by-element domain decomposition where
direction solution techniques as well as iterative methods will be taken into account.

4.6.1 Block-Gaussian elimination

When introducing the domain decomposition method, visualization can clarify the
discussion of the different mathematical choices. Hence, the same example will be
referred to in upcoming sections. Consider the domain of figure (4.2). In this figure
rectangular domain Ω is given which consists of two subdomains, Ω1 and Ω2. In
this case Ω = Ωi where Ω1 ∩ Ω2 6= {j13, j14, j15} with jk denotes the node k and in
general Ω = Ωi with s subdomains. Here domain Ω holds 15 nodes and 8 elements.
Each subdomain Ωi contains 9 nodes, hence they have an overlap of 3 nodes on
border Γ12.

Figure 4.2: Domain decomposition rectangular domain Ω.
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When utilizing the standard finite element approach we would have a weak
formulation (Section (2.1)) of certain unknown values x on the domain Ω. Each
element contributes to the element stifness matrix A and we would observe the
following system of equations,

Ax = f (4.36)

Instead of using the whole domain Ω we solve on the subdomains Ω1 and Ω2 or
in general Ωi, ∀i ∈ {1, 2, ..., s}. Rewrite equation (4.36) as,

B1 E1

B2 E2

. . .
...

Bs Es
F1 F2 · · · Fs C




x1

x2
...

xs
y

 =


f1

f2
...
fs
g

 (4.37)

where xi is the subvector of unknowns that are interior to subdomain Ωi and
the interface nodes are placed at the end of matrix A. For convenience simplify this
system as,

A

(
x
y

)
=
(

f
g

)
with A =

(
B E

F C

)
. (4.38)

Thus E represents the subdomain to interface coupling seen from the subdomains
and F represents the interface to subdomain coupling seen from the interface nodes.
Because the systems are linear independent solve (6.6) with different steps. First,

x = B−1 (f − Ey) (4.39)

then,

Fx + Cy = g

FB−1 (f − Ey) + Cy = g(
C − FB−1E

)
y = g − FB−1f

Sy = g′. (4.40)

Obviously if we solve for y, by means of back substitution we obtain a solution
for x. In this way we only need to solve for the nodes on the interfaces to obtain
a solution for the nodes within the inner of the subdomains. We call the matrix S
the Schur complement of matrix A. This approach leads to the Block-Gaussian
Elimination algorithm of table (10). Here E′ = B−1E and f ′ = B−1f . In practice
solve BE′ = E and Bf ′ = f by exploiting the structure of B, therefore solve for
each subdomain Ωi, BiE

′
i = Ei and Bif ′i = fi. However, there are two ways in

which system Sy = g′ can be solved. Either by a direct solution method or with
an iterative method. When using a direct method S−1 will have to be computed
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explicitly. For Krylov subspace methods it is only necessary to perform matrix-
vector multiplications, i.e. Sv = w. Such operations can be evaluated in three
steps, first compute v′ = Ev, then solve Bz = v′ and finally compute w = Cv −
Fz. Again, a linear system that involves matrix B translates into s-independent
linear systems. It is also possible to apply a preconditioner to matrix S, in [9]
several options for preconditioner M−1 can be found. One can also proof that
a Krylov subspace method applied to the preconditioned reduced linear system
M−1
s Sy = M−1

s g′ yields exact the same result as the Krylov subspace method
applied to the full preconditioned systemM−1

A A
(

x y
)T

= M−1
A

(
f g

)T where
both preconditioners are based on incomplete LU decomposition.

Algorithm 10 Block-Gaussian elimination
Solve BE′ = E and Bf ′ = f
Compute g′ = g − F f ′

Compute S = C − FE′
Solve Sy = g′

Compute x = f ′ − E′y

4.6.2 Multiplicative Schwarz

With the Block-Gaussian elimination algorithm of previous section we have intro-
duced the Schur complement and proposed several methods of solving the resulting
reduced system of equations. Another way of domain decomposition is to start from
iterating over the subdomains in the first place. Recall the rectangular domain of
figure (4.2). We could solve the weak formulation of the finite element discretization
on each subdomain seperately and use the most recent boundary values wherever
possible. For a sequential algorithm this will implicate that we iterate over the sub-
domains one-by-one. When a solution for a subdomain is obtained we update the
boundary values and proceed to the next (neighboring) subdomain. This method
translates into the multiplicative Schwarz sweep. Before we look into the algorithm
we have to introduce some (sub) domain operators first. The operators show a strong
resemblance with the multigrid operators of Section (4.5.2). Recall the reordering
of the original system resulting from an arbitrary finite element discretization that
yielded equation (6.6). We now define restriction operator Ri which restricts global
vector x to subdomain Ωi. Restriction operator Ri is a ni × n matrix of zeros and
ones. In algorithm (4.1) we present the operator R1 for the subdomain Ω1 of the
example of figure (4.2). In this example a vector holding all mesh nodes is mapped
to a local vector holding only those nodes that lie in Ω1. The inverse operation is the
prolongation of local vector xi of subdomain Ωi to the domain Ω, hence we intro-
duce the prolongation operator RTi which is indeed the transpose of the restriction
operator Ri.

The domain operators Ri and RTi can work on the matrix A as well yielding a
Galerkin type operator Ai of dimension ni × ni,
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

1 ∅ 0

∅ . . . ∅ ∅ ∅
0 ∅ 1

1 0 0
∅ ∅ 0 1 0

0 0 1





x1
...
x6

x7
...
x12

x13

x14

x15


=



x1
...
x6

x13

x14

x15



Table 4.1: Restriction operator

Ai = RiAR
T
i . (4.41)

Now solve locally with Ai and prolongate the local solution to the whole domain
and introduce the multiplicative Schwarz sweep in (11). In this algorithm xm+1

represents the new global solution vector xm after solving for each subdomain i.

Algorithm 11 Multiplicative Schwarz sweep
for i = 1, ..., s do

xm+1 = xm +RTi A
−1
i Ri (f −Ax)

4.6.2.1 Multiplicative Schwarz preconditioning

Multiplicative Schwarz can also be utilized as a preconditioner for Krylov subspace
methods. We observe that the error at each subiteration i equals δxi = x− xi and
the corresponding residual equals ri = b−Axi where x is the exact solution. Hence,
the defect equation Aδxi = ri yields,

δxi+1 = δxi −RTi A−1
i RiAδxi. (4.42)

Applying one multiplicative Schwarz sweep, start with given x0 and Pi = RTi A
−1
i RiA

gives δxi = (I − Pi) δxi−1. After s subiterations we obtain,

δxs = (I − Ps) (I − Ps−1) · · · (I − P1) δx0. (4.43)

For reasons of convenience let Qs = (I − Ps) (I − Ps−1) · · · (I − P1). Write δxs =
Qsδx0 which is equivalent to xs − x = Qs

(
x0 − x

)
and can be recasted into,

xs = Qsx0 + (I −Qs) x. (4.44)

Moreover, observe that one multiplicative Schwarz sweep is in fact a global fixed
point iteration, xm+1 = Gxm+f . It is apparent that the expression of equation 4.44
can be plugged in and G = Qs and f = (I −Qs) x are obtained. Recall that xm+1 =
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Gxm + f is equal to solving the preconditioned system M−1Ax = M−1b with
G = I−M−1A and f = M−1b hence,M−1A = I−Qs andM−1b = (I −Qs)A−1b.

Introduce two algorithms in 12 and 13 for determingM−1Av andM−1v. There-
fore use multiplicative Schwarz as preconditioner within Krylov subspace methods
that solve M−1Ax = M−1b. To preserve symmetry, apply two sweeps over the
subdomains, first i = 1, ..., s and then i = s, s− 1, ..., 1.

Algorithm 12 Multiplicative Schwarz preconditioner
Input: v, Output: z = M−1v.
z1 = RT1 A

−1
1 R1v

for i = 2, ..., s do
zi = zi−1 +RTi A

−1
i Ri (v −Azi−1)

Algorithm 13 Multiplicative Schwarz preconditioner operator
Input: v, Output: z = M−1Av.
z1 = RT1 A

−1
1 R1Av

for i = 2, ..., s do
zi = zi−1 +RTi A

−1
i RiA (v − zi−1)

4.6.3 Additive Schwarz

The additive Schwarz procedure is similar to a block-Jacobi iteration and consists
of updating all the new (block) components from the same residual. It differs from
multiplicative Schwarz because the components in each subdomain are not updated
until the whole sweep over all subdomains has finished. In (14) we introduce the
Additive Schwarz algorithm. In this algorithm xm+1 represents the new global
solution vector xm after solving for all subdomains i.

Algorithm 14 Additive Schwarz sweep
for i = 1, ..., s do
δi = RTi A

−1
i Ri (b−Ax)

xm+1 = xm +
∑s

i=1 δi

Analogue to the multiplicative Schwarz define an additive Schwarz precondi-
tioner. In (15) and (16) we introduce the two algorithms for determing M−1Av and
M−1v.

4.7 Deflation

In preceding sections we have discussed several methods to reduce computation
times and memory usage. All these methods use a mapping of the original grid to
a subset of elements. With this subset of elements we try to find a solution for the
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Algorithm 15 Additive Schwarz preconditioner
Input: v, Output: z = M−1v.
for i = 1, ..., s do

zi = RTi A
−1
i Riv

z =
∑s

i=1 zi

Algorithm 16 Additive Schwarz preconditioner operator
Input: v Output: z = M−1Av.
for i = 1, ..., s do

zi = RTi A
−1
i RiAv

z =
∑s

i=1 zi

whole grid. The major benefit of working with smaller subsets is the reduction of the
problem sizes. With smaller grids the resulting matrices become smaller and hence
in general computation times and memory usage will decrease. Another advantage
of smaller systems is that bigger problems can be handled with the same amount of
CPU power and memory. Hence, methods like multigrid and domain decomposition
are utilized when developing a solver for large, sparse systems of equations.

Despite the reduction of number of equations we do have to take into account
the robustness of these numerical methods. For the ill-conditioned systems that we
observe in structural mechanics two-level multigrid and domain decomposition are
not sufficient. Unfavorable eigenvalues are causing these methods to break down
or could slow down the iteration process. We have seen that the matrices resulting
from the FE discretization will be ill-conditioned in the majority of cases that are
being considered, especially when working with asphaltic materials.Therefore it is
very important that the solver that we develop is numerically robust.

This section will introduce the deflation method. This method has been de-
veloped to effectively treat (extremly) unfavorable eigenvalues that delay the con-
vergence of iterative methods [12]. By treating or filtering out these eigenvalues
one hopes to achieve a better conditioned system and hence better convergence
rates when using iterative solution methods. The deflation method is often used
in combination with preconditioned Krylov subspace methods like CG which we
have discussed in Section (4.4). Therefore, a feasible combination could be a Krylov
subspace method applied to a deflated, preconditioned system where we could use
domain decomposition or multigrid as preconditioner. This would unify the scala-
bility properties of the multigrid and domain decomposition methods with the ro-
bustness of the deflation method. In later section we will explore these combinations
of solvers.

4.7.1 Deflation definitions

Analogue to preceding chapters we want to solve a linear system of equations that
may result from a FE discretization.
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Ax = b (4.45)

The SPSD matrix A has dimensions n×n and vectors x,b have dimension n. We
assume that the matrix A has d ≥ 0 zero-eigenvalues. We introduce the following
deflation operators.

Z ∈ Rn×k, k < n− d, deflation subspace matrix

P = I −AQ ∈ Rn×n, deflation matrix

Q = ZE−1ZT ∈ Rn×n, correction matrix

E = ZTAZ ∈ Rk×k, inversion Galerkin matrix or coarse matrix

The deflation subspace matrix Z ∈ Rn×k is the key matrix within the deflation
theory. The Z matrix has k columns which are the deflation vectors. The general
idea behind deflation is choosing the eigenvectors corresponding to the unfavorable
eigenvalues as deflation vectors. From the definition of the deflation operators it
is clear that this will result into a mapping of matrix A onto a smaller matrix
E that is based on the eigenvectors of the unfavorable spectrum. Return to the
space of the original matrix A with the correction matrix Q. The choice of the
deflation vectors determines the effectiveness of the deflation method. Hence, in
the next section possible choices of Z are discussed. In general, choose Z such that
N (A)  R (Z) where N (A) and R (Z) represent the null space of A and column
space of Z respectively. This implies that E is non-singular.

In [12] many properties of the deflation operators have been derived and proven.
The relevant properties of deflation:

1. ET = E

2. QT = Q = QAQ

3. QAZ = Z

4. PAQ = 0n,n

5. P 2 = P

6. AP T = PA

7.
(
I − P T

)
x = Qb

8. PAZ = 0n,k

9. P TZ = 0n,k

We observe that E,Q are symmetric and altough x is unknown we can still
compute

(
I − P T

)
x. Moreover, PA has k+ d zero-eigenvalues and P has only zero

and unit eigenvalues and therefore postive semi definite and hence PA is symmetric
positive semi definite.
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4.7.2 Deflated CG method

As the CG method is one of the most commonly used iterative methods for solving
PSD systems we introduce the deflated CG method. We should emphasize however
that the deflation method can be applied to any linear system and the same theory
can therefore be extended to any iterative solver.

Solve x of equation 4.45 by using a splitting,

x =
(
I − P T

)
x + P Tx (4.46)

The term
(
I − P T

)
x can be substituted by the expression Qb according to

property 7 of preceding Section. Rewrite equation 4.46 as follows,

x = Qb + P Tx

Ax = AQb +AP Tx

b = AQb + PAx

Pb = PAx (4.47)

We call the solution x of equation 4.47 the deflated solution as it could contain
components of the null space of PA. Hence, it does not represent the real solution
of equation 4.45. Compute the real solution with x = Qb + P T x̂, where x̂ is the
deflated solution of equation 4.47.

In (17) we introduce the deflated CG algorithm for solving equation 4.45.

Algorithm 17 Deflated CG solving Ax = b
Select x0. Compute r0 = (b−Ax0), set r̂0 = Pr0 and p0 = r̂0

for j = 0, 1, ... until convergence do
ŵj = PApj
αj = (r̂j ,̂rj)

(ŵj ,pj)

x̂j+1 = x̂j + αjpj
r̂j+1 = r̂j − αjŵj

βj = (r̂j+1 ,̂rj+1)
(r̂j ,̂rj)

pj+1 = r̂j+1 + βjpj
x = Qb + P T x̂j+1

4.7.3 Deflated preconditioned CG method

Analogue to the deflated non-preconditioned CG method introduce the deflated
preconditioned CG method. We introduce a SPD matrix M and rewrite equation
4.47 as,

M−1PAx̂ = M−1Pb (4.48)
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In (18) we introduce the deflated preconditioned CG method for solving equa-
tion 4.48. Note that a deflation technique applied to a preconditioned system is
equivalent to preconditioning of a deflated system (equation 4.48).

Algorithm 18 Deflated preconditioned CG solving Ax = b
Select x0. Compute r0 = (b−Ax0), set r̂0 = Pr0 and p0 = r̂0

Solve My0 = r̂0 and set p0 = y0

for j = 0, 1, ... until convergence do
ŵj = PApj
αj = (r̂j ,̂rj)

(ŵj ,pj)

x̂j+1 = x̂j + αjpj
r̂j+1 = r̂j − αjŵj

Solve Myj+1 = r̂j+1

βj = (r̂j+1,yj+1)
(r̂j ,yj)

pj+1 = yj+1 + βjpj
x = Qb + P T x̂j+1

4.7.4 Deflation vectors

Choosing the right deflation vectors is difficult. We want the deflation subspace
matrix Z to contain the eigenvectors that belong to the smallest eigenvalues as they
correspond to the slow converging parts of the solution vector. When taken out
of the system only the faster converging components of the solution vector remain
and faster convergence speeds are expected. However, in most realistic applications
the calculation of the eigenvectors is either not feasible or very time consuming.
Another difficulty is that dense eigenvectors result in a full, coarse matrix E which
becomes difficult to invert. Obviously, having real eigenvectors and corresponding
eigenvalues as deflation vectors is not common practice. In summary, the deflation
method should satisfy the next requirements in the ideal case [12],

• the deflation-subspace matrix Z, is sparse

• the deflation vectors approximate the eigenvectors corresponding to the unfa-
vorable eigenvalues

• the cost of constructing deflation vectors is relatively low

• the method has favorable parallel properties

• the approach can easily be implemented in an existing PCG code

The choice of Z strongly depends on the application, therefore there is no optimal
choice that leads to the best results for all applications. The deflation subspace
matrix will have to be tailored to the specific situation. In [12] a number of choices
for deflation vectors are being considered,



4.7. Deflation 63

• Approximated eigenvector deflation

• Recycling deflation

• Subdomain deflation

• Multigrid and multilevel deflation vectors

Each method will not be discussed separately as it is to premature for this phase
of the research. However, subdomain deflation appears to be the most feasible ap-
proach. The domain is divided into a number of subdomains and each subdomain
corresponds to one or more deflation vectors. This approach shows a strong re-
semblance with the domain decomposition methods of Section 4.6. The deflation
subspace matrix Z is sparse and consists of only ones and zeros. The number of
deflation vectors is relatively small (k << n) and they appear tk approximate the
eigenspace associated with the unfavorable eigenvalues. The deflation vectors cor-
respond to the subdomain and are therefore easy to identify. Moreover, subdomain
deflation is parallelizable as the deflation vectors are disjoint.

4.7.5 Example of solving deflated virtual work equation

In order to demonstrate the potential power of deflation methods DCG and DPCG
were applied to a very simple strain-stress test. Consider the two cubes of figure 4.4.
The two cubes represent the same body but in different stages of a compression test.
The left cube is undeformed and represents a body containing two materials. The
blue material on the outside is rubber like and has only elastic material properties.
The yellow material in the centre and core of the body is incompressible and one
could think of steel or stone. A pressure is being applied at the top of the cube and
is forcing the cube downwards within several load steps (static mechanics).

The right cube represents the body after the last load step. Clearly the elastic
material has been pressed down and the incompressible material is still in place,
undeformed.

Figure 4.3: Cube in rest containing two materials.

The CAPA-3D software and Matlab are used to calculate the internal and ex-
ternal forces acting on the body during this experiment. The large differences in
elasticity between the two materials yield a stiffness matrix with a very high con-
dition number. In this experiment we used CG in combination with two different



64 Chapter 4. Basics numerical computations and analysis

Figure 4.4: Deformed cube after compression test, containing two materials.

preconditioners - incomplete Cholesky and diagonal scaling - and deflation tech-
niques. With Matlab we calculated the eigenvalues of the stiffnessmatrix and se-
lected the eigenvectors corresponding to the two smallest eigenvalues as deflation
vectors. Consider figure 4.5. The CG method with and without diagonal scaling is
performing poorly and does not show any progress even after 200 iterations. When
using the incomplete Cholesky we observe an increase in speed and the method
converges in about 110 iterations. However, when deflation is being applied to CG
with incomplete Cholesky we observe another increase in speed and the method
converges in about 80 iterations. When using more eigenvectors as deflation vectors
even better converge rates can be achieved but the deflation matrices become harder
to compute.
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Figure 4.5: Compression test, two materials with deflated CG solver.





Chapter 5

Parallel direct solver

In preceding chapters it has become clear that most numerical methods will have
to solve a (large) linear system somewhere in the algorithm. An obvious choice
would be a parallel direct solver. Parallel direct solvers can handle large systems
and divide the workload over a number of computing nodes. Moreover, adding more
computing nodes will decrease computation times. Several open source implementa-
tions of parallel direct solvers are available, for example SuperLU [6] and MUMPS
[4]. Both implementations are based on LU decomposition of the linear system.
This research will focus on MUMPS. Next section will give a brief introduction on
parallel computing,

5.1 Parallel computing

Parallel computing can be extremely difficult but also reasonably easy, it depends
highly on the choices of the supporting packages of the parallel application. The
open source community has developed many parallel software packages that can
be invoked and glued together with a minimal knowledge of parallel programming.
However, for hand tailored solutions of the parallelization of specific algorithms,
some knowledge about parallel programming is mandatory. This section discusses
the MPI language, which stands for Message Passage Interface and it is a protocol
for communication between parallel threads. Also, an overview is given of several
parallel open source packages and some tips and tricks on the architecture of a
parallel cluster.

MPI Parallel programs can be observed as a collection of threads that run and
finish independently but interact with each other during run time. In theory, when
assigning each thread to one processing unit the parallel program should run faster
than its serial counterpart. However, when threads are not independent and will
have to wait for another thread to finish, parallel speed up will decrease. The
Message Passing Interface is a platform independent protocol for communication
between different threads of a parallel application. There are many MPI implemen-
tations but Open MPI [] and MPICH [] are used most.

Writing a parallel program with MPI is not complicated. Most MPI imple-
mentations are compatible with programming languages such as Fortran and the
C-language and the compiler of choice can be used. A serial application can be
parallelized by adding just a few extra commands. In the next example the Fortran
programming language is used.
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Consider the following simple ’Hello World’ application. The output to the
screen is the sentence ’Hello world in serial’.

program helloworld

write(*,*)’Hello world in serial’

end program
This program can be parallelized by adding the MPI commands. In the first

line of the code the MPI header file, ’mpif.h’ is included. In this file are references
to MPI related functions are collected. To integers are added to store the rank
number of the parallel thread and the error message. The first call is to ’mpi_init’.
It initializes the parallel program and it will create the number of threads indicated
before the start of the program. The second call is to ’mpi_comm_rank’, which is
the communicator between the threads. The rank of the thread is stored in ’myrank’.
The rank number is printed to the screen and the application is shutdown by killing
all parallel threads with the last call ’mpi_finalize’.

program helloparworld

include ’mpif.h’

integer myrank, ierr

call mpi init(ierr)

call mpi comm rank(mpi comm world, myrank, ierr)
10

write(*,*)’Hello parallel world, from node ’, myrank

call mpi finalize(ierr)

end program

5.2 MUMPS

MUMPS is a public domain package and developed during the Esprit IV European
project PARASOL (1996-1999) by CERFACS, ENSEEIHT-IRIT and RAL [4]. The
MUMPS package computes a LU decomposition of any given matrix. An interface is
available for C and Fortran software. The MUMPS software is parallel and should
therefore be executed on parallel machines only. The MUMPS software offers an
interface to C and Fortran software. Figure 6.3 displays a schematic overview of an
external program invoking a MUMPS instance. There is no need for complicated
MPI programming to embed MUMPS into existing software.
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Figure 5.1: Invoking MUMPS from external program.

5.3 Test results

First test results show promising results for both the parallel direct solver and the
preconditioned iterative solver. Two solvers have been implemented into the CAPA-
3D software. The existing direct solver in algorithm 19 has been replaced by the
parallel direct solver MUMPS [4] and Deflated preconditioned CG. The following
experiments have been done on a cluster with four workstations carrying one In-
tel Xeon E5450 3.0 GHz Quad-core Duo and 16Gb of 800 MHz DDR2 memory
each, yielding 32 processors and 64Gb of memory in total. The workstations were
connected by an 1-Gigabyte ethernet network.

Figure 6.4 shows the test results for parallel LU decomposition of three dif-
ferent matrices. Five different configurations are considered with 2, 4, 8, 16 and
32 processors respectively. Each workstation only hosts 8 processors, hence the
gray dotted vertical line indicates the transition to a cluster of workstations. Two
and four workstations when requesting 16 processors and 32 processors respectively.
Three matrices have been considered, each matrix with a different dimension and
corresponding to a different material test. The bold lines represent the actual test
results, the remaining black lines represent the theoretical linear speed up. An ideal
parallel algorithm, with no communication overhead, should run twice as fast with
twice as many processors involved. Apparently, this is not feasible when the com-
munication between workstations, CPUs and memory is taken into account. The
results are promising. For every test case reasonable speed up is observed. When
the dimension of the matrices increases, MUMPS starts to perform better because
initial communication overhead becomes negligible compared to the computation
process. Only when more workstations become involved the speed up disappears
because of network delays and latency. An infiniband network connection should
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Figure 5.2: Parallel LU decomposition for different matrix dimensions.

overcome these problems.



Chapter 6

Summary

Background structural mechanics

Within the field of structural mechanics, pavement engineering plays an important
role in understanding and modeling the effects on heavy duty materials like asphalt
and concrete when exposed to different kind of forces. Not only the appliance of
force but also weather conditions and aging have to be taken into account. It is
of crucial importance that the industry is able to predict how materials react to
various circumstances under different time spans. Understanding these effects may
result in more careful engineering of these materials which may replace the current
trial and error design process. Moreover CAD methods will be more time and -cost
efficient compared to laboratory tests.

The materials that are used in pavement engineering are one of the most difficult
to model. Important material properties such as hyper-elasticity, viscosity and plas-
ticity are non-linear phenomena and therefore hard to capture in equations. Decent
algorithms are available but still under development. Especially the effects of water
are not well understood and bring in an extra difficulties.

In real life applications, materials like asphalt and concrete are subjected to
forces induced by humans, vehicles or planes that make use of the pavement. There
are many cases that are interesting to investigate. Four phases of movement can be
observed: acceleration, braking, constant speed and in rest. Each of these phases are
important for explaining the deterioration of pavement. Obviously force has a direct
relation with mass. Heavy vehicles like trucks or planes apply an enormous amount
of pressure into the downward direction because of their sheer weight. Weight
combined with speed can have massive impact on rubber like materials such as
asphalt. Due to the effects of plasticity, roads nearby traffic lights are permanently
deformed because of the braking effect and vehicles in rest. The same reason applies
to vehicles in rest on parking lots. Permanent deformation of the pavement is
observed also. These effects are magnified when trucks or planes are involved.

Common tests for examining the effect of pressure on pavement are compression
and compaction tests. Columns of material are subjected to different loads and
loading times. These experiments are vital for gathering data that can be used for
benchmarking new material algorithms. The response of materials to distributed
loads is captured in a stress-strain curve and is known as the constitutive relation.
Different algorithms deliver different curves. A good fitting of the test data can
justify the material response algorithms, Section1.4.
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Computational framework for pavement engineering

A framework for calculating material response, stresses and strains has been pro-
vided by dr. A. Scarpas et al [10],[8]. At the heart of this framework lies the virtual
work equation that gives a relation between internal and external stresses,

δW (X) = δWint (X)− δWext (X) = 0 (6.1)

where δWint (X) and δWext (X) correspond to the energy induced by the internal
and external forces respectively, Section 1.3.

The non-linear material response is an internal force and therefore equation 6.1
has to be linearized in order to solve it. Hence, a first order taylor expansion around
configuration X0 yields,

δW (X0) +D∆u [δW (X0)] = 0 (6.2)

After substitution of expressions for the internal and external energies and
rewriting the following expression for the virtual work equation is obtained,

∫
V

(∇0∆u · S) : ∇0δvdV +
∫
V

(
∇0∆u : F·C · FT

)
: ∇0δvdV =

δv · fext −
∫
V

P : ∇0δvdV (6.3)

where F is the deformation matrix, i.e. the deformation of the material compared
to two subsequent configurations, P, S and C are functions of F and ∆u represents
the displacements.

Discretization

The linearized virtual work equation is discretized by the finite element method,
Section 2.1. A mesh is created to represent the body of the material, the mesh
elements are either tetrahedrals or cubes. The resulting grids will be unstructured
in most real life applications. Sophisticated mesh generators like Cubit [3], TetGen
[5] or Amira [7] produce meshes that are congruent with the structure of the material.
For example, a material like asphalt contains three basic ingredients, stones, bitumen
and air. To obtain realistic simulations of the material each ingredient should be
represented as accurate as possible. The mesh should follow the borders between
the ingredients. In figure 6.1 a sample of asphalt has a 2D grid overlay. The stones
(gray) and the bitumen (black) are identified easily. The red, triangular grids cells
correspond to the stones and the blue grid cells correspond to the bitumen. Finer
grids deliver more accurate and realistic simulations.

The finite element discretization uses second order shape functions, hence the
unknowns lie on the corners and in the centre of the vertices of the elements. The
linearized virtual work equation 6.3 has to be solved for the unknown displacement
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Figure 6.1: Asphaltic core with 2D grid overlay.

field ∆u. The displacement field has three dimensions, therefore the unknowns on
the grid nodes have three components for the x, y and z direction respectively.

The discretization of the linearized virtual work equation results into a short
hand notation of the static system that has to be solved,

K∆u = ∆f (6.4)

where K is the stiffness matrix, u the unknown incremental displacement field
and ∆f the difference between the internal and external stresses.

Most simulations use either a predescribed displacement field for some elements
of the mesh or separate load steps. The algorithm 19 to solve equation 6.4 is invariant
under these two situations.

Algorithm 19 Balancing of forces
for t = 0...tend do
Compute external load f text
for i = 0 until convergence do
Assemble stiffnessmatrix Kt,i

if i = 0 then
f0
int = 0 and ∆f0 = f0

ext − f0
int

Solve system Kt,i∆ui = ∆f i

Update displacements, ui+1 = ui + ∆ui

Compute internal force, f i+1
int and ∆f i+1 = f i+1

ext − f i+1
int

Test for convergence, ∆f i+1

∆f0 < ε

Algorithm 19 has two important computation steps.
First step is the computation of the increment of the displacement field. This

is equal to solving the linear system of equation 6.4. The stiffness matrix K is
symmetric positive definite for all simulations, Section (). This is an important
property as it is crucial for obtaining good convergence rates for many numerical
solution methods. For small meshes the dimension of K allows for direct solution



74 Chapter 6. Summary

methods if the matrix is non-singular. However, with the refinement of the meshes
the dimension and complexity of the linear system increases significantly and other
numerical solution methods need to be found.

Second step is the internal stress update. The non-linear equations of the ma-
terial response algorithms are solved with the Newton-Raphson method and can
be evaluated for each element separately, Section 2.2. With the refinement of the
meshes and increasing complexity of the material response algorithms, a more effi-
cient internal stress update needs to be devised.

Increasing the dimension of K induces great difficulties for direct solvers because
computer memory and CPU power are limited. The condition number is defined as
the quotient between the largest and smallest eigenvalues of a matrix. Large con-
ditions numbers yield ill-conditioned systems which are therefore difficult to solve.
Not only grid refinement but also the non-linear material properties affect the solv-
ability of system 6.4. When plasticity and viscosity builds up or hyper-elasticity
applies, stiffness of the materials changes and stiffness matrix K will have to be
reassembled. Large differences in stiffness between material ingredients, e.g. stone
and bitumen, will result in large condition numbers and thus in slow converging
solvers.

Numerical methods for structural mechanics

The research will focus on the development of a fast, robust and scalable solver
that can deal with a variety of constitutive material models (elasticity, plasticity,
viscosity and cracking) and mesh sizes. The solver should be parallel to ensure the
possibility of upscaling of the experiments, i.e. meshes, as single core computers lack
memory and CPU power. Moreover, parallelization of the solver will be extended
to parallelization of the internal stress updates as these will affect the performance
of algorithm 19 significantly.

Finding a suitable numerical method for solving an arbitrary linear system Ax =
b can be difficult if the linear system is ill-conditioned. Neither direct solution
methods nor iterative solvers will perform, if a solution can be computed at all.
Preconditioning of the system can reduce the condition number of A and hence
improve convergence rates significantly. Multiply matrix A with the inverse of a
matrix M to obtain the better conditioned system,

M−1Ax = M−1b. (6.5)

MatrixM is the left preconditioner and is preferably an approximation of matrix
A, Section 4.3. However, mostly matrixM is not known explicitly but the operation
M−1 is replaced by solving v from systemMv = w whereM can be any linear solver.

The choice of numerical solvers can be overwhelming and there is still no stan-
dard recipe for solving an arbitrary set of equations. Many well known engineering
problems like fluid dynamics, the Helmholtz and the Maxwell equations have their
own, tailored solution methods. Multigrid, conjugate gradient (CG), deflation and
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domain decomposition dominate the spectrum of modern solvers. It is common
practice to combine these methods to take full advantage of their single proper-
ties. Figure 6.2 gives a schematic overview of combinations of different numerical
methods for solving system 6.4.

Figure 6.2: Schematic overview of the combination of different linear solvers into
one numerical method.

The CG, Krylov subspace method is in the upper iteration loop and has its
preconditioner in the lower iteration loop. Possible choices of preconditioners are
either multigrid, domain decomposition or deflation. Because many preconditioners
still involve direct solution of linear systems the parallel direct solver is added to
the figure.The choice of the CG method is straightforward when the properties of
the stiffness matrix of equation 6.4 are taken into account. The CG method is well
known for its excellent performance on semi definite symmetric systems, Section 4.4.
Moreover, preconditioned CG method only yields one extra computation step where
the system Mv = w needs to be solved. A sensible choice of the preconditioner will
result in a stable numerical method.

Multigrid, domain decomposition and deflation can be preconditioners for CG.
All three methods share the same principle: projection of the linear system onto
smaller subspace where the reduced system will be solved and back propagation of
the reduced solution to obtain a solution for the original system. Two requirements
are satisfied, robustness and the ability of handling very large systems of equations,
at the cost of speed per iteration. Obviously, bringing in extra linear solvers will
increase the complexity of the solver and the computation times. However, when
tailored in the right way, the reduction of the number of iterations due to stability
will increase the overall speed of the solver.

Multigrid Multigrid is known for its performance with respect to solving elliptic
differential equations on structured, equidistant grids, Section 4.5. The amount of
work is ofO (N) withN the number of unknowns, linear convergence is observed and
grid operators are easily defined. The main advantage of multigrid is the reduction of
the number of unknowns that has to be solved. The linear system is solved on a much



76 Chapter 6. Summary

coarser grid than the original domain. Grid operators interpolate the solution back
to the finer grid where solution errors are smoothed out. Unfortunately, convergence
rates similar to solving elliptic differential equations are not observed when solving
other linear systems. Moreover, defining grid operators on unstructured grids is a
complicated process. Adapted multigrid methods like algebraic multigrid (AMG)
are designed for unstructured grids but more suited numerical methods are available.

Domain decomposition Domain decomposition methods are designed for nu-
merical problems where subdomains can easily be identified, Section 4.6. The orig-
inal linear system Ax = b is split into s problems where s denotes the number of
subdomains. The resulting system can be written as,

A

(
x
y

)
=
(

f
g

)
with A =

(
B E

F C

)
. (6.6)

where the unknowns in the interior of the domains are collected in vector x
and the unknowns on the interfaces are collected in vector y. This system can be
solved for the interface elements y solely from which x can be obtained. Several
algorithms, including preconditioned CG, are available to solve the linear system
after domain decomposition. Choosing the domains however is complicated and not
straightforward. When the subdomains are choosen optimally the slow converging
components of the solution should be filtered out. These components often coincide
with physical effects like large differences in stiffness between two neighboring ma-
terials. Much research is needed to find an algorithm for defining the subdomains
without introducing numerical artifacts.

Deflation The deflation method has a strong resemblance with both multigrid
and domain decomposition, Section 4.7. The philosophy behind deflation is filtering
out the slow converging components of the solution. It has been proved in [11] that
for CG these components correspond to the smallest eigenvalues in the spectrum
of the linear system. If the original system has dimension n a smaller system is
introduced with dimension n− k where k corresponds to the number of eigenvalues
that have been filtered out. The reduced system is better conditioned and hence
convergence rates improve. Both the stability and reduction requirements are sat-
isfied. Unfortunately, calculation of the eigenvalues of large linear systems is both
time and resource consuming. Approximations of the eigenvectors are used instead.
The eigenvectors correspond to physical aspects of the problem. For example the
density of water and air in bubbly flow, Section (). On the interface between water
and air bubbles the difference between densities is big. These interfaces correspond
to the slow converging components of the solution, i.e. to the smallest eigenvalues.
Filtering out those interfaces better convergence rates for CG are observed [12]. The
eigenvector approximations corresponding to the interfaces are easy to construct.

Parallel direct solver On the bottom of figure 6.2 a direct solver is displayed.
All three preceding numerical methods will have to solve a (large) linear system. An
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Figure 6.3: Invoking MUMPS from external program.

obvious choice would be a parallel direct solver. Parallel direct solvers can handle
large systems and divide the workload over a number of computing nodes. The
requirements of speed and scale are easily satisfied. Moreover, adding more com-
puting nodes will decrease computation times. Several open source implementations
of parallel direct solvers are available, for example SuperLU [6] and MUMPS [4].
Both implementations are based on LU decomposition of the linear system. This
research will focus on MUMPS. The MUMPS software offers an interface to C and
Fortran software. Figure 6.3 displays a schematic overview of an external program
invoking a MUMPS instance. There is no need for complicated MPI programming
to embed MUMPS into existing software.

Test results

First test results show promising results for both the parallel direct solver and the
preconditioned iterative solver. Two solvers have been implemented into the CAPA-
3D software. The existing direct solver in algorithm 19 has been replaced by the
parallel direct solver MUMPS [4] and Deflated preconditioned CG.

MUMPS MUMPS is a public domain package and developed during the Esprit
IV European project PARASOL (1996-1999) by CERFACS, ENSEEIHT-IRIT and
RAL [4]. The MUMPS package computes a LU decomposition of any given matrix.
An interface is available for C and Fortran software. The MUMPS software is
parallel and should therefore be executed on parallel machines only. The follow-
ing experiments have been done on a cluster with four workstations carrying one
Intel Xeon E5450 3.0 GHz Quad-core Duo and 16Gb of 800 MHz DDR2 memory
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Figure 6.4: Parallel LU decomposition for different matrix dimensions.

each, yielding 32 processors and 64Gb of memory in total. The workstations were
connected by an 1-Gigabyte ethernet network.

Figure 6.4 shows the test results for parallel LU decomposition of three dif-
ferent matrices. Five different configurations are considered with 2, 4, 8, 16 and
32 processors respectively. Each workstation only hosts 8 processors, hence the
gray dotted vertical line indicates the transition to a cluster of workstations. Two
and four workstations when requesting 16 processors and 32 processors respectively.
Three matrices have been considered, each matrix with a different dimension and
corresponding to a different material test. The bold lines represent the actual test
results, the remaining black lines represent the theoretical linear speed up. An ideal
parallel algorithm, with no communication overhead, should run twice as fast with
twice as many processors involved. Apparently, this is not feasible when the com-
munication between workstations, CPUs and memory is taken into account. The
results are promising. For every test case reasonable speed up is observed. When
the dimension of the matrices increases, MUMPS starts to perform better because
initial communication overhead becomes negligible compared to the computation
process. Only when more workstations become involved the speed up disappears
because of network delays and latency. An infiniband network connection should
overcome these problems.

Deflated preconditioned CG Deflation methods DCG and DPCG are applied
to a very simple strain-stress test. A cube containing two materials is subjected to
a load. The outside is rubber like and has only elastic material properties. The
material within the centre and core of the cube is incompressible, one could think
of steel or stone. A distributed load is being applied at the top of the cube and is
forcing it downwards within several load steps (static mechanics). The CAPA-3D
software and Matlab are used to calculate the internal and external forces acting
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Figure 6.5: Compression test, two materials with deflated CG solver.

on the body during this experiment. The large differences in elasticity between the
two materials yield a stiffness matrix with a very high condition number, hence bad
convergence rates are expected. The experiment uses a combination of CG, two dif-
ferent preconditioners - incomplete Cholesky and diagonal scaling - and deflation.
The eigenvalues and eigenvectors corresponding to the two smallest eigenvalues are
selected as deflation vectors and have been computed with Matlab. Consider fig-
ure 6.5. The CG method with and without diagonal scaling is performing poorly
and does not show any progress even after 200 iterations. Preconditioning with
incomplete Cholesky yields an increase in speed and the method converges in about
110 iterations. However, when deflation is being applied to CG with incomplete
Cholesky preconditioning, another increase in speed is observed and the method
converges in about 80 iterations. It is to be expected that increasing the number of
deflation vectors would yield even better converge rates but the application of the
deflation operator becomes more expensive.
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