
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 08-21

An elegant IDR(s) variant that efficiently exploits
bi-orthogonality properties

Martin B. van Gijzen and Peter Sonneveld

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2008

Copyright  2008 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Department of Applied Mathematical Analysis,
Delft University of Technology, The Netherlands.

An elegant IDR(s) variant that efficiently exploits

bi-orthogonality properties

Martin B. van Gijzen and Peter Sonneveld∗

Abstract

The IDR(s) method that is proposed in [7] is a very competitive limited memory
method for solving large nonsymmetric systems of linear equations. IDR(s) is based on
the induced dimension reduction theorem, that provides a way to construct subsequent
residuals that lie in a sequence of shrinking subspaces. The IDR(s) algorithm that is
given in [7] is a direct translation of the theorem into an algorithm. This translation
is not unique. This paper derives a new IDR(s) variant. This new variant imposes
bi-orthogonalization conditions on the iteration vectors, which results in a very elegant
method with lower overhead in vector operations than the original IDR(s) algorithms.
In exact arithmetic, both algorithms give the same residual at every s + 1-st step,
but the intermediate residuals, and also the numerical properties differ. We will show
through numerical experiments that our new variant is more accurate than the original
IDR(s) for large values of s. We will also present a numerical comparison with GMRES
[3], Bi-CGSTAB [8], and BiCGstab(ℓ) [4] to illustrate the efficiency of IDR(s).

Keywords. Iterative methods, IDR, IDR(s), Krylov-subspace methods, bi-orthogonalization

AMS subject classification. 65F10, 65F50

1 Introduction

We consider the linear system
Ax = b

with A ∈ C
N×N a large, sparse and non-symmetric matrix. In 1980, Sonneveld proposed

the iterative method IDR [9] for solving such systems. The IDR method generates residuals
that are forced to be in subspaces Gj of decreasing dimension. These nested subspaces are
related by Gj = (I − ωjA)(S ∩ Gj−1), where S is a fixed proper subspace of C

N , and the
ωj’s are non-zero scalars.
Recently, it was recognize that this IDR approach is quite general and can be used as a
framework for deriving iterative methods. This observation has led to the development of
IDR(s) [7], a highly competitive method for solving large nonsymmetric linear systems.
The examples that are described in [7] show that IDR(s), with s > 1 and not too big,
outperforms the well-known Bi-CGSTAB method [8] for important classes of problems.
Although the working principle of IDR(s) differs from that of Bi-CGSTAB, it turns out that
both methods are mathematically closely related. Specifically, IDR(1) is mathematically
equivalent with Bi-CGSTAB, and IDR(s) with s > 1 is closely related (but not mathemat-
ically equivalent) to the Bi-CGSTAB generalisation ML(k)BiCGSTAB[10] of Yeung and

∗Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft,

The Netherlands. E-mail: M.B.vanGijzen@tudelft.nl, P.Sonneveld@tudelft.nl

1

Chan. We refer to [7] for the details. In [5], Bi-CGSTAB is considered as an IDR method,
and this paper explains how IDR ideas can be incorporated into Bi-CGSTAB.
The prototype IDR(s) algorithm that is described in [7] is only one of many possible vari-
ants. One of the possibilities to make alternative IDR methods is a different computation
of the intermediate residuals. In IDR(s), the residual is uniquely defined in every s + 1-st
step. This step corresponds to the calculation of the first residual in Gj. In order to
advance to Gj+1, s additional residuals in Gj need to be computed. These intermediate
residuals are not uniquely defined and their computation leaves freedom to derive algo-
rithmic variants. In exact arithmetic, the residuals at every s + 1-st step are uniquely
determined. They do not depend on the way the intermediate residuals are computed.
The numerical stability and efficiency of the specific IDR algorithm, however, do depend
on the computation of the intermediate residuals.
In this paper we will derive an elegant, efficient and in our experience numerically very
stable IDR-based method that imposes and exploits as much as possible bi-orthogonality
conditions between the intermediate residuals and the pre-chosen vectors q1, · · · ,qs, that
define the subspace S. Our new IDR variant uses less vector operations per iteration than
the original IDR(s) method, and remains stable and accurate for large values of s.
This paper is organised as follows:
The next section describes a general framework for deriving an IDR-based method. It
starts with reviewing the IDR theorem. Then it explains how the theorem can be used to
compute the first residual in Gj+1 and the corresponding approximation for the solution,
given sufficient vectors in Gj . Furthermore it explains how sufficient intermediate residuals
and vectors in Gj+1 can be computed in order to advance to the next lower dimensional
subspace, and what freedom there is in generating these intermediate vectors.
Section 3 derives the new IDR(s) variant by filling in the freedom in generating the in-
termediate residuals by imposing bi-orthogonality conditions between the intermediate
residuals and the vectors q1, · · · ,qs.
Section 4 presents numerical experiments that compare the new IDR(s) variant with the
original IDR(s) method presented in [7].
Section 5 evaluates the new IDR(s) variant for CFD problems and compares its perfor-
mance with GMRES [3], Bi-CGSTAB, and BiCGstab(2) [4].
We make concluding remarks in Section 6.

2 Making an IDR-based algorithm

2.1 The IDR theorem

At the basis of every IDR algorithm is the IDR Theorem [7], which is given below.

Theorem 1 (IDR) Let A be any matrix in C
N×N , let v0 be any nonzero vector in C

N ,
and let G0 be the full Krylov space KN (A,v0). Let S denote any (proper) subspace of
C

N such that S and G0 do not share a nontrivial invariant subspace of A, and define the
sequence Gj , j = 1, 2, . . . as

Gj = (I − ωjA)(Gj−1 ∩ S) ,

where the ωj ’s are nonzero scalars. Then
(i) Gj ⊂ Gj−1 for all j > 0.
(ii) Gj = {0} for some j ≤ N .

2

For the proof we refer to [7].
Without loss of generality, we may assume the space S to be the left null space of some
(full rank) N × s matrix Q:

Q = (q1 q2 . . . qs), S = N (QH) .

2.2 General recursions

Let Ax = b be an N × N linear system. A Krylov-type solver produces iterates xn for
which the residuals rn = b − Axn are in the Krylov spaces Kn(A, r0). Here, x0 is an
initial estimate of the solution.
An IDR-based method can be made by using recursions of the following form

rn+1 = rn − αAvn −

bi∑

i=1

γign−i (1)

xn+1 = xn + αvn +

bi∑

i=1

γiun−i

in which vn is any computable vector in Kn(A, r0) \ K
n−1(A, r0), gi ∈ Ki(A, r0), and ui

such that
gi = Aui . (2)

These recursions are quite general and hold for many Krylov subspace methods.
The IDR theorem can be applied by generating residuals rn that are forced to be in the
subspaces Gj , where j is nondecreasing with increasing n. Then, according to Theorem 1,
rn ∈ {0} for some n.

2.3 A dimension-reduction step: computing the first residual in Gj+1

According to Theorem 1, the residual rn+1 is in Gj+1 if

rn+1 = (I − ωj+1A)vn with vn ∈ Gj ∩ S .

If we choose

vn = rn −

bi∑

i=1

γign−i (3)

the expression for rn+1 reads

rn+1 = rn − ωj+1Avn −

bi∑

i=1

γign−i , (4)

which corresponds to (1).
Now suppose that rn,gn−i ∈ Gj , i = 1, · · · , î. This implies that vn ∈ Gj . If we choose

γi, i = 1, · · · , î such that in addition vn ∈ S, then by Theorem 1 we have rn+1 ∈ Gj+1.
If vn ∈ S = N (QH), it satisfies

QHvn = 0 . (5)

Combining (3) and (5) yields an s × î linear system for the coefficients γi. Except for
special circumstances, this system is uniquely solvable if î = s, which means that we need
s vectors gi ∈ Gj for rn+1 ∈ Gj+1.

3

Suppose that after n iterations we have exactly s vectors gi ∈ Gj , i = n− 1, · · · n− s, and
s corresponding vectors ui with gi = Aui at our disposal. Define the matrices

Gn =
(
gn−s gn−s+1 · · · gn−1

)
, (6)

Un = (un−s un−s+1 · · · un−1) . (7)

Then the computation of the residual rn+1 ∈ Gn+1 can be implemented by the following
algorithm:

Calculate: c ∈ C
s from (QHGn)c = QHrn,

vn = rn − Gnc,

rn+1 = vn − ωj+1Avn .

Using (4), the new residual can also be computed by

rn+1 = rn − ωj+1Avn − Gnc .

Multiplying this expression with A−1 yields the corresponding recursion for the iterate:

xn+1 = xn + ωj+1vn + Unc .

In the calculation of the first residual in Gj+1, we may choose ωj+1 freely, but the same
value must be used in the calculations of the subsequent residuals in Gj+1. A suitable
choice for ωj+1 is the value that minimizes the norm of rn+1, similarly as is done in,
amongst others, the Bi-CGSTAB algorithm. Minimizing ‖rn+1‖2 = ‖vn − ωj+1Avn‖2

yields

ωj+1 =
(Avn)Hvn

(Avn)HAvn

.

Note that this calculation does not require an additional matrix multiplication, since the
vector Avn can be re-used in the update of the residual. We remark that the (local)
minimal residual norm strategy for selecting ωj+1 may lead to small ω-values, which can
result in numerical problems. In that case the more stable strategy that is described in [6]
should be used to compute a suitable ωj+1.
The above framework explains how a residual in Gj+1 can be computed given rn,gn−i ∈
Gj, i = 1, · · · s. Next we will discuss a technique for computing these vectors.

2.4 Computing additional vectors in Gj+1

The procedure that is outlined in the previous section can be used directly to compute a
new residual rn+2 ∈ Gj+1: since gi ∈ Gj, i = n − 1, · · · n − s and rn+1 ∈ Gj+1 ⊂ Gj, the
computations

Calculate: c ∈ C
s from (QHGn)c = QHrn+1,

vn+1 = rn+1 − Gnc,

rn+2 = vn+1 − ωj+1Avn+1 .

yield a residual that satisfies rn+2 ∈ Gj+1.
Furthermore, we observe that the residual difference vector (rn+2 − rn+1) is in the space
Gj+1. Since A−1(rn+2 − rn+1) = −(xn+2 −xn+1) we have found a suitable pair of vectors
gn+1,un+1:

gn+1 = −(rn+2 − rn+1) un+1 = xn+2 − xn+1 .

4

In a practical algorithm, the computation of gn+1 and of un+1 precedes the computation
of rn+2 and of xn+2. First, the update vector for the iterate can be computed by

un+1 = ωj+1vn + Unc ,

followed by the computation of gn+1 by

gn+1 = Aun+1 (8)

to preserve in finite precision arithmetic as much as possible the relation between un+1

and gn+1. The iterate and residual are then updated through

xn+2 = xn+1 + un+1 rn+2 = rn+1 − gn+1 . (9)

The vector gn+1 is in the space Gj+1, and hence also in Gj. This means that we can use
this vector in the calculation of new vectors in Gj+1, and discard an old vector, e.g. gn−s.
This can be done by defining the matrices Gn+2 and Un+2 as

Gn+2 =
(
gn+1 gn−s+1 · · · gn−1

)
, (10)

Un+2 = (un+1 un−s+1 · · · un−1) . (11)

The advantage of this procedure is that it saves vector space, storage for exactly s g-
vectors and s u-vectors is needed. Moreover, for stability reasons it is also advisable to
use the most recent information in the iterative process.
We can repeat the above procedure s times to compute rn+s+1,gn+k ∈ Gj , k = 1, · · · s,
and the corresponding vectors xn+s+1,un+k, k = 1, · · · s, which are the vectors that are
needed to compute a residual in Gj+2.
The above relations define (apart from initialization of the vectors) a complete IDR-
method. In fact, the algorithm that is outlined above is almost the same as the IDR(s)
method from [7]. The only difference is that the original IDR(s) method also computes
gn = −(rn+1 − rn), which vector is then included in Gn+k, k = 1, · · · , s.
In the above algorithm, vectors in Gj+1 are generated by direct application of the IDR
theorem. The computations of the first residual in Gj+1 is almost the same as the com-
putation of the following s residuals in Gj+1. However, in computing the intermediate
residuals, there is more freedom that can be exploited. In the algorithm above, a residual
is updated by

rn+k+1 = rn+k − gn+k .

Here, rn+k+1, rn+k, and gn+k are in Gj+1. But in order to compute a new residual in Gj+1

we could also have used a more general linear combination of vectors in Gj+1:

rn+k+1 = rn+k −
k∑

i=1

βign+i, i = 1, · · · , k.

Clearly, the vector rn+k+1 computed in this way is also in Gj+1. We can choose the pa-
rameters βi to give the intermediate residuals a desirable property, like minimum norm.
In the algorithm that we present in the next section we will use the parameters βi such
that the intermediate residual rn+k+1 is orthogonal to q1, · · · ,qk.
The same freedom that we have for computing a new residual in Gj+1, we have for com-
puting the vectors gn+k: linear combinations of vectors in Gj+1 are still in Gj+1. Let

ḡ = −(rn+k+1 − rn+k).

5

Then the vector

gn+k = ḡ −
k−1∑

i=1

αign+i

is also in Gj+1, and can be used in the subsequent computations. Again, the parameters αi

can be chosen such that the vector gn+k gets some favorable properties. In the algorithm
that we present in the next section we will chose the parameters αi such that the vector
gn+k is made orthogonal to q1 · · · qk−1.
Apart from the initialization of the variables, we have now given a complete framework
for an IDR-based solution algorithm. To initialize the recursions, values for xs, rs,U0,
and G0 have to be computed. This can be done by any Krylov method. In the prototype
algorithm that we present in Figure 1 this is (implicitly) done in the first s steps by
Richardson iteration. In Figure 1 we present a framework for an IDR-based algorithm.
The freedom that is left open is in the choice of the parameters αi and βi. In the algorithm
we have omitted the indices for the iteration number. Vectors on the left are overwritten
by vectors on the right.

3 An efficient IDR(s) variant that exploits bi-orthogonality
properties

3.1 General idea

In this section we will fill in the freedom that we have left in the framework IDR algorithm.
As in the previous section we assume that rn+1 is the first residuals in Gj+1. We fill in the
freedom by constructing vectors that satisfy the following orthogonality conditions:

gn+k ⊥ qi, i = 1, · · · k − 1, k = 2, · · · , s, (12)

and
rn+k+1 ⊥ qi, i = 1, · · · , k, k = 1, · · · , s. (13)

As we will see, these relations lead to important simplifications in the algorithm.

3.2 A dimension-reduction step: computing the first residual in Gj+1

The orthogonality condition for the intermediate residuals (13) implies that the first in-
termediate residual is orthogonal to q1, the second to q1 and to q2, etc. Hence, the last
intermediate residual before making a dimension reduction step, i.e. rn is orthogonal to
q1, · · · ,qs. Consequently,

rn ∈ Gj ∩ S .

Now, by Theorem 1
rn+1 = (I − ωj+1A)rn ∈ Gj+1 .

With the standard choice for ωj+1, the dimension reduction step simplifies to a standard
minimal residual step.

3.3 Computing additional vectors in Gj+1

In order to calculate a vector vn+k ∈ Gj ∩S, a system of the form (QHGn+k)c = QHrn+k

has to be solved. Using the conditions (12) and (13) this system gets a simple form. Let

µi,k = qH
i gn+k, i = 1, · · · , s .

6

Require: A ∈ C
N×N ; x, b ∈ C

N ; Q ∈ C
N×s; TOL ∈ (0, 1);

Ensure: x such that ‖b − Ax‖ ≤ TOL
{Initialization.}
Calculate r = b − Ax;
G = O ∈ C

N×s; U = O ∈ C
N×s;

M = I ∈ C
s×s; ω = 1;

{Loop over Gj spaces}
while ‖r‖ > TOL do

{Compute s independent vectors gk in Gj space}
for k = 1 to s do

Compute M = QHG and f = QHr;
Solve c from Mc = f ;
v = r − Gc;
uk = Uc + ωv;
gk = Auk;
{Linear combination of vectors ∈ Gj are still in Gj :}

gk = gk −
∑k−1

i=1
αigi ; uk = uk −

∑k−1

i=1
αigi;

r = r −
∑k

i=1
βigi ; x = x +

∑k
i=1

βiui;
G = (g1 · · · gk); U = (u1 · · ·uk);

end for
{ Entering Gj+1}
Compute M = QHG and f = QHr;
Solve c from Mc = f ;
v = r − Gc;
t = Av;
ω = (tHv)/(tHt);
x = x + Uc + ωv;
r = r − Gc − ωt;

end while

Figure 1: A framework for an IDR-based algorithm.

7

Then, because of (12), µik = 0 for i < k. Furthermore, let

φi = qH
i rn+k, i = 1, · · · , s .

Then, because of (13), φi = 0 for i < k. Consequently, the system (QHGn+k)c = QHrn+k

has the following structure





µ1,1 0 0

µ2,1 µ2,2
. . .

...
...

...
. . .

. . .
...

...
...

. . . 0
µs,1 µs,2 µs,s









γ1

...

...

...
γs





=





0
...

φk

...
φs




.

Clearly, γ1, · · · , γk−1 are zero, and the update for vn+k becomes

vn+k = rn+k −
s∑

i=k

γign+i−s−1

Next, we compute ‘temporary’ vectors un+k and gn+k by

un+k = ωjvn+k +

s∑

i=k

γiun+i−s−1;gn+k = Aun+k .

The vector gn+k ∈ Gj+1 is made orthogonal to q1, · · · ,qk−1 by the following procedure,
that includes the corresponding updates to compute un+k:

For i = 1 to k − 1

α =
qH

i gn+i

µi,i
;

gn+k = gn+k − αgn+i;

un+k = un+k − αun+i.

End for

The next step in the algorithm is to compute the next intermediate residual rn+k+1 that
is orthogonal to q1, · · · ,qk. It is easy to check that such a residual can be computed by

rn+k+1 = rn+k −
φk

µk,k

gn+k . (14)

The corresponding approximate solution then becomes

xn+k+1 = xn+k +
φk

µk,k

un+k .

From the outline of the algorithm it seems that we have to compute the inner products
φi, i = k, . . . , s, and µi,k, i = k, · · · , s. From (14) it is clear that, given the inner products
µi,k = qH

i gn+i, the new value of the inner products φi = qH
i rn+k+1 can be computed via

the scalar update

φi = φi −
φkµi,k

µk,k

, i = k + 1, · · · , s .

8

Require: A ∈ C
N×N ; x, b ∈ C

N ; Q ∈ C
N×s; TOL ∈ (0, 1);

Ensure: xn such that ‖b − Ax‖ ≤ TOL;
{Initialization.}
Calculate r = b − Ax;
gi = ui = 0, i = 1, · · · , s; M = I; ω = 1;

{Loop over Gj spaces, for j = 0, 1, 2, 3, . . .}
while ‖r‖ > TOL do

{Compute s independent column vectors for Gj}
f = QHr, f = (φ1, · · · , φs)

T ;
for k = 1 to s do

{Compute v ∈ Gj ∩ S}
Solve c from Mc = f , c = (γ1, · · · , γs)

T ;
v = r −

∑s
i=k γigi

uk = ωv +
∑s

i=k γiui;
{Compute gk ∈ Gj}
gk = Auk;
{Make gk orthogonal to q1 · · · qk−1}
for i = 1 to k − 1 do

α =
qH

i gk

µi,i
;

gk = gk − αgi;
uk = uk − αui;

end for
{Compute qH

i gk, i = k · · · s update M}.
µi,k = qH

i gk, i = k · · · s, Mi,k = µi,k

{Make the residual orthogonal to q1 · · · qk};
β = φk

µk,k
;

r = r − βgk:
x = x + βuk;
{Update f = QHr};
if k + 1 ≤ s then

{The first k entries in f are 0}
φi = 0, i = 1, · · · k
φi = φi − βµi,k, i = k + 1, · · · , s
f = (φ1, · · · , φs)

T

end if
end for
{ Entering Gj+1}
t = Av;
ω = (tHv)/(tHt);
r = r − ωt;
x = x + ωr;

end while

Figure 2: IDR(s) with bi-orthogonalization of intermediate residuals.

9

Figure 2 presents the algorithm that is outlined above. In the algorithm we have omitted
the indices for the iteration number.
The above algorithm is quite efficient in terms of vector operations and even more efficient
than the original IDR(s) method, despite the additional orthogonalization operations.
The operation count for the main operations to perform the dimension reduction step
yields: one matrix-vector product, two vector updates and two inner products. For the
intermediate steps we get: s matrix-vector products, 2s+2 vector updates and s+1 inner
products. Hence, for a full cycle of s+1 IDR(s) steps we get: s+1 matrix-vector products,
s2 +s+2 inner products and 2s2 +2s+2 vector updates. The new IDR(s) variant requires
slightly less vector updates than the original IDR(s) algorithm, and the same number of
inner products and matrix-vector multiplications. The original IDR(s) method requires
2s2 + 7

2
s + 5

2
vector-updates.

Table 1 gives an overview of the number of vector operations per matrix-vector multipli-
cation for some values of s for the new IDR(s) variant, and for comparison also for the
Krylov methods that we will use in the numerical experiments. This table also gives the
memory requirements (excluding storage of the system matrix and of the preconditioner,
but including storage for the right-hand side vector and the solution).

Method DOT AXPY Memory Requirements

IDR(1) 2 3 7
IDR(2) 22

3
42

3
10

IDR(4) 42

5
82

5
16

IDR(8) 81

4
162

9
28

GMRES n+1

2

n+1

2
n + 3

Bi-CGSTAB 2 3 7
BiCGstab(2) 21

4
33

4
9

Table 1: Vector operations per matrix-vector product and memory requirements

4 Numerical comparison of the original IDR(s) and IDR(s)
with bi-orthogonalization of the intermediate vectors

In this section we present experiments to compare the original IDR(s) method and the
new variant. In all our experiments we take for q1, · · · ,qs orthogonalized random vectors.
The parameter ωj is computed via the standard minimum residual strategy.

4.1 Mathematical equivalence of the original IDR(s) and IDR(s) with
bi-orthogonalization of the intermediate vectors

The first numerical example validates that standard IDR(s) and IDR(s) with bi-orthogonalization
of the intermediate vectors in theory yield the same residual at every s + 1-st iteration.
To investigate this numerically we consider the the ADD20 matrix from the MATRIX
MARKET collection. We have taken a right-hand-side vector corresponding to a solution
vector that consists of ones. Figure 3 shows the convergence of the two IDR(s) variants
for s = 4.
The numerical equivalence of the two variants is confirmed by the convergence curves for
the first 25 iterations, that are presented in the lower part of Figure 3. The residual norms

10

coincide at the crucial iterations 5, 10, 15, · · · .
The numerical stability properties of the two methods are different, resulting in a different
ultimate convergence behaviour. In this case, the IDR(s) variant with bi-orthogonalization
converges slightly faster.

0 50 100 150 200 250 300 350 400 450 500
10

−10

10
−5

10
0

10
5

Convergence for ADD20, s=4

Iteration number

|r
|/|

b|

Original IDR(s)
IDR(s) Bi−ortho

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

Convergence in first 25 iterations

Iteration number

|r
|/|

b|

Original IDR(s)
IDR(s) Bi−ortho

Figure 3: Convergence of the two IDR(4) variants.

4.2 Numerical stability of standard IDR(s) and IDR(s) with bi-orthogonalization
of intermediate vectors for large values of s

In order to investigate the accuracy of the two IDR(s) variants for increasingly large values
of s, we consider a test problem that was taken from [2, 11]. The system matrix of this
test problem is complex Toeplitz of order 200 and given by

A =





4 0 1 0.7

γi
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0.7
. . .

. . .
. . . 1

. . .
. . . 0
γi 4





and the right-hand-side vector by b = (i, i, . . . , i)T . Here, i is the imaginary number.
For γ we take the value 3.6. The system is solved with the two IDR(s) variants with
values for the parameter s ranging from 1 to 50. The iterative process is stopped if the
norm of the scaled recursively computed residual drops below 10−12. The upper part of
Figure 4 shows the norm of the final true residual. As is apparent, both methods yield an
accurate solution for small values of s. For large values of s, however, the original IDR(s)
method produces an inaccurate solution. The reason is that the g-vectors in the original
method are computed in a power-method-like way. As a result, the matrix Gn becomes ill

11

conditioned and the solution of the systems QHGnc = QHrn inaccurate. The additional
orthogonalizations in the new variant clearly improve the accuracy of the algorithm.

0 5 10 15 20 25 30 35 40 45 50
10

−15

10
−10

10
−5

10
0

s

||r
||/

||b
||

Final accuracy

Original IDR(s)
IDR(s) Bi−ortho

0 5 10 15 20 25 30 35 40 45 50
200

400

600

800

1000

1200

s

Ite
ra

tio
ns

Number of iterations

Original IDR(s)
IDR(s) Bi−ortho

Figure 4: Accuracy and number of iterations for the two IDR(s) variants

The lower part of Figure 4 shows the number of iterations to achieve the required tolerance.
This figure shows that for s small, say up to s = 10, the number of iterations drops
significantly with increasing s. However, for larger values of s no gain can be obtained.
This is an observation that we have often made. It is hardly ever necessary to choose s
larger than 10.

5 Performance comparison with GMRES and BiCGstab(ℓ)
using IFISS

5.1 IFISS

The performance comparison that we present in this section have been carried out with
the Finite Element software package IFISS. IFISS is a MATLAB open source package
associate with the book [1] by Howard Elman, David Silvester and Andy Wathen. The
open source code has been developed by Alison Rammage, David Silvester and Howard
Elman, and can be downloaded from the web1. The program can be used to model a
range of incompressible fluid flow problems and provides an ideal testing environment for
iterative solvers and preconditioners. The package has implementations of some of the
most powerful iterative methods, like Bi-CGstab(ℓ) [4], and GMRES [3], and of many
advanced preconditioners. In the experiments we will use the new variant of IDR(s) and
focus on the comparison of IDR(4) and IDR(8) with BiCGstab(2), the default variant
of BiCGstab(ℓ) in IFISS, with full GMRES, and with Bi-CGSTAB. For Bi-CGSTAB we
simply use the mathematically equivalent method BiCGstab(1).

1http://www.manchester.ac.uk/ifiss and http://www.cs.umd/ elman/ifiss.html

12

In all experiments we take for q1, · · · ,qs orthogonalized random vectors. The parameter
ωj is computed using the technique described in [6], which strategy is used by default in
the BiCGstab(ℓ) implementation of IFISS.

5.2 A convection-diffusion problem

5.2.1 Description of the test problem

The first problem we consider is example 3.1.3 in [1]. This is a convection diffusion problem
with zero source term,

−ǫ∇2u + w · ∇u = 0 (x, y) ∈ (−1, 1) × (−1, 1)

with constant wind w at a 30o angle to the left of the vertical, i.e.

w =

(
− sin π

6

cos π
6

)
.

Dirichlet boundary conditions are imposed on all sides of the domain and are as follows:

u = 0 if x = −1 or y = −1, x < 0 or y = 1

and
u = 1 if y = −1, x ≥ 0 or x = 1 .

The solution solution has a boundary layer near y = 1 and an internal boundary layer
due to the jump discontinuity at (0,-1). The problem is discretised with square bi-linear
Q1 elements, using a mesh size of h = 2−7, which yields a nonsymmetric linear system of
65025 equations.

5.2.2 On the choice of s

Before we present the actual comparison of IDR(4) and IDR(8) with the other methods,
we will first show two examples to motivate our choice for s = 4 and s = 8. For the first
example we take ǫ = 0.01. We solve the resulting linear system with IDR(s), with s = 1,
s = 2, s = 4, and s = 8. The convergence behavior of the different IDR(s) variants is
shown in Figure 5. The results show that a considerable reduction in number of iterations
is obtained for s = 2 and for s = 4 but only a modest reduction is obtained by taking
s = 8. As a results s = 4 is the optimal value with respect to computing time.
For the second example we take ǫ = 0.001. This example is convection dominated. Since we
do not use any stabilization technique like SUPG, the resulting system matrix is strongly
a-symmetric. For this example, IDR(s) does not converge for s = 1, 2 and 4. For s = 8
and s = 16, however, convergence of the method is satisfactory. In this case, IDR(s) is
more robust for larger values of s.

5.2.3 Performance comparison for the convection-diffusion problem

In the next experiments we consider increasingly small values of the diffusion parameter ǫ,
with values ranging from 1 to 10−4. It is well known that if ǫ is too small with respect to
the mesh size a stabilization procedure like Streamline Upwind Petrov-Galerkin (SUPG)
should be applied in order to avoid unwanted numerical oscillations in the solution. We give
the numerical results both for the in practice more relevant stabilized case (if necessary),

13

0 100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

iterations

 lo
g 10

(r
es

id
ua

l)

Convection−diffusion problem, ε = 0.01

IDR(1)
IDR(2)
IDR(4)
IDR(8)

Figure 5: Convergence history of IDR(s), for different values of s

and for the unstabilized case to investigate the performance of the iterative methods for
increasingly skew-symmetric systems.
Figure 7 shows for each of the five iterative methods the required number of matrix-
vector products (MATVECS) to solve a system with a given diffusion parameter ǫ to a
tolerance (= reduction of the residuals norm) of 10−6. The solid lines show the results
if no stabilization is used, and the dashed lines for the systems with SUPG stabilization.
Note that for the larger values of ǫ SUPG stabilization is not necessary and therefore not
used. No preconditioner is applied in the experiments.
Since full GMRES is optimal with respect to the number of MATVECS, this method
always needs the least amount of MATVECS. But, as was remarked before, the overhead
in vector operations and memory requirements is much larger for this method. IDR(4) and
Bi-CGSTAB do not converge for the strongly a-symmetric systems, i.e. for small values
of ǫ without SUPG stabilization. Also IDR(8) does not converge for ǫ too small, but as
we saw before, the method still converges for ǫ = 0.001, this in contrast to IDR(4) and Bi-
CGSTAB. In the strongly a-symmetric case, the system matrix has complex eigenvalues
with large imaginary parts. For such problems the linear minimization steps that are
used in both IDR(s) and in Bi-CGSTAB do not work well. BiCGstab(2), however, uses
quadratic minimization polynomials that also work well in the strongly a-symmetric case.
As a result BiCGstab(2) converges in all the cases. For the physically realistic problems
with SUPG stabilization, however, IDR(4) and IDR(8) are always faster then both Bi-
CGSTAB and Bi-CGSTAB(2), and for ǫ = 1 even much faster then Bi-CGSTAB.
The computing times are shown in Table 2. The results show that GMRES, although the

14

0 100 200 300 400 500 600 700 800 900 1000
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

iterations

 lo
g 10

(r
es

id
ua

l)

Convergence IDR(s), convection domated problem

IDR(4)
IDR(8)
IDR(16)

Figure 6: Convergence history of IDR(s), for different values of s

Diffusion ǫ GMRES Bi-CGSTAB BiCGstab(2) IDR(4) IDR(8)

1 187 45 42 29 42
0.1 152 28 23 26 35
0.01 124 25 26 24 33
0.001 102 n.c. 27 n.c. 43
0.0001 245 n.c. 32 n.c. n.c.

0.001 (SUPG) 88 26 25 22 28
0.0001 (SUPG) 91 26 25 21 29

Table 2: Computing times [s] for solving the convection-diffusion problem

fastest in terms of MATVECS, is much slower in computing time than the other methods.
This is due to the fact that the matrix-vector product (without preconditioning) is cheap
in this example, and the number of iterations is large. This is an unfavorable situation for
GMRES. Also, due to the overhead in vector operations, IDR(8) is slower than the other
methods. IDR(4) is always faster in time than Bi-CGSTAB, and for ǫ = 1 considerably
faster. In this case IDR(4) is also significantly faster than BiCGstab(2). As was remarked
before, BiCGstab(ℓ) is the preferred method for the strongly a-symmetric problems, in
which cases neither Bi-CGSTAB nor IDR(s) converge.

15

10
0

10
1

10
2

10
3

10
4

300

400

500

600

700

800

900

1000

1100

1/ε

M
A

T
V

E
C

S

Convection diffusion problem

GMRES
BiCGSTAB
BiCGstab(2)
IDR(4)
IDR(8)

Figure 7: Number of matvecs for GMRES, Bi-CGSTAB, BiCGstab(2), IDR(4), and
IDR(8) for different diffusion parameters, solid without SUPG, dashed with SUPG.

5.3 A Navier-Stokes problem

5.3.1 Description of the test problem

The second example that we consider is a Navier-Stokes problem with zero forcing term.
The example describes flow over a step (see [1], example 7.1.2). The steady-state Navier-
Stokes equations are given by

−η∇2u + u · ∇u + ∇p = 0,

∇ · u = 0,

where η > 0 is a given constant called the kinematic viscosity. The domain is L-shaped.
The x- coordinate ranges from -1 to 5. The y-coordinate ranges from 0 to 1 for x between
-1 and 0, and between −1 and 1 elsewhere: there is a step in the domain at x = 0. A
Poiseuille flow profile is imposed on the inflow boundary x = −1, 0 ≤ y ≤ 1 and a zero
velocity condition on the walls. The Neumann condition

η
∂ux

∂x
− p = 0

∂uy

∂x
= 0

is applied at the outflow boundary x = 5,−1 ≤ y ≤ 1. The problem is discretised with
bi-quadratic Q2 elements for the velocities and bi-linear Q1 elements for the pressures.
The resulting nonlinear system can be solved with Newton’s method, which implies that
in every iteration a linear system has to be solved to compute the Newton updates. This
system has the following form:

(
F BT

B O

)(
∆u

∆p

)
=

(
f

g

)
.

16

Here, the submatrix F is nonsymmetric, and becomes increasingly more a-symmetric of η
is decreased.
As a test problem we consider the linear system after one Newton iteration. A block-
triangular preconditioner of the form

(
F BT

O Ms

)

is applied to speed-up the convergence of the iterative methods. Here, Ms is an approx-
imation to the Schur complement S = BF−1BT . The specific preconditioner we have
selected for our experiments is the ideal pressure-convection diffusion preconditioner [1].
Each application of this preconditioner requires three solves of subsystems: one solve with
F and two solves with the approximate Schur complement Ms. These solves are done with
MATLAB’s direct sparse solver.
The preconditioner described above is quite effective in reducing the number of iterations,
but makes the preconditioned matrix-vector multiplication very expensive. As a result,
the time per iteration is basically determined by the preconditioned matrix-vector multi-
plication, and overhead for vector operations is negligible. This situation is particularly
advantages for GMRES, since this method gives an optimal reduction of the residual norm
for a given number of iterations (= preconditioned matrix-vector multiplications). This is
the opposite situation that we had for the convection-diffusion test problem, where many
iterations had to be performed to achieve a required tolerance, but where the matrix-vector
multiplication was a cheap operation.

5.3.2 Performance comparison for the Navier-Stokes problem

In the numerical experiments, we have varied two parameters in the test problem: the step
size h, and the Reynolds number, which is related to the kinematic viscosity by Re = 2/η.
All systems are solved to a tolerance (= reduction of the residuals norm) of 10−6. Tables 3 -
5 give the number of matrix-vector multiplications, and in between brackets the computing
times.

Reynolds number Re GMRES Bi-CGSTAB BiCGstab(2) IDR(4) IDR(8)

10 23 (2.1s) 34 (3.0s) 36 (3.1s) 28 (2.4s) 27 (2.3s)
100 47 (4.2s) 106 (8.8s) 116 (9.7s) 68 (5.5s) 62 (5.0s)
200 76 (6.9s) 242 (20.7s) 236 (20.6s) 119 (10.3s) 103 (8.9s)

Table 3: Matrix-vector multiplications and computing times, h = 2−3, 1747 equations

Reynolds number Re GMRES Bi-CGSTAB BiCGstab(2) IDR(4) IDR(8)

10 27 (16.7s) 36 (19.5s) 36 (19.5s) 32 (16.7s) 32 (16.6)
100 50 (26.5s) 146 (76.5s) 128 (67.1s) 84 (45.3s) 70 (36.5)
200 72 (38.1s) 356 (185s) 276 (143) 134 (69.4s) 106 (55.4)

Table 4: Matrix-vector multiplications and computing times, h = 2−4, 6659 equations

The results show, as predicted, that GMRES is the best method for this set of test prob-
lems. We remark, however, that the implementation that we used for the (action of the)
preconditioner uses three direct solves, which is too expensive in a realistic setting. In a
realistic setting, approximations to the direct solves have to be used. This will result in a

17

Reynolds number Re GMRES Bi-CGSTAB BiCGstab(2) IDR(4) IDR(8)

10 31 (113s) 44 (153s) 44 (154s) 38 (127s) 35 (117s)
100 59 (201s) 214 (724s) 208 (703s) 103 (346s) 86 (288s)
200 81 (276s) 398 (1343s) 420 (1414s) 172 (577s) 132 (444s)

Table 5: Matrix-vector multiplications and computing times, h = 2−5, 25987 equations

cheaper, but less effective preconditioner. In this situation short-recurrence methods like
IDR(4) and IDR(8) may be competitive again, or possibly even be required because of the
limited memory consumption.
In comparison with Bi-CGSTAB and BiCGstab(2), IDR(4), and especially IDR(8) are
considerably faster, in particular for large Reynolds numbers. The difference in solution
time for Re = 200 is a factor of two to three for all three grid sizes.

6 Concluding remarks

We have presented a new variant of IDR(s) that is cheaper in vector overhead and according
to our experiments more accurate and more stable than the original IDR(s) for large s. We
have evaluated this new variant and compared it with state-of-the-art Krylov methods like
GMRES, Bi-CGSTAB and BiCGstab(ℓ). The performance of IDR(s) is vary favorable, in
particular in comparison with Bi-CGSTAB.
In general it is wise to choose the parameter s not too large. In our experience s = 4 is a
good default value. For this value there is little difference in numerical behaviour between
the original IDR(s) method and the variant that we have described in this paper. However,
some problems require larger values of s, such as the highly a-symmetric convection-
diffusion problem that we have discussed. In particular for such cases we consider the new
IDR variant an important improvement.

Acknowledgment: The authors thank the developers of IFISS for making this code
available. Professor Fujino of the Kyushu University is acknowledged for pointing us at the
Toeplitz test problem. Part of this research has been funded by the Dutch BSIK/BRICKS
project.

References

[1] H. Elman, D. Silvester and A. Wathen. Finite Elements and Fast Iterative
Solvers with application in incompressible fluid dynamics. Oxford Science Publica-
tions, Oxford University Press, 2005.

[2] M.H. Gutknecht. Variants of BICGSTAB for Matrices with Complex Spectrum.
SIAM J. Sci. Comp. 14(5):1020–1033, 1993.

[3] Y. Saad and M.H. Schultz. GMRES: A generalized minimum residual algorithm
for solving nonsymmetric linear systems SIAM J. Sci. Statist. Comput., 7:856–869,
1986.

[4] G.L.G. Sleijpen and D.R. Fokkema. BiCGstab(ℓ) for linear equations involving
matrices with complex spectrum. ETNA, 1:11–32, 1994.

18

[5] G.L.G. Sleijpen, P. Sonneveld and M.B. van Gijzen. Bi-CGSTAB as an in-
duced dimension reduction method. Technical Report 08-07, Department of Applied
Mathematical Analysis, Delft University of Technology, Delft, The Netherlands, 2008.

[6] G.L.G. Sleijpen and H.A. van der Vorst. Maintaining convergence properties of
BiCGstab methods in finite precision arithmetic Numerical Algorithms, 10:203–223,
1995

[7] P. Sonneveld and M.B. van Gijzen. IDR(s): a family of simple and fast algorithms
for solving large nonsymmetric linear systems. SIAM J. Sci. Comput., to appear

[8] H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Comp., 13:631–644,
1992.

[9] P. Wesseling and P. Sonneveld. Numerical Experiments with a Multiple Grid-
and a Preconditioned Lanczos Type Method. Lecture Notes in Mathematics 771,
Springer-Verlag, Berlin, Heidelberg, New York, pp. 543–562, 1980.

[10] M. Yeung and T.F. Chan. ML(k)BiCGSTAB: A BiCGSTAB Variant based on
multiple Lanczos starting vectors. SIAM J. Sci. Comp., 21:1263–1290, 1999.

[11] S. L. Zhang. GPBi-CG: Generalized product-type methods based on Bi-CG for
solving nonsymmetric linear systems. SIAM J. Sci. Comput., 18(2):537–551, 1997.

19

