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Abstract

The existence of waiting times, before boundary motion sets in, for a diffusion-diffusion

reaction equation with a discontinuous switch mechanism is demonstrated. Limit cases of the

waiting times are discussed in mathematical rigor. Further, analytic solutions for planar and

circular wounds are derived. The waiting times as predicted using these analytic solutions

are perfectly between the derived bounds. Furthermore, it is demonstrated by both physical

reasoning and mathematical rigor that the movement of the boundary can be delayed once it

starts moving. The proof of this assertion resides on continuity and monotonicity arguments.

The theory sustains the construction of analytic solutions. The model is applied to simulation

of biological processes with a threshold behavior, such as wound healing or tumor growth.

1 INTRODUCTION

In the present paper, we consider a discontinuous switch mechanism both for a (production)
reaction term for a reaction-diffusion equation and for the movement of an interface. Models with
a discontinuous switch are not uncommon in chemical and biological models. An example from
chemistry was studied in, among others [Vermolen et al. 2001], where precipitation of a chemical
takes place once the solute concentration exceeds a threshold value. The precipitation, reaction
and adorption kinetics were modeled macroscopically with a set of hyperbolic transport equations
with a discontinuous switch mechanism to take the precipitation phenomenon into account. An
other example is provided by the model due to [Adam 1999, Vermolen et al 2006] and [Adam
1987, Shymko and Glass 1976,Britton and Chaplain 1993,Gao and Bu 2003] for (intra-osseous)
wound healing and tumor growth respectively. These models all contain discontinuous switch
mechanisms in which a production term is discontinuous and / or an interface starts moving once
a generic chemical reaches a threshold or no longer exceeds this threshold. The mathematical
analysis of these models is still of interest, since these models yield very quick qualitative insight
into the results of mathematical models with soft tissues. Of course, we are aware of the existing
models with a higher sophistication. The presentation of the results in this present paper is mainly
focused on a simplified model for wound healing. Though, the conclusions can be extrapolated
to more generic models with discontinuous switch mechanisms. For the sake of completeness, we
give an introduction into mathematical models in biology.

Bone regeneration and wound healing are very complicated processes from a biological point
of view. The first process involves cell migration and a chain of differentiations of several cell-
types triggered by bone fracture. Under certain conditions, cartilage formation, mineralization,
formation of fibrous tissue take part in the callus in which the bone heals. Some complicated
mathematical models for bone regeneration have been reported in the literature, [Huiskes et al.
1997,Ament and Hofer 2000,Andreykiv 2006,Bailon-Plaza and van der Meulen 2001], to mention
just a few. Application to bone ingrowth into implants are described by [Andreykiv 2006], [Huiskes
et al. 1997] and [Vermolen et al. 2008] among many others. The second process, wound healing
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or soft tissue regeneration, involves cell migration, production and decay of growth factors and
(re-)establishment of the vascular network surrounding the area with an increased mitotic activity.
Experimental validation of the models of both complicated biological processes is indispensable.
The present paper focuses on the closing of epidermic or intra-osseous wounds.

When a wound occurs, blood vessels are cut and blood enters the wound. Due to coagulation
of blood inside the wound, the wound is temporarily closed and as a result the blood vessels
adjacent to the wound are also closed. In due course contaminants will be removed from the
wounded area and the blood vessel network will be restored, but initially due to insufficient blood
supply, there will be a low concentration of nutrients which are necessary for cell division and
wound healing. Wound healing, if it occurs, proceeds by a combination of several processes:
chemotaxis (movement of cells induced by a concentration gradient), wound contraction caused
by ingress of fibroblasts that start pulling, neo-vascularization, synthesis of extracellular matrix
proteins, and scar modeling. Previous models incorporate cell mitosis, cell proliferation, cell death,
capillary formation, oxygen supply and growth factor generation, including studies by [Sherratt
and Murray 1991], [Filion and Popel 2004], [Maggelakis 2003], [Gaffney et al. 2002], [Olsen et al.
1995], [Vermolen and Adam 2007] and [Vermolen 2008], to mention just a few. A recent work
devoted to mathematical biology has been written by [Murray 2004], in which the issue of wound
healing is also treated. The wound healing process can roughly be divided into the following
partially overlapping consecutive stages:

1. Formation of a blood clot on the wound to prevent undesired chemicals from entering the
tissue of the organism (blood clothing/inflammatory phase);

2. Formation of a network of tiny arteries (capillaries) for blood flow to supply the necessary
nutrients for wound healing;

3. Division and growth of epidermal cells (mitosis), taking place during the actual healing of
the wound (proliferative phase).

A good supply of oxygen, nutrients and constituents is necessary for the process of cell division and
cellular growth. For this purpose tiny capillaries are formed during the process of angiogenesis.
Some models for capillary network formation have been proposed by [Gaffney et al. 2002] and
[Maggelakis 2004].

Epidermal wound closure is modeled by [Sherratt and Murray 1991], among others, who con-
sider cell division and growth factor generation simultaneously for healing of epidermal wounds.
Their model consists of a system of reaction-diffusion equations. We also refer to [Vermolen et
al. 2007] for a description of several models for wound healing and several aspects of wound
healing, such as wound closure and angiogenesis. Until now, the conditions for wound healing
were only analyzed for geometries where only one spatial co-ordinate could be used. As far as
we know, in all the mathematical studies mentioned before, either neo-vascularization or wound
closure is modeled. Hence, these processes are considered to be sequential. However, according
to the medical literature [Stadelman et al. 1997], these sequential processes partially overlap. A
first attempt to combine the effects of angiogenesis and wound closure is made by [Vermolen and
Adam 2007] and [Vermolen 2008]. In the aforementioned papers, the influence of angiogenesis on
wound closure is dealt with. The influence of wound closure on angiogenesis was not taken into
account.

Some models for wound healing and tumor growth rely on following a level of a solution
to a system of partial differential equations, such as the studies due to [Sherratt and Murray
1991] and [Gaffney et al. 2002], to mention a few of them. Some other models are based on a
discontinuous switch mechanism in which wound healing or tumor growth takes place if and only
if the concentration of a growth factor or nutrient or oxygen exceeds a threshold value. The model
that is analyzed in this paper is also based on a discontinuous switch mechanism. For some other
studies on the models with a discontinuous switch mechanism, we refer to the work of [Shymko
and Glass 1976], [Britton and Chaplain 1993], [Adam 1987], [Adam 1999], [Gao and Bu 2003]
and [Hogea et al. 2006].
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We are aware of the literature existing of studies that couple wound closure or neo-vascularization
with mechanical strains and stresses, for instance [Murray 2003,Murray 2004] and [Olsen et al.
1995]. These mechanical influences are important for the modeling of deeper wounds and it will
be a topic for future study. In these models a convection term for the cell density appears due
to the rate of displacement. Further, the diffusion coefficients will depend on local strain and
become directionally dependent. An other example of the significance of the mechanical loading
on wound healing is the experimentally sustained observation that wounds aligned with the lines
of skin tension tend to heal with better results. The present model is a simplification of reality,
since, in reality a large number of growth factors should be taken into account and the picture is
even more complicated than that. In [Wearing and Sherratt 2000], the signaling of keratinocyte
growth factors, originating from mesenchymal cells, acting on epithelial cells is considered. This
is crucially important for the building blocks of the micro-vascular network and skin consisting of
layers of cells (epithelium). They develop a mathematical model for which traveling wave solu-
tions are constructed as well as one-dimensional finite difference solutions. An interesting review
on the modeling of angiogenesis in the context of tumor growth was written by [Alarcon et al.
2006]. In their paper, it is claimed that the modeling of the coupling between angiogenesis and
tumor growth is crucially important. Furthermore, the assumption that the local concentration of
oxygen is proportional to the density of the endothelial cells is debated by them. An other issue
concerns the heterogeneities of the vascular system, resulting into a heterogeneous blood flow. The
issues dealt with in the present paper, only involve chemistry and mechanical issues are presently
ignored. In the future, mechanical effects will be covered. Some papers that treat angiogenesis
in relation with tumor growth are due to [Balding and McElwain 1985], [Mantzaris et al. 2004]
and [Alarcon et al. 2006].

Since wounds possibly occur after a traumatic event or surgery, a good and efficient healing is
crucial. Several treatments are known to enhance wound healing. In order to design alternative
and hopefully more efficient treatments, a thorough knowledge of the process is indispensable.
Furthermore, a good mathematical model for wound healing could be useful for surgeons to de-
termine how a post-operative wound heals. From a mathematical point of view, the setting up of
such a model in terms of a nonlinear set of partial differential equations and boundary conditions
is a challenge. An other challenge is a parameter sensitivity analysis, which reveals the most sig-
nificant parameters of the model with respect to the model results. The mathematical models can
be used to examine the effects of wound geometry on the healing time, or on the local injection
of certain hormones, i.e. certain growth factors, to enhance wound healing. For these purposes, a
calibrated mathematical model can provide quicker insights than animal experiments. An other
issue concerns wound therapies related to strain lines or addition of drugs. The models can be
helpful to investigate the impact of certain treatments on wound healing.

The present paper is mainly mathematical and it is organized as follows. First, the model,
based on the ideas of Adam, is introduced. Subsequently, analytic solutions are given and a waiting
time, before healing sets in, is analyzed. Wound healing, being modeled as a moving boundary
problem, is analyzed in terms of a possible retardation. Finally, some conclusions are drawn.

We would like to emphasize that the present study is an attempt to get a qualitative math-
ematical model for tissue regeneration. A quantitative model taking into account the numerous
growth factors and elastic strains is beyond the scope of this paper. In a future study, the models
will be enriched with the mechanical issues, such as strain dependent diffusion coefficients. The
phenomenon of tissue healing itself is still being investigated. A rather complete state-of-the-art
picture from the medical literature can be found in the thesis due to [Lamme 1999].

2 THE MATHEMATICAL MODEL

In this section the model based on the ideas of [Adam 1999] is presented. Firstly, the model for
the regeneration, decay and transport of the growth factor is given, and subsequently the healing
process as a result of the presence of the growth factor is described (see [Vermolen et al 2006]).
Finally, a description of the coupling of the two models is presented.
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Figure 1: The increased blood vessel density at the wound edge, computed from the model due
to [Gaffney et al. 2002].

2.1 The growth factor distribution

Wound healing is caused by, among others, mitotic generation and cell migration. If healing occurs,
then, it is enhanced by the presence of a growth factor that stimulates cellular growth and cell-
division. We will analyze a necessary condition for wound healing and analyze the subsequent step
of healing. Wound healing is a complicated biological process and therefore some simplifications
are needed for a feasible mathematical model within the scope of this paper. An interesting model
on the healing of cutaneous wounds is presented by [Gaffney et al. 2002]. As their paper involves
the solution of a set of partial differential equations, our study attempts to arrive at a relatively
simple model for wound or bone healing.

Due to the angiogenetic response, there is an increased number of capillaries (tiny arteries) near
the edge of the wound. An example is presented in Figure 1, where the model due to [Gaffney et
al. 2002] has been used to obtain the result. The wound edge is located at positions where the
blood vessel density drops dramatically as one progresses towards the wound center in (0, 0).

This gives an increased activity of cellular growth, cell-division and production of the growth
factor that enhances wound healing. This motivates that the production of the epidermic growth
factor is neglected outside a ring around the wound. Hence, we assume that (significant) pro-
duction of epidermic growth factor only takes place in the vicinity of the wound. Further, the
thickness of this layer, d, is taken constant. The situation is as sketched in Figure 2.

Further, we assume that healing takes place if and only if the concentration of the growth factor
at the wound edge, see Figure 2, exceeds a threshold value ĉ.

In Figure 2 we use Ω1, Ω2 and Ω3 to denote the wound itself, the active layer and the outer tissue
respectively. Far away from the wound, that is at the boundary of the domain of computation,
Γ as in Figure 2, we assume that there is no transport of growth factor. The wound edge, the
interface between the wound (Ω1) and the active layer (Ω2), is indicated by W (i.e. W = Ω1∩Ω2).

Let the total domain of computation be given by Ω, which is Lipschitz, then, following [Adam
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Figure 2: The geometry of a circular wound.

1999], we state the fundamental equation for the transport, production and decay of the growth
factor concentration, c, which reads as:

∂c

∂t
− D div grad c + λc = P1Ω2

(x), for (t,x) ∈ (0, T ]× Ω, (1)

∂c

∂n
= 0, for (t,x) ∈ (0, T ]× ∂Ω, (2)

where 1Ω2
(x) =

{

1, for x ∈ Ω2

0, for x ∈ Ω1 ∪ Ω3

, (3)

As the initial condition, we have
c(0,x) = 0, for x ∈ Ω. (4)

In the equations D, P and λ denote the constant diffusion coefficient, production rate constant
and the decay coefficient of the growth factor. These constants are non-negative in our parabolic
PDE. The growth factor concentration, c, is to be determined. Further, the second and third
term in equation (1) respectively account for growth factor transport and growth factor loss.
The right-hand side of equation (1) accounts for the production of the growth factor. Equation
(2) represents the boundary condition and the step-function f accounts for the growth factor
production taking place in the active layer only. We will see that if Ω2 is closed there is an
inconsistency as D → 0. [Adam 1999] points out that for the derivation of a critical size defect,
which is the smallest wound that does not heal, the time derivative in the diffusion reaction
equation does not have to be taken into account.

Healing at a certain location of the wound edge implies that the inward normal component of
the velocity, vn, of the ’interface’ W is positive. In the present paper we use the assumption
from [Adam 1999] that the wound heals if and only if the growth factor concentration exceeds a
threshold concentration ĉ, hence

vn > 0 if and only if c(t,x) ≥ ĉ for x ∈ W,
else vn = 0.

(5)
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This implies that in order to determine whether the wound heals at a certain location on W at a
certain time t, one needs to know the growth factor concentration there.

Adam considers analytic expressions for the time independent case for several geometries: planar
(linear) geometry [Adam 1999], a circular wound on a spherical surface [Adam 2002], a circular
wound on a planar surface [Adam 2004]. A wound in spherical symmetry is considered in terms
of analytic expressions by Arnold [Arnold 2001].

As it has been motivated in [Vermolen et al 2006], we assume that the healing rate is proportional
to the local curvature of the wound. Hence, in agreement with equation (5), the velocity component
in the outward (from Ω1, that is the wound) normal direction is given by

vn = −(α + βκ)w(c(t,x) − ĉ), for x ∈ W, (6)

where κ is the local curvature and α, β > 0 are considered as non-negative constants, prohibiting
growth of the wound if κ ≥ 0. Further, the function w(s) falls within the class of heaviside
functions, that is w(s) ∈ H(s), where H(.) represents the family of heaviside functions, for which
we have

H : s →











0, if s < 0,

[0, 1], if s = 0,

1, if s > 0.

(7)

Some models with the same principles as the active layer and / or the discontinuous switch
condition can be found in [Hogea et al. 2006], [Adam 1987], [Adam 1999], [Gao and Bu 2003],
[Shymko and Glass 1976], [Britton and Chaplain 1993].

3 ANALYSIS OF THE STATE PRIOR TO INTERFACE

MOTION

In this section, we assume that D, λ, P > 0. First, we consider the integral of the growth factor
concentration, which is the ’total mass’ of the growth factor, defined by m(t) :=

∫

Ω
c dΩ. Due to the

initial condition for the concentration, the total mass is zero initially, that is
∫

Ω
c(x, y, 0) dΩ = 0.

Integration of the PDE (1) over Ω, gives with the use of the boundary condition

dm

dt
= −λm + P

∫

Ω2

dΩ.

We define Aδ :=
∫

Ω2
dΩ, which is constant in time since the wound does not move yet, then the

only solution of this ordinary differential equation is given by

m(t) =
PAδ

λ
(1 − e−λt) > 0 for t > 0. (8)

This implies that c > 0 for t > 0 in (part of) Ω at least. In this section, we will see further that
healing sets in after some time that is needed for the concentration at the wound edge to reach the
threshold value. The time at which healing sets in, is referred as the waiting time. In this section, a
bound for the waiting time is given. In order to analyze the waiting time, the PDE for the epidermic
growth factor has to be solved. The solution can be obtained using discretization techniques, such
as the Finite Element Method. In this section, analytic expressions as fundamental solutions for
the growth factor concentration are also derived for planar and circular wounds. These expressions
are contractive semigroups and demonstrate the existence of a solution for elementary geometries.
For generic wound geometries, it is no longer possible to give analytic expressions, and for this
purpose a bound for the waiting time is derived. We would like to address the existence of solutions
for more generic geometries in a later study.
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3.1 Existence, uniqueness and convergence to steady-state

By the use of fundamental solutions, see for instance [Friedman 1964], [Pao 1992], [Ito 1992],
applied to the parabolic differential equation, existence of solutions can be demonstrated. An
important matter is that the analysis in the aforementioned works is carried out under certain
smoothness requirements: f is assumed to be Hölder continuous in space and time. In our applica-
tion, f does not satisfy this requirement, hence classical smooth solutions do not exist. Therefore,
for the analysis, we will limit our attention to a weak form of the partial differential equation:

Definition 3.1.1 The weak form of equations (1–4) is given by:















Find c ∈ V , subject to c(0,x) = 0 in Ω, such that

(

∂c

∂t
, φ

)

+ a(c, φ) = (Pf(x), φ), ∀φ ∈ H1(Ω),
(9)

with

(u, v) :=

∫

Ω

uv dΩ, (10)

as the inner product of the functions u and v over Ω, and the bilinear form a(u, v) defined by

a(u, v) :=

∫

Ω

{D∇u · ∇v + λuv} dΩ. (11)

The function space V in which we look for the solution is defined by

V := C1[(0, T ]; H1(Ω)] ∩ C0[[0, T ]; H1(Ω)].

The existence and uniqueness of a steady-state solution in H1(Ω) can be demonstrated in a
straightforward way. Formally, we have

Theorem 3.1.1 Let ∂cE

∂t
= 0 in Ω be the steady-state solution of equation (9), if D, λ > 0, then

cE uniquely exists in H1(Ω).

A similar theorem was demonstrated by [Britton and Chaplain 1993] for a slightly different problem
with a classical solution with respect to smoothness.

Proof of Theorem 3.1.1

The steady-state version of equation (9) is given by

a(cE , φ) = (P1Ω2
, φ) ∀φ ∈ H1(Ω), (12)

with inner product and bilinear form defined in (10) and (11), respectively. It is straightforward to
demonstrate that the bilinear form is symmetric (and hence continuous due to Schwarz inequality).
Further, we get

a(u, u) =

∫

Ω

{

D||∇u||2 + λu2
}

dΩ ≥ λ

∫

Ω

u2dΩ =: λ||u||20,

and hence the bilinear form is coercive. Subsequently, we show that (P1Ω2
, φ) is bounded:

|(P1Ω2
, φ)| ≤ ||P · 1Ω2

||0 · ||φ||0 = P · (meas.Ω2) · ||φ||0 ≤

P · (meas.Ω2) · {||φ||0 + ||∇φ||0} =: P · (meas.Ω2) · ||φ||1.

The first step follows from the application of Cauchy-Schwarz’s inequality. In the above inequality,
we define meas.Ω :=

∫

Ω
dΩ, which gives an area if Ω ⊂ R

2 and the norm ||φ||1 := ||φ||0 + ||∇φ||0.
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The right hand side is bounded since P and meas.Ω2 are bounded and φ ∈ H1(Ω). Hence all the
requirements of Lax-Milgram’s Theorem, see for instance [Kreyszig 1989], are satisfied. Herewith,
application of the Lax-Milgram Theorem, gives that the solution exists in H1(Ω) uniquely. 2

Besides to the existence and uniqueness of a steady-state solution, one can prove that there is at
most one solution in the sense of Definition 3.1.1 and that this solution converges to the steady-
state solution cE . This is formalized in:

Theorem 3.1.2 For D, λ > 0, there exists at most one solution in the sense of Definition 3.1.1
and this solution converges to the steady-state solution cE as t → ∞, that is lim

t→∞
c(t,x) = cE(x).

Proof of Theorem 3.1.2

First we deal with uniqueness. Suppose there are two solutions c1 and c2 in the sense of Definition
3.1.1. Then, v := c2 − c1 satisfies

v ∈ V such that

∫

Ω

∂v

∂t
φdΩ = −

∫

Ω

{D∇v · ∇φ + λvφ} dΩ, for all φ ∈ H1(Ω). (13)

Take φ = v, and use v(0,x) = 0 in Ω, then

1

2

∫

Ω

v2dΩ = −
∫ t

0

{
∫

Ω

(

D||∇v||2 + λv2
)

dΩ

}

ds ≤ −λ

∫ t

0

{
∫

Ω

v2dΩ

}

ds.

Suppose that v(t̂, x̂) 6= 0 for a (t̂, x̂) ∈ (0, T ) × Ω, then by continuity in space and time, there is
a ball Bε =

{

(t,x) ∈ (0, T )× Ω : |t − t̂| < ε, ||x − x̂|| < ε
}

such that v(t,x) 6= 0 for (t,x) ∈ Bε.
Hence the integrand is strictly positive and implies that

∫

Ω
v2dΩ < 0, by which we arrive at a

contradiction. Hence, v = 0 on Ω for t > 0 and this implies that there is at most one solution.

Let us note that, after use of coercivity, one could alternatively have applied Grönwall’s Lemma
to

1

2

d

dt
||v||20 + λ||v||20 ≤ 0 =

1

2

d

dt
||v||20 + a(v, v),

with ||v(0,x)||20 = 0, which implies ||v||20 = 0 for t > 0, and hence v(t,x) = 0 a.e. in Ω. Since we
limit our solutions in the class V , v = 0 in Ω for t > 0 by necessity.

Next, we deal with the convergence to the steady-state solution. Subtraction of (12) from (9) and
defining v := c − cE in Ω, gives

∫

Ω

∂v

∂t
φdΩ = −D

∫

Ω

∇v · ∇φdΩ − λ

∫

Ω

vφdΩ, for all φ ∈ H1(Ω).

After choosing φ = v, and applying Friedrich’s inequality, we get

d

dt

∫

Ω

v2dΩ = −D

∫

Ω

||∇v||2dΩ − λ

∫

Ω

v2dΩ ≤ −λ

∫

Ω

v2dΩ.

Grönwall’s Lemma gives
∫

Ω

v2dΩ ≤ e−λt

∫

Ω

v2(0,x)dΩ,

where v(0,x) = −cE(x), and hence lim
t→∞

v(t,x) = 0 a.e. in Ω. Since v ∈ H1(Ω), it follows that

lim
t→∞

c(t,x) = cE(x) in Ω. 2

Theorem 3.1.3 There exists an interval t ∈ (0, T ), with T > 0, in which equations (1–4) have a
solution in V (in the sense of Definition 3.1.1).
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Proof of Theorem 3.1.3

We already demonstrated that if a solution to equations (1–4) exists, then it converges to the
steady-state solution cE(x) ∈ H1(Ω). Furthermore, the solution is continuous in t, and since
c = 0 at t = 0, then for any ĉ there exists a minimal T during which c < ĉ on W . Next, we
subtract the steady-state equation (12) from equation (9) and define u(t,x) := c(t,x) − cE(x), to
obtain

Find u ∈ V such that (ut, φ) + a(u, φ) = 0, subject to u(0,x) = −cE(x).

This problem has a classical solution. Since c = u + cE in which cE ∈ H1(Ω), this implies that c
is not classical, but only exists in V . 2

Of course Theorems 3.1.3 and 3.1.2 are related.

3.2 Fundamental solutions

In this section, we show a procedure to construct analytic solutions. These analytic solutions are
also useful for a validation of finite element solutions. Since the solutions, we are interested in,
are continuous in t, there is an interval (0, T ) in which c < ĉ. The solutions that we construct are
valid within this time interval. The first type of solution lies in V , and its construction is inspired
by the proof of the existence theorem (Theorem 3.1.3). The second type is constructed using
classical solutions from a decomposition of the discontinuous source term. Since the solution in V
is classical almost everywhere in Ω (except on δΩ2), the solutions are the same almost everywhere
in the limit (k → ∞). The second solution, not being in V , but in convergence is reached. In the
analytic solution of this section, we consider the case in which the wound edge concentration is
below the threshold concentration ĉ. The time, at which the wound edge concentration equals ĉ,
is referred to as the waiting time, we denote this time by τ .

3.2.1 Construction of solutions in V

We let the construction of solutions in V be inspired by the proof of the existence Theorem 3.1.3.
In this section, we will sketch the general idea, and apply this to a planar case.

Suppose, that for any geometry we found a steady-state solution cE ∈ H1(Ω), then setting
u(t,x) := c(t,x) − cE(x), we have the following problem, which has a classical solution

∂u

∂t
= D∆u − λu, in (0, t) × Ω.

Subject to u(0,x) = −cE(x) and homogeneous Neumann boundary conditions. Let φk(x) be the
orthonormal eigenfunctions of the differential operator −∆+ λI(.), then the solution of the above
equation is represented as

u(t,x) =
∞
∑

k=0

uk(t)φk(x).

Let µ2
k = λ + Dλ2

k be the eigenvalues of the operator −∆ + λI (note that λ2
k represent the

eigenvalues of −∆) corresponding to φk(x), then one obtains for uk(t)

uk(t) = uk(0)e−µ2
k
t,

where uk(0) follows from the initial condition, which gives

uk(0) = −
∫

Ω

cE(x)φk(x)dΩ.

The overbar on x is used to indicate that this is the variable over which we integrate. Hence, we
get for the analytic solution for u

u(t,x) = −
∫

Ω

G(t, 0,x,x)cE(x)dΩ,

9



where x is the spatial variable over which we integrate, and G(t, s,x,x) is the Green’s function
defined by

G(t, s,x,x) :=
∞
∑

k=0

eµ2
k
(s−t)φk(x)φk(x).

Since G(t, 0,x,x) is infinitely differentiable with uniformly bounded derivatives on 0, T ) × Ω, we
have u ∈ C∞((0, T ) × Ω). From direct substitution, it is shown that u solves the homogeneous
PDE and homogeneous boundary condition, since G does.

Next, we consider

∣

∣u(t,x) + cE(x0)
∣

∣ =

∣

∣

∣

∣

cE(x0) −
∫

Ω

cE(x)G(t, 0,x,x)dΩ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

(G(0, 0,x0,x) − G(t, 0,x,x))cE(x)dΩ

∣

∣

∣

∣

≤

∫

Ω

∣

∣G(0, 0,x0,x) − G(t, 0,x,x)
∣

∣ cE(x)dΩ → 0 as (t,x) → (0,x0).

The last step follows from G being (Lipschitz) continuous both in t and x. Hence the initial
condition is satisfied. We used similar principles as in [Evans 1998] to demonstrate that u solves
the homogeneous PDE, boundary condition and initial condition.

Subsequently, the generalized solution c(t,x) ∈ V (since cE ∈ H1(Ω)) is obtained by

c(t,x) = cE(x) + u(t,x) = cE(x) −
∫

Ω

G(t, 0,x,x)cE(x)dΩ =

∫

Ω

{cE(x) (δ(x − x) − G(t, 0,x,x))} dΩ.

(14)

The above solution is valid as long as c < ĉ on W . Since the solution is continuous in t, there exists
a T > 0 for which the above expression is valid. Formally, this is summarized in the following
assertion:

Theorem 3.2.1 Let c(t,x) be given by equation (14), then c ∈ V , and

∂c

∂t
− D∆c + λc = P1Ω2

, for t ∈ (0, t), x ∈ Ω,

and lim
(t,x)→(0,x0)

c(t,x) = 0 for each point x0 ∈ Ω.

Example 3.2.1 For a planar wound, we have µk = kπ/L and φk(x) =
√

2/L cos(µkx) for k ∈
N \ {0} and φ0(x) =

√

1/L. Further, following [Adam 1999] we have for cE(x):

cE(x) =































a1e
√

λ

D
x + a2e

−
√

λ

D
x, 0 < x < R,

a3e
√

λ

D
x + a4e

−
√

λ

D
x + PD

L
, R < x < R + δ,

a5e
√

λ

D
x + a6e

−
√

λ

D
x, R + δ < x < L.

10



The boundary conditions and continuity of cE and c′E define the values for a1, . . . , a6 uniquely.

a1 =
PD

(

e
√

λ

D
(2L−R−δ) + e

√
λ

D
R − e

√
λ

D
(R+δ) − e

√
λ

D
(2L−R)

)

2λ
(

e−
√

λ

D
(R+δ) − e

√
λ

D
(2L−R−δ)

) e−
√

λ

D
(R+δ),

a2 = a1,

a3 =
PD

(

−e
√

λ

D
(2L−R−δ) − e

√
λ

D
R + e

√
λ

D
(R+δ) + e−

√
λ

D
R
)

2λ
(

−e−
√

λ

D
(R+δ) + e

√
λ

D
(2L−R−δ)

) e−
√

λ

D
(R+δ),

a4 =
PD

(

−e
√

λ

D
(2L−R−δ) + e

√
λ

D
(2L−R) + e

√
λ

D
(R+δ) − e−

√
λ

D
(2L+R)

)

2λ
(

−e−
√

λ

D
(R+δ) + e

√
λ

D
(2L−R−δ)

) e−
√

λ

D
(R+δ),

a5 =
PD

(

e
√

λ

D
R − e−

√
λ

D
R − e

√
λ

D
(R+δ) + e−

√
λ

D
(R+δ)

)

2λ
(

e−
√

λ

D
(R+δ) − e

√
λ

D
(2L−R−δ)

) e−
√

λ

D
(R+δ),

a6 = a5e
2
√

λ

D
L.

Using these constants, one constructs the steady-state solution cE(x). Note that cE is not classical.
The solution for u := c − cE is reconstructed from

u(t, x) =

∞
∑

k=0

uk(t)φk(x), with u(0, x) = −cE(x) =

∞
∑

k=0

uk(0)φk(x).

The uk(0) and u)k follow from the orthonormality and substitution into the PDE

uk(0) = −
∫ L

0

cE(x)φk(x)dx, and uk(t) = uk(0)e−(λ+Dλ2
k
)t.

Herewith the solution u(t, x) and c(t, x) are reconstructed.

3.2.2 Constructions of ’classical’ solutions

The fundamental solutions shown in the present section are valid in Ω, except on δΩ2, on which
the reaction term with the indicator function is discontinuous. This is a consequence of Fourier’s
Theorem which says that at a discontinuity of a piecewise continuous function, the series gives
the average of the values obtained by passing the limit over space to the discontinuity from both
sides. Therefore, the better alternative is to construct the solution in a way that is inspired by
the proof of Theorem 3.1.3 as been presented in the previous section.

Hence, the source function P1Ω2(t), which is piecewise continuous, can be written as a unique
linear combination of the eigenfunctions, say

P1Ω2
=

∞
∑

k=0

bkφk(x), a.e. in Ω,

where the functions φk(x) represent the eigenfunctions of the operator −∆ + λI. Due to com-
pleteness and linear independence of the eigenfunctions of the self-adjoint differential operator,
the solution u can be written as an eigenfunction expansion

c(t,x) =

∞
∑

k=0

ck(t)φk(x).

11



Substitution into the weak differential form (see Definition 3.1.1), gives

c′k + µ2
kck = (P1Ω2

, φk),

where the eigenfunctions φk are orthonormal. This implies that the solution is given by

ck = P

∫ t

0

(1Ω2
, φk)eµ2

k
(s−t)ds.

Hence the solution is formally given by

c(t,x) = P
∞
∑

k=0

φk(x)

∫ t

0

(1Ω2
, φk)eµ2

k
(s−t) ds.

We define the Green’s function by

G(t, s,x,x) :=

∞
∑

k=0

eµ2
k
(s−t)φk(x)φk(x),

to write the solution as

c(t,x) = P

∫ t

0

∫

Ω

1Ω2(x)G(t, s,x,x) dΩ ds.

where x is the spatial variable over which one integrates. The above equation represents the
general solution as long as t ∈ (0, τ). Using this solution, one can demonstrate by substitution
into the PDE and realizing that the Green’s functions G satisfy the PDE that

ct − D∆c + λc = P

∫

Ω

1Ω2
(x)G(t, t,x,x)dΩ =

P
∞
∑

k=0

φk(x)

∫

Ω2

φk(x)dΩ =
∞
∑

k=0

bkφk(x).

Using Fourier’s Theorem, we get

ct − D∆c + λc =











0, x ∈ Ω \ Ω2,

P, x ∈ Ω2,

P/2, x ∈ ∂Ω2.

(15)

On ∂Ω2 the situation differs. To illustrate this solution, we consider a planar and a circular
example.

Example 3.2.2 It can be shown that fundamental solutions to the homogeneous partial differential

equation can be written as exp(−(λ + k2π2

L2 D)t) cos(kπx
L

), where µk = kπ/L. The normalized
eigenfunctions are given by

φk(x) =
√

2/L cos(kπx/L), for k ∈ N \ {0}, and φ0(x) = 1/
√

L. (16)

The right-hand side is written as

f(x) =

∞
∑

k=0

γkφk(x), a.e. in Ω, (17)

12



where

γk =

∫ L

0

f(x)φk(x)dx = P

∫ R+δ

R

φk(x)dx =
2
√

2LP

kπ
sin(

kπδ

2L
) cos(

kπ(2R + δ)

2L
), for k ∈ N \ {0}.

γ0 =
Pδ√

L
.

(18)
These expressions are substituted into the nonhomogeneous PDE, we realize that the eigenfunctions
are an orthonormal set, then this yields

c′k + (µ2
kD + λ)ck = γk,

ck(0) = 0.
(19)

Using µk = kπ/L, the solution of the above equation is given by

ck(t) =
γk

λ + k2π2D
L2

(

1 − exp(−(
k2π2D

L2
+ λ)t)

)

, k ∈ N. (20)

This implies that the solution is given by

c(t, x) =
Pδ

λL
(1 − exp(−λt)) +

4P

π

∞
∑

k=1

sin(kπδ
2L

)

k

cos(kπ(2R+δ)
2L

)

λ + k2π2D
L2

(

1 − exp(−(λ +
k2π2D

L2
)t)

)

cos(
kπx

L
).

(21)

The above equation shows that if the active layer thickness is small, the concentration depends
linearly on the thickness.

Example 3.2.3 Here we consider a circular case (axially symmetric) in which polar coordinates
are used. First, we consider the homogeneous partial differential equation on which we apply
separation of variables and consider solutions in the form of c(t, r) = ρ(r)T (t), this implies, after
some re-arrangement

T ′

DT
+ λ =

1

rρ
[rρ]

′
= −µ2

k. (22)

The right-hand side constant must be nonnegative in order to have nontrivial solutions. From this,
one gets the following ordinary equation for T

T ′ + (λ + µ2
kD)T = 0, (23)

and eigenvalue problem for ρ(r), in which we determine µk such that

[rρ′]
′
+ µ2

krρ = 0, ρ′(0) = ρ′(L) = 0, (24)

for nonzero ρ(r). The above differential equation admits solutions of the form

ρ(r) = c1J0(µkr) + c2Y0(µkr), (25)

where J0 and Y0 are the Bessel- and Weber-Bessel functions of zeroth order respectively. Since
lim

r→0+
ρ(r) must be finite, and since lim

r→0+
Y0(µkr) does not exist, we have c2 = 0, hence the solutions

are given by
ρ(r) = c1J0(µkr). (26)
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By some manipulations with the Bessel functions, we arrive at the following set of orthonormal
eigenfunctions:

φk(r) =

√
2

L

J0(µkr)

J0(µkL)
, for k ∈ N. (27)

Next, we deal with the non-homogeneous partial differential equation. For this reason, the right-
hand side function f(r) is expanded into a linear combination of the above orthonormal eigenfunc-
tions:

f(r) =

∞
∑

k=0

γkφk(r). (28)

Using the orthonormality property, we get

γk = P

∫ L

0

φk(r)rdr = P

∫ R+δ

R

φk(r)rdr. (29)

Hence

γk =
P
√

2

µkJ0(µkL)L
[(R + δ)J1(µk(R + δ)) − RJ1(µkR)] , (30)

and γ0 =
√

2PRδ
L

(1 + δ
2R

). For the solution of the non-homogeneous partial differential equation,
we substitute

c(t, r) =

∞
∑

k=0

ck(t)φk(r), (31)

to obtain
c′k + (µ2

kD + λ)ck = γk, for t > 0,
ck(0) = 0.

(32)

The solution of the above differential equation is given by

ck(t) =
γk

µ2
kD + λ

(

1 − exp(−(µ2
kD + λ)t)

)

. (33)

The expressions ck(t)φk(r) give the fundamental solutions to the non-homogeneous partial differ-
ential equation. The general solution is the sum of them, that is

c(t, r) =
2PRδ(1 + δ

2R
)

λL2
(1 − exp(−λt))+

2P

L2

∞
∑

k=1

(R + δ)J1(µk(R + δ)) − RJ1(µkR)

µkJ2
0 (µkL)(µ2

kD + λ)
J0(µkr)

(

1 − exp(−(µ2
kD + λ)t)

)

.

(34)

Here the expressions for γk have been used. With the eigenvalue equation J1(µkL) = 0, the above
equation gives the concentration of the growth factor. In Figure 3 we give several plots of the
growth factor concentration profile at a certain time using various numbers of basis functions. It
can be seen that convergence, especially near the Neumann boundaries, is slow and that the use of
a large number of basis functions is necessary. Further, a comparison to a finite element solution
is shown in Figure 4.

3.3 Generic analysis of the waiting time

Since for generic geometries, the waiting times are hard to determine, we derive a bound for the
waiting time. Further, we consider the solution c in Ω for a time span (0, T ), where T > 0 is a finite
time. We emphasize that the analysis in this section applies for the state prior to healing, that is
t < τ , hence the wound edge does not move yet. We will demonstrate the following theorems:
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Figure 3: The analytic solution for circular wounds using various numbers of basis functions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.005

0.01

0.015

0.02

0.025

0.03

0.035
AXIAL SYMMETRY ADAMS MODEL

RADIAL CO−ORDINATE

G
R

O
W

T
H

 F
A

C
T

O
R

 C
O

N
C

E
N

T
R

A
T

IO
N

ANALYTIC SOLUTION 

FINITE ELEMENT SOLUTION 

Figure 4: A comparison between the analytic solution and the numerical solution.
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Theorem 3.3.1 Let equations (1–4) be satisfied, with D, λ > 0, and Aδ and AΩ be the non-zero
area of the active layer and domain of computation respectively, then,

1. For the wound edge concentration, c(t), we have

c(t) =
PAδ

λAΩ
(1 − exp(−λt)), as D → ∞

c(t) =
P

λ
(1 − exp(−λt)), if D = 0 and Ω2 is closed,

c(t) = 0, if D = 0 and Ω2 is open.

(35)

2. Furthermore, there exists a waiting time, τ , before healing sets in, and this waiting time has
the following limits

lim
D→0

τ =
1

λ
ln

(

1

1 − ĉλ
P

)

, if Ω2 is closed;

lim
D→∞

τ =
1

λ
ln

(

1

1 − ĉλAδ

PAΩ

)

, if
ĉλAδ

PAΩ
< 1.

(36)

Theorem 3.3.2 Let equations (1–4) be satisfied, and Ω2 ⊂ Ω, with meas.Ω2 6= 0, then c(t,x) > 0
for (t,x) ∈ Ω × (0, T ).

Theorem 3.3.3 Let c1 and c2 satisfy equations (1–4) for the same wound edge position and outer
bound position (i.e. for the same wound) with active layers respectively given by Ω1

2 and Ω2
2 and

let the respective waiting times be given by τ1 and τ2, then

Ω1
2 ⊂ Ω2

2 ⇒ c1 < c2 in Ω and τ2 < τ1.

[Britton and Chaplain 1993] proved two theorems similar to Theorems 3.3.2 and 3.3.3 for a
slightly different problem with a classical smooth solution for one spatial coordinate and under
the conditions of the parabolic comparison Theorem.

Theorem 3.3.4 Let equations (1–4) be satisfied. Then the growth factor concentration c(x, y, t),
and waiting time, τ , change continuously with the extension of active layer.

Theorem 3.3.5 Let equations (1–4) be satisfied, and Ω2 ⊂ Ω, where meas.Ω2 6= 0, then we have

0 < c(t,x) <
P

λ
(1 − exp(−λt)), for (t,x) ∈ (0, T )× Ω, (37)

and herewith

0 < c(t) <
P

λ
(1 − exp(−λt)), (38)

at the wound edge W . Hence the waiting time is bounded from below by

τ >
1

λ
ln

(

1

1 − ĉλ
P

)

. (39)

Note that the above theorem implies the existence of a non-zero waiting time before healing
takes place. In the next section, these assertions will be proved.
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3.3.1 Proofs of theorems

Before we prove the theorems of the previous subsections, we establish the following lemma:

Lemma 3.3.1 Let equations (1–4) be satisfied, then for weak solutions c ∈ V there exists a
function c(t), for which

lim
D→∞

c(t,x) = c(t). (40)

Proof of Lemma 3.3.1

Since f /∈ C0(Ω), we consider solutions in the sense of Definition 3.1.1. After redefining

T =
Dt

L2
, x =

x

L
,

then we obtain a scaled version of the solutions in the sense of Definition 3.1.1:






























Find c ∈ V , subject to c(0,x) = 0, such that

∫

Ω

∂c

∂T
φdΩ = −

∫

Ω

∇c · ∇φdΩ +
PL2

D

∫

Ω2

φdΩ − λL2

D

∫

Ω

cφdΩ,

∀φ ∈ H1(Ω).

(41)

Note that the Jacobian for the spatial co-ordinate transformation is constant and the same in all
the integrals in the above expression. Furthermore, Ω formally transforms in the new co-ordinates.
Since this is not relevant for the proof of Lemma 3.3.1, and to avoid confusion with the notation
of the closure of Ω, we keep on using Ω as the domain. Theorems 3.1.1 and 3.1.2 imply that the
steady-state solution is uniquely defined and that the only solution converges to this steady-state
in Ω. Note that as D → ∞, we have T → ∞, and hence equation (41) changes into

c ∈ H1(Ω), such that 0 = −
∫

Ω

∇c · ∇φdΩ, ∀φ ∈ H1(Ω). (42)

The solution of the above equation does not depend on space or on T . Therefore, it may only
depend on t, that is c(T ,x) = c(t). Hence, we demonstrated that there exists a c(t) such that

lim
D→∞

c(t,x) = c(t), for x ∈ Ω,

which proves Lemma 3.3.1. 2

Proof of Theorem 3.3.1:

The function c(t) from Lemma 3.3.1 is substituted into (9) to get

c′(t)

∫

Ω

φdΩ = P

∫

Ω2

φdΩ − λc(t)

∫

Ω

φdΩ, ∀φ ∈ H1(Ω). (43)

Take φ = 1 on Ω, to get
c′(t)AΩ = PAδ − λc(t)AΩ, c(0) = 0. (44)

Hence, we solve










c′(t) + λc(t) = P
Aδ

AΩ
,

c(0) = 0.

(45)

The exact solution of the above problem is given by

c(t) =
P

λ
· Aδ

AΩ
· (1 − exp(−λt)). (46)
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Herewith, part 1 of Theorem 3.3.1 has been proved for the limit case D → ∞.

Note that

lim
t→∞

c(t) =
PAδ

λAΩ
,

and hence for a wound to start healing at all, we require that

PAδ

λAΩ
≥ ĉ. (47)

We will demonstrate that this is a sufficient condition for healing to start. From equation (46), it
is straightforward to derive that the waiting time is given by

lim
D→∞

τ = − 1

λ
ln

(

1 − λAδ ĉ

PAΩ

)

. (48)

This proves part 2 of Theorem 3.3.1 for the limit case D → ∞. Next, we consider the case D → 0,
where Ω2 is closed. For D = 0, we have from equations (1-4)

c = c(t,x) =







P

λ
(1 − exp(−λt)), for x ∈ Ω2,

0, for x ∈ Ω \ Ω2.
(49)

This result can be used easily to verify that

lim
D→0

τ = − 1

λ
ln

(

1 − λĉ

P

)

. (50)

The case that Ω2 is open is trivial, since it implies c(t,x) = 0 for D = 0 on W . Hence c(t) = 0 for
t > 0. Herewith Theorem 3.3.1 has been proved. 2

Proof of Theorem 3.3.2:

Rewriting equation (1) gives D∆c − λc − ct = −Pf(x) ≤ 0 in (0, T ) × Ω. The theorem is direct
consequence of combination of the maximum principle as is stated in Theorems 2.7–2.9 in [Sperb
1981], which gives:

Let u be a nonconstant solution of Lu − ut ≥ 0 in (0, T ) × Ω, where L is uniformly elliptic, then
u can attain its maximum only for t = 0 or on the boundary Γ (where ∂c

∂n
> 0 with n the unit

normal vector out of Ω).

A proof of this assertion can be found in [Protter and Weinberger 1967]. Since, in our case the
inequality is opposite and strict on a nonzero measure, there can only be a minimum at t = 0 or on
∂Ω. At t = 0, we have c = 0 in Ω and realizing that we have homogeneous Neumann conditions,
implies that c > 0 in Ω × (0, T ). 2

Proof of Theorem 3.3.3:

Let v := c2 − c1, then first we will demonstrate that v > 0. Note that meas.Ω2
2 > meas.Ω1

2. This
gives

∂v

∂t
= D∆v − λv + P (1Ω2

2
− 1Ω1

2
) = D∆v − λv + P1Ω2

2\Ω1
2
, in Ω.

Then, as a consequence of Theorem 3.3.2, it follows that v > 0 in Ω and hence c2 > c1 in Ω, hence
also on W . Since τ is determined by

max
(x,y)∈W

c(τ,x) = ĉ,

we have
max
x∈W

c1(τ,x2) < max
x∈W

c2(τ,x2) = ĉ,
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hence at the time that healing sets in on the domain with Ω2
2 as the active layer, healing did not

yet start in the domain with Ω1
2 as the active layer. Hence τ1 > τ2. 2

Proof of Theorem 3.3.4:

Consider the two solutions c1 and c2 with respective active layers Ω1
2 and Ω2

2, such that Ω1
2 ⊂ Ω2

2.
Then, the difference v := c2 − c1 satisfies

∂v

∂t
= D∆v − λv + P1Ω2

2\Ω1
2
, in Ω, (51)

with a homogeneous Neumann boundary condition at ∂Ω and v(0,x) = 0 in Ω as initial condition.
Integration over Ω gives

d

dt

∫

Ω

vdΩ = −λ

∫

Ω

vdΩ + Pν,

where ν := meas.(Ω2
2 \Ω1

2). Let v := (meas.Ω)−1
∫

Ω
vdΩ, where meas.Ω = AΩ in R

2, then dividing
by meas.Ω gives

dv

dt
+ λv = Pν,

where ν := (meas.Ω)−1ν. Herewith, we get

v(t) =
P

λ
ν
(

1 − e−λt
)

. (52)

This implies with v(t,x) > 0 from the strict inequality on a nonzero measure and as a consequence
of Theorem 3.3.2 that 0 < v < P

λ
ν. Hence lim

ν→0
v = 0, and hence by necessity lim

ν→0
v(t,x) = 0

a.e. in Ω. Since v ∈ V is continuous, we get v(t,x) → 0 as Ω2
2 → Ω1

2 from above. Hence
lim
ν→0

|c2(t,x) − c1(t,x)| = 0 in Ω for t > 0, herewith c(t,x) depends on ν continuously, and hence

on the extension of Ω2 continuously. Since c is continuous in t, the waiting time depends on ν
continuously. 2

Proof of Theorem 3.3.5:

We use a comparison argument to establish our statement. The PDE in equation (1) is estimated
with the following upper bound

∂c

∂t
= D∆c + Pf(x) − λc ≤ D∆c + P − λc, for x ∈ Ω. (53)

We will show that the solution, c1, of

∂c1

∂t
= D∆c1 + Pf(x) − λc1, for x ∈ Ω, (54)

is bounded from above by the solution, c2, of

∂c2

∂t
= D∆c2 + P − λc2, for x ∈ Ω. (55)

By direct substitution, it is verified that the only solution of the above equation (55) is given by
c2(t,x) = P

λ
(1− exp(−λt)). Further, equation (55) models the case that Ω2 = Ω. Since Theorems

3.3.3 and 3.3.4 imply that c increases continuously and strictly monotonically with the extension
of Ω2, and since Ω is the maximum extension of Ω2, the solution c1 is strictly bounded from above
by c2. In other words, we have c1 < c2 = P

λ
(1−exp(−λt)) in (0, T )×Ω. Since c1 ∈ H1(Ω) ⊂ C(Ω),

we have that c1(t,x) ≤ max
Ω

c1(t,x) < c2(t), continuity of c2 and continuity with the dependence

of the extension of Ω2 imply that the waiting time is bounded from below by τ > − 1

λ
ln

(

1 − ĉλ

P

)

,

which corresponds to the waiting time for c2. 2
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4 THE MOVING BOUNDARY PROBLEM

A high value of the threshold condition will give a long waiting time before the actual healing sets
in. An other interesting issue concerns the situation once healing sets in. There are two competing
processes: 1. the movement of the wound edge; 2. the diffusional transport of the growth factor.
If the movement of the wound edge is faster than the transport of the diffusing growth factor, then
we will see that the movement of the wound edge is delayed since the growth factor concentration
at the wound edge does not exceed the threshold concentration any longer. On the other hand,
if diffusion is sufficiently fast then wound healing proceeds, provided that ĉλAΩ

PAδ
< 1. In the

following subsections, we will address this issue in more detail for planar wounds. First, we will
give a physical argument.

We observe in our numerical solutions that once healing starts, for some cases the healing curve
exhibits a stair-case behavior. As the time-step tends to zero, the size of the steps converges
to zero. Hence the limit of a zero time step gives a continuous curve. To examine this curious
behavior, we first use a physical argument:

The displacement of a point on the wound edge is given by vnh during a time step with size h.
Further, from the wound edge, the diffusional penetration depth is given by

√
πDh within a period

of h. In order to have a wound edge concentration of at least the threshold concentration, we need
a sufficient penetration depth relative to the wound edge displacement. Hence, we need

vnh <
√

πDh. (56)

Taking the square of the above equation and dividing by vn 6= 0, gives

h <
πD

v2
n

. (57)

From the above equation, it is clear that if D > 0, then one can always choose a time step h such
that the above condition holds. Hence the staircase behavior disappears in the limit for h → 0.
This explains why the curve is continuous once healing sets in. Healing proceeds until the wound
edge concentration drops below the threshold concentration. This depends on the evolution of the
area of the active layer.

In spite of the continuity of the healing curve, the healing speed is reduced if the rate parameters
α and β are too high in relation to the diffusive transport rate. We will analyze this phenomenon
for planar wounds in the subsequent subsections. Before we do so, we will present a condition for
continuation of wound healing for a limit case under a change of the area of the active layer.

4.1 Continuation of healing

In this section, we consider the solution after the waiting time has elapsed, that is, we analyze the
solution for t > τ . First we demonstrate that for a given healing velocity profile over the wound
edge, the solution is uniquely defined. A defined velicity pattern at W (t) and t > τ , will determine
a movement of the subdomain Ω2(t), subject to the initial condition at t = τ , where the solution
follows from the state prior to τ . We formulat this in the following assertion:

Theorem 4.1.1 Let equations (1–4) and (7) be satisfied with a defined moving interface for t > τ ,
then there exists at most one solution in V .

Proof of Theorem 4.1.1:

Suppose that two solutions exist, c1, c2 ∈ V . Both solutions satisfy the initial condition at t = τ ,
that is c1(τ,x) = c2(τ,x) = c(τ,x). The difference between these two solutions, v := c2 − c1

satisfies
1

2

d

dt
||v||20 + a(v, v) = 0, for t > τ, with v(τ,x) = 0, in Ω,
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in the sense of Definition 3.1.1. From the definition of the bilinear form a(u, v), we have

1

2

d

dt
||v||20 + λ||v||20 ≤ 0, for t > τ, with v(τ,x) = 0, in Ω.

Then, similarly to the proof of Theorem 3.1.2, it follows that v = 0 in Ω for t > τ , and hence there
is at most one solution in V . 2

From Theorem 3.3.3 we learn that the waiting time increases and that the wound edge concentra-
tion decreases with a decreasing area of the active layer. Further, since if the area of the active
layer is zero (there is no active layer), the wound edge concentration remains zero and the waiting
time gets unbounded. This suggests that wound healing may cease if the area of the active layer
becomes too small. This is formulated in the following theorem:

Theorem 4.1.2 Let equations (1–4) and (7) be satisfied with a moving interface for t > τ , and let
Aδ and AΩ be the area of the active layer and domain of computation, then, for the limit D → ∞:

1. Healing continues iff

ĉ
(

1 − eλ(τ−t)
)

≤ P

AΩ

∫ t

τ

Aδ(s)e
λ(s−t)ds; (58)

2. If Aδ = Aδ(0), then, healing will always proceed iff
ĉλAδ

PAΩ
< 1.

Proof of Theorem 4.1.2:

In general the area of Ω2 changes during the course of healing. This is caused by the contraction of
the wound and the resulting decrease of the wound perimeter or by the change of the thickness of
Ω2, depending on the wound geometry or contraction rate equation used in the model. Consider
the limit case of D → ∞, then, Theorem 3.3.1 says that equation (45) holds true. For the case
that Aδ depends on time, we obtain from using an integrating factor to solve (45) for t > τ

exp(λt)c(t) − exp(λτ)ĉ =
P

AΩ

∫ t

τ

Aδ(s)exp(λs)ds. (59)

This gives

c(t) = exp(λ(τ − t))ĉ +
P

AΩ
exp(−λt)

∫ t

τ

Aδ(s)exp(λs)ds ≥ ĉ, (60)

as a condition to start healing in a finite time. This implies

ĉ(1 − exp(λ(τ − t))) ≤ P

AΩ
exp(−λt)

∫ t

τ

Aδ(s)exp(λs)ds, (61)

and the first part of Theorem 4.1.2 has been established.

Next, we set Aδ constant, say Aδ = Aδ, then the right hand side of the above inequality changes
into

P

AΩ
exp(−λt)

∫ t

τ

Aδ(s)exp(λs)ds =
PAδ

AΩλ
exp(−λt)(exp(λt) − exp(λτ)). (62)

From this equation, one obtains

P

AΩ
exp(−λt)

∫ t

τ

Aδ(s)exp(λs)ds =
PAδ

AΩλ
(1 − exp(λ(τ − t))). (63)

Combining this with inequality (61), yields

ĉ(1 − exp(λ(τ − t))) ≤ PAδ

AΩλ
(1 − exp(λ(τ − t))). (64)
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Since, t > τ , we have 0 < exp(λ(τ − t)) < 1, and hence, the above condition for healing to proceed
is satisfied if and only if

ĉλAΩ

PAδ

< 1, (65)

which is consistent with Theorem 3.3.1 to start healing. 2

4.2 Construction of a planar moving solution

In this subsection, we consider the movement of the interface, which may be retardated for some
cases. The intuitive argument at the beginning of this section revealed that the interface position
is a continuous function of time. We will limit the discussion to planar wounds only. Hence, the
curvature is zero, and therefore we are faced with the following problem:

∂c

∂t
= D

∂2c

∂x2
− λc + P1(R,R+δ), in (0, L),

∂c

∂x
(t, 0) =

∂c

∂x
(t, L) = 0,

c(0, x) = 0, in (0, L),

dR

dt
= −αw(c(R(t), t) − ĉ),

(66)

where R(t) denotes the position of the planar interface and note that α > 0. Now we consider the
solution to the above problem in the case that the interface moves. Hence, the solution for t > τ
is of interest. We will show that a solution with a moving interface can be constructed, where
the interface speed is constant. If v denotes the velocity of the interface, where v ∈ [0, α], then

R(t) = R0 −
∫ t

τ
v(s)ds for t ≥ τ . The eigenfunctions of the homogeneous problem are the same as

before for the planar wound at t < τ . However, the Fourier series for the production term changes
due to the time-dependence, that is

P1(R(t),R(t)+δ) =

∞
∑

k=0

γk(t)φk(x),

where γk(t) is the same as before for the planar case, but now one has to bear in mind that R
varies with time. These expressions are substituted into the nonhomogeneous PDE, and we realize
that the eigenfunctions are an orthonormal set, then this yields

c′k + (µ2
kD + λ)ck = γk(t), for t > τ,

ck(τ) follows the non-moving boundary solution.
(67)

Using an integrating factor gives

ck(t) = ck(τ)e(µ2
k
D+λ)(τ−t) + e−(µ2

k
D+λ)t

∫ t

τ

γk(s)e(µ2
k
D+λ)sds.

The formal solution to the initial boundary problem is given by

c(t, x) =

∞
∑

k=0

ck(t)φk(x) =

∞
∑

k=0

ck(τ)e(µ2
k
D+λ)(τ−t)φk(x)+

P

∞
∑

k=0

φk(x)

∫ t

τ

{

e(µ2
k
D+λ)(s−t)

∫ R(s)+δ

R(s)

φk(y)dy

}

ds.

(68)
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Figure 5: The interface speed as a function of the diffusivity. The blue curve corresponds to a
numerical solution of Adam’s model. The red curve gives the interfacial velocity for which the
interface concentration is equal to the threshold concentration ĉ.

The first term originates from the solution at t = τ , and the second term takes into account the
movement of the production term for the growth factor. Combined with φk(x) =

√

2/L cos(kπx/L)

and φ0 = 1/
√

L, gives the formal solution. By these algebraic operations and since the integrals
exist (have a finite value), the existence of a moving boundary solution for a planar wound for
t > τ , can be demonstrated with a given interfacial movement, in terms of a contractive semi-
group. Theorem 4.1.1 infers that this is the only solution. As an illustration of this solution, we
plot the interface rate v that corresponds to c(R(t), t) = ĉ as a function of the diffusion coefficient
in Figure 5. Note that in order to obtain this picture, the integrals have been evaluated, which is a
straightforward, but tedious job. From this picture, it is suggested that for a given α there is a D∗

for which v = α and v < α if D < D∗. The latter situation is where retardation of the interface
speed comes in. If D > D∗ then v = α. For a given value of α, the magnitude of the interface
speed is bounded from above by α. Furthermore, we show some results with the same parameters
but then with a Finite Difference method, see Figure 5. It can be seen that the solutions agree
rather well, except for very small and very large values of the diffusion coefficient. We note that
for D > D∗ the interface speed equals α by necessity, since c(R(t), t) > ĉ. Hence, for this case the
interface speed stays constant at all times t > τ during the healing process. In the remaining text
of this subsection, we will give some results from a qualitative analysis concerning several basic
properties such as monotonicity, delay, uniqueness and existence of a solution.

Integration of the bottom equation in (66) over (t, t + h) and taking the absolute value gives

|R(t + h) − R(t)| = α

∫ t+h

t

w(s, c(R(s)) − ĉ)ds ≤ αh. (69)

Taking the limit h → 0 implies that R(t) is continuous. This could also be seen from the bottom
equation of (66). Retardation of the solution is allowed since

R(t + h) − R(t) = −α

∫ t+h

t

w(c(s, R(s)) − ĉ)ds ≥ −αh, (70)

where w ∈ [0, 1] if c(s, R(s)) = ĉ. It can also be seen that R(t + h) − R(t) ≤ 0. Hence, from
this argument it can concluded that R(t) is monotonic. So, the interface does not move in an

23



oscillatory manner. We note that if c(t, R(t)) > ĉ, then w = 1 and hence R′(t) = −α, for which
there is no retardation. Since c(t, R(t)) = ĉ implies w ∈ [0, 1], retardation possibly occurs.

As a degenerate case, we consider the situation in which D = 0. If Ω2 = (R, R + δ), that is Ω2 is
open, then



































∂c

∂t
= P − λc, x ∈ Ω2, open domain

∂c

∂t
= −λc, x ∈ Ω \ Ω2,

with c(0,x) = 0, x ∈ Ω.

(71)

Therewith c(t, R(t)) = 0 for t > 0, hence c(t, R(t)) < ĉ, and thus R(t) = R0. The interface does not
move in this case. Suppose, however, that one takes Ω2 to be closed at R, that is Ω2 = [R, R + δ]
for instance, then if ĉλ

P
< 1, there is a time t = t at which c(t, R(t)) = ĉ. Suppose that the interface

motion is zero, then for all t > t as a result of monotonicity (see [Pao 1992], Sections 5.2 and 5.3),
we have c(R(t), t) > ĉ. This implies that w = 1 and hence the interface has to move. Here, we
arrive at a contradiction. This implies that we should investigate whether solutions with interface
movement exist for a closed active layer. For this purpose, we consider

R(t + h) − R(t) = −α

∫ t+h

t

w(c(R(s), s) − ĉ)ds,

in which we assume that c(s, R(s)) = ĉ. If the interface moves, then R(t + h) < R(t), then, since
the diffusion coefficient is zero, c(t + ε, R(t + ε)) = 0 < ĉ for an arbitrarily small 0 < ε ≤ h < τ ,
where t is the waiting time. Hence, the interface cannot move. This implies that there is no
solution if the active layer Ω2 is closed and D = 0. From the arguments in this subsection, we
demonstrated the following theorem:

Theorem 4.2.1 Given the planar wound healing problem in (66), then

1. The interface position is continuous and monotonic;

2. If D = 0 and Ω2 is open, then R(t) = R0 is the only solution (that is the interface does not
move);

3. If D = 0 and Ω2 is closed (at R(t)), then there is no solution for t > τ , where τ represents
the waiting time.

Theorem 4.2.1 implies that the interface does not move if D = 0. Hence, retardation is real feature
of the current model. Suppose that D → ∞ and that ĉλL

Pδ
< 1, then the interface will move if

t ≥ τ . Further, if the active layer thickness remains equal to δ at all time, then the interface
concentration stays above ĉ, that is c(t, R(t)) > ĉ for all t > τ , as a result of Theorem 3.3.1. This
implies that the interface speed is given by −α and that

R(t) = R0 − α(t − τ), for τ < t < θ,

where θ = τ + R0/α denotes the time at which the wound heals entirely. The wound heals at
a constant pace. Due to a continuous dependence of the solution on the diffusion coefficient D,
there exists a D∗ for each α, P , and λ, such that

R′(t) = −α, for D > D∗, and

−α ≤ R′(t) ≤ 0, for D ≤ D∗, at which retardation takes place.

We consider the case that the interface movement is delayed. Then, the solution can be constructed
by the use of a retardation factor ξ ≥ 1, such that

R′(t) = −α

ξ
> −α for c(t, R(t)) = ĉ.
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Solutions with a larger magnitude of the interface speed such that R′(t) < −α
ξ

imply that

c(t, R(t)) < ĉ which halts the interface until the concentration exceeds ĉ, because of

R(τ + h) − R(τ) = −α

∫ τ+h

τ

w(c(t, R(t)) − ĉ)dt = 0,

due to w = 0 for (τ, τ + h) for h arbitrarily small. This gives a contradiction. Hence, solutions for
which R′(t) < −α

ξ
do not exist. Next, we consider the case that the magnitude of the interface

speed is smaller and hence satisfies R′(t) > −α
ξ
. For this case, we will get c(t, R(t)) > ĉ, but this

implies R′(t) = −α < −α
ξ
. This immediately gives a contradiction.

Next, we consider continuity of the solution with respect to the interface speed. Let 0 < ε < δ,
then we consider the difference in solutions of

∂c1

∂t
= D

∂2c1

∂x2
− λc1 + P1R(t),R(t)+δ,

∂c2

∂t
= D

∂2c2

∂x2
− λc2 + P1R(t)+ε,R(t)+ε+δ.

(72)

The above equations are subject to the same initial condition for t = τ and the same homogeneous
Neumann boundary condition. The difference between the solutions of the above equations satisfies

∂u

∂t
= D

∂2u

∂x2
− λu +











P, x ∈ (R, R + δ),

0, x ∈ [0, R) ∪ (R + ε, R + δ) ∪ (R + δ + ε, L],

−P, x ∈ (R + δ, R + δ + ε).

(73)

Since u(0, x) = 0, we consider uE(x) where lim
t→∞

u(t, x) = uE(x), hence

−D
∂2uE

∂x2
+ λuE =











P, x ∈ (R, R + δ),

0, x ∈ [0, R) ∪ (R + ε, R + δ) ∪ (R + δ + ε, L],

−P, x ∈ (R + δ, R + δ + ε).

(74)

Using an analytic solution for uE, constructed by a superposition of two particular solutions (one
from the ’+P-interval’ and one from the ’-P-interval’), we observe that

lim
ε→0

uE(x) = 0 =⇒ lim
ε→0

u(t, x) = 0.

Further, note that for ε = 0, we have uE(x) = 0 and u(t, x) = 0. This implies that c(t, x)
is continuous with respect to the interface velocity, also at ε = 0. If R′(τ) = 0, then due to
monotonicity d

dt
c(τ, R(τ)) = d

dt
c(τ, R0) > 0. For a ’quickly’ moving interface (such that R(t) = 0

for t > τ), continuity of c(t, 0) with respect to t and c(τ, 0) < ĉ, imply c(t, R(t)) < ĉ for t sufficiently
short after τ . This implies that there is a R′(τ) such that d

dt
c(τ, R(τ)) = 0. If |R′(τ)| < α, then

retardation results, whereas if |R′(τ)| > α, then d
dt

c(τ, R(τ)) > 0 for t = τ with |R′(τ)| = α.
Herewith, we demonstrated

Theorem 4.2.2 Given the planar wound healing problem as defined by equations (66), then

1. There exists a D∗ > 0 for which wound healing is retardated if D < D∗;

2. For each D < D∗, λ ≥ 0, P > 0, δ > 0, ĉ > 0, there exists one and only one ξ > 1 such that
R′(t) = −α

ξ
for t > τ ;

3. The concentration, and hence also the interface concentration, is continuous with the inter-
face speed.
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The retardated solution for a planar wound is constructed by imposing c(t, R(t)) = ĉ for t ≥ τ ,
that is

dc(t, R(t))

dt
= 0. (75)

Application of the total derivative with respect to time, gives

∂c(t, R(t))

∂t
+ R′(t)

∂c(t, R(t))

∂x
= 0, for t ≥ τ. (76)

Hence, we have
∂c(t, R(t))

∂t
=

α

ξ

∂c(t, R(t))

∂x
, for t ≥ τ. (77)

The parameter is determined from the above equation and the analytic solution for the planar
case. Of course, the analytic solution that has been presented in this paper is adjusted where the
production term changes in time due to the displacement of the boundary. For a circular case, the
retardation may depend on the current wound radius. This is a topic for further research. Finally,
we summarize the construction of analytic solutions for a planar wound.

1. For t < τ , the concentration is determined by equation (21);

2. For t ≥ τ , the speed of the wound edge is constant and given by

dR

dt
= −α

ξ
, where ξ = max

{

1,
α∂c(t,R(t))

∂x
∂c(t,R(t))

∂t

}

.

4.3 Illustrations of delayed healing

To illustrate the theoretical remarks presented in this section, the healing of a planar wound is
simulated using the analytic solution extended with the moving boundary. The results are shown
in Figure 6. For the case of a small diffusion coefficient, the waiting time is relatively small, so that
healing starts rather soon. However, since there is a competition between diffusion and interfacial
motion, the healing process is retardated. In this case, we clearly have that D < D∗. For the case
of a fast diffusivity, we see that the waiting time is large. Physically, this can be attributed to the
fact that the produced growth factor is smeared out over the entire domain of computation. See
the limit case in Theorem 3.3.1. However, in this case, we clearly have that D > D∗ which gives
no retardation of the interface motion. As an illustration of this, we plot (translated) curve in
the case of no waiting time (ĉ = 0) next to the curve with the larger diffusion coefficient. It can
be seen that these two curves are parallel indeed. For the two situations, the waiting time and
healing rate differ, however, the healing times are the same.

As a further and more interesting application, we consider the influence of the diffusion co-
efficient on the waiting time and healing time, see Figure 7. It can be seen that the incubation
times converge to the appropriate limits of Theorem 3.3.1 and 3.3.2 as D → ∞ and D → 0. It
can be seen that there is region in the co-domain for the healing times, in which two diffusivities
can be found for each healing time. From this behavior, we distinguish between two biological
regimes: the diffusion controled regime for small dif fusion coefficients and the closure controled
regime, when the diffusion coefficient is rather large. The two regimes might not give significant
different healing times, however, the healing process is totally different. In Figure 8, we show the
retardation factor as a function of the diffusion coefficient. It can be seen that the retardation
factor increases (which implies that the interface motion is delayed) as the diffusion coefficient
decreases. This is in line with the theory that has been developed in this study. Further, for
diffusivities larger than D∗ the retardation factor is one, which corresponds to healing without
any delay.
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4.4 A note on the construction of the solution

The existence of a solution to the homogeneous problem, in which P = 0 is a standard result,
see for instance [Friedman 1964] or [Pao 1992]. Since the differential operator −∆ + λI, with
homogeneous Neumann conditions, is self-adjoint and positive definite for λ > 0, the infinite set of
eigenvalues are real and bounded from below and its eigenfunctions are an orthogonal set. Hence,
the source function P1Ω2(t), which is piecewise continuous, can be written as a unique linear
combination of the eigenfunctions, say

P1Ω2(t) =

∞
∑

k=0

bk(t)φk(x), a.e. in Ω,

where the functions φk(x) represent the eigenfunctions of the operator −∆ + λI. Due to com-
pleteness and linear independence of the eigenfunctions of the self-adjoint differential operator,
the solution u can be written as an eigenfunction expansion

c(t,x) =

∞
∑

k=0

ck(t)φk(x).

Substitution into the weak differential form (see Definition 3.1.1), gives

c′k + µ2
kck = (P1Ω2

, φk),

where the eigenfunctions φk are orthonormal. This implies that the solution is given by

ck = P

∫ t

0

(1Ω2
, φk)eµ2

k
(s−t)ds.

Hence the solution is formally given by

c(t,x) = P

∞
∑

k=0

φk(x)

∫ t

0

(1Ω2
, φk)eµ2

k
(s−t) ds.
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We define the Green’s function by

G(t, s,x,x) :=

∞
∑

k=0

eµ2
k
(s−t)φk(x)φk(x),

to write the solution as

c(t,x) = P

∫ t

0

∫

Ω

1Ω2(s,c(s,x))G(t, s,x,x) dΩ ds = P

∫ t

0

∫

Ω2(s,c(s,x))

G(t, s,x,x) dΩ ds.

where x is the spatial variable over which one integrates. Further, one should realize that Ω2

formally is a function of time and the solution. Note that Ω2 = Ω2(0) for t < τ and that Ω2

moves for t > τ . The existence of the above integral (it exists since it contains an integration over
the eigenfunctions and the integration with respect to time can be estimated using the eigenvalue
zero), and a contraction argument (using the Banach contraction Theorem as in the spirit of
the Picard fixed point method as in the Picard-Lindelöf Theorem) with respect to c, imply the
existence of the solution. This is left for a future study.

In a generic setting, one can demonstrate by considering the integal m(t) =
∫

Ω
cdΩ that

m(t) = P

∫ t

0

Aδ(s)e
λ(s−t)ds, (78)

whenever Aδ is not constant in time. This equation will be used for the energy integral. Choosing
φ = c in Definition 3.1.1 gives

d

dt
(c, c) = −2a(c, c) + 2(P1Ω2

, c) ≤ −2λ (c, c) + 2P (1Ω2
, c), (79)

where the last inequality follows from coercivity (a(c, c) ≥ λ(c, c)) and from Ω2 ⊂ Ω. Rearranging
the above equation gives

d

dt
(c, c) + 2λ(c, c) ≤ 2P 2

∫ t

0

Aδ(s)e
λ(s−t)ds. (80)

Using an integrating factor and application of Grönwall’s Lemma delivers

(c, c) ≤ 2P 2

∫ t

0

∫ σ

0

Aδ(s)e
λ(s−σ)+2λ(t−σ)dsdσ ≤

2P 2AΩ

∫ t

0

∫ σ

0

eλ(s−σ)+2λ(t−σ)dsdσ ≤ 2P 2

λ
(t +

1

λ
).

(81)

Hence for positive λ and finite time t, the solution is bounded in the L2-norm over Ω. Note that
the second inequality is equivalent with the upper solution with Ω2 = Ω. This procedure was
extended by [Gao and Bu 2003] to demonstrate existence of a solution with an active layer that
has a continuous and piecewise linear behavior in the spatial coordinate. They did not include a
moving interface.

5 CONCLUSIONS

In this study we demonstrated that the model due to Adam predicts the existence of a waiting
time before healing sets in. We derived some necessary conditions. Furthermore, analytic solutions
in terms of closed form expressions were derived for planar and circular wounds. These solutions
can be used to obtain more accurate estimates of the waiting time. Further, these solutions are
useful for a validation of the numerical solution.
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Existence of a weak solution of the time-dependent problem has not been proved. The proof
will contain adaptations in the existence proof with fundamental solutions for the case in which
f is Hölder continuous. For a regularized version of f , say fε, existence of classical solutions
follows from classical theorems. It would be desirable to demonstrate that as lim

ε→0
fε(x) in Ω, that

we have lim
ε→0

cε = c in Ω and t > 0. This would make the proof on maximum principles more

straightforward. These issues will be addressed in a future study.
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