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Abstract

We derive two types of saddlepoint approximations to expectations in the form of E[(X −
K)+] and E[X|X ≥ K], where X is the sum of n independent random variables and K is a
known constant. We establish error convergence rates for both types of approximations in the
i.i.d. case. The approximations are further extended to cover the case of lattice variables.

1 Introduction

We consider the saddlepoint approximations of E[(X − K)+] and E[X|X ≥ K], where X is the
sum of n independent random variables Xi, i = 1, . . . , n, and K is a known constant. These two
expectations can be frequently encountered in finance and insurance. In option pricing, E[(X−K)+]
is the payoff of a call option (Rogers & Zane, 1999). It also plays an integral role in the pricing of
the Collateralized Debt Obligations (CDO) (Yang et al., 2006; Antonov et al., 2005). In insurance,
E[(X−K)+] is known as the stop-loss premium. The term E[X|X ≥ K] corresponds to the expected
shortfall, also known as the tail conditional expectation, of a credit or insurance portfolio, which
plays an increasingly important role in risk management in financial and insurance institutions.

We derive two types of saddlepoint expansions for the two quantities. The first type of approx-
imation formulas for E[(X −K)+] already appeared in Antonov et al. (2005). We here provide a
simpler and more statistically-oriented derivation that requires no knowledge of complex analysis.
The second type of approximations is obtained by two distinct approaches. The resulting formulas
distinguish themselves from all existing approximation formulas by their remarkable simplicity.
We also establish error convergence rates for both types of approximations in the i.i.d. case. The
approximations are further extended to cover the case of lattice variables. The lattice case is largely
ignored, even in applications where lattice variables are more relevant, for example, the pricing of
CDOs.

∗Corresponding author; E-mail: X.Huang@tudelft.nl
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The two quantities are related as follows,

E[X|X ≥ K] =
E[(X −K)+]
P(X ≥ K)

+ K, (1)

E[(X −K)+] = E
[
X1{X≥K}

]−KP(X ≥ K), (2)

E[X|X ≥ K] =
E

[
X1{X≥K}

]

P(X ≥ K)
. (3)

It is also straightforward to extend our results to the functions E[(K − X)+] and E[X|X < K].
The connections are well known and we put them here only for completeness.

E[(K −X)+] = E[(X −K)+]− E[X] + K,

E[X1{X<K}] = E[X]− E[X1{X≥K}],

E[X|X < K] =
(
E[X]− E[X1{X≥K}]

)
/P(X < K).

For simplicity of notation, we define




C := E[(X −K)+],
S := E[X|X ≥ K],
J := E

[
X1{X≥K}

]
.

(4)

2 Densities and tail probabilities

Dating back to Esscher (1932), the saddlepoint approximation has been recognized as a valuable
tool in asymptotic analysis and statistical computing. It has found a wide range of applications
in finance and insurance, reliability theory, physics and biology. The saddlepoint approximation
literature so far mainly focuses on the approximation of densities (Daniels, 1954) and tail prob-
abilities (Lugannani & Rice, 1980; Daniels, 1987). For a comprehensive exposition of saddlepoint
approximations, see Jensen (1995).

We start with some probability space (Ω,F ,P). Let Xi, i = 1 . . . n be n independent continuous
random variables all defined on the given probability space and X =

∑n
i=1 Xi. Suppose that for

all i, the moment generating function (MGF) of Xi is analytic and given by MXi , the MGF of the
sum X is then simply the product of the MGF of Xi, i.e.,

M(t) =
n∏

i=1

MXi(t),

for t in some open neighborhood of zero. Let κ(t) = log M(t) be the Cumulant Generating Func-
tion(CGF) of X. The density and tail probability of X can be represented by the following inversion
formulas

fX(K) =
1

2πi

∫ τ+i∞

τ−i∞
exp(κ(t)− tK)dt, (5)

P(X ≥ K) =
1

2πi

∫ τ+i∞

τ−i∞

exp(κ(t)− tK)
t

dt (τ > 0). (6)

Throughout this paper we adopt the following notation:

• φ(·) and Φ(·) denote, respectively, the pdf and cdf of a standard normal random variable,
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• µ := E[X] is the expectation of X under P,

• T represents the saddlepoint that gives κ′(T ) = K,

• λr := κ(r)(T )/κ′′(T )r/2 is the standardized cumulant of order r evaluated at T ,

• Z := T
√

κ′′(T ),

• W := sgn(T )
√

2[KT − κ(T )] with sgn(T ) being the sign of T .

The saddlepoint approximation for densities is then given by the Daniels (1954) formula

fX(K) ≈ φ(W )
T

Z

(
1 +

λ4

8
− 5λ2

3

24

)
=: fD. (7)

For tail probabilities, two types of distinct saddlepoint expansions exist. The first type of expansion
is given by

P(X ≥ K) ≈ e−
W2
2 + Z2

2 [1− Φ(Z)] =: P1, (8)

P(X ≥ K) ≈ P1

(
1− λ3

6
Z3

)
+ φ(W )

λ3

6
(
Z2 − 1

)
=: P2, (9)

in the case T ≥ 0. For T < 0 similar formulas are available, see Daniels (1987). The second type
of expansion is obtained by Lugannani & Rice (1980), with

P(X ≥ K) ≈ 1− Φ(W ) + φ(W )
[

1
Z
− 1

W

]
=: P3, (10)

P(X ≥ K) ≈ P3 + φ(W )
[

1
Z

(
λ4

8
− 5λ2

3

24

)
− λ3

2Z2
− 1

Z3
+

1
W 3

]
=: P4. (11)

The saddlepoint approximations are asymptotic approximations but they are known to give ac-
curate results in terms of relative error even for relatively small n. When Xi are i.i.d. random
variables, the rate of convergence of fD is n−2 and the rates of convergence of P1 to P4 are
n−1/2, n−1, n−3/2, n−5/2, respectively. Widely known as the Lugannani-Rice formula, P3 is most
popular among the four tail probability approximations for both simplicity and accuracy. A good
review of saddlepoint approximations for the tail probability is given in Daniels (1987).

3 Measure change approaches

Before we derive the formulas for E[(X −K)+] and E[X|X ≥ K], we would like to briefly review a
different approach to approximating the two quantities. This usually involves a change of measure
and borrows the saddlepoint expansions for densities or tail probabilities.

An inversion formula similar to those for densities and tail probabilities also exists for
E[(X −K)+], which is given by

E
[
(X −K)+

]
=

1
2πi

∫ τ+i∞

τ−i∞

exp(κ(t)− tK)
t2

dt (τ > 0). (12)

Yang et al. (2006) rewrite the inversion formula to be

E
[
(X −K)+

]
=

1
2πi

∫ τ+i∞

τ−i∞
exp(κ(t)− 2 log |t| − tK)dt. (13)
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Take κQ(t) = κ(t) − 2 log |t|, where subscript Q denotes a probability measure different from the
original measure P, the right-hand side of (13) is then in the form of (5) and the Daniels formula
(7) can be used for approximation. It should be pointed out, however, that in this case always
two saddlepoints exist. Moreover, the MGF of X under the new measure Q is problematic as
MQ(0) →∞,which suggests that Q is not a probability measure.

Bounded random variables

Studer (2001) considers the approximation of the expected shortfall, in two models of the associated
random variable.

The first case deals with bounded random variables. Without loss of generality, we only consider
the case that X has a positive lower bound. Define the probability measure Q on (Ω,F) by
Q(A) =

∫
A

X/µdP for A ∈ F , then

E[X|X ≥ K] =
1

P(X ≥ K)

∫

{X≥K}
XdP =

µ

P(X ≥ K)

∫

{X≥K}

X

µ
dP

=
µ

P(X ≥ K)
Q(X ≥ K). (14)

Hence the expected shortfall is transformed to be a multiple of the ratio of two tail probabilities.
The MGF of X under probability Q reads

MQ(t) =
∫

etX X

µ
dP =

M ′(t)
µ

=
M(t)κ′(t)

µ

as κ′(t) = [log M(t)]′ = M ′(t)/M(t). It follows that

κQ(t) = log MQ(t) = κ(t) + log (κ′(t))− log(µ). (15)

For bounded variables in general it is only necessary to apply a linear transform on the random
variable X beforehand so that the new variable has a positive lower bound and thus Q(·) is a valid
probability measure.

The saddlepoint approximation for tail probability can be applied for both probabilities P and
Q in (14). A disadvantage of this approach is that two saddlepoints need to be found as the
saddlepoints under the two probability measures are generally different.

Log-return model

The second case in Studer (2001) deals with E[eX |X ≥ K] rather than E[X|X ≥ K]. The expected
shortfall E[eX |X ≥ K] can also be written to be a multiple of the ratio of two tail probabilities.
Define the probability measure Q on (Ω,F) by Q(A) =

∫
A

eX/M(1)dP for A ∈ F , then

E[eX |X ≥ K] =
1

P(X ≥ K)

∫

{X≥K}
eXdP =

M(1)
P(X ≥ K)

∫

{X≥K}

eX

M(1)
dP

=
M(1)

P(X ≥ K)
Q(X ≥ K). (16)

The MGF and CGF of X under probability Q are given by

MQ(t) =
∫

etX eX

M(1)
dP =

M(t + 1)
M(1)

,

κQ(t) = κ(t + 1)− κ(1).

This also forms the basis for the approach used in Rogers & Zane (1999) for option pricing where
the log-price process follows a Lévy process.
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4 Classical saddlepoint approximations

In this and in the sections to follow we give, in the spirit of Daniels (1987), two types of explicit
saddlepoint approximations for E[(X − K)+]. For each type of approximation, we give a lower
order version and a higher order version. The approximations to E[X|X ≥ K] then simply follow
from (1). No measure change is required and only one saddlepoint need to be computed.

Following Jensen (1995), we call this first type of approximations the classical saddlepoint
approximations. Approximation formulas for E[(X−K)+] of this type already appeared in Antonov
et al. (2005). They are obtained by means of routine application of the saddlepoint approximation
to (12), i.e., on the basis of the Taylor expansion of κ(t) − tK around t = T . Here we provide a
simpler and more statistically-oriented derivation that employs Esscher tilting and the Edgeworth
expansion. Rates of convergence for the approximations are readily available with our approach in
the i.i.d. case.

For now we assume that the saddlepoint t = T that solves κ′(t) = K is positive. The expectation
E[(X −K)+] is reformulated under an exponentially tilted probability measure,

E
[
(X −K)+

]
=

∫ ∞

K

(x−K)f(x)dx = e−
W2
2

∫ ∞

K

(x−K)e−T (x−K)f̃(x)dx, (17)

where κ′(T ) = K and f̃(x) = f(x) exp(Tx − κ(T )). The MGF associated with f̃(x) is given by
M̃(t) = M(T + t)/M(T ). It immediately follows that the mean and variance of a random variable
X̃ with density f̃(·) are given by EX̃ = K and V ar(X̃) = κ′′(T ). Writing ξ = (x −K)/

√
κ′′(T ),

Z = T
√

κ′′(T ) and f̃(x)dx = g(ξ)dξ, (17) reads

E
[
(X −K)+

]
= e−

W2
2

√
κ′′(T )

∫ ∞

0

ξe−Zξg(ξ)dξ. (18)

Suppose that g(ξ) is approximated by a normal distribution φ(·). The integral in (18) then becomes
∫ ∞

0

ξe−Zξg(ξ)dξ ≈ exp(Z2

2 )√
2π

∫ ∞

0

ξe−
(ξ+Z)2

2 dξ =
1√
2π

− Ze
Z2
2 [1− Φ(Z)] . (19)

Inserting (19) in (18) leads to the approximation denoted by C1,

E
[
(X −K)+

]
≈ e−

W2
2

{√
κ′′(T )/(2π)− Tκ′′(T )e

Z2
2 [1− Φ(Z)]

}
=: C1. (20)

Higher order terms enter if g(ξ) is approximated by its Edgeworth expansion g(ξ) ≈ φ(ξ)[1 +
λ3
6 (ξ3 − 3ξ)]. Then

E
[
(X −K)+

]
≈ C1 + e−

W2
2

√
κ′′(T )

λ3

6

∫ ∞

0

ξe−Zξφ(ξ)(ξ3 − 3ξ)dξ

= C1 + e−
W2
2

√
κ′′(T )

λ3

6
e

Z2
2√
2π

∫ ∞

0

e−
(ξ+Z)2

2
(−ξ4 + 3ξ2

)
dξ

= C1 + e
Z2
2 −W2

2
√

κ′′(T )
λ3

6
{
[1− Φ(Z)](Z4 + 3Z2)− φ(Z)(Z3 + 2Z)

}
=: C2. (21)

The approximations C1 and C2 are in agreement with the formulas given by Antonov et al. (2005).

Generally, bounds of relative error are not available for the above approximations. However in
case that Xi, i = 1, . . . , n, are i.i.d. random variables, it is known that

g(ξ) = φ(ξ)[1 + O(n−1/2)],

g(ξ) = φ(ξ)
[
1 +

λ3

6
(ξ3 − 3ξ) + O(n−1)

]
.

So, the rates of convergence of C1 and C2 are of the order n−1/2 and n−1, respectively.
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Negative saddlepoint

We have assumed that the saddlepoint is positive, when deriving C1 and C2 in (20) and (21), or,
in other words, µ < K. If the saddlepoint T equals 0, or equivalently, µ = K, it is straightforward
to see that C1 and C2 both reduce to the following formula,

E[(X − µ)+] =

√
κ′′(0)
2π

=: C0. (22)

In case that µ > K, we should work with Y = −X and E[Y 1{Y≥−K}] instead since

E[X1{X≥K}] = µ + E[−X1{−X≥−K}] = µ + E[Y 1{Y≥−K}].

The CGF of Y is given by κY (t) = κX(−t). The saddlepoint that solves κY (t) = −K is −T > 0
so that C1 and C2 can again be used. Note that

κ
(r)
Y (t) = (−1)rκ

(r)
X (−t),

where the superscript (r) denotes the r-th derivative. Therefore, in the case of a negative saddle-
point, E[(X −K)+] can be approximated by

C−1 = µ−K + e−
W2
2

{√
κ′′(T )/(2π) + Tκ′′(T )e

Z2
2 Φ(Z)

}
, (23)

C−2 = C−1 − e
Z2
2 −W2

2
√

κ′′(T )
λ3

6
{
Φ(Z)(Z4 + 3Z2) + φ(Z)(Z3 + 2Z)

}
. (24)

Log-return model revisited

It is also possible to stay with the original probability when approximating the expected
shortfall in the log-return model in Studer (2001). We work with E

[
eX1{X≥K}

]
which equals

E
[
eX |X ≥ K

]
P(X ≥ K). Replace x in (17) by ex and make the same change of variables,

E
[
eX1{X≥K}

]
= e−

W2
2

∫ ∞

0

eK+ξ
√

κ′′(T )e−Zξg(ξ)dξ.

Approximating g(ξ) by the standard normal density, we obtain

E
[
eX1{X≥K}

]
= e−

W2
2 +K+ Ż2

2
1√
2π

∫ ∞

0

e−
(ξ+Ż)2

2 dξ

= e−
W2
2 +K+ Ż2

2 [1− Φ(Ż)], (25)

where Ż = (T −1)
√

κ′′(T ). Eq (25) is basically eKP1, where P1 is given by (8), with Z replaced by
Ż. It is easy to verify that this approximation is exact when X is normally distributed. A higher
order approximation would be

E
[
eX1{X≥K}

]
= e−

W2
2 +K+ Ż2

2

{
[1− Φ(Ż)]

(
1− λ3

6
Ż3

)
+

λ3

6
φ(Ż)(Ż2 − 1)

}
.

5 The Lugannani-Rice type formulas

The second type of saddlepoint approximations to E[(X −K)+] can be derived in a very similar
way as was done in section 4 of Daniels (1987) where the Lugannani-Rice formula to tail probability
was derived. As a result we shall call the obtained formulas “Lugannani-Rice type formulas”.

To start, we derive the following inversion formula for E
[
X1{X≥K}

]
.
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Theorem 1. Let κ(t) = log M(t) be the cumulant generating function of a continuous random
variable X. Then

E
[
X1{X≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t)− tK)
t

dt (τ > 0). (26)

Proof. We start with the case that X has a positive lower bound. Employing the same change of
measure as in (14), we have E

[
X1{X≥K}

]
= µQ(X ≥ K), where

Q(X ≥ K) =
1

2πi

∫ τ+i∞

τ−i∞

exp(κQ(t)− tK)
t

dt (τ > 0).

Plug in κQ(t), which is given by (15), we find

E
[
X1{X≥K}

]
= µ

1
2πi

∫ τ+i∞

τ−i∞

exp [κ(t) + log κ′(t)− log µ− tK]
t

dt

=
1

2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t)− tK)
t

dt.

In the case that X has a negative lower bound, −a, with a > 0, we define Y = X +a so that Y has
a positive lower bound. Then, the CGF of Y and its first derivative are given by κY (t) = κ(t) + ta
and κ′Y (t) = κ′(t) + a, respectively. Since

E
[
X1{X≥K}

]
= E

[
(Y − a)1{Y−a≥K}

]
= E

[
Y 1{Y−a≥K}

]− aP(Y − a ≥ K),

and

E
[
Y 1{Y−a≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t)− tK)
t

dt + aP(Y − a ≥ K),

we are again led to (26). Extension to variables bounded from above is straightforward.

For unbounded X, we take XL = max(X, L), where L < −1/τ is a constant. Since XL is
bounded from below, we have

E
[
XL1{XL≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
κ′XL

(t)
exp(κXL

(t)− tK)
t

dt,

=
1

2πi

∫ τ+i∞

τ−i∞
M ′

XL
(t)

exp(−tK)
t

dt, (27)

where M ′
XL

(τ) = M ′(τ)+
∫ L

−∞(LeτL−xeτx)dP(x). For L < −1/τ , M ′
XL

(τ) increases monotonically
as L decreases and approaches M ′(τ) as L → −∞. Note also that E

[
X1{X≥K}

]
= E

[
XL1{XL≥K}

]
for all L < K. Now take the limit of both sides of (27) as L → −∞. Due to the monotone
convergence theorem, we again obtain

E
[
X1{X≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
M ′(t)

exp(−tK)
t

dt

=
1

2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t)− tK)
t

dt.

Now, we follow Daniels (1987) to approximate κ(t)− tK over an interval containing both t = 0
and t = T by a quadratic function. Here, T need not to be positive any more. Recall from section
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2 that − 1
2W 2 = κ(T ) − TK with W taking the same sign as T . Let w be defined between 0 and

W such that

1
2
(w −W )2 = κ(t)− tK − κ(T ) + TK. (28)

Then we have
1
2
w2 −Ww = κ(t)− tκ′(T ), (29)

and t = 0 ⇔ w = 0, t = T ⇔ w = W . Differentiate both sides of (29) once and twice to obtain

w
dw

dt
−W

dw

dt
= κ′(t)− κ′(T ),

(
dw

dt

)2

+ (w −W )
d2w

dt2
= κ′′(t).

So, in the neighborhood of t = T (or, equivalently, w = W ) we have dw
dt =

√
κ′′(T ). Note that

µ = E[X] = κ′(0). In the neighborhood of t = 0 (or, equivalently, w = 0), we have

dw

dt
=

√
κ′′(0) if T = 0, (30)

dw

dt
=

κ′(T )− κ′(0)
W

=
K − µ

W
if T 6= 0.

Hence, in the neighborhood of t = 0 we have w ∝ t. Moreover,

1
t

dt

dw
∼ 1

w
,

κ′(t)
t

dt

dw
∼ µ

w
. (31)

Based on Theorem 1, the inversion formula for E
[
X1{X≥K}

]
can be formulated to be

E
[
X1{X≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
κ′(t)e

1
2 w2−Ww 1

t

dt

dw
dw

=
1

2πi

∫ τ+i∞

τ−i∞
e

1
2 w2−Ww

[
µ

w
+

κ′(t)
t

dt

dw
− µ

w

]
dw

= µ

∫ τ+i∞

τ−i∞

1
2πi

e
1
2 w2−Ww dw

w
+

1
2πi

∫ W+i∞

W−i∞
e

1
2 w2−Ww

[
κ′(t)

t

dt

dw
− µ

w

]
dw. (32)

The first integral takes the value 1−Φ(W ). The second integral has no singularity because of (31).
Hence there is no problem to change the integration contour from the imaginary axis along τ > 0
to that along W , as done in (32), not even if W and T are negative. The major contribution to
the second integral comes from the saddlepoint. The terms in the brackets are expanded around
T separately. Only taking the leading terms into account we obtain

κ′(t)
t

dt

dw
− µ

w
≈ κ′(t)

t

dt

dw

∣∣∣
T
− µ

w

∣∣∣
W

=
K

Z
− µ

W
.

Therefore we are led to

E
[
X1{X≥K}

] ≈ µ [1− Φ(W )] + φ(W )
[
K

Z
− µ

W

]
=: J3. (33)

Subtracting KP(X ≥ K) from J3 with the tail probability approximated by the Lugannani-Rice
formula P3, we see immediately that

E
[
(X −K)+

]
≈ (µ−K)

[
1− Φ(W )− φ(W )

W

]
=: C3. (34)
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This is a surprisingly neat formula requiring only knowledge of W . A more statistical approach to
derive the approximation J3 in (33) can be found in Appendix A.

Now consider the higher order approximation. Write U := κ′′(T )T−κ′(T ). The Taylor expansion
of κ′(t)/t around T gives

κ′(t)
t

≈ κ′(T )
T

+ (t− T )
U

T 2
+

(t− T )2

2

[
κ′′′(T )

T
− 2U

T 3

]
. (35)

By the Taylor expansion on the line t = T + iy, we have

G :=
1

2πi

∫ T+i∞

T−i∞
eκ(t)−tK κ′(t)

t
dt

≈e−
W2
2

2πi

∫ T+i∞

T−i∞
e

1
2 κ′′(T )(t−T )2

[
1 +

1
6
κ′′′(T )(t− T )3 +

1
24

κ(4)(T )(t− T )4+

+
1
72

κ′′′(T )2(t− T )6
]{

κ′(T )
T

+ (t− T )
U

T 2
+

(t− T )2

2

[
κ′′′(T )

T
− 2U

T 3

]}
dt

=
e−

W2
2

2π

∫ +∞

−∞
e−

1
2 κ′′(T )y2

[
1− 1

6
κ′′′(T )iy3 +

1
24

κ(4)(T )y4+

− 1
72

κ′′′(T )2y6

]{
κ′(T )

T
+ iy

U

T 2
− y2

2

[
κ′′′(T )

T
− 2U

T 3

]}
dy

=φ(W )
[
κ′(T )

Z
+

κ′(T )
Z

(
λ4

8
− 5

24
λ2

3

)
+

Uλ3

2Z2
− λ3

2T
+

U

Z3

]

=φ(W )
[
K

Z

(
1 +

λ4

8
− 5

24
λ2

3

)
+

1
TZ

− Kλ3

2Z2
− K

Z3

]
=: G1.

Notice that G1 is itself a saddlepoint approximation to E[X1{X≥K}] for K > µ. However, it
becomes inaccurate when T approaches zero due to the presence of a pole at zero in the integrand.
Meanwhile expanding 1/w around W gives

H :=
e−

W2
2

2πi

∫ W+i∞

W−i∞
e

1
2 (w−W )2 µ

w
dw

≈µe−
W2
2

2πi

∫ W+i∞

W−i∞
e

1
2 (w−W )2

[
1
W

+
(w −W )

W 2
+

(w −W )2

W 3

]
dw

=µφ(W )
(

1
W

− 1
W 3

)
=: H1.

Finally we obtain the higher order version of the Lugannani-Rice type formulas as follows,

J4 ≈ µ [1− Φ(W )] + G1 −H1, (36)

C4 ≈ C3 + φ(W )
[

1
TZ

+ (µ−K)
1

W 3

]
. (37)

To study the error convergence of C3 and C4 when Xi, i = 1, . . . , n, are i.i.d. random variables,
we look at E[(X − nx)+] for fixed x. Combining (2) and (32) we obtain

E[(X − nx)+] = nµ1 [1− Φ(W )] + G−H − nxP(X ≥ nx).

Let κ1(t) be the CGF of X1 and λ1,r be the r-th standardized cumulant of X1. Since κ(t) = nκ1(t),
the saddlepoint T that solves κ(T ) = nx is also a solution of κ1(t) = x. Now write µ1 := E[X1],
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Z1 := T
√

κ1(T ) and W1 := sgn(T )
√

2[xT − κ1(T )]. It is obvious that µ = nµ1, Z =
√

nZ1,
W =

√
nW1, λ3 = λ1,3/

√
n and λ4 = λ1,4/n.

Apparently, the remainder term H −H1 is of the order O(n−3/2). Less obvious but by term-
by-term multiplication and integration we find that the remainder term G−G1 is also O(n−3/2).
More precisely, we have,

G =φ(W )

[
√

n
x

Z1
+

1√
n

(
xλ1,4

8Z1
− 5xλ2

1,3

24Z1
+

1
TZ1

− xλ1,3

2Z2
1

− x

Z3
1

)
+ O

(
n−3/2

)]
,

H =µ1φ(W )
[√

n

W1
− 1√

nW 3
1

+ O
(
n−3/2

)]
.

In addition, from Daniels (1987), we know

P(X ≥ nx) =[1− Φ(W )] + φ(W )
{

n−1/2

(
1
Z1

− 1
W1

)
+

n−3/2

[
1
Z1

(
λ1,4

8
− 5λ2

1,3

24

)
− λ1,3

2Z2
1

− 1
Z3

1

+
1

W 3
1

]
+ O

(
n−5/2

)}
.

Substitution of above three formulas gives

E[(X − nx)+] =(µ1 − x)
{

n[1− Φ(W )] +
√

n
φ(W )
W1

}

+ φ(W )
{

1√
n

[
1

TZ1
+

µ1 − x

W 3
1

]
+ O

(
n−3/2

)}
. (38)

It follows that the rates of convergence of C3 and C4 in (34) and (37) are of order O(n−1/2) and
O(n−3/2), respectively. Notice that in the problem considered here, the rates of convergence of C1

and C2, in (20) and (21), are of order O(1) and O(n−1/2), respectively, since in eq. (18) the term√
κ′′(T ) in front of the integral should be written as

√
nκ′′1(T ), which gives rise to an additional√

n term.

Remark 2. Interestingly, Martin (2006) gives an approximation formula for E[(X −K)+], decom-
posing the expectation to one term involving the tail probability and another term involving the
probability density,

E
[
(X −K)+

]
≈ (µ−K)P(X ≥ K) +

K − µ

T
fX(K).

Martin (2006) suggests to approximate P(X ≥ K) by the Lugannani-Rice formula P3 in (10)
and fX(K) by the Daniels formula fD in (7). In the i.i.d. case, this leads to an approximation
CM := (µ−K)P3 + (K − µ)fD/T with a rate of convergence n−1/2 as the first term has an error
of order n−1/2 and the second term has an error of order n−3/2. We propose to replace P3 by its
higher order version, P4 in (11). This gives the following formula,

E
[
(X −K)+

]
≈ C3 + (µ−K)φ(W )

(
1

W 3
− λ3

2Z2
− 1

Z3

)
. (39)

Not only eq. (39) is simpler than CM as λ4 is not involved, but also it has a higher rate of
convergence of order n−3/2. However compared to C4 eq. (39) contains a term of λ3 and is certainly
more complicated to evaluate. Note further that if we neglect in CM the terms of the higher order
standard cumulants λ3 and λ4 in fD we get precisely C3 as given in (34). For these reasons, C4 is
to be preferred.
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Zero saddlepoint

It is mentioned in Daniels (1987) that in case that the saddlepoint T = 0, or in other words, µ = K,
the approximations to tail probability P1 to P4 all reduce to

P(X ≥ K) =
1
2
− λ3(0)

6
√

2π
.

We would like to show that, under the same circumstances, C3 and C4 also reduce to the formula
C0 in (22). To show that C3 = C0 when T = 0, we point out that

lim
T→0

C3 = lim
T→0

κ′(0)− κ′(T )
T

[
T (1− Φ(W ))− φ(W )

T

W

]
.

Note that when T → 0, κ′(0)−κ′(T )
T → −κ′′(0), T (1 − Φ(W )) → 0 and T

W → [κ′′(0)]−
1
2 (see (30)).

This implies that limT→0 C3 = C0. Similarly we also have limT→0 C4 = C0.

6 Lattice variables

So far we have only considered approximations to continuous variables. Let us now turn to the
lattice case. This is largely ignored in the literature, even in applications where lattice variables
are much more relevant. For example, in the pricing of CDOs, the random variable concerned is
essentially the number of defaults in the pool of companies and is thus discrete.

Suppose that X̂ only takes integer values k with nonzero probabilities p(k). The inversion
formula of E[(X̂ −K)+] can then be formulated as

E[(X̂ −K)+] =
∞∑

k=K+1

(k −K)p(k) =
∞∑

k=K+1

(k −K)
1

2πi

∫ τ+i∞

τ−i∞
exp(κ(t)− tk)dt

=
1

2πi

∫ τ+i∞

τ−i∞
exp(κ(t)− tK)

∞∑
m=1

me−tmdt

=
1

2πi

∫ τ+i∞

τ−i∞

exp(κ(t)− tK)
t2

t2e−t

(1− e−t)2
dt.

Expanding the two terms in the integrand separately, we find, for lattice variables, the following
formulas corresponding to C1 and C2 in (20) and (21), respectively,

Ĉ1 = C1
T 2e−T

(1− e−T )2
, (40)

Ĉ2 = C2
T 2e−T

(1− e−T )2

+ e−
W2
2 + Z2

2 {φ(Z)− Z[(1− Φ(Z)]} Te−T
(
2− T − 2e−T − Te−T

)
√

κ′′(T )(1− e−T )3
. (41)

For the approximations to E[X̂|X̂ ≥ K], we also need the lattice version for the tail probability

P(X̂ ≥ K) = e−
W2
2 + Z2

2 [1− Φ(Z)]
T

1− e−T
=: P̂1 (42)
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or its higher order version

P(X̂ ≥ K) =e−
W2
2 + Z2

2
T

1− e−T
×

{
[1− Φ(Z)]

(
2− λ3

6
Z3 − T

eT − 1

)

+ φ(Z)
[
λ3

6
(Z2 − 1) +

1
Z
− T

Z(eT − 1)

]}
=: P̂2. (43)

Recall that the Lugannani-Rice formula for lattice variables reads

P(X̂ ≥ K) = 1− Φ(W ) + φ(W )
[

1
Ẑ
− 1

W

]
=: P̂3, (44)

where Ẑ = (1− e−T )
√

κ′′(T ). A similar lattice formula can also be obtained for J3, which we will
denote by Ĵ3. We first write down the inversion formula of the tail probability of a lattice variable,

Q(X̂ ≥ K) =
∞∑

k=K

Q(X̂ = k) =
1

2πi

∫ τ+i∞

τ−i∞

exp(κQ(t)− tK)
1− e−t

dt. (45)

Combining (45) with Theorem 1, we obtain

E
[
X̂1{X̂≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
κ′(t)

exp(κ(t)− tK)
1− e−t

dt.

By the same change of variables as in section 5, we have

E
[
X̂1{X̂≥K}

]
=

1
2πi

∫ τ+i∞

τ−i∞
κ′(t)e

1
2 w2−Ww 1

1− e−t

dt

dw
dw

=
1

2πi

∫ τ+i∞

τ−i∞
e

1
2 w2−Ww

[
µ

w
+

κ′(t)
1− e−t

dt

dw
− µ

w

]
dw.

Now we can proceed exactly as in section 5 as limt→0 1− e−t = t. This leads to

Ĵ3 = µ [1− Φ(W )] + φ(W )
[
K

Ẑ
− µ

W

]
, (46)

Ĉ3 = (µ−K)
[
1− Φ(W )− φ(W )

W

]
≡ C3. (47)

Including higher order terms we obtain

Ĉ4 = Ĉ3 + φ(W )

[
e−T

Ẑ(1− e−T )
+ (µ−K)

1
W 3

]
. (48)

A higher order version of P̂3 can be derived similarly,

P(X̂ ≥ K) =1− Φ(W ) + φ(W )
[

1
Ẑ

(
1 +

λ4

8
− 5λ2

3

24

)

−e−T λ3

2Ẑ2
− e−T (1 + e−T )

2Ẑ3
− 1

W
+

1
W 3

]
=: P̂4. (49)

This can be used to estimate E[X̂|X̂ ≥ K].

The rates of convergence of Ĉ1 to Ĉ4 in the i.i.d. case are identical to their non-lattice coun-
terparts and we shall not elaborate further.
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7 Numerical results

By two numerical experiments we evaluate the quality of the various approximations that are
derived in the earlier sections.

In our first example X =
∑

Xi where Xi are i.i.d. exponentially distributed with density
p(x) = e−x. The CGF of X reads κ(t) = −n log(1 − t). The saddlepoint to κ′(t) = K is given by
T = 1− n/K. Moreover, we have

κ′′(T ) =
K2

n
, λ3 =

2√
n

, λ4 =
6
n

.

Their exact values are available as X ∼ Gamma(n, 1). The tail probability is then given by

P(X ≥ K) = 1− γ(n,K)
Γ(n)

,

and

E[X1{X≥K}] = n

[
1− γ(n + 1, K)

Γ(n + 1)

]
,

where Γ and γ are the gamma function and the incomplete gamma function, respectively.

In the second example we set X =
∑

Xi where Xi are i.i.d. Bernoulli variables with P(Xi =
1) = 1−P(Xi = 0) = p = 0.15. Its CGF is given by κ(t) = n log (1− p + pet). Here the saddlepoint
to κ′(t) = K equals T = log

[
K(1−p)
(n−K)p

]
and

κ′′(T ) =
K(n−K)

n
, λ3 =

n− 2K√
nK(n−K)

, λ4 =
n2 − 6nK + 6K2

nK(n−K)
.

In this specific case, X is binomially distributed with

P(X = k) =
(

n

k

)
pk(1− p)n−k,

which means that C and S as defined in (4) can also be calculated exactly.

We report in Tables 1 and 2 on the approximations obtained in the exponential case and
in Tables 3 and 4 approximations in the Bernoulli case. For the approximations to S we take
Sr = Cr/Pr + K for r = 1, 2, 3, 4. The saddlepoint approximations in the Bernoulli case are based
on the formulas for lattice variables derived in section 6.

In general we see that all approximations work remarkably well in our experiments. The higher
order Lugannani-Rice type formula, S4, C4 and their lattice versions, produce almost exact ap-
proximations. Particularly worth mentioning is the quality of approximations C4 and Ĉ4, that use
the same information as C1 and Ĉ1, but show errors that are significantly smaller than C2 and Ĉ2.

8 Conclusions

We have derived two types of saddlepoint approximations to E[(X − K)+] and E[X|X ≥ K],
where X is the sum of n independent random variables and K is a known constant. For each type
of approximation, we have given a lower order version and a higher order version. We have also
established the error convergence rates for the approximations in the i.i.d. case. The approximations
have been further extended to cover the case of lattice variables. Numerical examples show that all
these approximations work remarkably well. The Lugannani-Rice type formulas to E[(X − K)+]
are particularly attractive because of their simplicity.
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K Exact C1 C2 C3 C4

105 2.0331 2.0852 2.0341 2.0360 2.0331
115 3.5773e-1 3.7292e-1 3.5743e-1 3.5892e-1 3.5773e-1
125 3.7283e-2 3.8873e-2 3.7240e-2 3.7508e-2 3.7283e-2
135 2.3657e-3 2.4574e-3 2.3635e-3 2.3881e-3 2.3657e-3
145 9.5270e-5 9.8546e-5 9.5210e-5 9.6553e-5 9.5269e-5

Table 1: Exact values of E[(X −K)+] and their saddlepoint approximations. X =
∑n

i=1 Xi where
Xi is exponentially distributed with density f(x) = e−x(x ≥ 0) and n = 100.

K Exact S1 S2 S3 S4

105 111.7826 111.7313 111.7883 111.7924 111.7826
115 119.9954 120.0448 119.9937 120.0120 119.9954
125 128.9751 129.0343 128.9715 128.9990 128.9571
135 138.3421 138.3938 138.3389 138.3737 138.3421
145 147.9199 147.9626 147.9175 147.9592 147.9199

Table 2: Exact values of E[X|X ≥ K] and their saddlepoint approximations. X =
∑n

i=1 Xi where
Xi is exponentially distributed with density f(x) = e−x(x ≥ 0) and n = 100.

K Exact Ĉ1 Ĉ2 Ĉ3 Ĉ4

18 4.2046e-1 4.3660e-1 4.2330e-1 4.2579e-1 4.2045e-1
20 1.5110e-1 1.5757e-1 1.5217e-1 1.5397e-1 1.5109e-1
23 2.3355e-2 2.4313e-2 2.3529e-2 2.4075e-2 2.3353e-2
25 5.3880e-3 5.5924e-3 5.4279e-3 5.6041e-3 5.3874e-3
28 4.2976e-4 4.4395e-4 4.3281e-4 4.5375e-4 4.2969e-4

Table 3: Exact values of E[(X −K)+] and their saddlepoint approximations. X =
∑n

i=1 Xi where
Xi is Xi is Bernoulli distributed with p(Xi = 1) = 0.15 and n = 100.

K Exact Ŝ1 Ŝ2 Ŝ3 Ŝ4

18 19.7762 19.9213 19.7874 19.7984 19.7761
20 21.4184 21.5218 21.4276 21.4448 21.4181
23 24.0548 24.1191 24.0619 24.0870 24.0547
25 25.8861 25.9340 25.8919 25.9213 25.8860
28 28.7012 28.7330 28.7053 28.7400 28.7011

Table 4: Exact values of E[X|X ≥ K] and their saddlepoint approximations. X =
∑n

i=1 Xi where
Xi is Bernoulli distributed with p(Xi = 1) = 0.15 and n = 100.
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A Alternative derivation of J3

The approximation J3 in (33) can also be derived by a more statistical approach. Let us replace
the density of X by its saddlepoint approximation (7), we then obtain

E
[
X1{X≥K}

] ≈ 1√
2π

∫ ∞

K

x
eκ(t)−xt

√
κ′′(t)

[
1 +

λ4(t)
8

− 5λ3(t)2

24

]
dx (50)

where x = κ′(t). Let again K = κ′(T ). A change of variables from x to t gives

E
[
X1{X≥K}

] ≈ 1√
2π

∫ ∞

T

κ′(t)
√

κ′′(t)eκ(t)−κ′(t)t
[
1 +

λ4(t)
8

− 5λ3(t)2

24

]
dt

Let w2/2 = κ′(t)t − κ(t) and W 2/2 = κ′(T )T − κ(T ) so that wdw = tκ′′(t)dt, t = 0 ⇔ w = 0,
t = T ⇔ w = W . A second change of variables from t to w gives

E
[
X1{X≥K}

] ≈ 1√
2π

∫ ∞

W

e−
w2
2

wκ′(t)
t
√

κ′′(t)

[
1 +

λ4(t)
8

− 5λ3(t)2

24

]
dw,

which is precisely in the form of eq. (3.2.1) in Jensen (1995). According to Theorem 3.2.1 therein,
one finds

E
[
X1{X≥K}

]
= [1− Φ(W )]

{
q(0)

[
1 +

λ4(0)
8

− 5λ3(0)2

24

]
+

q′′(0)
2

}

+ φ(W )
q(W )− q(0)

W
, (51)

where q(w) = wκ′(t)
t
√

κ′′(t)
. Let q̃(w) = w

t
√

κ′′(t)
, then q(w) = κ′(t)q̃(w).

Lemma 1.

q̃(w) = 1− 1
6
λ3(0) +

[
5
24

λ3(0)2 − 1
8
λ4(0)

]
w2 + O(|w|3),

q̃(0) = 1, q̃′′(0) = −2
[
λ4(0)

8
− 5λ2

3(0)
24

]
,

t =
1√

κ′′(0)

[
w − 1

3
λ3(0)w2 + O(|w|3)

]
.

Proof. See Jensen(1995) Lemma 3.3.1.

According to Lemma 1, we have

q(0) = µ, q(W ) =
Wκ′(T )

T
√

κ′′(T )
, (52)

q′′(w) = q̃′′(w)κ′(t) + 2q̃′(w)κ′′(t)
dt

dw
+ q̃(w)

[
κ′′′(t)

(
dt

dw

)2

+ κ′′(t)
d2t

dw2

]
,

where dt
dw = 1√

κ′′(0)

[
1− 2

3λ3(0)w
]
, d2t

dw2 = −2λ3(0)

3
√

κ′′(0)
. When w = 0 we find

q′′(0) =− 2
[
λ4(0)

8
− 5λ2

3(0)
24

]
µ + 2

[
−λ3(0)

6

]
κ′′(0)√
κ′′(0)

+
κ′′′(0)
κ′′(0)

+ κ′′(0)
−2λ3(0)
3
√

κ′′(0)

=− 2
[
λ4(0)

8
− 5λ2

3(0)
24

]
µ. (53)
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Plugging (52) and (53) in (51) we again get

E
[
X1{X≥K}

]
= µ [1− Φ(W )] + φ(W )

[
κ′(T )

T
√

κ′′(T )
− µ

W

]
≡ J3. (54)
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