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Load Flow Literature Survey

R. Idema, D.J.P. Lahaye, and C. Vuik∗

1 Introduction

This document contains an overview of the literature survey, as conducted for a PhD study on
the subject on load flow problems for power systems. The PhD study is done in the Numerical
Analysis group of the Delft Institute of Mathematics, at the University of Technology, Delft.

In Section 2, the concept of a power system is introduced, as well as power system basics that
are needed for the treatment of the load flow problem. This includes voltage, current, power,
impedance and admittance, as well as Kirchoff’s circuit laws.

Next, in Section 3, we deal with the mathematical model for a power system. Generators, loads,
transmission lines and other devices are treated, as well as the admittance matrix that relates the
line currents to the node voltages in the power system.

In Section 4 we define the load flow problem, and introduce the Newton-Raphson method to solve
the problem. Further, the Fast Decoupled Load Flow method is derived and analysed.

Sections 5 is dedicated to the research questions that we plan to attack initially, and finally, in
Section 6, we present some conclusions drawn from the treated material.

2 Power Systems

A system of hardware that provides for the generation of power, and the transmission to the
consumers, is called a Power System. This section contains an introduction to voltage, current,
and power, for the steady state of a power system operating on alternating current (AC).

2.1 Voltage and Current

The voltage and current, in a power system in steady state, can be assumed to be sinusoidal
functions of time with constant frequency ω. It is conventional to use the cosine function to
describe these quantities, i.e.,

v (t) = Vmax cos (ωt + δV ) = < (
Vmaxe

jδV ejωt
)
,

i (t) = Imax cos (ωt + δI) = < (
Imaxe

jδI ejωt
)
,

where j is the imaginary unit, and < is the operator that takes the real part.

The complex numbers V = Vmaxe
jδV and I = Imaxe

jδI are called the phasor representation of
the voltage and current respectively, and are used to represent the voltage and current in circuit
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theory. In power system theory, instead the effective phasor representation is used:

V = |V |ejδV , with |V | = Vmax√
2

, (1)

I = |I|ejδI , with |I| = Imax√
2

. (2)

Note that |V | and |I| are the RMS values of v (t) and i (t), and that the effective phasors differ
from the circuit theory phasors by a factor

√
2.

As we are dealing with power system theory, we use V and I to denote the effective voltage and
current phasors, as defined above. Further, as usual in the treatment of power systems, we use per
unit quantities, and represent the balanced three-phase network of a power system as its equivalent
single-phase system. For more details see for example [5] or [1].

2.2 Complex Power

Assume that t is chosen such that the voltage is v (t) = Vmax cos (ωt), and the current is i (t) =
Imax cos (ωt− φ). The value φ = δV − δI is called the power factor angle, and cosφ the power
factor. Then the instantaneous power p (t) is given by

p (t) = v (t) i (t)

=
√

2|V | cos (ωt)
√

2|I| cos (ωt− φ)
= 2|V ||I| cos (ωt) cos (ωt− φ)
= 2|V ||I| cos (ωt) cos (ωt− φ)
= 2|V ||I| cos (ωt) [cos φ cos (ωt) + sin φ sin (ωt)]

= |V ||I| [2 cos φ cos2 (ωt) + 2 sinφ sin (ωt) cos (ωt)
]

= |V ||I| cos φ
[
2 cos2 (ωt)

]
+ |V ||I| sinφ [2 sin (ωt) cos (ωt)]

= |V ||I| cos φ [1 + cos (2ωt)] + |V ||I| sin φ [sin (2ωt)]
= P [1 + cos (2ωt)] + Q [sin (2ωt)] ,

where P = |V ||I| cos φ, and Q = |V ||I| sin φ.

Thus the instantaneous power is the sum of a unidirectional component, that is sinusoidal with
average value P , and amplitude P , and a component of alternating direction, that is sinusoidal
with average value 0, and amplitude Q. Note that integrating the instantaneous power over one
time period T = 2π

ω gives
∫ T

0

p (t) dt = P.

The magnitude P is called the active power, or also real power or average power, and is measured
in W (watts). The magnitude Q is called the reactive power, or also imaginary power, and is
measured in VAr (voltamperes reactive).

Using the complex representation of voltage and current, we can write

P = |V ||I| cos φ = <
(
|V ||I|ej(δV −δI)

)
= < (

V I
)
,

Q = |V ||I| sin φ = =
(
|V ||I|ej(δV −δI)

)
= = (

V I
)
,

where I is the complex conjugate of I. Thus we can extend Joule’s law to AC circuits, as

S = V I. (3)
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Note that strictly speaking VA and VAr are the same unit as W, however it is very useful to use
descriptive units, to distinguish between the measured quantities.

2.3 Impedance and Admittance

Impedance is the extension of the notion resistance, to AC circuits, and is thus a measure of
opposition to a sinusoidal current. The impedance is denoted by Z = R + jX, and measured
in ohms (Ω). We call R ≥ 0 the resistance, and X the reactance. If X > 0 the reactance is
called inductive and we can write jX = jωL, where L > 0 is called the inductance. If X < 0 the
reactance is called capacitive and we write jX = 1

jωC , where C > 0 is called the capacitance.

The admittance Y = G+jB is the inverse of impedance, i.e., Y = 1
Z = R

|Z|2−j X
|Z|2 , and is measured

in siemens (S). We call G = R
|Z|2 ≥ 0 the conductance, and B = −j X

|Z|2 the susceptance.

The voltage drop over an impedance Z is equal to V = ZI. This is the extension of Ohm’s law to
AC circuits. Alternatively, using the admittance, we can write

I = Y V. (4)

The power consumed by the impedance is S = V I = ZII = |I|2Z = |I|2R + j|I|2X.

2.4 Kirchhoff’s circuit laws

To calculate the voltage and current in an electrical circuit, we use Kirchoff’s circuit laws.

Kirchhoff’s current law (KCL)
At any point in the circuit that does not represent a capacitor plate, the sum of currents flowing
towards that point is equal to the sum of currents flowing away from that point, i.e.,

∑
k Ik = 0.

Kirchhoff’s voltage law (KVL)
The directed sum of the electrical potential differences around any closed circuit is zero, i.e.,∑

k Vk = 0.

3 Power System Model

Power systems are modeled as a network of buses (nodes) and lines (edges). At each bus i four
electrical magnitudes are of importance:

|Vi|, the voltage amplitude,

δi, the voltage phase angle,

Pi, the injected active power,

Qi, the injected reactive power.

Each bus can consist of a number of electrical devices. The bus is named according to the electical
magnitudes specified by its devices,

generator bus or PV-bus: Pi and |Vi| specified, Qi and δi unknown,

load bus or PQ-bus: Pi and Qi specified, |Vi| and δi unknown.
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3.1 Generators, Loads, and Transmission Lines

Generally, a physical generator has P and |V | controls and thus specifies these magnitudes. Like-
wise, a load will have specified negative injected active power P , and specified reactive power Q.
However, the name of the bus does not necessarily indicate what type of devices it consists of.
A wind turbine, for example, is a generator but does not have PV controls. A wind turbine is
instead modeled as a load, with positive injected active power P . If a PV generator and a PQ
load are connected to the same bus, the result is a PV-bus with a voltage amplitude equal to that
of the generator, and an active power equal to the sum of the active power of the generator and
the load. Also there may be buses without a generator or load connected, such as transmission
substations, which are modeled as load with P = Q = 0.

In any practical power system there are system losses. These losses have to be taken into account,
but since they depend on the power flow they are not known in advance. Therefore one generator
bus has to be assigned to supply these unknown losses. This bus is generally called the slack bus.
Obviously it is no longer possible to specify the real power P for this bus. Instead the voltage
magnitude |V | and angle δ are specified. Note that δ does not have any practical meaning, it is
merely the reference phase to which the other phase angles are related. As such, for the slack bus
it is generally specified that δ = 0.

Lines are the network representation of the transmission lines, that connect the buses in the power
system. From a modeling viewpoint, lines define how to relate buses through Kirchhoff’s circuit
laws. Lines can incur losses on the transported power and must be modeled as such.

A transmission line from bus i to bus j has some impedance. The total impedance over the line
is modeled as a single impedance zij of the line. The admittance of that line is yij = 1

zij
. Further

there is a shunt admittance from the line to the neutral ground. The total shunt admittance ys

of the line is modeled to be evenly split between bus i and bus j, see Figure 1.

2
sy

2
sy

iV jV

ijy ji

Figure 1: Transmission line model

It is usually assumed that there is no conductance from the line to the ground. This means that
the shunt admittance is due only to the electrical field between line and ground, and is thus a
capacitive susceptance, i.e., ys = jbs, with bs > 0. For this reason, the shunt admittance ys is also
sometimes referred to as the shunt susceptance bs. See also the notes about modeling a shunt in
Section 3.2. For details on how to calculate ys for a given line, we refer to [5].

3.2 Shunts, Tap Transformers, and Phase Shifters

Three other devices, that are also commonly found in power systems, are shunts, tap transformers
and phase shifters. Shunt capacitors can be used to inject reactive power, resulting in a higher
node voltage, whereas shunt inductors consume reactive power, thus lowering the node voltage.

A shunt is modeled as a reactance zs = jxs between the bus and the ground, see Figure 2. The
shunt admittance is thus ys = 1

zs
= −j 1

xs
= jbs. If xs > 0 the shunt is inductive, and if xs < 0
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the shunt is capacitive. Note that the shunt susceptance bs has the opposite sign of the shunt
reactance xs.

sy

iV

i

Figure 2: Shunt model

A tap transformer is a transformer that can be set to different turns ratios. The taps are the
connection points along the transformer winding on one side, that allow a certain number of turns
to be selected. Tap transformers are generally used to control the voltage magnitude, dealing
with fluctuating industrial and domestic demands, or with the effects of switching out a circuit
for maintenance. Note that transformers without taps do not need to be modeled specifically, as
the per unit system reduces their numerical effect to that of a series impedance.

Phase shifters are devices that can change the voltage phase angle, while keeping the voltage
magnitude constant. As such they can be used to control the active power.

Both a tap transformer, and a phase shifter, can be modeled as in Figure 3. The transformer ratio
is given by T : 1. For a tap transformer T is a positive real number, typically between 0.8 and
1.2. In the case of a phase shifter, T is a rotation in the complex plane, i.e., T = ejδT , where δT

is the phase shift.

iV jV

ijy j

E

:1T
i

Figure 3: Transformer model

3.3 Admittance Matrix

The admittance matrix Y , is a matrix that relates the injected current I at each bus to bus
voltages V , such that

I = Y V, (5)

where I is the vector of injected currents at each bus, and V is the vector of bus voltages. This is
in fact Ohm’s law (4) in matrix form. As such we can also define the impedance matrix Z = Y −1.

To calculate the admittance matrix Y , we look at the injected current Ii at each bus i. If Ii > 0
power is generated, if Ii < 0 power is consumed, and if Ii = 0 there is no current injected,
for example at a transmission substation. Let Iij denote the current flowing from bus i, in the
direction of bus j, or to the ground in case of a shunt. Applying Kirchoff’s current law now gives

Ii =
∑

k

Iik. (6)

Let yij denote the admittance of the line between bus i and j, with yij = 0 if there is no line
between these buses. For a simple transmission line from bus i to bus j, without shunt admittance,
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Ohm’s law states that

Iij = yij (Vi − Vj) , and Iji = −Iij , (7)

or in matrix notation:
[

Iij

Iji

]
= yij

[
1 −1

−1 1

] [
Vi

Vj

]
. (8)

Note that, if a power system would consist of such simplified lines only, the admittance matrix for
that system is a Laplacian matrix (see Appendices A) given by

Yij =
{ ∑

k 6=i yik if i = j,

−yij if i 6= j.
(9)

Indeed, then we have

Ii =
∑

k

Iik =
∑

k

yik (Vi − Vk) =
∑

k 6=i

yikVi −
∑

k 6=i

yikVk =
∑

k

YikVk = (Y V )i . (10)

Now suppose there is a shunt s connected to bus i. Then, according to equation (6), an extra
term Iis is added to the injected power Ii. From Figure 2, it is clear that

Iis = ys (Vi − 0) = ysVi. (11)

This means that in the admittance matrix, an extra term ys has to be added to Yii. Recall that
ys = jbs, and that the sign of bs depends on the shunt being inductive or capacitive.

Knowing how to deal with shunts, it is now easy to incorporate the line shunt admittance model,
as depicted in Figure 1. In the admittance matrix, for a transmission line between the buses i and
j, the halved line shunt admittance ys

2 of that line, has to be added to both Yii and Yjj . For a
transmission line with shunt admittance ys, we thus find

[
Iij

Iji

]
=

(
yij

[
1 −1

−1 1

]
+ ys

[
1
2 0
0 1

2

])[
Vi

Vj

]
. (12)

The influence on the admittance matrix, of a device t between the buses i and j, that is either a
tap transformer or a phase shifter, can be derived from the model as depicted in Figure 3. Let E
be the voltage induced by t, then

Vi = TE. (13)

Thus the current from bus j to t, and thus in the direction of bus i, is

Iji = yij (Vj − E) = yij

(
Vj − Vi

T

)
. (14)

Conservation of power gives

ViIij = −EIji ⇒ TIij = −Iji ⇒ TIij = −Iji. (15)

and thus for the current from bus i to t, and thus in the direction of j, we find

Iij = −Iji

T
= yij

(
Vi

|T |2 −
Vj

T

)
. (16)
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If the device t that connects bus i to bus j is a tap transformer, then T = T , and |T |2 = T 2, and
thus instead of the admittance matrix values from equation (12), we find

[
Iij

Iji

]
= yij

[
1

T 2 − 1
T

− 1
T 1

] [
Vi

Vj

]
. (17)

If instead t is a phase shifter, then T = e−jδT = 1
T , and |T |2 = 1, and we find

[
Iij

Iji

]
= yij

[
1 −T

−T 1

] [
Vi

Vj

]
. (18)

4 Load Flow

The load flow problem, or power flow problem, is the problem of computing the flow of electrical
power in a power system in steady state. In practice, this amounts to calculating all node voltages
and line currents in the power system. The load flow is regarded the most important network
computation. The problem arises in many applications in power system analysis, and is treated
in many books on power systems, see for example [5], [1] and [4].

The mathematical equations describing the load flow problem can be obtained by combining Ohm’s
law from equation (5), with Joule’s law:

Si = ViIi = Vi

(
Y V

)
i
= Vi

N∑

k=1

Y ikV k. (19)

Note that the admittance matrix Y is easy to obtain, and generally very sparse. Therefore a
formulation using the admittance matrix has preference over using the impedance matrix, which
is generally a lot harder to obtain and not sparse.

Further note that for each bus i that has no injected power, i.e., Si = 0, we also have that injected
current Ii = 0. Therefore, we can use the linear equation (Y V )i = 0, to eliminate the variable
Vi from the problem. This method is called Kron reduction, see [1] Section 9.3. The elimination
can be done by simple Gaussian elimination, but in the case of many such buses, using a Schur
complement may provide better results.

Recall that voltage and current are complex numbers, and substitute Vi = |Vi|ejδi , Y = G + jB,
and δij = δi − δj into equation (19). This gives

Si = |Vi|ejδi

N∑

k=1

(Gik − jBik) |Vk|e−jδk =
N∑

k=1

|Vi||Vk| (cos δik + j sin δik) (Gik − jBik) (20)

Define the real vector of the voltage variables of the load flow problem as

V = [ δ1, . . . , δN , |V1|, . . . , |VN | ]T . (21)

For the purpose of notational comfort, we further define

Pij (V) = |Vi||Vj | (Gij cos δij + Bij sin δij) , (22)
Qij (V) = |Vi||Vj | (Gij sin δij −Bij cos δij) . (23)

Then we can write equation (20) as

Si =
N∑

k=1

Pik (V) + j

N∑

k=1

Qik (V) . (24)
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Splitting the real and imaginary parts of the equation, and defining Pi (V) =
∑N

k=1 Pik (V) and
Qi (V) =

∑N
k=1 Qik (V), we have

Pi = Pi (V) , (25)
Qi = Qi (V) . (26)

Equations (25)–(26) relate the complex power in each node to the node voltages, using the ad-
mittance matrix of the power system network. It consists of 2N non-linear real equations. Each
node has four variables, |Vi|, δi, Pi and Qi, two of which have a specified value, as discussed in
section 3. Thus we have 2N non-linear real equations in 2N real unknowns, commonly known as
the load flow equations, or power flow equations.

4.1 Newton-Raphson

It is generally not possible to solve a system of non-linear equations analytically. However, there
are many iterative techniques to approximate the solution. The problem of solving a system of
equations is trivially equivalent to finding the simultaneous roots of a set of functions in the same
variables. As such, we can deploy root finding algorithms as a tool to solve a system of equations.
Of these algorithms, Newton’s method, also known as the Newton-Raphson method, is widely
accepted to be the best for many applications. Newton’s method is the base algorithm of choice
when solving load flow equations.

First, define a real vector of the voltage variables of the load flow problem:

V = [ δ1, . . . , δN , |V1|, . . . , |VN | ]T . (27)

Then write the load flow equations as a set of functions Fi, whos simultaneous roots are the
solution of the load flow equations:

Fi (V) =
[

∆Pi (V)
∆Qi (V)

]
=

{
Pi − Pi (V) , i = 1 . . . N,
Qi −Qi (V) , i = N + 1 . . . 2N,

(28)

where Si = Pi+jQi are the desired values of the power, whereas Si (V) = Pi (V)+jQi (V) are the
values dictated by the bus voltages and network admittance matrix, i.e., Si (V) is the right-hand
side in equation (20). The function F is called the power mismatch.

Next, we start with some guess or approximation V0, and update it iteratively by the rule

Vk+1 = Φ
(
Vk

)
, (29)

where the function Φ is such that

Φ (V) = V ⇔ F (V) = 0, (30)

with F the vector of functions Fi. Condition (30) is always satisfied, if we choose

Φ (V) = V −A (V)−1 F (V) , (31)

with A (V) a non-singular matrix. Different choices of A (V) correspond to different methods. For
example, A = I leads to the Gauss-Seidel method.

Newton’s method is based on the first order Taylor expansion of F , and as such uses A (V) = J (V),
with J the Jacobian of F . Thus, Newton’s method is characterized by the update rule

Vk+1 = Vk + ∆Vk, (32)
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where ∆Vk is the solution of the linear system of equations

−J
(
Vk

)
∆Vk = F (

Vk
)
. (33)

Convergence of Newton’s method is not guaranteed, however, when the starting approximation
is sufficiently near the solution, the convergence is quadratic. Note that the Jacobian generally
differs in each iteration. We will refer to this method as full Newton, as opposed to inexact Newton
methods which make some kind of approximation, often in the Jacobian. Inexact Newton methods
generally have linear convergence.

4.2 Generator Buses

When solving a linear system of the form Ax = b, we assume the coefficient matrix A, and right-
hand side vector b to be known, and the variable vector x to be unknown. In the case of the
linear system from equation (33), each bus i of the power system makes for two equations, begin
row i and row N + i. If bus i is a load bus, then indeed all coefficients, and the right-hand side
value, of row i and row N + i are known, whereas δi and |Vi| are unknown. However, if bus i is a
generator bus, then we have a different situation.

First let us consider the slack bus, of which every power system has exactly one, and assume that
it is located at bus 1. Then, δ1 and |V1| are known, whereas P1 and Q1 are not. As a result,
we can eliminate the variables δ1 and |V1| from the system, by substituting their values into the
coefficient matrix, and bringing the resulting values to the right-hand side. Also, we can take row
1, which corresponds to the equation for P1, and row N + 1, which corresponds to the equation
for Q1, out of the system. Note that the resulting coefficient matrix, is a principal minor of the
original matrix.

Once the Newton-Raphson process has converged, P1 and Q1 are easily calculated by substituting
the found solution into the original equations 1 and N + 1, that were taken out.

Now consider a generator bus i that are not the slack bus. Then Pi and |Vi| are known, whereas
Qi and δ)i are unknown. With |Vi| known, we can eliminate this variable, and column N + i from
the linear system. And since Qi is unknown, we also take row N + i out of the system, like we did
in the case of a slack bus. Note that again, the resulting coefficient matrix is a principal minor of
the original matrix.

4.3 Full Newton Jacobian

Applying Newton’s method to the load flow problem, in each iteration we have to solve the linear
system of equations (33), and update the approximate solution according to equation (32). All
terms in these equations are straightforward to calculate, except for the Jacobian.

In this section we will derive the explicit form of the Jacobian of the load flow equations. The
general structure of the Jacobian is

J (V) = −




∂P1
∂δ1

. . . ∂P1
∂δN1

∂P1
∂|V1| . . . ∂P1

∂
˛̨
VN2

˛̨

...
. . .

...
...

. . .
...

∂PN1
∂δ1

. . .
∂PN1
∂δN1

∂PN1
∂|V1| . . .

∂PN1
∂
˛̨
VN2

˛̨

∂Q1
∂δ1

. . . ∂Q1
∂δN1

∂Q1
∂|V1| . . . ∂Q1

∂
˛̨
VN2

˛̨

...
. . .

...
...

. . .
...

∂QN2
∂δ1

. . .
∂QN2
∂δN1

∂QN2
∂|V1| . . .

∂QN2
∂
˛̨
VN2

˛̨




, (34)
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where the dependance of Pi and Qi of V has been left out for readability. The dimensions N1 and
N2 are due to the elimination of the slack bus, and other generator buses.

Below the first order derivates, of which the Jacobian exists, are derived. Note that we assume
that i 6= j wherever applicable.

∂Pi (V)
∂δj

= |Vi||Vj | (Gij sin δij −Bij cos δij) = Qij (V) (35)

∂Pi (V)
∂δi

=
∑

k 6=i

|Vi||Vk| (−Gik sin δik + Bik cos δik) = −Qi (V)− |Vi|2Bii (36)

∂Qi (V)
∂δj

= |Vi||Vj | (−Gij cos δij −Bij sin δij) = −Pij (V) (37)

∂Qi (V)
∂δi

=
∑

k 6=i

|Vi||Vk| (Gik cos δik + Bik sin δik) = Pi (V)− |Vi|2Gii (38)

∂Pi (V)
∂|Vj | = |Vi| (Gij cos δij + Bij sin δij) =

Pij (V)
|Vj | (39)

∂Pi (V)
∂|Vi| = 2|Vi|Gii +

∑

k 6=i

|Vk| (Gik cos δik + Bik sin δik) =
Pi (V)
|Vi| + |Vi|Gii (40)

∂Qi (V)
∂|Vj | = |Vi| (Gij sin δij −Bij cos δij) =

Qij (V)
|Vj | (41)

∂Qi (V)
∂|Vi| = −2|Vi|Bii +

∑

k 6=i

|Vk| (Gik sin δik −Bik cos δik) =
Qi (V)
|Vi| − |Vi|Bii (42)

Summarizing, again leaving out the dependance on V:

∂Pi

∂δj
= Qij |Vj | ∂Pi

∂|Vj | = Pij

∂Pi

∂δi
= −Qi − |Vi|2Bii |Vi| ∂Pi

∂|Vi| = Pi + |Vi|2Gii

∂Qi

∂δj
= −Pij |Vj | ∂Qi

∂|Vj | = Qij

∂Qi

∂δi
= Pi − |Vi|2Gii |Vi| ∂Qi

∂|Vi| = Qi − |Vi|2Bii

4.4 Fast Decoupled Jacobian

With respect to convergence, full Newton load flow is as good as it gets. However there is a major
drawback to this method. Because the Jacobian depends on the current approximation of the
solution, it has to be recalculated every iteration. Moreover, because the Jacobian is not constant,
we cannot use the information from the previous iterations to solve the Jacobian system fast.

If we can approximate the Jacobian such that it is the same in each iteration, we can use the
factorization, the preconditioner, or whatever information we calculate in the first iteration, in
each subsequent iteration to solve the Jacobian system quickly.

Fast decoupled load flow (FDLF) provides such an approximation, based on the practical properties
of load flow problems. We will follow the original derivation of the method from [6], and discuss
the important additions and insights given in [7] and [3].

10



In FDLF the assumption is made that, for all i, j,

δij ≈ 0, (43)
|Vi| ≈ 1. (44)

For the original derivation in [6], it is further assumed that

Gij ¿ Bij . (45)

Using assumptions (43) we can approximate

Pij (V) = |Vi||Vj | (Gij cos δij + Bij sin δij) ≈ +|Vi||Vj |Gij , (46)
Qij (V) = |Vi||Vj | (Gij sin δij −Bij cos δij) ≈ −|Vi||Vj |Bij . (47)

Note that for i = j these approximations are exact, since δii = 0.

Now, using assumption (45) it follows that

Pij (V) ¿ Qij (V) . (48)

This leads to the idea of decoupling, i.e., neglecting the off-diagonal blocks of the Jacobian matrix,
as they are small compared to the diagonal blocks.

Thus, by the above assumptions, we can approximate the Jacobian as follows. Note that in the
first two equations we use assumption (44), though only on |Vj |.

∂Pi (V)
∂δj

= Qij (V) ≈ −|Vi||Vj |Bij ≈ −|Vi|Bij (49)

∂Pi (V)
∂δi

= −
∑

k 6=i

Qik (V) ≈
∑

k 6=i

|Vi||Vk|Bik ≈ |Vi|
∑

k 6=i

Bik (50)

∂Qi (V)
∂δj

= −Pij (V) ≈ 0 (51)

∂Qi (V)
∂δi

=
∑

k 6=i

Pik (V) ≈ 0 (52)

∂Pi (V)
∂|Vj | =

Pij (V)
|Vj | ≈ 0 (53)

∂Pi (V)
∂|Vi| = 2|Vi|Gii +

∑

k 6=i

Pik (V)
|Vi| ≈ 0 (54)

∂Qi (V)
∂|Vj | =

Qij (V)
|Vj | ≈ −|Vi|Bij (55)

∂Qi (V)
∂|Vi| = −2|Vi|Bii +

∑

k 6=i

Qik (V)
|Vi| ≈ −2|Vi|Bii −

∑

k 6=i

|Vk|Bik (56)

The last equation (56) still requires some work. To this purpose, we define the negated rowsum
of the imaginary part B of the admittance matrix Y = G + jB:

Di =
∑

k

−Bik = (−Bii)−
∑

k 6=i

Bik. (57)

Note that, assuming that the diagonal elements of B are negative, and the off-diagonal elements
are non-negative, Di is also equal to the diagonal dominance of row i. In a system with only
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generators, loads and transmission lines, Di is directly related to the shunt admittance of the
lines.

Now we can use assumption (44) to approximate |Vk| with |Vi| for all k, and find that

∂Qi (V)
∂|Vi| ≈ −2|Vi|Bii −

∑

k 6=i

|Vk|Bik ≈ −2|Vi|Bii − |Vi|
∑

k 6=i

Bik

= |Vi|
∑

k 6=i

Bik − 2|Vi|

Bii +

∑

k 6=i

Bik


 = |Vi|

∑

k 6=i

Bik + 2|Vi|Di. (58)

The only term left in the approximated Jacobian matrix, that depends on the current approxima-
tion of the solution, is |Vi|. Because of assumption (44) we can just set this term to 1. However,
it is also common practice to divide row i of the approximated Jacobian matrix, and element i of
the right-hand side vector of the Jacobian system, by |Vi| for each i.

In either case, the coefficient matrix of the system to solve is the same in each iteration, and can
be characterized by

∂Pi

∂δj
= −Bij |Vj | ∂Pi

∂|Vj | = 0

∂Pi

∂δi
=

∑

k 6=i

Bik |Vi| ∂Pi

∂|Vi| = 0

∂Qi

∂δj
= 0 |Vj | ∂Qi

∂|Vj | = −Bij

∂Qi

∂δi
= 0 |Vi| ∂Qi

∂|Vi| =
∑

k 6=i

Bik + 2Di

As introduced in [6], we will refer to the upper diagonal block as B′, and to the lower diagonal
block as B′′. Note that, in a system with only generators, loads and transmission lines, B′ is equal
to −B without line shunts incorporated, while B′′ is equal to −B with double line shunt values.

Summarizing, FDLF calculates the update, for the approximate solution in iteration k, by solving
the following linear systems

B′∆δk = ∆P k, (59)

B′′∆|V |k = ∆Qk, (60)

with ∆P k
i = Pi

(
Vk

)−Pi and ∆Qk
i = Qi

(
Vk

)−Qi, or ∆P k
i =

Pi(Vk)−Pi

|Vi| and ∆Qk
i =

Qi(Vk)−Qi

|Vi| .

4.4.1 Shunts, Tap Transformers, and Phase Shifters

A few added notes can be made with respect to shunts, tap transformers and phase shifters.
Shunts have the same influence on the system as transmission line shunts, i.e., they only change
the diagonal entries of the admittance matrix. Thus they are left out in B′, and doubled in B′′.
Since tap transformers predominantly influence the voltage magnitude |V |, they are generally left
out in B′. Likewise, since phase shifters change the voltage angle δ, they are left out in B′′.
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4.4.2 BB, XB, BX, and XX

The FDLF method derived above is commonly refered to as the BB version, because for both B′

and B′′ we use the susceptance values

B = =
(

1
R + jX

)
=

−X

R2 + X2
. (61)

Stott and Alsac [6] already reported slightly improved convergence, if the series resistance R was
neglected in B′, that is, if for B′ the values

BX = =
(

1
jX

)
=
−1
X

(62)

are used instead of the full susceptance. Thus B′ is derived from the reactance values X, and B′′

from the susceptance values B. Therefore, this method is often referred to as the XB version.

Van Amerongen [7] reported that the BX scheme yields convergence that is comparable to XB in
most cases, and considerably better in some. This is the version where B′ is based on the full
susceptance values B, whereas B′′ is made from BX . Further, he noted that an XX scheme is
never better than BX or XB.

Monticelli, et al. [3] presented mathematical support for the good results obtained with the XB
and BX schemes. Their idea is the following. Starting with assumptions (43) and (44), the full
Newton system is approximated by

[
−B G

−G −B

][
∆δ

∆|V |

]
=

[
∆P

∆Q

]
. (63)

Using block Gaussian elimination, we get
[
−B G

0 − (
B + GB−1G

)
] [

∆δ

∆|V |

]
=

[
∆P

∆Q−GB−1∆P

]
. (64)

First calculate the partial voltage angle update

−B∆δk
B = ∆P

(
δk, |V |k

)
⇒ ∆δk

B = −B−1∆P
(
δk, |V |k

)
, (65)

and note that using the first order Taylor expansion we can write

∆Q
(
δk + ∆δk

B , |V |k
)
≈ ∆Q +

∂∆Q

∂δ
∆δk

B = ∆Q−GB−1∆P, (66)

where ∆P = ∆P
(
δk, |V |k

)
and ∆Q = ∆Q

(
δk, |V |k

)
. Thus we can approximate the lower block

of linear equations in (64) by the system

− (
B + GB−1G

)
∆|V |k = ∆Q

(
δk + ∆δk

B , |V |k
)

. (67)

Next calculate a second partial voltage angle update

B∆δk
G = G∆|V |k ⇒ ∆δk

G = B−1G∆|V |k. (68)

Then the solution of the upper block of linear equations in (64) is given by

∆δk = −B−1∆P
(
δk, |V |k

)
+ B−1G∆|V |k = ∆δk

B + ∆δk
G. (69)
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The next step would be to go to the next iteration, and cacluate

−B∆δk+1
B = ∆P

(
δk+1, |V |k+1

)
⇒ ∆δk+1

B = −B−1∆P
(
δk+1, |V |k+1

)
. (70)

However, note that

∆δk+1
B + ∆δk

G = −B−1∆P
(
δk+1, |V |k+1

)
+ B−1G∆|V |k (71)

= −B−1
(
∆P

(
δk + ∆δk

B + ∆δk
G, |V |k+1

)
−G∆|V |k

)
(72)

≈ −B−1
(
∆P

(
δk + ∆δk

B , |V |k+1
)

+ B∆δk
G −G∆|V |k

)
(73)

= −B−1∆P
(
δk + ∆δk

B , |V |k+1
)

, (74)

where we used a first order Taylor expansion to go from equation (72) to (73). Thus instead of cal-
culating δk

G, updating the angle update ∆δk with it, and then calculating δk+1
B from equation (70),

we can instead calculate ∆δk+1
B + ∆δk

G in one go from equation (74).

The above observations lead to the following iterative scheme:

Solve −B∆δB = ∆P (δ, |V |)
Update δ = δ + ∆δB

Solve − (
B + GB−1G

)
∆|V | = ∆Q (δ, |V |)

Update |V | = |V |+ ∆|V |

Now write B and G as AT dBA and AT dGA, where A is the node-incidence matrix (see Ap-
pendix A) of the associated network, and the matrices dB and dG are the diagonal matrices of
edge susceptances and conductances respectively. Then, if A is non-singular, i.e., the network is
radial, or if dB = bI and dG = gI, i.e., the R/X ratio is equal on all lines, we can write

− (
B + GB−1G

)
= −AT dBA−AT dGA

(
AT dBA

)−1
AT dGA

= −AT dBA−AT

(
dG2

dB

)
A

= −AT

(
dB +

dG2

dB

)
A

= −AT

(
dB2 + dG2

dB

)
A = −AT

(
dX−1

)
A (75)

For general networks, if the R/X ratios do not vary a lot, we can thus use the matrix constructed
from the inverse reactances X−1, as an approximation for the Schur complement

(
B + GB−1G

)
.

This leads to the BX scheme for the fast decoupled load flow.

Similarly, starting with the system of equations (63), and applying Gaussion elimination from
the bottom up, leads to the XB scheme. However, when there are PV buses, the convergence
of this scheme becomes less reliable that that of the BX scheme. This can be understood by
analysing what happens to the XB scheme if all buses are PV buses. In this case, the system from
equation (63) will reduce to

[−B] [∆δ] = [∆P ] . (76)

In the BX scheme, this is indeed the system that will be solved. However, in the XB scheme,
instead of −B the coefficient matrix −X−1 will be used, leading to unnecessary approximations.

Summarizing, the assumptions that δ ≈ 0 and |V | ≈ 1, and the assumption that the R/X ratio
doesn’t vary too much between different lines in the network, lead to the BX scheme of the fast
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decoupled load flow method. The assumption on the R/X ratios replaces the original assump-
tion (45). The BX scheme is not decoupled in the orginal meaning of the term, as the off-diagonal
blocks are not disregarded, but are fully incorporated in the method. As such it has better
convergence properties than the BB scheme.

4.4.3 Matrix Analysis

As noted in Section 3.3, the admittance matrix Y in equation (9) is a Laplacian matrix. Line
shunts, tap transformers, and phase shifters, generally change the values in the admittance matrix
in such a way that it is no longer Laplacian. Let us assume that we have no such devices, nor
any line shunt admittances, and thus that the admittance matrix is Laplacian. For details on
Laplacian matrices, see Appendices A and B.

As described above, the FDLF method involves repeatedly solving linear systems with coefficient
matrices B′ and B′′, both derived from the imaginary part B of the admittance matrix Y . If
Y is a Laplacian matrix, then the imaginary part B is also Laplacian. Thus it has non-positive
off-diagonal entries, positive diagonal entries, and all row sums are 0.

As discussed in Section 4.2, due to the removal of the equation for the slack bus, and possibly
other generator buses, B′ and B′′ are principal minors of B. In the case of a BX or XB scheme,
the coefficient matrix corresponding to the X, is a principal minor of the imaginary part of Y in
which the resistance has been neglected. In either case, the coefficient matrices B′ and B′′ are
principal minors of a Laplacian matrix. As such, they still have non-positive off-diagonal entries
and positive diagonal entries. However, instead of all row sums being 0, there is at least one
row that has a positive row sum. Such a matrix is called an M-matrix, see for example [2]. Any
M-matrix is positive definite, and thus B′ and B′′ are symmetric positive definite M-matrices.

As described in Section 3.3, shunts lead to an extra term added to the diagonal of the admittance
matrix. If the shunt is inductive, the shunt will only add to the diagonal dominance, of both
the real and imaginary part of the admittance matrix. However, if the shunt is capacitive, the
admittance matrix may lose its diagonal dominance. This can lead to the matrices B′ and B′′

no longer being M-matrices. Line shunts are by always capacitive, and thus will always have a
negative effect on the diagonal dominance.

From equation (17) we can see that, for T 6= 1, tap transformers also have a negative effect on the
diagonal dominance. Because if T > 1, then 1

T 2 < 1
T , whereas if T < 1, then 1 < 1

T .

For a phase shifter, from equation (18) it is not clear how it will effect diagonal dominance of
the real or imaginary part of the admittance matrix. However it is clear that, where all other
devices retained the symmetry of the admittance matrix, a phase shifter generally does make the
admittance matrix non-symmetric.

5 Research Questions

The general direction into which we want to take this research, is to develop efficient iterative
solvers for large load flow problems.

The first step is to do an in-depth analysis of the coefficient matrices of the linear systems that
arise when solving load flow problems, both for the full Newton method, and the FDLF schemes,
treated in Section 4. The spectrum of eigenvalues, the sparsity pattern, the effect of the structure
of the network, the effect of special devices like shunts, tap transformers, and phase shifters, and
other properties, are essential for the choice and performance of iterative solvers.

The next step is to incorporate existing iterative methods in a load flow solver, to test the quali-
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tative and quantative performance on existing problems, and compare the iterative methods with
each other, and with direct solvers. From this research we can identify promising candidates and
directions for further research, to develop new methods to efficiently deal with load flow problems.
Some ideas are the development of specific preconditioners, for example FDLF as preconditioner
for full Newton, multigrid, either algebraic, or exploiting information on the power system net-
work, domain decomposition, deflation, model order reduction, and complex iterative solvers, as
opposed to splitting the problem into real equations.

Scalability is an important property due to the ever growing power systems, both from the coupling
of existing power systems, as the need to calculate the load flow all the way down to the consumers,
instead of just the high voltage network. Therefore, the scalability of the developed techniques
will be explored extensively.

The above described research questions should not only bear with a toolbox of iterative solvers
for load flow problems, but also provide us with a lot of knowledge on the use of iterative solvers
for load flow problems. With these insights, we can formulate new research questions to attack.
Currently, an important candidate for further research is the efficient solution of many load flow
problems with only relatively small differences, like changes in the load at certain busses, or
removing one or more transmission lines from the system. Related to this problem, is the idea
to bring stochastics into the system, for example to deal with fluctuating power demands of
consumers, or fluctuating power generation due to wind turbines or solar panels.

6 Conclusions

In this literature survey, we have treated the basic concepts that define the load flow problem.
The load flow problem is a large system of non-linear equations, and as such the Newton-Raphson
method is start to tackle the problem.

The full Newton method ensures the fastest convergence, however each iteration is costly, because
the coefficient matrix of the linear system changes. The FDLF method is an inexact Newton
method, that sacrifices some of the fast convergence, to make each iteration a lot cheaper. Over
the years, this method has proven very powerful in practice.

For a simplified power system, the coefficient matrices used in the FDLF method, are symmetric
positive definite M-matrices. Systems with such coefficient matrices are well solved by numerous
techniques. With the current size of load flow problems, in practice generally direct solvers are
used. For larger system iterative techniques, that deal well with symmetric M-matrices, like
Algebraic Multigrid (AMG) may prove a strong alternative. In Section 5, the current plans for
further research on the subject have been presented.
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A Network Matrices

Let G = (V,E) be a graph with N vertices vk ∈ V and M edges ek ∈ E, with ek = (vi, vj)
denoting an edge from vi to vj .

The node-incidence matrix A of a graph G = (V, E) is an M × N matrix in which each row i
represents an edge ei = (p, q), and is defined as

aij =




−1 if p = vj ,

1 if q = vj ,
0 otherwise.

(77)

In other words, if ei = (vp, vq), then row i has value −1 at index p and value 1 at index q.

The Laplacian matrix L of a graph G = (V, E) is an N × N matrix in which each off-diagonal
entry lij is −1 if the vertices vi and vj are connected, and 0 otherwise. Each diagonal entry lii is
equal to the degree di of vertex vi, i.e., the number of edges connected to vi. So L is defined by

lij =





di if i = j,
−1 if vi and vj are connected,

0 otherwise.
(78)

The Laplacian matrix L can also be defined as

L = AT A. (79)

The weighted Laplacian matrix L is a Laplacian matrix whose off-diagonal entries are negated
edge weights, and whose diagonal entries are the sum of the weights of all edges connected to the
vertex, instead of its degree. Let wij = wji be the weight of the edge between vi and vj . Edge
weights can be real valued, but are also allowed to be complex valued. Then

lij =





∑
k 6=i wik if i = j,

−wij if vi and vj are connected,
0 otherwise.

(80)

The weighted Laplacian matrix L can also be defined as

L = AT WA, (81)

where W is a diagonal matrix such that wkk is the weight of edge ek. Note that if all weights are
1, the weighted Laplacian is identical to the non-weighted Laplacian matrix. Further note that
wkk = 0 corresponds to removing edge ek from the graph.

In this document, with Laplacian matrix we mean a weighted Laplacian matrix. Obviously all
properties that hold for weighted Laplacian matrices, also hold for non-weighted Laplacian matri-
ces.

B Laplacian Matrix Properties

In this appendix we will explore some properties of (weigted) Laplacian matrices.

B.1 Symmetric Positive Semi-Definite

Let L be the Laplacian matrix of a graph G = (V,E). Then L is symmetric positive semi-definite,
but never positive definite.
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From definition (80) it is obvious that L is symmetric, since wij = wji, and therefore all eigenvalues
are real. Also from definition (80) it is easy to verify that

L1 = 0, (82)

where 1 is a vector of just ones, and similarly 0 is a vector of only zeros. Thus λ = 0 is an
eigenvalue of L with corresponding eigenvector 1.

Using Gershgorin’s circle theorem, we find that all eigevalues λi of L lie in the union of circles

|z − lii| ≤
∑

j 6=i

|lij | , z ∈ C.

Since we know that all eigenvalues are real, and that
∑

j 6=i |lij | = lii, this means they lie in the
union of intervals

lii ≤ z − lii ≤ lii, z ∈ R.

Thus we find

λi ∈
[
0, 2max

k
lkk

]
. (83)

With all eigenvalues being non-negative, it immediately follows that L is positive semi-definite.
From (82) we also know that λ0 = 0, and thus L is not positive definite. As a result L is not
invertible, and there are vectors b = (b1, . . . , bN ) ∈ RN for which the system Lx = b has no
solution.

B.2 Algebraic Connectivity

Let L be the Laplacian matrix of a graph G = (V, E). The smallest non-trivial eigenvalue λ1 of L
is called the algebraic connectivity. A small positive value for λ1 means that G is connected, but
involves two loosely coupled subgraphs. It is known from spectral graph theory1 that removing
edges from G will make λ1 become smaller, and that λ1 = 0 if we have subgraphs that are
disconnected from each other, which we also derive below.

Suppose G has K connected subgraphs Gi that are disconnected from all other subgraphs, then
we can reorder the vertices of G such that

L =




L1 0
. . .

0 LK


 ,

where Li is the weighted Laplacian matrix of subgraph Gi. If we partition

x =




x1

...
xK


 ,

corresponding to the partition of L, then it is clear that for each vector x with xi = 1 and xj = 0
for all j 6= i, we have Lx = 0. These K vectors xi span the kernel of L. Therefore the 0 eigenvalue
of L has multiplicity K, with corresponding eigenvectors x as described.

Note that if we partition b the same way as we did x, then we can solve Lx = b by solving
Lixi = bi for i = 1, . . . ,K. Since each matrix Li is a (weighted) Laplacian matrix of a connected
graph, they all have eigenvalue λ0 = 0 with multiplicity 1. Therefore, solving Lx = b, we may
always assume to be solving one or more systems with a Laplacian matrix with eigenvalue λ0 = 0
with multiplicity 1.

1See http://en.wikipedia.org/wiki/Spectral graph theory for a definition and references.
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B.3 Solution and Least Squares Solution

Let L be the Laplacian matrix of a graph G = (V, E), and let λ0 = 0 be the only eigenvalue with
value 0. Then the linear system Lx = b has solutions if and only if

∑
i bi = 0. Moreover, the

solution of the system Lx = b−
P

i bi

N 1 is the least squares solution of the system Lx = b. Note
that b −

P
i bi

N 1 is the projection of b onto the orthogonal complement of the nullspace. Further
note that, due to (82), if x is a solution of the system Lx = b, then x + α1 is also a solution for
all α ∈ R.

Let λ0 ≤ . . . ≤ λN−1 again be the eigenvalues of L, and let v0, . . . ,vN−1 be the corresponding
eigenfactors, where λ0 = 0 and v0 = 1. As the eigenvectors span RN we can write

x =
N−1∑

i=0

ξivi, with ξi =
〈vi,x〉
〈vi,vi〉vi. (84)

and

b =
N−1∑

i=0

βivi, with βi =
〈vi,b〉
〈vi,vi〉vi. (85)

We then have

Lx = L

N−1∑

i=0

ξivi =
N−1∑

i=0

ξiLvi =
N−1∑

i=0

ξiλivi =
N−1∑

i=1

ξiλivi =
N−1∑

i=0

βivi = b. (86)

As the eigenvectors vi are orthogonal, this equality holds if and only if ξiλi = βi for all i. Using
that λ0 = 0 is the only eigenvalue with value 0, this means that any solution x is defined by
ξi = βi

λi
for i = 1, . . . , N − 1, with arbitrary ξ0, and that

β0 =
〈1,b〉
〈1,1〉1 =

〈1,b〉
N

1 = 0 ⇔ 〈1,b〉 = 0 ⇔
∑

i

bi = 0.

The least squares solution of a system Lx = b is the solution of LT Lx = LT b. Let x be a solution
of the system Lx = b−

P
i bi

N 1, which we know exists, then

LT Lx = LT (Lx) = LT

(
b−

∑
i bi

N
1
)

= LT b. (87)

So x is indeed the least squares solution of Lx = b.

B.4 Iterative Solution

Let L be the Laplacian matrix of a graph G = (V, E), and let λ0 = 0 be the only eigenvalue with
value 0. Let b be such that Lx = b has a solution, i.e., 〈b,1〉 = 0. Then there is always exactly
one base solution x̃ for which 〈x̃,1〉 = 0, and the complete solution is given by x = x̃+α1, α ∈ R.

Let a splitting of L

L = M −N, (88)

be given, where M is invertible, and M is such that systems of the form My = q are relatively
easy to solve. Then we can write

Lx = b ⇔ (M −N)x = b ⇔ Mx = Nx + b ⇔ x = M−1Nx + M−1b.
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Then the iteration scheme for the approximate solution xk, belonging to the splitting (88), is given
by

xk+1 = M−1Nxk + M−1b =
(
I −M−1L

)
xk + M−1b. (89)

Many properties of this iteration scheme, like convergence, depend fully on the choice of the matrix
M . However we can still derive some properties for the general case. Note that it is possible to
have a different splitting L = Mk − Nk each iteration, but as this does not change any of our
results, we are disregarding this for notational simplicity.

The residual rk in iteration k, is defined by

rk = b− Lxk. (90)

The residual is generally used as a measure for the error in each iteration.

Using the iteration formula (89) we can write

rk+1 = b− Lxk+1

= b− L
((

I −M−1L
)
xk + M−1b

)

= b− L
(
I −M−1L

)
xk − LM−1b

= − (
I − LM−1

)
Lxk +

(
I − LM−1

)
b

=
(
I − LM−1

)
rk.

We call the matrix
(
I − LM−1

)
= NM−1 the residual propagation matrix.

As 〈b,1〉 = 0 and 〈Ly,1〉 = 0 for all y ∈ RN , from rk = b − Lxk it is obvious that
〈
rk,1

〉
= 0,

independent of xk, and that

rk = b− Lxk = b− L
(
xk + α1

)
. (91)

The update for the approximate solution is defined as

∆xk+1 = xk+1 − xk. (92)

Using the iteration scheme (89) we can write

∆xk+1 = M−1Nxk + M−1b−M−1Nxk−1 −M−1b = M−1N∆xk,

and

∆xk+1 =
(
I −M−1L

)
xk + M−1b− xk = −M−1Lxk + M−1b = M−1rk.

Summarizing, we have

M∆xk+1 = rk = N∆xk. (93)

The error ek in iteration k, is generally defined by ek = x−xk. However, in our case this definition
is ambiguous, since the system Lx = b has an infinite number of solutions. Therefore, instead we
will use the definition

ek =
(
x− 〈x,1〉

N
1
)
−

(
xk −

〈
xk,1

〉

N
1

)
. (94)

In words, the error is the difference of the base solution and the base approximate solution.
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We can also write ek = x∗ − xk, where x∗ = x − 〈x,1〉−〈xk,1〉
N 1. Note that x∗ is indeed also a

solution of the system Lx = b. Then, again using the iteration scheme (89), we can write

ek+1 = x∗ − (
I −M−1L

)
xk −M−1b

= x∗ − (
I −M−1L

)
xk −M−1Lx∗

=
(
I −M−1L

) (
x∗ − xk

)

=
(
I −M−1L

)
ek,

where we call the matrix
(
I −M−1L

)
= M−1N the error propagation matrix.

We also find

∆ek+1 = ek+1 − ek =
(
I −M−1L

)
ek − ek = −M−1rk = −∆xk+1.

Further note that

Lek = Lx∗ − Lxk = rk,

which is the reason that the residual can be used as a measure for the error of an approximate
solution, as obvioulsy the true error is not known.

From xk+1 = M−1Nxk + M−1b, in the iteration scheme (89), and the fact that M is invertible,
it is obvious that xk+1 is uniquely defined. However, for all α ∈ R the vector xk+1 + α1 would
be an equally good approximation, in the sense that the error ek is the same. From equation (91)
it is clear that the residual also stays the same. Thus, in each iteration we are free to add α1
to the approximate solution xk, for any choice of α ∈ R. This will not influence convergence of
the algorithm, though the solution it converges to is likely to be different. If we like, we could
therefore set the approximate solution to be the base approximate solution in each iteration. But
we can also leave the iterates as they are, and just set the final approximation of the algorithm to
match the desired solution, be it the base solution or any other.

Let a base approximate solution xk∗ be given. Using equation (93), the next iterate is given by
xk+1 = xk∗ + M−1rk. Thus we find

〈
xk+1,1

〉
=

〈
xk∗,1

〉
+

〈
M−1rk,1

〉
=

〈
M−1rk,1

〉
.

Therefore,
〈
xk+1,1

〉
= 0 if and only if

〈
M−1rk,1

〉
= 0.

Let rk = (r1, . . . , rN ), and M−1 =
[
m−1

1 . . . m−1
N

]
. Then

〈
M−1rk,1

〉
= rT

(
M−1

)T
1 =

∑

i

〈
m−1

i ,1
〉
ri.

Using the knowledge that
∑

i ri = 0, we find that in general
〈
xk+1,1

〉
=

〈
M−1rk,1

〉
= 0 ⇔ 〈

m−1
i ,1

〉
= µ for all i.

Therefore, having a base approximate solution xk∗ does not guarantee the next iterate xk+1 to
also be a base approximate solution, unless

〈
m−1

i ,1
〉

= µ for all i. Similarly, a certain offset α1
from the base approximate solution is only guaranteed to be maintained through iterations if and
only if

〈
m−1

i ,1
〉

= µ for all i.
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