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Chapter 1

Introduction

The flexibility of the Discontinuous Galerkin (DG) method make it particularly suitable for ob-
taining higher-order approximatons of the solution to a hyperbolic system, such as the model of
the flow around an air foil. This flexibility is a consequence of two main properties. First of all,
unlike continuous Galerkin appoximations, DG approximations are allowed to be discontinuous
along element boundaries. This makes the DG method particularly useful for modeling disconti-
nuities such as shocks. Moreover, the DG convergence rate is not only determined by the element
size and the accuracy of the numerical flux, but also by the degree of the polynomial space in
which the solution is sought. Finite Volume methods and Finite Difference schemes do not share
this virtue.

The computation of a DG approximation is often followed by a visualisation step, such as
the computation of streamlines or isolines, to extract the features of the underlying physical
phenomena that are of interest. Unfortunately, the aforementioned lack of smoothness of the DG
method can hamper the accuracy of visualisation techniques. This literature study forms the start
of a research that seeks to overcome this difficulty through smoothness-increasing convergence-
conserving spline filtering. The main application is streamline visualisation, but other visualisation
techniques may benefit as well from this research.

This report is organised as follows. First, a brief introduction to the hyperbolic systems under
consideration, their Discontinuous Galerkin approximation and the visualisation of the results in
the form of streamlines is provided (Chapter 2). After that, the one-dimensional central spline
filter is defined and applied to a DG solution to enhance its smoothness (Chapter 3). For a certain
class of linear periodic problems, it can be shown that the central spline filters at least preserve
the order of convergence of the DG method (Chapter 4). Finally, a conclusion is given together
with a list of future research questions (Chapter 5).
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Chapter 2

Defining the problem

2.1 Introduction

This chapter briefly introduces the Discontinuous Galerkin (DG) method and the visualisation of
its outcome in the form of streamlines for hyperbolic systems.

First, the weak formulation of non-linear hyperbolic systems is discussed (Section 2.2). The
solution of these systems can be approximated by the DG method (Section 2.3). This method is
considered in detail for a one-dimensional linear periodic example that will be revised in subsequent
chapters. After that, the visualisation of DG approximations in the form of streamlines is discussed
(Section 2.4), and a conclusion is given (Section 2.5).

2.2 Hyperbolic systems

Many physical phenomena, such as the flow around an air foil, are modeled in terms of hyperbolic
systems, which are formulated in this section.

Any non-linear hyperbolic system (Definition 2.2) can also be formulated in a weak sense
(Definition 2.3). The original so-called strong solution is also a weak solution, but the reverse
implication is not valid in general (Proposition 2.5).

The next section formulates the DG method to approximate the weak solution.

Notation 2.1 (L2 inner product)
First, introduce the following notation for the standard L2 innner product:

〈v, w〉X =

∫

X

v(x) · w(x) dx, ∀v, w ∈ L2(X,RD), ∀X ⊆ R
d

For the sake of notational brevity, if X is a single element of R
d, the integral is interpreted as the

evaluation of the integrand in that element. y

Definition 2.2 (Hyperbolic system - strong formulation)
Consider a time domain T = [ta, tb], a compact connected spatial domain X ⊆ R

d, a source

function g ∈ C0(RD,RD), and flux functions f
q
∈ C1(RD,Rd) (for all q = 1, ..., D). The strong

formulation of a hyperbolic system describes a strong solution u ∈ C1(X × T,RD) in terms of an
initial condition, ‘proper’ boundary conditions, and an equation in the form

∂u(x, t)

∂t
+




∇x ·
(
f

1

(
u(x, t)

))

...

∇x ·
(
f
D

(
u(x, t)

))


+ g

(
u(x, t)

)
= 0, ∀x ∈ X, ∀t ∈ T. (2.1)

See also [CJST98, p. 161, 201-202]. y
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Definition 2.3 (Hyperbolic system - weak formulation)
Consider Notation 2.1. The weak formulation of a hyperbolic system (Definition 2.2) describes

a weak solution u ∈ C1
(
T,W1,2(X,RD)

)
that satisfies an initial condition, ‘proper’ boundary

conditions, and:

〈uq(t), v(t)〉X = 〈uq(ta), v(ta)〉X +

∫ t

ta

(〈
uq(τ),

∂v

∂t
(τ)

〉

X

+
〈
f
q

(
u(τ)

)
,∇xv(τ)

〉

X
−
〈
f
q

(
u(τ)

)
· n, v(τ)

〉

∂X

−
〈
gq
(
u(τ)

)
, v(τ)

〉
X

)
dτ, (2.2)

for all test functions v ∈ C1(T, C∞(X)), for all t ∈ T , and for all q = 1, ..., D. Here, n is the
outward normal vector of the domain X . See also [CJST98, p. 161, 201-202]. y

Example 2.4 (Periodic linear hyperbolic equation)
Consider a one-dimensional hyperbolic system (Definition 2.2 with d,D = 1) for a domain X =
[xa, xb]. Suppose that the boundary conditions are periodic, the flux function is linear, and the
source function is zero:

f(u) = cu, c > 0, (2.3)

g(u) = 0. (2.4)

Hence, the strong solution satisfies:

∂u

∂t
+ c

∂u

∂x
= 0.

The corresponding weak solution (Definition 2.3) satisfies periodic boundary conditions and

〈u(t), v(t)〉X = 〈u(ta), v(ta)〉X +

∫ t

ta

〈
u(τ),

∂v

∂t
(τ) + c

∂v(τ)

∂x

〉

X

dτ

+

∫ t

ta

(
[cu(τ) v(τ)]xa

+ [−cu(τ) v(τ)]xb

)
dτ, (2.5)

for all test functions v ∈ C1
(
T, C∞(X)

)
and for all t ∈ T . y

Proposition 2.5 (A strong solution is also a weak solution)
A strong solution (Definition 2.2) is also a weak solution (Definition 2.3).

Proof:

See also [CJST98, p. 161, 201-202]. Consider the inner product of the strong formulation (2.1) with
a smooth function v ∈ C1(T, C∞(X)), integrate over the time interval [ta, t], and use integration
by parts. This results in the weak formulation (2.2).

2.3 Discontinuous Galerkin method

The weak solution of a hyperbolic system, which was formulated in the previous section, can be
approximated by means of the Discontinuous Galerkin (DG) method, which forms the subject of
this section.

The DG method (Definition 2.7) can be seen as a combination of the finite volume method
and the finite element method: it seeks a solution approximation that is a polynomial of a certain
degree in each element of the mesh, and that is allowed to be discontinous along the element
boundaries. An illustration of a possible outcome can be found in Figure 2.1. This figure illustrates
the performance of the DG method for a one-dimensional periodic linear hyperbolic equation
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Figure 2.1: Absolute value of the error |u− uh| for a one-dimensional periodic linear hyperbolic
problem (Example 2.9) with velocity c = 1 at the initial time (left) and after one period (right).
The initial condition is the sine function and the time step equals 0.1h. Notice that the convergence
rate increases with the degree k of the polynomial space. Furthermore, observe the oscillatory
nature of the error
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using the first-order upwind flux function and the monomials as a polynomial basis (Example 2.8,
(Example 2.9)).

Once the DG approximation has been obtained, a visualisation technique is usually required
to extract the features of interest. This is the topic of the next section.

Notation 2.6 (Mesh, polynomial test space, etc.)
Consider Notation 2.1. First of all, let N0 := N ∪ {0} denote the natural numbers including zero

and N1 := N\{0} the natural numbers excluding zero. For any compact connected domainX ⊆ R
d

and corresponding mesh Xh = {Xj ⊆ X}j∈I⊆Z that consists of a finite number of closed sets with
maximum diameter h > 0 that form a certain tesselation of X , introduce the following notation.
For any linear subspace V of L2(X), and for all v ∈ L2(X), let PV v denote the L2-projection of v
onto V , i.e. 〈PV v − v, w〉X = 0, for all w ∈ V . Furthermore, define the space of square-integrable
functions that are piecewise polynomial:

PkXh
(X) :=

{
v ∈ L2(X) : v|int(Xj) ∈ Pk

(
int(Xj)

)
, ∀Xj ∈ Xh

}
, ∀k ∈ N0,

where int(Xj) denotes the interior of element Xj . The DG method makes use of test functions that
are elements of a space of the latter kind. Additionally, introduce the space of square-integrable
functions that are piecewise smooth:

CmXh
(X) :=

{
v ∈ L2(X) : v|int(Xj) ∈ Cm

(
int(Xj)

)
, ∀Xj ∈ Xh

}
, ∀m ∈ N0 ∪ {∞}.

Finally, for any piecwise continuous v ∈ C0
Xh

(X), let vj denote the unique continuous element

of C0(Xj) such that these two functions coincide in the interior of element Xj , i.e. vj |int(Xj) =
v|int(Xj). y

Definition 2.7 (Discontinuous Galerkin approximation)
Consider Notation 2.6. The Discontinuous Galerkin approximation of the weak solution (Defini-
tion 2.3) can be constructed in the following manner. Consider a mesh Xh = {Xj ⊆ X}j∈I⊆Z and
let Ij contain the indices of the neighbors of element Xj:

Ij = {m ∈ I \ {j} : ej,m := ∂Xj ∩ ∂Xm 6= ∅}, ∀j ∈ I.

The Discontinuous Galerkin approximation (uh)q ∈ C1
(
T,PkXh

(X)
)

to the exact solution uq satis-
fies the boundary conditions of the weak formulation and:

d

dt

〈(
u
j
h

)

q
(t), vj

〉

Xj

=
〈
f
q

(
u
j
h(t)

)
,∇xv

j
〉

Xj

−
∑

m∈Ij

〈
f̃q
(
u
j
h(t), u

m
h (t)

)
, vj
〉

ej,m

−
〈
gq
(
u
j
h(t)

)
, vj
〉

Xj

, (2.6)

for all test functions v ∈ PkXh
(X), for all t ∈ T , for all j ∈ I, and for all q = 1, ..., D. Here,

f̃q : R
D ×R

D → R is a numerical flux function that is to be specified. The initial condition of the
numerical approximation is the projection of the initial condition of the exact solution:

(uh)q (ta) = PPk
Xh

(X)

(
uq(ta)

)
, ∀q = 1, ..., D.

See also [CJST98, p. 161-163, 201-203]. y

Example 2.8 (Periodic linear hyperbolic equation)
Consider Example 2.4. Choose points xa = x 1

2
< x 3

2
< ... < xJ+ 1

2
= xb in the domain and

construct a mesh with these points:

Xh = {Xj := [xj− 1
2
, xj+ 1

2
]}j∈I:={1,...,J},
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with maximum diameter h > 0. Using the first-order upwind flux function,

f̃(v, w) = cv,

the DG approximation (Definition 2.7) satisfies:

d

dt

〈
u
j
h(t), v

j
〉

Xj

=

〈
cu
j
h(t),

∂vj

∂x

〉

Xj

+
[
−cujh(t) v

j
]

x
j+ 1

2

+
[
cu
j′−1
h (t) vj

]

x
j− 1

2

, (2.7)

for all v ∈ PkXh
(X), for all t ∈ T , and for all j ∈ I. Here,

j′ :=

{
j, for j = 2, ..., J

J + 1, for j = 1,

in order to deal with the boundary conditions properly. y

Example 2.9 (Computational aspects)
Consider Example 2.8. The solution to (2.7) can be computed with the help of a basis for the

polynomial space Pk(Xj), such as the monomials :

vj,ℓ(x) =


x−

x
j− 1

2

+x
j+ 1

2

2

xj+ 1
2
− xj− 1

2



ℓ

, ∀x ∈ Xj , ∀ℓ = 0, ..., k, ∀j ∈ I. (2.8)

By writing the DG approximation as a linear combination of monomials,

u
j
h(t) =

k∑

ℓ=0

Cj,ℓ(t)vj,ℓ, ∀t ∈ T, ∀j ∈ I, (2.9)

for certain unknown differentiable coefficients Cj,ℓ, the DG method (2.7) can be formulated as
follows:

d

dt

k∑

ℓ=0

Cj,ℓ(t)
〈
vj,ℓ, vj,ℓ

′
〉

Xj

=

k∑

ℓ=0

(
Cj,ℓ(t)

〈
vj,ℓ,

∂vj,ℓ
′

∂x

〉

Xj

− Cj,ℓ(t)vj,ℓ(xj+ 1
2
)vj,ℓ

′

(xj+ 1
2
)

+ Cj
′−1,ℓ(t)vj

′−1,ℓ(xj− 1
2
)vj,ℓ

′

(xj− 1
2
)

)
,

for all t ∈ T , for all ℓ′ = 0, ..., k, and for all j ∈ I. This linear system of ODEs can also be written
in matrix vector notation:

Aj
d

dt
cj(t) = Bj,1cj(t) +Bj,2cj

′−1(t), ∀j ∈ I, (2.10)

where cj(t) is a vector of dimension k + 1 that contains the coefficients used in the linear combi-
nation of polynomial basis functions (2.9):

c
j
ℓ+1(t) = Cj,ℓ(t), ∀j = 1, ..., J, ∀ℓ = 0, ..., k,
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and Aj , Bj,1 and Bj,2 are square matrices of dimension (k + 1) × (k + 1) with coefficients:

A
j
ℓ′+1,ℓ+1 =

〈
vj,ℓ, vj,ℓ

′
〉

Xj

=

(
1
2

)ℓ+ℓ′+1
(
1 + (−1)ℓ+ℓ

′
)

ℓ+ ℓ′ + 1
(xj+ 1

2
− xj− 1

2
),

B
j,1
ℓ′+1,ℓ+1 =

〈
vj,ℓ,

∂vj,ℓ
′

∂x

〉

Xj

− vj,ℓ(xj+ 1
2
)vj,ℓ

′

(xj+ 1
2
)

=





−
(

1
2

)ℓ
, ℓ′ = 0,

ℓ′

ℓ+ℓ′

((
1
2

)ℓ+ℓ′
−
(

1
2

)ℓ+ℓ′)
−
(

1
2

)ℓ+ℓ′
, else,

B
j,2
ℓ′+1,ℓ+1 = vj

′−1,ℓ(xj− 1
2
)vj,ℓ

′

(xj− 1
2
) =

(
1

2

)ℓ(
−

1

2

)ℓ′
,

for all ℓ, ℓ′ = 0, ..., k and for all j ∈ I. Because the initial condition of ujh(ta) is the projection of
the initial condition of the exact solution uj(ta) onto the polynomial space Pk(Xj) in the L2-norm,
the initial condition for the coefficients follows from:

Ajcj(ta) = bj ,

where bj is a vector of dimension k + 1 with coefficients

b
j
ℓ′+1 =

∫ x
j+ 1

2

x
j− 1

2

u(x, ta)v
j,ℓ′(x) dx, ∀j ∈ I, ∀ℓ′ = 0, ..., k.

Finally, this linear system of ODEs can be solved by a numerical ODE solver, such as the third-
order TVD-Runge-Kutta method (Definition 2.12). This literature study leaves the motivation
for the particular choice for an ODE solver out of consideration. By substituting the resulting
coefficients into the linear combination of monomials (2.9), the final DG approximation is obtained.
For an illustration of the error of such an approximation, see Figure 2.1. y

2.4 Visualisation of the results as streamlines

The previous section discussed the DG method for hyperbolic problems. Such a computation can
be followed by a visualisation step to extract the features of the underlying physical phenomena
that are of interest. An example of such a technique is the visualisation of a vector field, such as
the flow around an airfoil, in the form of streamlines, which forms the subject of this section.

A streamline of a vector field is a line that is tangent to that field everywhere (Definition 2.10).
A streamline through a certain location can be computed by means of a one-dimensional ODE-
solver that uses that location as an initial condition. Examples of such solvers are the Euler
Forward scheme (Definition 2.11) and the third-order TVD-Runge-Kutta scheme (Definition 2.12).
An illustration of six vector field visualisation techniques, including two streamline visualisation
techniques, can be found in Figure 2.2.

The results of Laidlaw et al. [LKJ+05] suggest that streamline visualisation techniques are
preferred over other vector field visualisation techniques for critical point type identification and
particle path prediction. Another advantage of streamlines is that they are applicable for both
two- and three-dimensional fields.

Unfortunately, many ODE solvers assume that the field that they are acting upon is smooth,
as such solvers are often based on Taylor series. At the same time, DG approximations are usually
discontinuous along element boundaries. This lack of smoothness does not benefit the accuracy of
the streamline visualisation. Which level of differentiability is required exactly is unclear at this
point, and most likely depends on the ODE solver under consideration.

The next chapter seeks to enhance the smoothness of a DG approximation through central
spline filtering.
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Figure 2.2: Visualisation of a vector field using six different techniques as published in [LKJ+05]:
unlike the other four techniques, OSTR and GSTR are streamline visualisation methods. The
results of Laidlaw et al. [LKJ+05] suggest that these two streamline visualisation techniques are
preferred for critical point type identification and particle path prediction.

Definition 2.10 (Streamline)
Consider a domain X ⊆ R

d. A streamline of an integrable vector field u : X → R
D through

x0 ∈ X is a curve y ∈ C1([λa, λb],R
d) that is tangent to the vector field, i.e. which satisfies:

y(λ) = y(λa) +

∫ λ

λa

u(y(λ)) dλ, ∀λ ∈ [λa, λb], y(λa) = x0. (2.11)

See also [WRKH09, Section 3]. y

Definition 2.11 (Euler forward)
The Euler forward scheme describes a numerical solution to (2.11) in the following manner:

y0 = y(λa) = x0,

y(λj) ≈ yj = yj−1 + (λj − λj−1)u(y
j−1),

for all j = 1, ..., J , and with λa = λ0 < λ1 < ... < λJ = λb. y

Definition 2.12 (Third-order TVD-Runge-Kutta)
The third-oder TVD-Runge-Kutta scheme describes a numerical solution to (2.11) in the following



10 Defining the problem

manner:

y0 = y(λa) = x0,

yj,0 = yj−1,

yj,1 = yj,0 + (λj − λj−1)u(y
j,0),

yj,2 =
3

4
yj,0 +

1

4
yj,1 +

1

4
(λj − λj−1)u(y

j,1),

yj,3 =
1

3
yj,0 +

2

3
yj,2 +

2

3
(λj − λj−1)u(y

j,2),

y(λj) ≈ yj = yj,3,

for all j = 1, ..., J , and with λa = λ0 < λ1 < ... < λJ = λb. See also [CJST98, p. 170,171]. y

2.5 Conclusion

The Discontinuous Galerkin (DG) method is a flexible method for approximating the solution of
a hyperbolic system. Its flexibility is mostly due to the fact that its outcome is allowed to be
discontinuous at the element boundaries. This can in turn become a disadvantage, since a lack
of smoothness can have a negative effect on streamline visualisation techniques. The main goal
of this research is to tackle this problem through spline filtering, which is discussed in the next
chapter.



Chapter 3

Increasing the smoothness

3.1 Introduction

The previous chapter mentioned why a lack of smoothness of a DG approximation can hamper
its visualisation in the form of streamlines. This problem can be tackled through spline filtering,
which is the subject of this chapter.

First, the definition and properties of B-splines are given, as these form the building blocks
of spline filters (Section 3.2). This report focusses on so-called central spline filters (Section
3.4), which convolve the function to be filtered against a certain linear combination of central
B-splines (Section 3.3). The smoothing effect of this filter on DG solutions is illustrated for a one-
dimensional linear periodic problem (Section 3.5). After discussing the consequences for streamline
visualisation (Section 3.6), a conclusion is given (Section 3.7).

3.2 B-splines

B-splines form the core elements of spline filters. For this reason, their definition and properties
are considered in this section.

Because the divided difference of a polynomial of sufficiently low degree is equal to zero (Propo-
sition 3.2), Peano’s theorem can be applied for divided differences (Theorem 3.3). This basically
implies that the divided difference of a function can be expressed in terms of the integral over the
product of a derivative of that function and what will be defined as a B-spline (Definition 3.4).
It can be shown that a B-spline is a spline with compact support (Proposition 3.6). A spline is a
piecewise polynomial of a certain smoothness (Definition 3.5).

This report considers spline filters that are based on so-called central B-splines, which are
discussed in the next section.

Notation 3.1 (Divided differences etc.)
First, define the following functions

η(x, ξ) := ξ − x, ∀x, ξ ∈ R (3.1)

xs+ := (max{x, 0})
s
, ∀x ∈ R, ∀s ∈ N0, 00 := 0.

Furthermore, for all functions v : R → R, let

v([x0, ..., xs]) =

s∑

j=0

v(xj)∏
m∈{0,...,s}\{j}(xj − xm)

, ∀s ∈ N1,

denote the divided difference with respect to points x0, ..., xs ∈ R, and let

∂Hv(x) =
v(x + H

2 ) − v(x− H
2 )

H
, ∀x ∈ R,
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denote the central difference quotient with respect to a scale H > 0. y

Proposition 3.2 (Divided difference of a polynomial)
Consider Notation 3.1, let s ∈ N1, and let m ∈ N0. The divided difference with respect to points
x0, ..., xs ∈ R of a polynomial of degree s− 1 or lower is equal to zero:

p([x0, ..., xs]) = 0, ∀p ∈ Ps−1(R).

Proof:

The mean value theorem for divided differences implies that there exists ξ ∈ R such that:

p([x0, ..., xs]) =
1

s!

dsp

dxs
(ξ). (3.2)

The latter term is zero, because the sth order derivative of a polynomial of degree s− 1 or lower
is equal to zero.

Theorem 3.3 (Peano’s theorem (special case))
Consider Notation 3.1, let s ∈ N1 and suppose that x0 < ... < xs ∈ R. Furthermore, define:

ψs(x) := sηs−1
+ (x, [x0, ..., xs]) = s

s∑

j=0

(xj − x)s−1
+∏

m∈{0,...,s}\{j}(xj − xm)
, ∀x ∈ R. (3.3)

Then,

∫ xs

x0

dsv(x)

dxs
ψs(x) dx = s!v([x0, ..., xs]), ∀v ∈ Cs[x0, xs].

Proof:

Because of Proposition 3.2, the claim follows from Peano’s theorem. For the proof of the latter,
see e.g. [Dav75, Theorem 3.7.1].

Definition 3.4 (B-spline)
A B-spline of degree s ∈ N1 with knots x0 < ... < xs is a function ψs : R → R of the form (3.3).
See also [Sch73, p. 2]. y

Definition 3.5 (Spline)
A (polynomial) spline of degree s ∈ N1 with knots x0 < ... < xs is a function φ : R → R that is a
piecewise polynomial in the sense that, for each open interval between the knots, i.e. for each

X ∈
{
(−∞, x1), (x0, x1), ..., (xs−1, xs), (xs,∞)

}
,

there exists a polynomial p ∈ Ps−1(X) such that

φ(x) = p(x), ∀x ∈ X,

and that is smooth in the sense that φ ∈ Cs−2(R), as long as s ≥ 2. If s = 1, discontinuities at the
knots are allowed. See also [Sch73, p. 1], [Sch81, p.108], and [Nür89, p. 94, 96]. y

Proposition 3.6 (B-splines are splines with compact support)
A B-spline ψs(x) of degree s ∈ N1 with knots x0 < ... < xs (Definition 3.4) is a spline of degree s
with knots x0 < ... < xs (Definition 3.5) that is zero outside of [x0, xs]. Moreover,

∫

R

ψs(x) dx = 1. (3.4)
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Proof:

See also [Sch73, p. 2,3] and [CS66, p. 73-75]. Consider Notation 3.1. With the help of Proposi-
tion 3.2, substitution of

ηs−1
+ = ηs−1 + (−1)s(−η)s−1

+ ,

into (3.3) leads to the following alternative formulation of the B-spline:

ψs(x) = s(−1)s
s∑

j=0

(x− xj)
s−1
+∏

m∈{0,...,s}\{j}(xj − xm)
. (3.5)

Now, (3.3) and (3.5) imply that the B-spline is zero for x > xs and x < x0 respectively. Rewriting
(3.3) gives that the B-spline is a polynomial of degree s− 1 inside each open interval between the
knots:

ψs(x) = s

s∑

j=q

(xj − x)
s−1

∏
m∈{0,...,s}\{j}(xj − xm)

, ∀x ∈ (xq , xq+1), ∀q = 0, ..., s− 1.

Furthermore, note that the B-spline is continuous if s ≥ 2. Finally, it is shown that ψs ∈ Cs−2(R),
for s ≥ 3. To this end compute the derivatives inside the open intervals:

dℓψs(x)

dxℓ
= (−1)ℓ(ℓ− 1)!

s∑

j=q

(xj − x)s−1−ℓ

∏
m∈{0,...,s}\{j}(xj − xm)

,

for all x ∈ (xq, xq+1), for all q = 0, ..., s − 1, for all ℓ = 1, ..., s − 2. Observing the limits in the
knots,

lim
x↑xj

dℓψs(x)

dxℓ
= lim

x↓xj

dℓψs(x)

dxℓ
, ∀j = 0, ..., s,

shows that ψs ∈ Cs−2(R), for s ≥ 3. Finally, the fact that
∫

R

ψs(x) dx = 1.

follows from Theorem 3.3 for v(x) = xs and (3.2).

3.3 Central B-splines

The previous section formulated B-splines and discussed some of their properties, which form
the buiding blocks of spline filters. This report considers central spline filters that are based on
so-called central B-splines, which are discussed in this section.

Central B-splines are B-splines whose knots are sampled in a symmetric and equidistant fashion
(Definition 3.7, Figure 3.1). They can be formulated in three equivalent ways (Proposition 3.8
and Proposition 3.9), which each help to reveal different properties. One of these is that their
derivatives can be expressed in terms of central difference quotients of lower order central B-splines
(Proposition 3.11, Proposition 3.12). This property plays an important role in the convergence
analysis in the next chapter.

The next section defines central spline filters in terms of a linear combination of central B-
splines.

Definition 3.7 (Central B-spline)
A central B-spline of degree s ∈ N1 is a B-spline (Definition 3.4) with knots {xj = − s

2 + j}j=0,...,s.
In the remainder of this report, the following notation will be tacitly assumed:

ψsH(x) :=
1

H
ψs
( x
H

)
, ∀x ∈ R, ∀H > 0.

See also [Sch73, p. 11]. y
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Figure 3.1: Central B-splines (Definition 3.7): the core elements of the central spline filters are
formed by the central B-splines. Notice that, as the order increases, the smoothness and the
support increase and the maximum value of the B-spline decreases.

Proposition 3.8 (Divided difference of a product)
Consider Notation 3.1, let J ∈ N1 and suppose that x0, ..., xJ ∈ R. Furthermore, consider v, w :
R → R. Then, the divided difference of the product of these functions can be expressed as the
following sum:

(vw)[x0, ..., xJ ] =

J∑

j=0

v[x0, ..., xj ]w[xj , ..., xJ ].

Proof:

See e.g. [Sch81, Theorem 5.52].

Proposition 3.9 (Three equivalent formulations of central B-splines)
Consider Notation 3.1. Central B-splines (Definition 3.7) of degree s ∈ N1 can be formulated in
terms of

1. divided differences:

ψs(x) = sηs−1
+

(
x,
[
−
s

2
, ...,

s

2

])
(3.6)

= s

s∑

j=0

(
− s

2 + j − x
)s−1

+∏
m∈{0,...,s}\{j}(j −m)

(3.7)

= s

s∑

j=0

(−1)j−s

(
− s

2 + j − x
)s−1

+

j!(s− j)!
; (3.8)

2. recursive convolutions of an indicator function with itself:

ψ1(x) = 1[− 1
2
, 1
2
)(x),

ψs(x) = (ψ1 ⋆ ψs−1)(x) :=

∫ ∞

−∞

ψ1(ξ)ψs−1(x− ξ) dξ, s = 2, 3, ... ; (3.9)
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3. recursion relations:

ψ1(x) = 1[− 1
2
, 1
2
)(x),

ψs(x) =
( s2 + x)ψs−1(x+ 1

2 ) + ( s2 − x)ψs−1(x− 1
2 )

s− 1
, s = 2, 3, ... . (3.10)

From the latter form it becomes clear that central B-splines are even functions.

Proof:

See also [Sch73, p. 11,12] and [Sch81, Theorem 4.15]. Formulation (3.7) is a special case of (3.3).
To show that this formulation is equivalent to (3.9), first observe that the equivalence applies for
s = 1. For s ≥ 2, apply Peano’s theorem (Theorem 3.3) to obtain:

∫ s
2

− s
2

dsv(x)

dxs
ψs(x) dx = ∂s1v(0), ∀v ∈ Cs(R).

For v(x) = eixξ, this leads to

(iξ)s
∫ s

2

− s
2

eixξψs(x) dx =

(
2i sin

(
1

2
ξ

))s
.

Because the central B-spline is zero outside of the interval [− s
2 ,

s
2 ] (cf. Proposition 3.6), the Fourier

transform is obtained:

F{ψs}(ξ) =

∫ ∞

−∞

eixξψs(x) dx =

(
sin
(

1
2ξ
)

1
2ξ

)s
,

This can be worked out further to get:

F{ψs}(ξ) =

(
sin
(

1
2ξ
)

1
2ξ

)s

=

(
sin
(

1
2ξ
)

1
2ξ

)s−1(
sin
(

1
2ξ
)

1
2ξ

)1

= F{ψs−1}(ξ)F{ψ1}(ξ)

= F{ψs−1 ⋆ ψ1}(ξ)

Applying the inverse Fourier transform gives (3.9). The equivalence of (3.7) and (3.10) can be
shown as follows. First, observe that the equivalence applies for s = 1. For s ≥ 2, rewrite (3.3) by
observing that xs−1

+ = xxs−2
+ :

ψs(x) = s(ηηs−2
+ )(x, [x0, ..., xs]).

Next, apply Proposition 3.8:

ψs(x) = s

s∑

j=0

η(x, [x0, ..., xj ])η
s−2
+ (x, [xj , ..., xs]).

Because of Proposition 3.2, this sum can be truncated:

ψs(x) =s
(
η(x, [x0])η

s−2
+ (x, [x0, ..., xs]) + η(x, [x0, x1])η

s−2
+ (x, [x1, ..., xs])

)

=s

(
η(x, x0)

ηs−2
+ (x, [x1, ..., xs]) − ηs−2

+ (x, [x0, ..., xs−1])

xs − x0

+
η(x, x1) − η(x, x0)

x1 − x0
ηs−2
+ (x, [x1, ..., xs])

)
.
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Next, use the fact that xj = − s
2 + j to obtain the following expressions for the lower order central

B-spline:

ψs(x) = (s− 1)ηs−2
+

(
x,

[
x0 +

1

2
, ..., xs −

1

2

])
,

ψs
(
x+

1

2

)
= (s− 1)ηs−2

+ (x, [x0, ..., xs−1]) ,

ψs
(
x−

1

2

)
= (s− 1)ηs−2

+ (x, [x1, ..., xs]) .

Substitution of these expressions, the values of the knots xj = − s
2 + j, and η(x, ξ) = ξ − x yields:

ψs(x) =
s

s− 1

(
(−
s

2
− x)

ψs
(
x− 1

2

)
− ψs

(
x+ 1

2

)

s
+

(− s
2 + 1 − x) − (− s

2 − x)

1
ψs
(
x−

1

2

))

=
( s2 + x)ψs

(
x+ 1

2

)
+ ( s2 − x).ψs

(
x− 1

2

)

s− 1
,

which completes the proof.

Example 3.10 (Three central B-splines)
Examples of central B-splines are:

ψ1(x) =

{
1, x ∈

[
− 1

2 ,
1
2

)
,

0, else,

ψ2(x) =





x+ 1, x ∈ [−1, 0) ,

−x+ 1, x ∈ [0, 1) ,

0, else,

ψ3(x) =






1
2x

2 + 3
2x+ 9

8 , x ∈
[
− 3

2 ,−
1
2

)
,

−x2 + 3
4 , x ∈

[
1
2 ,

1
2

)
,

1
2x

2 − 3
2x+ 9

8 , x ∈
[
1
2 ,

3
2

)
,

0, else.

For an illustration, see Figure 3.1. y

Proposition 3.11 (Derivatives of a central B-spline)
Let ψs denote the central B-spline (Definition 3.7) of degree s ≥ 3. Then, for α ∈ {1, ..., s−2}, the

αth order derivative of the (scaled) central B-spline can be expressed in terms of central difference
quotients of lower order B-splines:

dαψsH
dxα

(x) = ∂αHψ
s−α
H (x), ∀x ∈ R, ∀H > 0. (3.11)

Proof:

See also [Sch73, p. 12]. First of all, note that the αth order derivative of the central B-spline ψs

exists, since ψs ∈ Cs−2(R) (cf. Proposition 3.6). For the non-scaled central B-spline, the first-order
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derivative can be computed as follows:

dψs

dx
(x)

(3.9)
=

d
(
ψs−1 ⋆ ψ1

)

dx
(x)

=
d

dx

(∫ 1
2

− 1
2

ψs−1(x− ξ) dξ

)

=
d

dx

(∫ x+ 1
2

x− 1
2

ψs−1(ξ) dξ

)

= ψs−1

(
x+

1

2

)
− ψs−1

(
x−

1

2

)

= ∂1ψ
s−1(x), ∀x ∈ R.

For the scaled central B-spline, this leads to:

dψsH
dx

(x) =
1

H2

dψs

dx

( x
H

)

=
1

H2

(
ψs−1

(
x

H
+

1

2

)
− ψs−1

(
x

H
−

1

2

))

=
1

H

(
ψs−1
H

(
x+

H

2

)
− ψs−1

H

(
x−

H

2

))

= ∂Hψ
s−1
H (x), ∀x ∈ R.

Repetitive application of this result completes the proof.

Proposition 3.12 (Derivatives of convolutions against a central B-spline)
Let ψs denote the central B-spline (Definition 3.7) of degree s ≥ 1, and let ψ0 denote the dirac
distribution. Furthermore, let u ∈ C∞

0 (R) and let α ∈ {0, ..., s}. Then,

dα (ψsH ⋆ u)

dxα
(x) =

(
ψs−αH ⋆ ∂αHu

)
(x), ∀x ∈ R, ∀H > 0. (3.12)

Proof:

The case α = 0 is trivial. Next, for the case α = 1, the claim is shown for s = 1, s = 2, and s ≥ 3
subsequently. For s = 1,

d
(
ψ1
H ⋆ u

)

dx
(x) =

(
ψ1
H ⋆

du

dx

)
(x)

=

∫

R

ψ1
H(ξ)

du

dx
(x− ξ) dξ

=
1

H

∫

R

ψ1

(
ξ

H

)
du

dx
(x− ξ) dξ

=

∫

R

ψ1 (ξ)
du

dx
(x−Hξ) dξ

=

∫ 1
2

− 1
2

du

dx
(x −Hξ) dξ

=

[
−

1

H
u(x−Hξ)

] 1
2

− 1
2

= ∂Hu(x)

=
(
ψ0
H ⋆ ∂Hu

)
(x), ∀x ∈ R, ∀H > 0.
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For s = 2,

d
(
ψ2
H ⋆ u

)

dx
(x) =

(
ψ2
H ⋆

du

dx

)
(x)

=

∫

R

ψ2
H(ξ)

du

dx
(x− ξ) dξ

=
1

H

∫

R

ψ2

(
ξ

H

)
du

dx
(x− ξ) dξ

=

∫

R

ψ2 (ξ)
du

dx
(x−Hξ) dξ

=

∫ 0

−1

(ξ + 1)
du

dx
(x−Hξ) dξ +

∫ 1

0

(−ξ + 1)
du

dx
(x−Hξ) dξ, ∀x ∈ R, ∀H > 0.

Applying partial integration yields:

d
(
ψ2
H ⋆ u

)

dx
(x) =

[
−

1

H
(ξ + 1)u(x−Hξ)

]0

−1

+
1

H

∫ 0

−1

u(x−Hξ) dξ

[
−

1

H
(−ξ + 1)u(x−Hξ)

]1

0

−
1

H

∫ 1

0

u(x−Hξ) dξ, ∀x ∈ R, ∀H > 0.

The first and third term cancel. A change of variables yields for the other two terms:

d
(
ψ2
H ⋆ u

)

dx
(x) = −

1

H2

∫ x+ H
2

x−H
2

u

(
ξ −

H

2

)
dξ +

1

H2

∫ x+ H
2

x−H
2

u

(
ξ +

H

2

)
dξ

=
1

H

∫ x+ H
2

x−H
2

∂Hu(ξ) dξ

=
(
ψ1
H ⋆ ∂Hu

)
(x), ∀x ∈ R, ∀H > 0.

For s ≥ 3, the claim is shown by means of Proposition 3.11:

d (ψsH ⋆ u)

dx
(x) =

(
dψsH
dx

⋆ u

)
(x)

(3.11)
=

(
∂Hψ

s−1
H ⋆ u

)
(x)

=
(
ψs−1
H ⋆ ∂Hu

)
(x), ∀x ∈ R, ∀H > 0.

Now that the claim has been shown for α = 1, the proof is completed by repetitive application of
the result for α = 1.

3.4 Central spline filtering

Now that the central B-splines are defined, they can be used to construct central spline filters,
which form the subject of this section.

A central spline filter convolves the function to be filtered against a central spline kernel that is a
linear combination of central B-splines (Definition 3.13, Proposition 3.14). A well-known example
of such a kernel is the symmetric central spline kernel, which has symmetrically distributed integer
nodes (Example 3.15, Figure 3.2). Another example is the one-sided central spline kernel, which
differs from the symmetric central spline kernel in that its (integer) nodes and are chosen such
that the kernel support is located on one side of the origin (Example 3.16, Figure 3.3). A variant
of this kernel is the shifted one-sided kernel, whose support is shifted towards the origin as far as
possible (Remark 3.17, Figure 3.4).
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An important property of a central spline kernel is that it reproduces polynomials up to a
certain degree (2r − 1 for symmetric kernels and 2r − 2 in general, with r as in Definition 3.13),
i.e. the convolution of the kernel with such a polynomial is equal to that polynomial itself (Propo-
sition 3.18, Proposition 3.19). This property plays an important role in the convergence analysis
in the next chapter.

The application of a central spline filter to a DG approximation is useful for four reasons. One:
the filter works as a smoothing operator in the following manner. In general, the convolution of
two functions is differentiable at least as many times as the sum of the differentiability orders of the
individual functions. As a consequence, the order of differentiability of the unfiltered function is
increased by at least the order of differentiability of the applied central B-splines (i.e. s− 2). This
smootness-increasing property can be used to tackle the problematic effect of the discontinuous
nature of DG approximations along element boundaries on streamline visualisation techniques (cf.
Section 2.4).

Two: the filter can be used to extract derivatives of the solution (cf. Theorem 4.17 in the
next chapter). One of the research questions is whether it is possible to use this information in an
(implicit) ODE scheme that is particularly useful for streamline visualisation.

Three: the computational costs of the filtering of a DG approximation are relatively low for
two reasons. First of all, the filter needs to be applied only once, at the final time. Moreover, a
central spline kernel has compact support, so the convolution can be computed with the help of
small matrix-vector multiplications.

Four: although a central spline filter is independent of the underlying physics and numerics, it
can be shown that, for a certain class of problems, the convergence rate of the DG approximation
is at least preserved by the filter. This convergence-conserving property is obtained in the next
chepter (cf. Theorem 4.17).

The next section confirms the smoothness-increasing convergence-conserving nature of central
spline filters by means of a one-dimensional periodic linear example.

Definition 3.13 (Central spline kernel)
A central spline kernel Ks,σ,{q1,...,q2r−1}, where s, σ, r ∈ N1 and where q1, ..., q2r−1 ∈ R are distinct
real nodes, is a linear combination of central B-splines (Definition 3.7) of the form:

Ks,σ,{q1,...,q2r−1}(x) =

2r−1∑

j=1

γ
σ,{q1,...,q2r−1}
j ψs (x− qj) , ∀x ∈ R, (3.13)

where the coefficients γ
σ,{q1,...,q2r−1}
j are the unique solution (cf. Proposition 3.14 below) to the

linear system:

2r−1∑

j=1

γ
σ,{q1,...,q2r−1}
j

∫

R

ψσ(ξ)(ξ + qj)
m dξ =

{
1, for m = 0,

0, for all m = 1, ..., 2r − 2.
(3.14)

Note that the matrix coefficients can be easily obtained by applying (the binomial theorem and)
Peano’s theorem (Theorem 3.3). In the remainder of this report, the following notation will be
tacitly assumed:

K
s,σ,{q1,...,q2r−1}
H (x) :=

1

H
Ks,σ,{q1,...,q2r−1}

( x
H

)
, ∀x ∈ R, ∀H > 0.

See also [BS77, p. 98-101] and [CLSS03, p. 583,584]. y

Proposition 3.14 (Existence and uniqueness of the kernel coefficients)
The system (3.14) is a non-singular linear system. Hence, the existence and uniqueness of the
kernel coefficients is guaranteed.

Proof:

See also [BS76, Lemma 8.1]. First, define

pm(q) :=

∫

R

ψσ(ξ)(ξ + q)m dξ, ∀m = 0, ..., 2r − 2,
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Figure 3.2: Symmetric central spline kernels (Example 3.15): notice that, as the order increases,
the support and the smoothness of the symmetric central spline kernels increase.
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Figure 3.3: One-sided central spline kernels (Example 3.16): unlike symmetric kernels, one-sided
kernels have a support that is located on one side of the origin.
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Figure 3.4: Shifted one-sided central spline kernels (Remark 3.17): unlike the ‘ordinary’ one-sided
kernel, the shifted one-sided kernel has a support that is shifted towards the origin as far as
possible.
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and observe that pm(q) is a monic polynomial of degree m, as the integral over a B-spline is equal
to 1 (cf. (3.4)). In other words, pm(q) is of the form:

pm(q) = xm +
m−1∑

ℓ=0

λm,ℓ x
ℓ, ∀m = 0, ..., 2r − 2. (3.15)

As a consequence, the matrix corresponding to the system (3.14) can also be written as follows:

[pm(qj)]m=0,...,2r−2, j=1,...,2r−1 ∈ R
(2r−1)×(2r−1).

That this system has linearly independent row vectors can be shown by means of reductio ad
absurdum. Suppose the contrary, i.e. suppose there exists M ∈ {0, ..., 2r− 2} such that row M is
a linear combination of the other rows. This implies that there exist constants {Cm}m=0,...,2r−2,
with CM = 0, such that:

pM (qj) =

2r−2∑

m=0

Cm pm(qj), ∀j = 1, ..., 2r − 1.

this can be rewritten using (3.15):

qMj +

M−1∑

ℓ=0

λM,ℓ q
ℓ
j =

2r−2∑

m=0

Cm

(
qmj +

m−1∑

ℓ=0

λm,ℓ q
ℓ
j

)
, ∀j = 1, ..., 2r − 1.

Reordering gives:

qMj +

M−1∑

ℓ=0

λM,ℓ q
ℓ
j =

2r−2∑

ℓ=0

(
Cℓ +

2r−2∑

m=ℓ+1

Cmλm,ℓ

)
qℓj , ∀j = 1, ..., 2r − 1.

Bringing all terms to one side yields:

M−1∑

ℓ=0

(
Cℓ +

2r−2∑

m=ℓ+1

Cmλm,ℓ − λM,ℓ

)

︸ ︷︷ ︸
=0

qℓj

+

(
CM +

2r−2∑

m=M+1

Cmλm,M − 1

)

︸ ︷︷ ︸
=0

qMj

+

2r−2∑

ℓ=M+1

(
Cℓ +

2r−2∑

m=ℓ+1

Cmλm,ℓ

)

︸ ︷︷ ︸
=0

qℓj = 0, ∀j = 1, ..., 2r − 1.

Since the nodes q1, ..., q2r−1 are distinct reals, this polynomial of degree 2r − 2 in the variable qj
has more roots than its degree. Hence, all of the coefficients must be equal to zero, as indicated
in the equation above. This implies that

0 = C2r−2,

0 = C2r−3 + C2r−2λ2r−2,2r−3 = C2r−3,

...

0 = CM+1 +

2r−2∑

m=M+2

Cm︸︷︷︸
=0

λm,M+1 = CM+1,

0 = CM︸︷︷︸
=0

+

2r−2∑

m=M+1

Cm︸︷︷︸
=0

λm,M − 1 = −1.
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Since a contradiction has been found, the original assumption must be false. As a consequence,
the system (3.14) has independent rows and must be non-singular.

Example 3.15 (Symmetric central spline kernel)
The central spline kernel (Definition 3.13) Ks,σ,{qj=−r+j}j=1,...,2r−1 is also known as the symmetric

central spline kernel.For s, σ, r = 1, the system (3.14) is trivial, and the symmeric central spline
kernel reads:

K1,1,{0}(x) = ψ1 (x) .

For s, σ, r = 2, the system reads:




1 1 1
1 0 −1
7
6

1
6

7
6






γ

2,{−1,0,1}
1

γ
2,{−1,0,1}
2

γ
2,{−1,0,1}
3


 =




1
0
0


 ⇒



γ

2,{−1,0,1}
1

γ
2,{−1,0,1}
2

γ
2,{−1,0,1}
3


 =




− 1
12
7
6

− 1
12


 .

Substitution of these coeffcients into (3.13) yields the following symmetric central kernel:

K2,2,{−1,0,1}(x) = −
1

12
ψ2 (x+ 1) +

7

6
ψ2 (x) −

1

12
ψ2 (x− 1) .

For an illustration, see Figure 3.2. y

Example 3.16 (One-sided central spline kernel)
The central spline kernel (Definition 3.13) Ks,σ,{qj=⌊−(2r−1)− s

2⌋+j}j=1,...,2r−1 is also known as the
one-sided central spline kernel.For s, σ, r = 1, the system (3.14) is trivial, and the one-sided central
spline kernel reads:

K1,{−1}(x) = ψ1 (x+ 1) .

For s, σ, r = 2, the system reads:




1 1 1
3 2 1
55
6

25
6

7
6







γ

2,{−3,−2,−1}
1

γ
2,{−3,−2,−1}
2

γ
2,{−3,−2,−1}
3


 =




1
0
0



 ⇒



γ

2,{−3,−2,−1}
1

γ
2,{−3,−2,−1}
2

γ
2,{−3,−2,−1}
3


 =




11
12

− 17
6
35
12



 .

After solving for the coefficients, the following one-sided central spline kernel is obtained:

K2,{−3,−2,−1}(x) =
11

12
ψ2 (x+ 3) −

17

6
ψ2 (x+ 2) +

35

12
ψ2 (x+ 1) .

For an illustration, see Figure 3.3. y

Remark 3.17 (Shifted one-sided central spline kernel)
Note that the support of the one-sided central spline kernel (Example 3.16) is not as close to the
origin as possible, for odd values of r. Alternatively, one could use the following nodes, to ensure
that support of the kernel is shifted to the origin as far as possible:

qj = −(2r − 1) −
s

2
+ j, ∀j = 1, ..., 2r − 1.

See Figure 3.4 for an illustration. y

Proposition 3.18 (Reproduction of polynomials)
The central spline kernel Ks,s,{q1,...,q2r−1} (Definition 3.13) reproduces polynomials of degree 2r−2
and lower in the sense that the convolution of the kernel with such a polynomial is equal to that
polynomial itself:

Ks,s,{q1,...,q2r−1} ⋆ p = p, ∀p ∈ P2r−2(R).
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Proof:

In favour of notational brevity, omit the nodes in the notation in the kernel (coefficients) from
here on. Using the functions {xm}m=0,...,2r−2 as basis for P2r−2(R), it suffices to show that

∫

R

Ks,s(ξ)(x − ξ)m dξ =

2r−1∑

j=1

γsj

∫

R

ψs(ξ − qj)(x − ξ)m dξ = xm, ∀m = 0, ..., 2r − 2. (3.16)

For m = 0, (3.16) follows immediately from (3.14) for m = 0:

2r−1∑

j=1

γsj

∫

R

ψs(ξ − qj) dξ = 1.

For m = 1, ..., 2r−2, the claim is shown with the help of induction. Suppose that (3.16) is satisfied
up to m− 1. As a consequence,

∫

R

Ks,s(ξ)(x − ξ)m dξ =

2r−1∑

j=1

γsj

∫

R

ψs(ξ − qj)(x − ξ)m dξ

=




2r−1∑

j=1

γsj

∫

R

ψs(ξ − qj)(x− ξ)m−1 dξ




︸ ︷︷ ︸
=xm−1

x

−
2r−1∑

j=1

γsj

∫

R

ψs(ξ − qj)(x− ξ)m−1ξ dξ.

Use (3.16) for m− 1:

∫

R

Ks,s(ξ)(x − ξ)m dξ =xm −

2r−1∑

j=1

γsj

∫

R

ψs(ξ − qj)(x− ξ)m−1ξ dξ.

Define ξ′ = −ξ:

∫

R

Ks,s(ξ)(x − ξ)m dξ =xm −

2r−1∑

j=1

γsj

∫

R

ψs(−ξ′ − qj)(x+ ξ′)m−1ξ′ dξ′.

Using the binomial theorem:

∫

R

Ks,s(ξ)(x− ξ)m dξ =xm −

m−1∑

ℓ=0

(m− 1)!

ℓ!(m− 1 − ℓ)!
xm−1−ℓ

2r−1∑

j=1

γsj

∫

R

ψs(−ξ′ − qj)ξ
′ℓ+1 dξ′.

Define ξ′′ = ξ′+qj and use the fact that a central B-spline is an even function (cf. Proposition 3.9):

∫

R

Ks,s(ξ)(x − ξ)m dξ =xm −

m−1∑

ℓ=0

(m− 1)!

ℓ!(m− 1 − ℓ)!
xm−1−ℓ

2r−1∑

j=1

γsj

∫

R

ψs(ξ′′)(ξ′′ + qj)
ℓ+1 dξ′′.

Applying (3.14) ends the proof.

Proposition 3.19 (Reproduction of polynomials in the symmetric case)
The symmetric central spline kernelKs,s,{qj=−r+j}j=1,...,2r−1 (Example 3.15) reproduces polynomi-
als of degree 2r−1 or lower in the sense that the convolution of the kernel with such a polynomial
is equal to that polynomial itself:

Ks,s,{qj=−r+j}j=1,...,2r−1 ⋆ p = p, ∀p ∈ P2r−1(R).
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Proof:

With the help of the binomial theorem and the symmetry of the nodes it can be shown that

2r−1∑

j=1

γ
s,{qj=−r+j}j=1,...,2r−1

j

∫

R

ψs(ξ′′)(ξ′′ + qj)
2r−1 dξ′′ = 0.

Using this result, the claim is obtained by following the proof of Proposition 3.18.

3.5 Central spline filtering of the DG approximation for a

one-dimensional linear periodic problem

The previous section introduced central spline kernels to enhance the smoothness while conserving
the convergence. This section discusses some computational aspects and the performance for a
one-dimensional periodic linear problem.

To compute the filtered DG approximation for such a problem, the convolution with the central
spline kernel is rewritten as a linear combination of convolutions with central B-splines (Exam-
ple 3.20). An illustration of the performance of the symmetric and the one-sided central spline
filter for this problem at the initial time can be found in Figure 3.5 and Figure 3.6. The large
improvement in the convergence rate is due to the fact that the underlying mesh is equidistant
[CLSS03, p. 585, 590]. Furthermore, Figure 3.6 emphasizes that improvement/conservation of
the convergence rate does not necessarily lead to improvement/conservation of the absolute error.
Nevertheless, both figures confirm the theory that the smoothness is enhanced, regardless of the
filtering type or the underlying DG approximation (cf. Section 3.4).

Figure 3.7 illustrates the performance of the symmetric central spline filter for the same problem
at time t = 2π. The effect of time-stepping errors on the convergence rate of the filtered DG
approximation becomes clear by comparing this figure to Figure 3.5. It should be noted that the
convergence analysis in present literature relies on exact time integration. Thus, current theory
on the convergence rate is no longer valid once a discrete time-stepping scheme is used in the DG
approximation. However, as before, this should and indeed does not effect the smoothness of the
filtered DG approximation.

Altogether, the test cases in this section confirm the smoothness-increasing convergence-conserving
properties of central spline filters. The next section considers the consequences of the smoothing
effect of central spline filtering for streamline visualisation.

Example 3.20 (Computational aspects)
Consider Example 2.8 for an equidistant mesh with constant element width h. Let uh ∈ PkXh

(X)
denote the DG approximation at a certain time. Its (weak) derivative of order α ∈ N0 can

be filtered with the help of the central spline kernel K
s,s+α,{q1,...,q2r−1}
h (Definition 3.13, and

Theorem 4.17 in the next chapter). Here, it will be assumed that the nodes q1 < ... < q2r−1 take
subsequent integer values. For x ∈ Xq with q ∈ I, the filtered derivative (Dαuh)

⋆
is obtained as

follows (in favour of notational brevity, the nodes {q1, ..., q2r−1} are omitted in the notation of the
kernel (coefficients) from here on):

(Dαuh)
⋆
(x) =

(
K
s,s+α
h ⋆ ∂αhuh

)
(x) =

(
∂αhK

s,s+α
h ⋆ uh

)
(x)

Expand the central difference quotient:

(Dαuh)
⋆
(x) =

α∑

J=0

1

hα
(−1)J

α!

(α− J)!J !
∫

R

K
s,s+α
h

(
x+

(α
2
− J

)
h− ξ

)
uh (ξ) dξ.

Next, exploit the fact that the support of the integrand is contained in a finite number of elements
(whenever information outside the domain is required, the periodic boundary conditions should
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actually be taken into account, which is not included in the notation here for the sake of simplicity):

(Dαuh)
⋆ (x) =

α∑

J=0

qbJ
:=q+⌈α

2
−J⌉−⌊q1− s

2⌋∑

j=qaJ
:=q+⌊α

2
−J⌋−⌈q2r−1+ s

2⌉

1

hα
(−1)J

α!

(α− J)!J !

∫

Xj

K
s,s+α
h

(
x+

(α
2
− J

)
h− ξ

)
u
j
h (ξ) dξ.

Switch to the unscaled kernel:

(Dαuh)
⋆
(x) =

α∑

J=0

qbJ∑

j=qaJ

1

hα+1
(−1)J

α!

(α − J)!J !

∫

Xj

Ks,s+α

(
x+

(
α
2 − J

)
h− ξ

h

)
u
j
h (ξ) dξ.

Write the DG solution as a linear combination of monomials (cf. (2.9)) and the kernel as a linear
combination of B-splines (cf. (3.13)):

(Dαuh)
⋆
(x) =

α∑

J=0

qbJ∑

j=qaJ

k∑

ℓ=0

2r−1∑

m=1

1

hα+1
(−1)J

α!

(α− J)!J !
Cj,ℓγs+αm

∫

Xj

ψs

(
x+

(
α
2 − J

)
h− ξ

h
− qm

)

ξ −
x

j− 1
2

+x
j+ 1

2

2

h




ℓ

dξ

Define ξ′ =
ξ−x−(α

2
−J)h

h
+ qm, apply a change of variables, and use the symmetry of the B-splines:

(Dαuh)
⋆
(x) =

α∑

J=0

qbJ∑

j=qaJ

k∑

ℓ=0

2r−1∑

m=1

1

hα
(−1)J

α!

(α− J)!J !
Cj,ℓγs+αm

∫ 1
h
(x

j+ 1
2

−x−(α
2
−J)h)+qm

1
h
(x

j− 1
2

−x−(α
2
−J)h)+qm

ψs (ξ′)


ξ′ − qm +

x+
(
α
2 − J

)
h−

x
j− 1

2

+x
j+ 1

2

2

h



ℓ

dξ′

The integral in this last expression can be computed exactly, e.g. with the help of Gaussian
quadrature. y

3.6 Consequences for streamline visualisation

The previous section illustrated the smoothness-increasing convergence-conserving nature of cen-
tral spline filters. Now, it is time to consider the consequences for streamline visualisation.

Steffen et al. [SCKR08, Section 6] have applied a two-dimensional symmetric central spline
filter to a DG approximation of a vector field, prior to the ODE solver that computes the corre-
sponding streamlines. They observed both a reduction in the costs of the streamline visualisation
and an error improvement (Figure 3.8). However, there are also two drawbacks of their approach.
The first is that the current multi-dimensional central spline filters are only applicable for quadri-
lateral meshes. It is one of the main goals of this research to make the filters suitable for triangular
meshes. The second is that the symmetric filter cannot be applied near the boundary of the spatial
domain.

The one-sided kernel provides options to tackle both these issues. First of all, unlike the sym-
metric filter, the one-sided filter can enhance the accuracy of streamline visualisation techniques
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Figure 3.8: Enhancement of streamline accuracy through two-dimensional symmetric central spline
filtering as published in [SCKR08]: The arrows display the directional field of the underlying
vector field. The plot shows exact streamlines of the original vector field (black lines under red
lines), streamlines of the L2-projected field (blue lines under red lines), and streamlines of the
L2-projected field after filtering (red lines). The seeding points of the streamlines are indicated
by circles. All streamlines were calculated using RK-4/5 with an error tolerance of 10−6. Observe
that the main differences in the computations occur near critical points. For more details, see
[SCKR08].

in a backward one-dimensional manner along the streamline, as was proposed by Walfish et al.
[WRKH09]. Note that the symmetric central spline kernel would be practically unsuitable for this
approach: it would require points on the streamline that are yet to be computed with the ODE
solver. This issue is illustrated in Figure 3.9. Nevertheless, this alternative approach introduces
new difficulties. First of all, in order to filter along the streamline, the known discrete data on
the streamline need to be interpolated in order to compute the convolution. The effect of the
corresponding error on the filtering is currently unknown. Furthermore, it is not certain that the
error estimations for a one-dimensional central spline filter remain valid along an arbitrary curve
in a two-dimensional domain.

Second of all, unlike the symmetric filter, the one-sided filter can be applied near boundaries.
Unfortunately, this leads to new difficulty: the one-sided filter is inconsistent with Dirichlet bound-
ary conditions in the sense that the filtered boundary value is generally not equal to the unfiltered
boundary value. To illustrate the seriousness of this issue, consider the velocity profile around an
airfoil. At the surface of the airfoil, the velocity perpendicular to the surface must be equal to
zero. If the filter does not respect this boundary condition, a streamline that is computed from
the filtered DG approximation might go through the boundary, which is physically impossible.
The question is whether it is possible to construct a spline filtering strategy that is consistent with
the boundary conditions. Most likely, this will require the use of different kernels throughout the
domain that converge to a Dirac distribution towards the boundary of the domain. A non-smooth
variation in the kernels could introduce non-smoothness in the filtered solution (cf. [RSA05, Figure
4.2]).

Altogether, this research will mainly focus on a spline filtering stratey that is consistent with
the boundary conditions, and that can be applied for triangular meshes.

3.7 Conclusion

The lack of smoothness of a DG approximation can hamper its visualisation in the form of stream-
lines. This problem can be tackled through central spline filtering. A central spline filter convolves
the function to be filtered against a central spline kernel, which is a linear combination of central
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Figure 3.9: The one-sided central spline filter can enhance the accuracy of streamline visualisation
techniques with a one-dimensional approach. The symmetric filter would require unknown data.

B-splines. The filter enhances the smoothness in the sense that the filtered solution is at least
differentiable up to the order of the central B-splines minus two. This benefits the accuracy of
streamline visualisation. Additionally, a reduction of oscillations in the error is observed. Unfor-
tunately, present spline filters can only be applied for quadrilateral meshes, and are either not
applicable near the boundary or inconsistent with the boundary conditions. This research seeks
to overcome these difficulties.



Chapter 4

Conserving the convergence

4.1 Introduction

The previous chapter introduced smoothness-increasing convergence-conserving central spline fil-
ters to improve the accuracy of streamline visualisations of DG approximations. This chapter
proves the fact that these filters are indeed convergence-conserving for a certain class of prob-
lems. It provides a (derivative) error estimation for DG approximations based on the first-order
upwind flux and exact time integration on one-dimensional non-equidistant meshes for periodic
linear hyperbolic equations with a sufficiently smooth exact solution. A more general result that
also applies for multi-dimensional quadrilateral meshes has been shown by Cockburn et al. in
[CLSS03].

The derivation of the error estimate makes use of (negative-order) Sobolev norms and the
Brambe-Hilbert Lemma (Section 4.2). After an intermediate (derivative) error estimation for an
arbitrary filtered L2-function has been given (Section 4.3), the estimation can be refined by making
use of the characteristics of the DG scheme under consideration (Section 4.4). Finally, a conclusion
is given (Section 4.5).

4.2 Auxiliary theory

Both the intermediate error estimation for arbitrary filtered L2-functions and the final error es-
timation for filtered DG approximations, which are discussed in the next two sections, make use
of properties of (negative-order) Sobolev norms and the Bramble-Hilbert Lemma. Therefore, this
auxiliary theory is discussed first in this section.

The derivation often makes use of the possibilty to switch between different types of (negative-
order) Sobolev norms (Proposition 4.2). Moreover, it applies an estimation of the L2-norm
of a smooth function in terms of sums of negative-order norms of derivatives of that function
(Lemma 4.3).

The derivation also uses the Bramble-Hilbert Lemma (Lemma 4.4), which implies a convenient
estimation for a certain class of bounded linear functionals that are zero when evaluated in a
polynomial of sufficiently low degree (Proposition 4.5). This implication can be used to estimate
the error in (piecewise) polynomial projections (Proposition 4.6, Corollary 4.7). Furthermore,
it will be used in the next section to exploit the fact that a central spline kernel reproduces
polynomials up to a certain degree.

Now that certain properties of Sobolev norms and the Bramble-Hilbert Lemma and its conse-
quences have been discussed, these elements can be applied to obtain the error estimations in the
next two sections.
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Notation 4.1 ((Negative-order) Sobolev norms)
Consider Notation 2.1. For any domain X ⊆ R, consider the Sobolev norm:

‖u‖q,X =

(
q∑

j=0

∫

X

∣∣Dju(x)
∣∣2 dx

) 1
2

, ∀u ∈ Wq,2(X), ∀q ∈ N0.

Here, Dv denotes the weak derivative of v. Moreover, for any open domain X ⊆ R, define the
negative-order Sobolev norm:

‖u‖−q,X = sup
v∈C∞

0
(X)

〈u, v〉X
‖v‖q,X

, ∀u ∈ L2(X), ∀q ∈ N0.

Additionally, for all H > 0, and let ∂H denote the central difference quotient (Notation 3.1).
Finally, the symbol ⋐ should be interpreted to mean “is a subset of a compact subset of the
interior of”. y

Proposition 4.2 (Switching between different types of Sobolev norms)
Consider Notation 4.1 and let X0 ⊆ X1 ⊆ R. Then, for all q ∈ N0

‖u‖q,X1
≤ ‖u‖q+1,X1

, ∀u ∈ Wq+1,2(X1), (4.1)

‖u‖−q−1,X1
≤ ‖u‖−q,X1

, ∀u ∈ L2(X1), X0, X1 open, (4.2)

‖u‖q,X0
≤ ‖u‖q,X1

, ∀u ∈ Wq,2(X1), (4.3)

‖u‖−q,X0
≤ ‖u‖−q,X1

, ∀u ∈ L2(X1), X0, X1 open. (4.4)

Proof:

The first and third equation follow from the definition of the Sobolev norm. The second equation
can be shown using the first:

‖u‖−q−1,X = sup
v∈C∞

0
(X)

〈u, v〉X
‖v‖q+1,X

≤ sup
v∈C∞

0
(X)

〈u, v〉X
‖v‖q,X

= ‖u‖−q,X , ∀u ∈ L2(X), ∀q ∈ N0.

The fourth equation is obtained as follows:

‖u‖−q,X0
= sup
v∈C∞

0
(X0)

〈u, v〉X0

‖v‖q,X0

= sup
v∈C∞

0 (X1),
supp(v)⋐X0

〈u, v〉X1

‖v‖q,X1

≤ sup
v∈C∞

0
(X1)

〈u, v〉X1

‖v‖q,X1

= ‖u‖−q,X1
, ∀u ∈ L2(X1), ∀q ∈ N0,

which completes the proof.

Lemma 4.3 (Switching from the L
2-norm to negative-order norm)

Consider Notation 4.1. Let X0 ⋐ X1 ⊆ R with X1 open and bounded. Furthermore, let u ∈
Wq,2(X1). Then, for all q ∈ N0, there exists a constant C > 0 (independent of u) such that:

‖u‖0,X0
≤ C

q∑

j=0

∥∥Dju
∥∥
−q,X1

.

Proof:

See [BS77, Lemma 4.2].

Lemma 4.4 (Bramble-Hilbert Lemma (special case))
Let X ⊆ R be an interval of length 1 and let q ∈ N0. Then,

inf
p∈Pq(X)

‖u+ p‖q+1,X ≤ C
∥∥Dq+1u

∥∥
0,X

, ∀u ∈ Wq,2(X),

for some constant C > 0 (independent of u).
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Proof:

A far more general result is shown in [BH70, Theorem 1] and [BH71, Theorem 1].

Proposition 4.5 (A consequence of the Bramble-Hilbert Lemma)
Let q ∈ N0. Furthermore, for all x ∈ X0 ⊆ R and for all bounded intervals X ⊆ R, consider a
bounded linear functional Fx,X : Wq+1,2(X) → R such that

Fx,X(p) = 0, ∀p ∈ Pq(X), ∀x ∈ X0, (4.5)

and

sup
x∈X0

|Fx,X(u)| <∞, ∀u ∈ Wq+1,2(X). (4.6)

Then,

|Fx,X(u)| ≤ C |X |
q+ 1

2

∥∥Dq+1u
∥∥

0,X
, ∀u ∈ Wq+1,2(X), ∀x ∈ X0.

for some constant C > 0 (independent of u, x, and X). Here, |X | denotes the length of the interval
X .

Proof:

First, consider the case X = [0, 1]. Because of (4.5),
∣∣Fx,[0,1](u)

∣∣ = inf
p∈Pq [0,1]

∣∣Fx,[0,1](u + p)
∣∣ , ∀u ∈ Wq+1,2[0, 1], ∀x ∈ X0.

By (4.6) and because Fx,[0,1] is a bounded linear functional for all x ∈ X0, the principle of uniform

boundedness [Con85, p. 98] implies that there exists a constant C > 0 (independent of x and u)
such that

∣∣Fx,[0,1](u)
∣∣ ≤ C ‖u‖q+1,[0,1] , ∀u ∈ Wq+1,2[0, 1], ∀x ∈ X0.

Substitution yields:
∣∣Fx,[0,1](u)

∣∣ ≤ C inf
p∈Pq [0,1]

‖u+ p‖q+1,[0,1]

Application of the Bramble-Hilbert Lemma (Lemma 4.4) now completes the proof for X = [0, 1].
Next, consider arbitraryX . Let xa denote the left endpoint ofX . Moreover, for all u ∈ Wq+1,2(X),
define vu ∈ Wq+1,2[0, 1] such that

u(x) = vu

(
x− xa

|X |

)
, ∀x ∈ X.

Next, observe that

|Fx,X(u)|
2

=
∣∣∣Fx−xa

|X|
,[0,1](vu)

∣∣∣
2

≤ C2
∥∥Dq+1vu

∥∥2

0,[0,1]

= C2

∫ 1

0

∣∣Dq+1vu(ξ)
∣∣2 dξ

= C2 1

|X |

∫ xa+|X|

xa

∣∣∣∣
(
Dq+1vu

)(ξ − xa

|X |

)∣∣∣∣
2

dξ

= C2 |X |
2q+1

∫ xa+|X|

xa

∣∣∣∣D
q+1

(
vu

(
ξ − xa

|X |

))∣∣∣∣
2

dξ

= C2 |X |
2q+1

∫ xa+|X|

xa

∣∣Dq+1u (ξ)
∣∣2 dξ

= C2 |X |
2q+1 ∥∥Dq+1u

∥∥2

0,X
, ∀u ∈ Wq+1,2(X), ∀x ∈ X.

Taking the square root completes the proof.



34 Conserving the convergence

Proposition 4.6 (Polynomial projection)
Consider Notation 2.6 and let Xh = [xa, xa + h] ⊆ R be a bounded interval of length h > 0.
Furthermore, let k ≥ 0. Then,

∥∥u− PPk(Xh)u
∥∥

0,Xh
≤ Chk+1

∥∥Dk+1u
∥∥

0,Xh
, ∀u ∈ Wk+1,2(Xh),

for some constant C > 0 (independent of h and u).

Proof:

For all x ∈ Xh and for all h > 0, define functionals Fx,Xh
: Wk+1,2(Xh) → R such that

Fx,Xh
(u) =

(
u− PPk(Xh)u

)
(x), ∀u ∈ Wk+1,2(Xh), ∀x ∈ Xh.

Note that |Fx,Xh
(u)| is a continuous function of x on a bounded interval since any weakly differ-

entiable function on a bounded domain can be identified with its continuous version [Eva98, p.
269]. Next, apply Proposition 4.5 to obtain a constant C > 0 (independent of u, x, and h) such
that

|Fx,Xh
(u)|

2
≤ C2h2k+1

∥∥Dk+1u
∥∥2

0,Xh
, ∀u ∈ Wk+1,2(Xh), ∀x ∈ Xh. (4.7)

Hence,

∥∥u− PPk(Xh)u
∥∥2

0,Xh
=

∫

Xh

|Fx,Xh
(u)|

2
dx

≤=

∫

Xh

C2
2h

2k+1
∥∥Dk+1u

∥∥2

0,Xh
dx

= C2h2k+2
∥∥Dk+1u

∥∥2

0,Xh
, ∀u ∈ Wk+1,2(Xh).

Taking the square root completes the proof.

Corollary 4.7 (Piecewise polynomial projection)
Consider Notation 2.6. Consider a domainX ⊆ R and a mesh Xh = {Xj ⊆ X}j∈I⊆Z with elements
with maximum diameter h > 0. Furthermore, let k ≥ 0. Then,

∥∥∥u− PPk
Xh

(X)u
∥∥∥

0,X
≤ Chk+1 ‖u‖q,X , ∀u ∈ Wk+1,2(X),

for some constant C > 0 (independent of h and u).

Proof:

Observe that the projection on the space of piecewise polynomials is equivalent to the elementwise
projection on regular polynomial spaces:

∥∥∥u− PPk
Xh

(X)u

∥∥∥
2

0,X
=
∑

j∈I

∥∥u|Xj
− PPk(Xj)u|Xj

∥∥2

0,Xj
, ∀u ∈ Wk+1,2(X).

Note that the spatial domain should not be subdivided into subdomains other than the mesh
elements. Apply Proposition 4.6 for each element to complete the proof.

4.3 Error estimation for filtered functions in general

Now that sufficient auxiliary theory has been discussed, this section derives a (derivative) error
estimation for a general class of functions to which a central spline filter has been applied.

The main result is an estimation for the L2-norm of the difference of (the weak derivative
of) a Sobolev function and its filtered counterpart in terms of (negative-order) Sobolev norms
(Theorem 4.8). The proof is based on the fact that a central spline kernel reproduces polynomials



4.3 Error estimation for filtered functions in general 35

up to a certain degree (Lemma 4.9 ), and the fact that derivatives of central B-splines can be
expressed in terms of central difference quotients of lower order B-splines (Lemma 4.10).

In this section, the error estimation is still indepenent of the underlying physics and numerics.
The next section discusses a refinement of this result for DG approximations for a one-dimensional
periodic linear problem.

Theorem 4.8 (Error estimation for filtered functions in general)
Consider Notation 4.1 and a domain X ⊆ R. Let Ks,s+α,{q1,...,q2r−1} be a central spline kernel
(Definition 3.13), where α ∈ N0 and s, r ∈ N1. Furthermore, suppose that uh ∈ L2(X) is an
approximation to an exact solution u ∈ W2r−1+α,2(X). Moreover, choose H0 > 0, and let X0 ⊆
X1 ⊆ X and X0 ⊆ X2 ⊆ X3 ⊆ X4 ⊆ X such that X0 and X1 are bounded intervals, and X2 and
X3 are open, and, for all H ∈ (0, H0] and for all m = 1, ..., 2r − 1,

X0 − supp
(
K
s,s+α,{q1,...,q2r−1}
H

)
⊆ X1 (4.8)

X0 − supp
(
K
s+α,s+α,{q1,...,q2r−1}
H

)
⊆ X1 (4.9)

X4 − supp (ψsH) − qm +

[
−α

H

2
, α
H

2

]
⊆ X, (4.10)

X0 ⋐ X2, (4.11)

X2 − supp
(
ψ
s−j
H

)
⊆ X3, ∀j = 0, ..., s− 1 (4.12)

X3 +

[
−s

H

2
, s
H

2

]
⊆ X4. (4.13)

Then, there exists a constant C > 0 (independent of u, uh, and H) such that

∥∥∥Dαu−K
s,s+α,{q1,...,q2r−1}
H ⋆ ∂αHuh

∥∥∥
0,X0

≤

C
(
H2r−1 ‖u‖2r−1+α,X1

+
s∑

j=0

∥∥∥∂j+αH (u− uh)
∥∥∥
−s,X3

)
, ∀H ∈ (0, H0].

Proof:

See also [BS77, Theorem 1], [CLSS03, Theorem 3.1, Section 4.1], and [Tho77, Theorem 1]. In
favour of notational brevity, the nodes {q1, ..., q2r−1} are omitted in the notation. First, apply the
triangle inequality and (4.8):

∥∥Dαu−K
s,s+α
H ⋆ ∂αHuh

∥∥
0,X0

≤
∥∥Dαu−K

s,s+α
H ⋆ ∂αHu

∥∥
0,X0

+
∥∥Ks,s+α

H ⋆ ∂αH(u− uh)
∥∥

0,X0

Because the kernel is a linear combination of central B-splines, Proposition 3.12 in combination
with (4.9) implies:

(
K
s,s+α
H ⋆ ∂αHu

)
(x) =

dα(Ks+α,s+α
H ⋆ u)(x)

dxα
=
(
K
s+α,s+α
H ⋆ Dαu

)
(x), ∀x ∈ X0.

Substitution into the first term on the right hand side above gives:

∥∥Dαu−K
s,s+α
H ⋆ ∂αHuh

∥∥
0,X0

≤
∥∥Dαu−K

s+α,s+α
H ⋆ Dαu

∥∥
0,X0

+
∥∥Ks,s+α

H ⋆ ∂αH(u− uh)
∥∥

0,X0
.

The second term in the right hand side can be estimated as follows. First, write out the kernel
explicitly, exploit the fact that the kernel is a linear combination of B-splines once more, and apply
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a coordinate transformation:

∥∥Ks,s+α
H ⋆ ∂αH(u− uh)

∥∥
0,X0

(4.10)

≤

2r−1∑

m=1

∣∣γs+αm

∣∣
∫

X0

∫

supp(ψs)+qm

ψsH(ξ − qm)∂αH(u− uh)(x− ξ) dξ dx

=

2r−1∑

m=1

∣∣γs+αm

∣∣
∫

X0

∫

supp(ψs)

ψsH(ξ)∂αH(u − uh)(x − qm − ξ) dξ dx

≤

2r−1∑

m=1

∣∣γs+αm

∣∣ ‖ψsH ⋆ vm‖0,X0
,

where, for all m = 1, ..., 2r − 1, the function vm ∈ L2(X4) is defined such that vm(x) := ∂αH(u −
uh)(x− qm) for all x ∈ X4. Next, apply Lemma 4.10, using (4.11), (4.12), and (4.13), to complete
the estimation of the second term. The first term can be estimated by applying Lemma 4.9,
using (4.9), to the function Dαu ∈ W2r−1,2(R), since the kernel Ks+α,s+α,{q1,...,q2r−1} reproduces
polynomials of degree 2r − 2 according to Proposition 3.18. Observing that ‖Dαu‖2r−1,X1

≤
‖u‖2r−1+α,X1

completes the proof.

Lemma 4.9 (Estimating the first term)
Consider Notation 4.1. Let X ⊆ R be a domain and let u ∈ Wq+1,2(X). Furthermore, let
K ∈ C0

0(R) be a function that reproduces polynomials of degree q in the sense that

K ⋆ p = p, ∀p ∈ Pq(R).

Additionally, for all H > 0, define KH ∈ C0
0(R) such that

KH(x) =
1

H
K
( x
H

)
, ∀x ∈ R.

Moreover, choose H0 > 0, and let X0, X1 ⊆ X be bounded intervals such that

X0 − supp (KH) ⊆ X1, ∀H ∈ (0, H0]. (4.14)

Then, there exists a constant C > 0 (independent of u and H) such that:

‖u−KH ⋆ u‖0,X0
≤ C ‖u‖q+1,X1

Hq+1, ∀H ∈ (0, H0].

Proof:

For all x ∈ X0 and for all H > 0, define Xx,H := x − supp (KH) and define linear functionals
Fx,Xx,H

: Wq+1,2(Xx,H) → R such that

Fx,Xx,H
(v) = v(x) −

∫

supp(KH)

KH(ξ)v(x − ξ) dξ, ∀x ∈ X0, ∀v ∈ Wq+1,2(Xx,H).

Note that
∣∣Fx,Xx,H

(v)
∣∣ is a continuous function of x on the bounded interval X0, since any weakly

differentiable function on a bounded domain can be identified with its continuous version [Eva98,
p. 269]. Next, apply Proposition 4.5 to obtain a constant C1 > 0 (independent of v, x, and H)
such that

∣∣Fx,Xx,H
(v)
∣∣2 ≤ C2

1 |Xx,H |
2q+1 ∥∥Dq+1v

∥∥2

0,Xx,H
, ∀x ∈ X0, ∀v ∈ Wq+1,2(Xx,H).

Hence,

‖u−KH ⋆ u‖
2
0,X0

=

∫

X0

∣∣Fx,Xx,H
(u)
∣∣2 dx

≤ C2
1

∫

X0

|Xx,H |
2q+1 ∥∥Dq+1u

∥∥2

0,Xx,H
dx

≤ C2
1 |supp (KH)|

2q+1
∫

X0

∫

x−supp(KH)

∣∣Dq+1u(ξ)
∣∣2 dξ dx, ∀H ∈ (0, H0].
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Apply a coordinate transformation, Fubini’s Theorem, and another coordinate transformation:

‖u−KH ⋆ u‖
2
0,X0

≤ C2
1 |supp (KH)|

2q+1
∫

X0

∫

−supp(KH )

∣∣Dq+1u(ξ′ + x)
∣∣2 dξ′ dx

≤ C2
1 |supp (KH)|2q+1

∫

−supp(KH )

∫

X0

∣∣Dq+1u(ξ′ + x)
∣∣2 dxdξ′

≤ C2
1 |supp (KH)|

2q+1
∫

−supp(KH )

∫

ξ′+X0

∣∣Dq+1u(x′)
∣∣2 dx′ dξ′

Taking the supreme over all ξ′, this becomes:

‖u−KH ⋆ u‖2
0,X0

≤ C2
1 |supp (KH)|2q+2 sup

ξ′∈−supp(KH )

∫

ξ′+X0

∣∣Dq+1u(x′)
∣∣2 dx′

≤ C2
1 |supp (KH)|

2q+2
∫

−supp(KH)+X0

∣∣Dq+1u(x′)
∣∣2 dx′, ∀H ∈ (0, H0].

Observing that |supp (KH)| = |supp (K)|H and using (4.14) gives:

‖u−KH ⋆ u‖
2
0,X0

≤ C2
1 |supp (K)|

2q+2

︸ ︷︷ ︸
=:C2

H2q+2

∫

X1

∣∣Dq+1u(x′)
∣∣2 dx′

≤ C2 ‖u‖2
q+1,X1

H2q+2, ∀H ∈ (0, H0].

Taking the square root completes the proof.

Lemma 4.10 (Estimating the second term)
Consider Notation 4.1, let X4 ⊆ R, choose H0 > 0 and domains X0 ⊆ X2 ⊆ X3 ⊆ X4 such that
X2 and X3 are open, as before, and, for all ∀H ∈ (0, H0]:

X0 ⋐ X2, (4.15)

X2 − supp
(
ψ
s−j
H

)
⊆ X3, ∀j = 0, ..., s− 1 (4.16)

X3 +

[
−s

H

2
, s
H

2

]
⊆ X4. (4.17)

Furthermore, let u ∈ L2(X4) and let ψs be a central B-spline (Definition 3.7). Then, there exists
a constant C > 0 (independent of u and H) such that

‖ψsH ⋆ u‖0,X0
≤ C

s∑

j=0

∥∥∥∂jHu
∥∥∥
−s,X3

, ∀H ∈ (0, H0].

Proof:

See also [BS77, Theorem 1] and [CLSS03, p. 591, 592]. Start by considering the case X4 = R.
First, the claim is shown for functions u ∈ C∞

0 (R). Subsequent application of Lemma 4.3 and
Proposition 3.12 gives:

‖ψsH ⋆ u‖0,X0

(4.15)

≤ C

s∑

j=0

∥∥Dj (ψsH ⋆ u)
∥∥
−s,X2

= C

s∑

j=0

∥∥∥ψs−jH ⋆ ∂
j
Hu
∥∥∥
−s,X2

, ∀H > 0. (4.18)
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Next, use the definition of the negative-order norm, Fubini’s theorem, and a coordinate transfor-
mation subsequently:

∥∥∥ψs−jH ⋆ ∂
j
Hu
∥∥∥
−s,X2

= sup
v∈C∞

0
(X2)

∫
X2

∫
supp(ψs−j

H ) ψ
s−j
H (ξ)∂jHu(x− ξ) dξ v(x) dx

‖v‖s,X2

= sup
v∈C∞

0
(X2)

∫
supp(ψs−j

H ) ψ
s−j
H (ξ)

∫
X2
∂
j
Hu(x− ξ)v(x) dxdξ

‖v‖s,X2

= sup
v∈C∞

0
(X2)

∫
supp(ψs−j

H ) ψ
s−j
H (ξ)

∫
X2−ξ

∂
j
Hu(x)v(x+ ξ) dxdξ

‖v‖s,X2

, ∀H > 0, ∀j = 0, ..., s− 1.

Now, take the supremum inside the integral, change the space of test functions, and use the
definition of the negative order norm:

∥∥∥ψs−jH ⋆ ∂
j
Hu
∥∥∥
−s,X2

≤

∫

supp(ψs−j

H )
ψ
s−j
H (ξ) sup

v∈C∞
0

(X2)

∫
X2−ξ

∂
j
Hu(x)v(x + ξ) dx

‖v‖s,X2

dξ

=

∫

supp(ψs−j

H )
ψ
s−j
H (ξ) sup

v∈C∞
0

(X2−ξ)

∫
X2−ξ

∂
j
Hu(x)v(x) dx

‖v‖s,X2−ξ

dξ

=

∫

supp(ψs−j

H )
ψ
s−j
H (ξ)

∥∥∥∂jHu
∥∥∥
−s,X2−ξ

dξ, ∀H > 0, ∀j = 0, ..., s− 1.

Estimate the negative order norm and use the fact that the integral over a B-spline is equal to 1
(cf. Proposition 3.6):

∥∥∥ψs−jH ⋆ ∂
j
Hu
∥∥∥
−s,X2

(4.16),(4.4)

≤

∫

supp(ψs−j

H )
ψ
s−j
H (ξ)

∥∥∥∂jHu
∥∥∥
−s,X3

dξ

=
∥∥∥∂jHu

∥∥∥
−s,X3

, ∀H ∈ (0, H0], ∀j = 0, ..., s− 1.

Substitution of this result into (4.18) gives, for all u ∈ C∞
0 (R):

‖ψsH ⋆ u‖0,R ≤ C

s∑

j=0

∥∥∥∂jHu
∥∥∥
−s,X3

, ∀H ∈ (0, H0]. (4.19)

For general functions u ∈ L2(R), the claim can be shown as follows. As the space C∞
0 (R) lies dense

in L2(R) with respect to the norm ‖.‖0,R, for any v ∈ C∞
0 (R), the following estimate is obtained

using the triangle inequality:

‖ψsH ⋆ u‖0,X0
= ‖ψsH ⋆ (u− v + v)‖0,X0

≤ ‖ψsH ⋆ (u− v)‖0,X0
+ ‖ψsH ⋆ v‖0,X0

(4.3)

≤ ‖ψsH ⋆ (u− v)‖0,R + ‖ψsH ⋆ v‖0,X0
, ∀H ∈ (0, H0].

Applying Young’s inequality for convolutions to the first term and (4.19) to the second implies:

‖ψsH ⋆ u‖0,R ≤

∫

R

ψsH(x) dx

︸ ︷︷ ︸
=1

‖u− v‖0,R + C

s∑

j=0

∥∥∥∂jHv
∥∥∥
−s,X3

= ‖u− v‖0,R + C

s∑

j=0

∥∥∥∂jH (v − u+ u)
∥∥∥
−s,X3

, ∀H ∈ (0, H0]
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Applying the triangle inequality and estimating the negative-order norm yields:

‖ψsH ⋆ u‖0,R ≤ ‖u− v‖0,R + C

s∑

j=0

∥∥∥∂jH (v − u)
∥∥∥
−s,X3

+ C

s∑

j=0

∥∥∥∂jHu
∥∥∥
−s,X3

(4.4)

≤ ‖u− v‖0,R + C

s∑

j=0

∥∥∥∂jH (v − u)
∥∥∥
−s,R

+ C

s∑

j=0

∥∥∥∂jHu
∥∥∥
−s,X3

, ∀H ∈ (0, H0].

The divided difference can be rewritten as follows:

‖∂Hu
′‖−s,R = sup

wC∞
0

(R)

∫
R

(
u′(x+ H

2 ) − u′(x− H
2 )
)
w(x) dx

H ‖w‖s,R

≤ sup
wC∞

0
(R)

2
∫

R
u′(x)w(x) dx

H ‖w‖s,R

=
2

H
‖u′‖−s,R , ∀H > 0, ∀u′ ∈ L2(R). (4.20)

This implies:

‖ψsH ⋆ u‖0,R ≤ ‖u− v‖0,R + C

s∑

j=0

(
2

H

)j
‖v − u‖−s,R + C

s∑

j=0

∥∥∥∂jHu
∥∥∥
−s,X3

, ∀H ∈ (0, H0].

Apply (4.2) to estimate the negative-order norms in terms of L2-norms:

‖ψsH ⋆ u‖0,R ≤ ‖u− v‖0,R + C

s∑

j=0

(
2

H

)j
‖v − u‖0,R + C

s∑

j=0

∥∥∥∂jHu
∥∥∥
−s,X3

, ∀H ∈ (0, H0].

The first two terms become arbitrarily small, as the space C∞
0 (R) lies dense in L2(R) with respect

to the norm ‖.‖0,R, which completes the proof for X4 = R. Next, consider general X4 ⊆ R and

let u ∈ L2(X4). Define v ∈ L2(R) such that v|X4
= u. Applying the result for functions in L2(R)

gives:

‖ψsH ⋆ u‖0,X0

(4.16)
=

∫

X0

∫

supp(ψs
H)
ψsH(ξ)u(x− ξ) dξ dx = ‖ψsH ⋆ v‖0,X0

≤ C

s∑

j=0

∥∥∥∂jHv
∥∥∥
−s,X3

(4.17)
= C

s∑

j=0

∥∥∥∂jHu
∥∥∥
−s,X3

, ∀H ∈ (0, H0],

which completes the proof.

4.4 Error estimation for filtered DG approximations

The previous section derived a (derivative) error estimation for a general class of functions to
which a central spline filter has been applied. This section uses the characteristics of the DG
method to refine this error estimation for DG approximations.

The main challenge of this section is to find an estimate for the negative-order norm of the
central difference quotient of the difference between the filtered and the unfiltered function (cf.
Theorem 4.8). To obtain this result, first, an auxiliary estimation is derived using the linearity
and the periodicity of the hyperbolic problem under consideration (Lemma 4.12). This estimation
contains the sum of three terms, which are estimated by three lemmas (Lemma 4.13, Lemma 4.14,
and Lemma 4.15). These lemmas make use of the characteristics of the DG scheme and the fact
that the L2-projection of a function on a polynomial space is close to its unprojected counterpart.
After that, the required estimation for the negative-order norm of the central difference quotient
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is obtained (Theorem 4.16). By combining this result with Theorem 4.8, the final (derivative)
error estimation for DG approximations is obtained (Theorem 4.17). This result holds for DG
approximations based on the first-order upwind flux and exact time integration on one-dimensional
non-equidistant meshes for periodic linear hyperbolic equations with a sufficiently smooth exact
solution.

From this error estimation four conclusions can be drawn. One: for any B-spline order, i.e. for
any required order of differentiability of the filtered DG approximation, there exists a number of
nodes for which the corresponding central spline filter at least conserves the convergence rate of the
DG approximation, i.e. k+1. Two: as the number of nodes tends to infinity, the convergence rate
of the filtered DG approximation approaches 2k + 1, which is the same order as for equidistant
meshes with 2k + 1 nodes [CJST98, p. 585]. Three: for larger numbers of k, fewer nodes are
required then are traditionally being used (Remark 4.18). Four: these three conclusions also
apply for the extraction of an approximation of the derivatives of the exact solution from its DG
approximation through central spline filtering. The question is whether it is possible to use such
derivative information in an ODE solver that is particularly suitable for streamline visualisation.

Notation 4.11 (Linear hyperbolic problem)
Consider Notation 2.6, Notation 4.1 and Example 2.8 for u ∈ C1

(
T,Wk+1,2(X)

)
and rewrite the

DG scheme (2.7) as follows:

〈
∂uh

∂t
(t), v

〉

X

+B
(
uh(t), v

)
= 0, ∀v ∈ PkXh

(X), (4.21)

where B : C1
Xh

(X) × C1
Xh

(X) → X is the following bilinear form:

B
(
w, v

)
=
∑

j∈I

(〈
−cwj ,

∂vj

∂x

〉

Xj

+
[
cwj vj

]
x

j+ 1
2

+
[
−cwj

′−1 vj
]

x
j− 1

2

)
(4.22)

=
∑

j∈I

(〈
wj ,−c

∂vj

∂x

〉

Xj

+
[
cwj vj

]
x

j+ 1
2

+
[
−cwj

′−1 vj
]

x
j− 1

2

)
(4.23)

=
∑

j∈I

(〈
c
∂wj

∂x
, vj
〉

Xj

+
[
c(wj − wj

′−1) vj
]

x
j− 1

2

)
. (4.24)

The third equation can de derived using integration by parts. Moreover, for all w ∈ C∞
0 (int(X)),

let vw ∈ C1
(
T, C∞(X)

)
satisfy periodic boundary conditions and:

∂vw

∂t
(t) + c

∂vw(t)

∂x
= 0, ∀t ∈ T, (4.25)

vw(tb) = w, (4.26)

which is also referred to as the dual problem. y

Lemma 4.12 (Auxiliary estimate with three terms)
Consider Notation 4.11. Then,

〈u(tb) − uh(tb), w〉X = 〈u(ta) − uh(ta), vw(ta)〉X

−

∫ tb

ta

(〈
∂uh

∂t
(t), vw(t) − v(t)

〉

X

+B
(
uh(t), vw(t) − v(t)

))
dt

−

∫ tb

ta

(〈
uh(t),

∂vw

∂t
(t)

〉

X

−B
(
uh(t), vw(t)

))
dt,

for all v : T → PkXh
(X) and for all w ∈ C∞

0 (int(X)).
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Proof:

See also [CLSS03, p. 588]. First, apply (4.26):

〈u(tb) − uh(tb), w〉X = 〈u(tb), vw(tb)〉X − 〈uh(tb), vw(tb)〉X

Apply (2.5) together with (4.25) and the periodic boundary conditions to the first term, and the
Fundamental Theorem of Calculus to the second:

〈u(tb) − uh(tb), w〉X = 〈u(ta), vw(ta)〉X − 〈uh(ta), vw(ta)〉X −

∫ tb

ta

∂ 〈uh, vw〉X
∂t

(t) dt

= 〈u(ta) − uh(ta), vw(ta)〉X −

∫ tb

ta

∂ 〈uh, vw〉X
∂t

(t) dt.

= 〈u(ta) − uh(ta), vw(ta)〉X

−

∫ tb

ta

(〈
∂uh

∂t
(t), vw(t)

〉

X

+

〈
uh(t),

∂vw

∂t
(t)

〉

X

)
dt.

Use (4.21) to obtain, for all v : T → PkXh
(X):

∫ tb

ta

〈
∂uh

∂t
(t), vw(t)

〉

X

dt =

∫ tb

ta

〈
∂uh

∂t
(t), vw(t) − v(t)

〉

X

dt+

∫ tb

ta

〈
∂uh

∂t
(t), v(t)

〉

X

dt

(4.21)
=

∫ tb

ta

〈
∂uh

∂t
(t), vw(t) − v(t)

〉

X

dt−

∫ tb

ta

B
(
uh(t), v(t)

)
dt

=

∫ tb

ta

〈
∂uh

∂t
(t), vw(t) − v(t)

〉

X

dt+

∫ tb

ta

B
(
uh(t), vw(t) − v(t)

)
dt

−

∫ tb

ta

B
(
uh(t), vw(t)

)
dt.

Substitution of this result completes the proof.

Lemma 4.13 (Estimating the first term: projection )
Consider Notation 4.11. Then, there exists a constant C > 0 (independent of u, uh, w, and h)
such that:

|〈u(ta) − uh(ta), vw(ta)〉X | ≤ C ‖u(ta)‖k+1,X ‖w‖k+1,X h
2k+2, ∀h > 0, ∀w ∈ C∞

0 (int(X)).

Proof:

See also [CLSS03, p. 589, 592, 593]. Because uh(ta) = PPk
Xh

(X)

(
u(ta)

)
,

〈
u(ta) − uh(ta),PPk

Xh
(X)

(
vw(ta)

)〉

X
= 0.

Use this result together with the Cauchy-Schwartz inequality:

|〈u(ta) − uh(ta), vw(ta)〉X | =
∣∣∣
〈
u(ta) − uh(ta), vw(ta) − PPk

Xh
(X)

(
vw(ta)

)〉

X

∣∣∣

≤ ‖u(ta) − uh(ta)‖0,X

∥∥∥vw(ta) − PPk
Xh

(X)

(
vw(ta)

)∥∥∥
0,X

. (4.27)

Because uh(ta) = PPk
Xh

(X)

(
u(ta)

)
, it follows from Corollary 4.7 that there exists a constant C1 > 0

such that

‖u(ta) − uh(ta)‖0,X ≤C1h
k+1 ‖u(ta)‖k+1,X .

Similarly, there exists a constant C2 such that
∥∥∥vw(ta) − PPk

Xh
(X)

(
vw(ta)

)∥∥∥
0,X

≤C2h
k+1 ‖vw(ta)‖k+1,X .
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As vw(ta) is a periodic translation of vw(tb), their Sobolev norms are equal:

‖vw(ta)‖k+1,X = ‖vw(tb)‖k+1,X

(4.26)
= ‖w‖k+1,X .

Substitution of these results into (4.27) ends the proof.

Lemma 4.14 (Estimating the second term: residual )
Consider Notation 4.11, and suppose that u ∈ Wk+1,2(X). Then, there exists a constant C > 0

(independent of u, uh, w, and h) and a function v : T → PkXh
(X) such that:

∣∣∣∣
∫ tb

ta

(〈
∂uh

∂t
(t), vw(t) − v(t)

〉

X

+B
(
uh(t), vw(t) − v(t)

))
dt

∣∣∣∣ ≤ C ‖u(ta)‖k+1,X ‖w‖k+1,X h
2k+1,

∀h > 0, ∀w ∈ C∞
0 (int(X)).

Proof:

See also [CLSS03, p. 589, 592, 593]. Note that:

〈
∂uh

∂t
(t), vw(t) − v(t)

〉

X

+B
(
uh(t), vw(t) − v(t)

) (4.24)
=

∑

j∈I

(〈
∂u

j
h

∂t
(t) + c

∂u
j
h(t)

∂x
, vjw(t) − vj(t)

〉

Xj

+
[
c
(
u
j
h(t) − u

j′−1
h (t)

) (
vjw(t) − vj(t)

)]

x
j− 1

2

)

Next, choose v(t) := PPk
Xh

vw(t), for all t ∈ T . Because uh(t) ∈ PkXh
(X) for all t ∈ T , the inner

product above is then equal to zero:

〈
∂uh

∂t
(t), vw(t) − v(t)

〉

X

+B
(
uh(t), vw(t) − v(t)

)

=
∑

j∈I

[
c
(
u
j
h(t) − u

j′−1
h (t)

) (
vjw(t) − vj(t)

)]

x
j− 1

2

.

Integrate over time and apply the Cauchy-Schwarz inequality:

∣∣∣∣
∫ tb

ta

(〈
∂uh

∂t
(t), vw(t) − v(t)

〉

X

+B
(
uh(t), vw(t) − v(t)

))
dt

∣∣∣∣ ≤
(∫ tb

ta

∑

j∈I

[
c
(
u
j
h(t) − u

j′−1
h (t)

)]2
x

j− 1
2

dt

) 1
2
(∫ tb

ta

∑

j∈I

[
vjw(t) − vj(t)

]2
x

j− 1
2

) 1
2

. (4.28)

The second term can be estimated as follows. First, apply (4.7) to obtain a constant C0 > 0
(independent of vw, and h) such that

∣∣∣∣
[
vjw(t) − vj(t)

]
x

j− 1
2

∣∣∣∣ ≤ C0h
k+ 1

2 ‖vw‖k+1,Xj

Take the square and sum over all of the elements:

∑

j∈I

[
vjw(t) − vj(t)

]2
x

j− 1
2

≤ C2
0h

2k+1 ‖vw‖
2
k+1,X .
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To estimate the first term in (4.28), proceed as follows. First, use the triangle inequality:

∣∣∣∣∣c
[
u
j
h(t) − u

j′−1
h (t)

]

x
j− 1

2

∣∣∣∣∣

=

∣∣∣∣c
[
u
j
h(t) − PPk

Xh

uj(t) + PPk
Xh

uj(t) − uj(t) + uj(t) − uj
′−1(t)

+ uj
′−1(t) − PPk

Xh

uj
′−1(t) + PPk

Xh

uj
′−1(t) − u

j′−1
h (t)

]

x
j− 1

2

∣∣∣∣

≤

∣∣∣∣∣c
[
u
j
h(t) − PPk

Xh

uj(t)
]

x
j− 1

2

+ c
[
PPk

Xh

uj
′−1(t) − u

j′−1
h (t)

]

x
j− 1

2

∣∣∣∣∣

+

∣∣∣∣∣c
[
PPk

Xh

uj(t) − uj(t)
]

x
j− 1

2

∣∣∣∣∣+
∣∣∣∣∣c
[
uj

′−1(t) − PPk
Xh

uj
′−1(t)

]

x
j− 1

2

∣∣∣∣∣

+

∣∣∣∣∣c
[
uj(t) − uj

′−1(t)
]

x
j− 1

2

∣∣∣∣∣ , ∀j ∈ I.

The second and third terms can be estimated with the help of Proposition 4.5. The last term
vanishes, because the exact solution is continuous.:

∣∣∣∣∣c
[
u
j
h(t) − u

j′−1
h (t)

]

x
j− 1

2

∣∣∣∣∣

≤

∣∣∣∣∣c
[
u
j
h(t) − PPk

Xh

uj(t)
]

x
j− 1

2

− c
[
u
j′−1
h (t) − PPk

Xh

uj
′−1(t)

]

x
j− 1

2

∣∣∣∣∣

+ C1h
k+ 1

2 ‖u‖k+1,Xj
+ C1h

k+ 1
2 ‖u‖k+1,Xj′−1

, ∀j ∈ I.

for some constant C1 > 0 (independent of u, and h. Take the square, sum over the elements, and
use the equivalence of the ℓ1-norm and ℓ2-norm for finite dimensions:

∑

j∈I

c
[
u
j
h(t) − u

j′−1
h (t)

]2
x

j− 1
2

≤C2

∑

j∈I

∣∣∣∣∣c
[
u
j
h(t) − PPk

Xh

uj(t)
]

x
j− 1

2

+ c
[
PPk

Xh

uj
′−1(t) − u

j′−1
h (t)

]

x
j− 1

2

∣∣∣∣∣

2

+ 2C1C2h
2k+1 ‖u‖

2
k+1,X ,

for some constant C2 > 0 (independent of u, and h). Making use of [CJST98, inequality at the
bottom of p. 196] yields the estimate for the first term:

∑

j∈I

c
[
u
j
h(t) − u

j′−1
h (t)

]2
x

j− 1
2

≤ C2C3h
2k+1 ‖u‖

2
k+1,X + 2C1C2h

2k+1 ‖u‖
2
k+1,X ,

for some constant C3 > 0 (independent of u, and h. Substitution of these two estimates into (4.28)
completes the proof.

Lemma 4.15 (Estimating the third term: consistency)
Consider Notation 4.11. Then,

∣∣∣∣
∫ tb

ta

(〈
uh(t),

∂vw

∂t
(t)

〉

X

−B
(
uh(t), vw(t)

))
dt

∣∣∣∣ = 0, ∀h > 0, ∀w ∈ C∞
0 (int(X)).
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Proof:

See also [CLSS03, p. 589, 592, 593]. First, rewrite the integrand:

〈
uh(t),

∂vw

∂t
(t)

〉

X

−B
(
uh(t), vw(t)

) (4.25)
=

〈
uh(t),−c1

∂vw(t)

∂x

〉

X

−B
(
uh(t), vw(t)

) (4.23)
=

−
∑

j∈I

([
c1u

j
h(t)v

j
w(t)

]

x
j+ 1

2

+
[
−c1u

j′−1
h (t)vjw(t)

]

x
j− 1

2

)
, ∀t ∈ [ta, tb].

Because of the periodic boundary conditions and the fact that vw(t) is continuous (for all t ∈
[ta, tb]), the integrand is zero:

〈
uh(t),

∂vw

∂t
(t)

〉

X

−B
(
uh(t), vw(t)

)
=

−
∑

j∈I

[
c1u

j
h(t)v

j
w(t)

]

x
j+ 1

2

+
∑

j∈I

[
c1u

j
h(t)v

j
w(t)

]

x
j+ 1

2

= 0, ∀t ∈ [ta, tb].

As the integrand is equal to zero, so is the integral.

Theorem 4.16 (Estimating the negative-order norm of the divided difference)
Consider Notation 4.11, let j ∈ N0 and let s ≥ k + 1. Furthermore, choose H0 > 0 and open
X3 ⊆ X such that

X3 +

[
−j

H

2
, j
H

2

]
⊆ int(X), ∀H ∈ (0, H0] (4.29)

Then, there exists a constant C > 0 (independent of u, uh and h) such that:

∥∥∥∂jH
(
u(tb) − uh(tb)

)∥∥∥
−s,X3

≤ C ‖u(ta)‖k+1,X h
2k+1H−j , ∀H ∈ (0, H0], ∀h > 0. (4.30)

Proof:

See also [Tho77, p. 589, 590]. By applying Lemma 4.12, Lemma 4.13, Lemma 4.14, and
Lemma 4.15 for w ∈ C∞

0 (int(X)) it follows that there exists a constant C > 0 (independent
of u and uh) such that:

‖u(tb) − uh(tb)‖−s,X3

(4.2),(4.4)

≤ ‖u(tb) − uh(tb)‖−(k+1),int(X)

≤ C ‖u(ta)‖k+1,X h
2k+1, ∀H ∈ (0, H0), ∀h > 0.

This completes the proof for j = 0. For general j ∈ N0, proceed as follows:

∥∥∥∂jH
(
u(tb) − uh(tb)

)∥∥∥
−s,X3

cf. (4.20),(4.29)

≤

(
2

H

)j
‖u(tb) − uh(tb)‖−s,int(X) , ∀H ∈ (0, H0], ∀h > 0.

Due to the result for j = 0 above, there exists a constant C1 > 0 (independent of u and uh) such
that:

∥∥∥∂jH
(
u(tb) − uh(tb)

)∥∥∥
−s,X3

≤ C12
j

︸ ︷︷ ︸
=:C

‖u(ta)‖k+1,X h2k+1H−j , ∀H ∈ (0, H0], ∀h > 0,

which completes the proof.
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Theorem 4.17 (Conservation of convergence rate)
Consider Notation 4.1 and Notation 4.11 and the notation of Theorem 4.8. Additionally, assume

that s ≥ k + 1 and that u ∈ Wmax{k+1,2r−1+α},2(X). Then, there exists a constant C > 0
(independent of u, uh, H , and h) such that:

∥∥∥Dαu−K
s,s+α,{q1,...,q2r−1}
H ⋆ ∂αHuh

∥∥∥
0,X0

≤

C max
{
‖u(tb)‖2r−1+α,X , ‖u(ta)‖k+1,X

}
h

2k+1

2r−1+s+α
(2r−1), ∀H := h

2k+1

2r−1+s+α ∈ (0, H0].

In particular, for

r ≥
(k + 1)(s+ α) + k

2k
,

the convergence rate of the filtered DG approximation is at least k+1, which implies conservation
of convergence. Furthermore, for r → ∞, the convergence rate approaches 2k + 1.

Proof:

See also [CLSS03, Corollary 3.2, Theorem 3.4]. It follows from Theorem 4.8 and Theorem 4.16
that there exists a constant C > 0 such that

∥∥∥Dαu−K
s,s+α,{q1,...,q2r−1}
H ⋆ ∂αHuh

∥∥∥
0,X0

≤

C
(
‖u(tb)‖2r−1+α,X1

H2r−1 + ‖u(ta)‖k+1,X h
2k+1H−s−α

)
, ∀h > 0, ∀H ∈ (0, H0].

Application of (4.3) to the first term on he right hand side and substitution of H := h
2k+1

2r−1+s+α

completes the proof.

Remark 4.18 (Requiring fewer nodes)
Presently, often the choice s = r = k + 1 is made (cf. [RS03, Section 2], [RSA05, Section 1.2]).
This choice originates from the error estimations for equidistant meshes, which imply convergence
of order 2r+1 [CJST98, p. 585], However, if merely conservation of the convergence rate is sought,
for larger numbers of k, fewer nodes than 2r + 1 are required. For example, if k = 4 and if the
B-spline order equals k + 1 = 5, then r = k is sufficient, which corresponds to 2k − 1 nodes. This
can help to reduce computational costs. y

4.5 Conclusion

This chapter has derived a derivative error estimation for central spline filtered DG approximations
based on the first-order upwind flux and exact time integration on one-dimensional non-equidistant
meshes for periodic linear hyperbolic equations with a sufficiently smooth exact solution. Among
other things, it can be concluded from this error estimation that, for any B-spline order, i.e. for
any required order of differentiability of the filtered DG approximation, there exists a number of
nodes for which the corresponding central spline filter at least conserves the convergence rate of
the DG approximation, i.e. k + 1.
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Chapter 5

Conclusion

The Discontinuous Galerkin (DG) method is a flexible method for approximating the solution
of a hyperbolic system. Its flexibility is mainly due to the fact that its outcome is allowed to
be discontinuous at the element boundaries. This can in turn become a disadvantage, because
a lack of smoothness can have a negative effect on the accuracy of the visualisation of the DG
approximation, e.g. in the form of streamlines. The main goal of this research is to tackle this
problem through spline filtering.

A central spline filter convolves the function to be filtered against a central spline kernel, which
is a linear combination of central B-splines. The filter enhances the smoothness in the sense that
the filtered solution is at least differentiable up to the order of the central B-splines minus two.
This can benefit the accuracy of streamline visualisation. Additionally, a reduction of oscillations
in the error is observed. At the same time, it can be shown that a central spline filter at least
conserves the convergence rate for a certain class of problems.

Based on this literature study, the following research questions arise:

• Defining the problem:

– What order of differentiability is required precisely for proper streamline visualisation?
Are there ODE solvers that are capable of dealing with discontinuities? What are their
disadvantages?

• Increasing the smoothness:

– Most likely, the use of different kernels throughout the domain is inevitable in order
enhance the practical applicability discussed below. Unfortunately, a non-smooth vari-
ation in the kernels can introduce non-smoothness in the filtered solution (cf. [RS03]).
Is it possible to construct smooth transitions to circumvent this issue?

• Conserving the convergence:

– The current theoretical error estimations for spline filtered DG approximations do not
apply for

∗ non-linear problems,

∗ problems with non-periodic boundary conditions,

∗ problems with an insufficiently smooth exact solution (e.g. shocks),

∗ inexact time integration,

∗ a numerical flux function other than the first-order upwind flux function,

∗ a certain region that is adjacent to the boundary of the spatial domain and that
typically spans multiple elements,

∗ triangular meshes in the multi-dimensional case.
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In other words, the current error estimations do not apply for most real-life applica-
tions. Is it possible to improve on the existing spline filters to increase their practical
applicability for some of the classes above?

– With respect to one-dimensional filtering along the streamline in a two-dimensional
domain, two questions arise:

∗ Do the error estimations for one-dimensional spline filters remain valid if they are
applied along a curve in a two-dimensional domain?

∗ The computation of the next point on a streamline, using the one-dimensional
approach with the one-sided filter, requires a continuous ‘previous solution’ instead
of a discrete one. Previously, this problem was dealt with by using piecewise
linear approximations of the streamline. How large is the error resulting from this
approximation? What alternatives provide more accurate results?

• Other questions:

– Can derivative spline filtering be used to devise an (implicit) ODE scheme that is
particularly useful for streamline visualisation?

– Unlike the symmetric filter, the one-sided filter can be applied near boundaries. Un-
fortunately, at the boundary, the one-sided filter is inconsistent with the boundary
condition in the sense that the filtered boundary is not equal to the boundary condi-
tion. What type of filtering can deal with this problem? Could the solution to this
problem make use of a kernel that looks more like a Dirac distribution as it is applied
closer to the boundary?

The main focus of this research will be on the construction of a spline filter that is consistent with
the boundary conditions and that can handle triangular meshes that may contain abrubt changes
in mesh size.
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