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Abstract

We investigate stability of the solution of the equations proposed in [Moreo, 2008], which
model peri-implant osseointegration process. For certain parameter values, the solution has
a ’wave-like’ profile, which appears in the distribution of osteogenic cells, osteoblasts, growth
factor and bone matrix. That is in contradiction with experimental observations.

In our study we investigate the conditions, under which such profile appears in the solution.
Those conditions are determined in terms of model parameters, by means of linear stability
analysis, carried out at one of the homogeneous steady-state solutions of the simplified system.
The analysis is validated with finite element simulations. The simulations show, that stability
of the homogeneous steady-state could determine the behavior of the solution of the whole
system, when certain initial conditions are considered.

1 Introduction

A number of models were proposed so far for the process of bone formation. It is reported
by many researchers, that mechanical stimulation is an important factor, which influences bone
formation. For example, [Vandamme et al., 2007a–d] investigated peri-implant bone ingrowth
under well controlled mechanical loading of the interface tissue, and reported that relative implant-
interface tissue micromotions qualitatively and quantitatively altered the osseointegration process.
The mechanoregulatory models for bone formation were defined, for instance, in [Andreykiv,
2006], [Carter et al., 1998], [Claes and Hiegele, 1999], [Doblaré et al. (2005)], [Prendergast et al.,
1997].

Another biological model for peri-implant osseointegration was proposed in [Moreo, 2008]. It
allows to simulate osseointegration under low-medium loading regime taking into account implant
surface microtopography. The author did not introduce explicitly the dependence of cell and tissue
processes on mechanical stimulus, and outlined the incorporation of differentiation laws in terms
of mechanical variables as one of the future lines of research. The results presented in [Moreo,
2008] were in agreement with experiments. They predicted that bone formation can occur through
contact osteogenesis and distance osteogenesis.

Though, we found that the system of equations, proposed in [Moreo, 2008], is characterized by
appearance of a ’wave-like’ profile in the solution for a certain range of parameters. That feature
has not been noticed before, since for the geometry and parameter values used in the simulations,
a ’wave-like’ profile does not become apparent. Though its presence is obvious, if a larger domain
is considered. That could be observed in Figure 1, where several plots of the numerical solutions
of the model equations, obtained for various 1D domains in axisymmetric coordinates, are shown.

The conditions, under which a ’wave-like’ profile appears, are studied. Such a ’wave-like’ profile
in the solution for cell densities and growth factor concentrations is not realistic. In some cases it
also leads to a ’wave-like’ distribution of bone matrix inside the peri-implant region. That is in
contradiction with experimental observations, which evidence that bone forms by deposition on
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Figure 1: Osteogenic cell m and growth factor 2 s2 distributions at different time moments,
obtained for domain length (a) L = 0.6 mm, (b) L = 5mm.

the preexisting bone matrix, and no isolated bone regions appear. Thus, it is desirable to avoid
such a profile in the solution of the original model by [Moreo, 2008], and to take in account the
stability properties of the system of equations when introducing mechanical variables in it.

The proposed approach is to study the linear stability of homogeneous steady-states of the
system. As the full system of equations is large and extremely complicated for analytic derivations,
an equivalent simplified system with similar properties will be defined.

The phenomenon of a ’wave-like’ profile in the solution could be related to the appearance
of bacterial patterns in liquid medium, described mathematically by similar partial differential
equations. Those pattern analysis could be found in [Myerscough and Murray, 1992], [Tyson,
1999], [Miyata, 2006].

In section 2 the system of equations proposed in [Moreo, 2008] is reviewed. The linear stability
analysis of the system is carried out in section 3. In section 4 analysis is validated with a sequence
of numerical simulations. Finally, in section 5 some conclusions are drawn.

2 Biological model

The original model proposed in [Moreo, 2008] consists of the eight equations, defined for eight
variables, representing densities of platelets c, osteogenic cells m, osteoblasts b, concentrations of
two generic growth factor types s1 and s2, and volume fractions of fibrin network vfn, woven bone
vw, and lamellar bone vl. The above notations are introduced for non-dimensional cell densities
and growth factor concentrations, i.e. for those, related to some characteristic values. If f̂ and
fc are notations of a dimensional variable and of its characteristic value, then a non-dimensional
variable f is defined as f = f̂/fc, f = c,m, b, s1, s2. The following characteristic values are
proposed: cc = 108 platelets/ml, mc = 106 cells/ml, bc = 106 cells/ml, s1c

= 100 ng/ml,
s2c

= 100 ng/ml. The model equations are:

∂c

∂t
= ∇ · [Dc∇c − Hcc∇p] − Acc, (2.1)

∂m

∂t
=∇ · [Dm∇m − m(Bm1∇s1 + Bm2∇s2)]+

+
(
αm0 +

αms1

βm + s1
+

αms2

βm + s2

)
m(1 − m) − (αp0 +

αmbs1

βmb + s1
)m − Amm, (2.2)

∂b

∂t
= (αp0 +

αmbs1

βmb + s1
)m − Abb, (2.3)
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∂s1

∂t
= ∇ · [Ds1∇s1] +

( αc1p

βc1 + p
+

αc2s1

βc2 + s1

)
c − As1s1, (2.4)

∂s2

∂t
= ∇ · [Ds2∇s2] +

αm2s2

βm2 + s2
m +

αb2s2

βb2 + s2
b − As2s2, (2.5)

∂vfn

∂t
= − αws2

βw + s2
bvfn(1 − vw), (2.6)

∂vw

∂t
=

αws2

βw + s2
bvfn(1 − vw) − γvw(1 − vl), (2.7)

∂vl

∂t
= γvw(1 − vl). (2.8)

Initial and boundary conditions will be given later in the text.
In equations (2.1) and (2.4) p denotes the concentration of adsorbed proteins, which is a

predefined function of the distance from the implant surface. According to [Moreo, 2008] the
following parameters values are proposed:

Dc = 1.365 · 10−2 mm2/day, Ac = 0.067 day−1, Hc = 0.333 mm4/(day · mg),

Dm = 0.133 mm2/day, Bm1 = 0.667 mm2/day, Bm2 = 0.167 mm2/day,

αm0 = 0.25 day−1, αm = 0.25 day−1, Am = 2 · 10−3 day−1, βm = 0.1,

βmb = 0.1, Ab = 6.67 · 10−3 day−1, Ds1 = 0.3 mm2/day, Ds2 = 0.1 mm2/day,

As1 = 10 day−1, As2 = 10 day−1, αc1 = 66.7 day−1, αc2 = 10 day−1

αm2 = 25 day−1, αb2 = 25 day−1, βc1 = 0.1, βc2 = 0.1, βm2 = 0.1,

βb2 = 0.1, αw = 0.1 day−1, βw = 0.1, γ = 0.01 day−1.

(2.9)

Remark 2.1 In [Moreo, 2008] originally, the differentiation term in equations (2.2) and (2.3) was
given in the form αmbs1

βmb+s1
m. And here we introduced parameter αp0, assuming that differentiation

could take place, when the growth factor 1 concentration s1 is zero [Garćıa-Aznar, 2009].

Therefore, according to [Moreo, 2008]:

αmb = 0.5 day−1, αp0 = 0 day−1, (2.10)

and our proposal is:

αmb =
2

3
· 0.5 day−1, αp0 =

1

3
· 0.5 day−1. (2.11)

3 Stability analysis

3.1 The simplified biological model

Our present aim is to study the conditions characterizing wave-like profile appearance. Simula-
tions, performed for the full system, show that the wave-like profile can appear in the solution
for densities of osteogenic cells m and osteoblasts b, for growth factor 2 concentration s2, and
for volume fractions of fibrin network vfn, woven bone vw and lamellar bone vl. Equations for
variables m, b and s2 (2.2), (2.5), (2.3) are coupled and can be solved, after the solution for c and
s1 is obtained from the equations (2.1) and (2.4). Equations for variables vfn, vw and vl (2.6),
(2.7), (2.8) contain only reaction terms in their right part. The wave-like profile in the solution
for these variables appears due to the wave-like profile in the solution for osteoblasts and growth
factor 2.

Therefore we will study the phenomenon of the wave-like profile in the solution for variables
m, b and s2. Solution for m, b and s2 is provided by the system of equations (2.1)–(2.5).
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We assume, that the profile appearance could be related to the stability of the homogeneous
steady-state solutions of the system. System (2.1)–(2.5) has no homogeneous steady-state solutions
for variables c and s1, if protein concentration is not homogeneous in the problem domain: p(x) 6=
const. Therefore we reduce this system to three equations, eliminating unknown functions c and
s1.

The equations for platelets c and growth factor 1 s1 (2.1) and (2.4), could be solved separately
of other equations. That means, that platelet density c(x, t) and growth factor 1 concentration
s1(x, t) evolution does not depend on the evolution of other biological and chemical species involved
in the model. Equation (2.1) contains a term, corresponding to the death of platelets, but it does
not contain a term, corresponding to the production of platelets. Therefore, the total amount
of platelets decays to zero with time. The production of growth factor 1 s1 is proportional to
platelets concentration, and thus the production of s1 also decays with time, while death rate As1

is constant in time. It can be proved, that the integrals of platelet density and growth factor 1
concentration over the problem domain tend to zero with time, when zero flux on the boundaries
is considered. If negative values in the solution for c(x, t) and s1(x, t) are avoided (otherwise the
solution becomes biologically irrelevant), then it follows, that these functions tend to zero almost
everywhere in the problem domain. Numerical simulations confirm (Figure 2), that for a large
time t the solution s1(x, t) is very close to zero.
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Figure 2: Growth factor 1 s1 distribution at different time moments, taken from the solutions of
the full system (2.1)–(2.8) for domain length (a) L = 0.6 mm, (b) L = 5mm.

The stability analysis deals with the asymptotic behavior of the system, that is with the
behavior of the solution for long time periods. Therefore, we derive the simplified system from
equations (2.2), (2.5) and (2.3), assuming s1(x, t) ≡ 0, which gives

∂m

∂t
=∇ · [Dm∇m − Bm2m∇s2)]+

+
(
αm0 +

αms2

βm + s2

)
m(1 − m) − (αp0 + Am)m − Amm, (3.1)

∂s2

∂t
=∇ · [Ds2∇s2] +

αm2s2

βm2 + s2
(m + b) − As2s2, (3.2)

∂b

∂t
=αp0m − Abb. (3.3)

Remark 3.1 Deriving (3.2) we assumed, that αb2 = αm2 and βb2 = βm2. In (2.9) the identical
values for parameters αb2 and αm2, and for parameters βb2 and βm2 were specified.

[Moreo, 2008] investigated the linear stability of the homogeneous steady-states of the system,
which is similar to system (3.1)–(3.3), against purely temporal perturbations. In this paper we will
study the system stability against arbitrary perturbations (also non-homogeneous perturbations).

Homogeneous steady-state solutions z′ = (m′, s′, b′) of equation system (3.1)–(3.3) are derived
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from the algebraic system:

(
αm0 +

αms′2
βm + s′2

)
m′(1 − m′) − (αp0 + Am)m′ = 0, (3.4)

αm2s
′
2

βm2 + s′2
(m′ + b′) − As2s

′

2 = 0,

αp0m
′ − Abb

′ = 0.

The above system has 4 solutions. Two of them are denoted by [Moreo, 2008] as:

• “Chronic non healing state”: zt = (0, 0, 0)

• “Low density state”: z0 = (m0, 0, b0)

where

m0 = 1 − αp0 + Am

αm0
, b0 =

αp0

Ab

m0. (3.5)

Two other homogeneous steady-states are denoted as z− = (m−, s2−, b−) and z+ = (m+, s2+, b+).
Then the values s2− and s2+ are determined as

s2± =
−a1 ±

√
a2
1 − 4a2a0

2a2
, (3.6)

where




a2 = As2

(
1 +

αm

αm0

)
,

a1 =

(
1 +

αm

αm0

)
(βm2As2

− χm0) +
αm

αm0
χ(m0 − 1) + βmAs2

,

a0 = βm(βm2As2
− χm0),

(3.7)

χ = αm2 (1 + αp0/Ab) , (3.8)

and m0 is from (3.5). The important restriction should be imposed, that s2± 6= −βm and s2± 6=
−βm2. Then m±, b± is defined as:

m± =
AbAs2(s2± + βm2)

αm2(Ab + αp0)
=

As2(s2± + βm2)

χ
, b± =

αp0

Ab

m±. (3.9)

We mention here, that for the existence of real s2± the necessary condition is:

a2
1 − 4a2a0 ≥ 0 (3.10)

That necessary condition could be written in term of model parameter as:

a2
1 − 4a2a0 =

(
χ

(
m0 +

αm

αm0

)
− As2

(
βm + βm2

(
1 +

αm

αm0

)))2

−

− 4As2βm

(
1 +

αm

αm0

)
(βm2As2 − χm0) =

=

(
χ

(
m0 +

αm

αm0

)
− ξ

)2

+ χ

(
m0 +

αm

αm0

)
η − η

(
βm2As2 + χ

αm

αm0

)
=

=

(
χ

(
m0 +

αm

αm0

))2

+ χ

(
m0 +

αm

αm0

)
(η − 2ξ) + ξ2 − η

(
βm2As2 + χ

αm

αm0

)
≥ 0

where

ξ = As2

(
βm + βm2

(
1 +

αm

αm0

))
, η = 4As2βm

(
1 +

αm

αm0

)
(3.11)
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From the above relation it is derived, that (3.10) is equivalent to:




χ
(
m0 + αm

αm0

)
≥ −As2βm

αm

αm0
+

√
η αm

αm0
χ,

χ
(
m0 + αm

αm0

)
≤ −As2βm

αm

αm0
−

√
η αm

αm0
χ.

(3.12)

The sign of s2± depends on the sign of coefficients a1 and a0 (coefficient a2 is greater than
zero, which follows from its definition). Both roots will be positive if a1 < 0 and a0 > 0 and if
(3.10) holds.

For parameter values (2.9), (2.10) the homogeneous steady-state solutions have values: (m0, b0) ≈
(0.9920, 0), (m−, s2−, b−) ≈ (0.0201,−0.0498, 0), (m+, s2+, b+) ≈ (0.9959, 2.3898, 0); and for pa-
rameter values (2.9), (2.11): (m0, b0) ≈ (0.3253, 8.1293), (m−, s2−, b−) ≈ (0.0012,−0.0245, 0.0290),
(m+, s2+, b+) ≈ (0.6623, 42.9271, 16.5486).

Remark 3.2 For the chosen parameter values growth factor 2 concentration s2− is negative,
which is unphysical. It is desirable to avoid such a negative concentration of growth factor 2 in the
solution of the problem (3.1)–(3.3). Calculations showed, that for the chosen parameter set (2.9),
(2.10) and (2.9), (2.11) homogeneous steady-state z− is unstable against temporal perturbations.
In simulations we were able to avoid negative values in the solution for s2, by choosing sufficiently
small time step and mesh size and starting with positive initial values for concentrations of cells
and growth factor.

3.2 Non-homogeneous perturbations

Further we propose an approach, to study the stability of homogeneous steady-state solutions of
the system (3.1)–(3.3) in 1D domain against non-homogeneous spatial perturbations. Suppose that
non-homogeneous perturbations mp(x, t), s2p(x, t) and bp(x, t) are imposed on the homogeneous
steady-state solution (m′, s′2, b

′). Then the solution is given in the form:




m(x, t) = m′ + εmp(x, t),

s2(x, t) = s′2 + εs2p(x, t),

b(x, t) = b′ + εbp(x, t)

(3.13)

where |ε| ≪ 1. Then we substitute (3.13) into (3.1)–(3.3), and linearize with respect to small ε:





∂mp

∂t
=Dm∇2mp − m′Bm2∇2s2p +

[(
αm0 +

αms′2
βm + s′2

)
(1 − 2m′)−

− (αp0 + Am)
]
mp +

αmβm

(βm + s′2)
2
m′(1 − m′)s2p,

∂s2p

∂t
=Ds2∇2s2p +

αm2s
′
2

βm2 + s′2
(mp + bp) +

[ αm2βm2

(βm2 + s′2)
2
(m′ + b′) − As2

]
s2p,

∂bp

∂t
=αp0mp − Abbp

(3.14)

Let us denote the problem domain as [x0, x0 + L]. Assume, that on the boundaries the flux of
cells and growth factor is zero. Then we consider perturbations of the form:





mp(x, t) =Cm
0 (t) +

∞∑

n=1

Cm
n (t)φn(x),

s2p(x, t) =Cs2
0 (t) +

∞∑

n=1

Cs2
n (t)φn(x),

bp(x, t) =Cb
0(t) +

∞∑

n=1

Cb
n(t)φn(x)

(3.15)
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Functions Cm
0 (t), Cs2

0 (t), Cb
0(t) represent purely temporal perturbations. Functions φn(x) sat-

isfy equation ∇2φn(x) = −k2
nφn(x) and considered boundary conditions, i.e. zero flux on the

boundaries: ∇φn(x0) = ∇φn(x0 + L) = 0.
When Cartesian coordinates are considered, then φn(x) is given as φC

n (x) = cos(kn(x − x0)),
where kn = πn

L
, n = 1, 2, . . . . In this case kn is a wavenumber.

In the case of axisymmetric coordinates functions φn(x) have the form φa
n(x) = Y ′

0(knx0)J0(knx)−
J ′

0(knx0)Y0(knx), where J0(knx) and Y0(knx) are Bessel functions, kn = wn

x0+L
and wn, n = 1, 2, . . .

are positive real zeros of the function Φ(w) = −Y ′
0(knx0)J1(w)+J ′

0(knx0)Y1(w). Functions φa
n(x),

n = 1, 2, . . . are not periodic. They could be roughly described as “waves” with variable in space
wavelength and magnitude. For simplicity, kn will be referred to as ’wavenumber’, also when it is
introduced in functions φa

n(x).

Remark 3.3 Perturbation modes φn(x), n = 1, 2, . . . by their definition have positive wavenum-
bers kn > 0. For the sake of generality, further we will consider purely temporal perturbations as
perturbations of mode n = 0 with zero wavenumber k0 = 0. We also define φ0(x) ≡ 1.

Substituting (3.15) into (3.14), we get:

C′

n(t) = Akn
Cn(t), n = 0, 1, . . . (3.16)

where

Cn(t) =




Cm
n (t)

Cs2
n (t)

Cb
n(t)


 , n = 0, 1, . . . , (3.17)

Akn
=




(
αm0 +

αms′2
βm + s′2

)
(1 − 2m′) − (αp0 + Am) − k2

nDm

αm2s
′
2

βm2 + s′2
αp0

· · ·

· · ·

αmβm

(βm + s′2)
2
m′(1 − m′) + k2

nBm2m
′ 0

αm2βm2

(βm2 + s′2)
2

(
1 +

αp0

Ab

)
m′ − As2 − k2

nDs2
αm2s

′
2

βm2 + s′2
0 − Ab




.

(3.18)

Then from (3.16):
Cn(t) = eAkn tC0

n, n = 0, 1, . . . (3.19)

where C0
n define the perturbations imposed on the homogeneous steady-state solution of the system

initially at time t = 0: 


mp(x, 0)
s2p(x, 0)
bp(x, 0)


 =

∞∑

n=0

C0
nφn(x).

Thus the solution of (3.14) is written as:




mp(x, t)
s2p(x, t)
bp(x, t)


 =

∞∑

n=0

eAkn tC0
nφn(x). (3.20)

The magnitude of perturbations ‖Cn(t)‖ = ‖eAkn tC0
n‖ of mode n, will grow in time, when at

least one of the eigenvalues of matrix Akn
is a positive real number or a complex number with

a positive real part. And ‖Cn(t)‖ will converge to zero, if all the eigenvalues of Akn
are real

negative, or complex numbers with the real part less than zero. When matrix Akn
has precisely
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one zero eigenvalue, and other eigenvalues are real negative of complex with negative real part,
then small perturbations remain small for infinite time period.

It is not complicated to find expressions for the eigenvalues of Akn
, evaluated at the steady-

states zt and z0. For the homogeneous steady-state zt = (0, 0, 0) eigenvalues of Akn
are:

λ1t(k
2
n) = αm0m0 − k2

nDm > 0, if 0 ≤ k2
n <

αm0m0

Dm

,

λ2t(k
2
n) = −As2 − k2

nDs2 < 0, λ3t(k
2
n) = −Ab < 0,

(3.21)

Therefore, if m0 is positive, steady-state zt is unstable against purely temporal perturbations and

perturbations with small wavenumber 0 < kn <
√

αm0m0

Dm
. The first eigenvalue λ1t(k

2
n) takes the

largest positive value for wavenumber k0, i.e. for the purely temporal perturbation mode.

Remark 3.4 If we consider negative m0, then ’chronic non-healing state’ zt will become stable
against perturbations with any wavenumber. Further the homogeneous steady-state solution z0 will
contain unphysical negative concentration for osteogenic cells. Inequality m0 = 1 − αp0+Am

αm0
< 0

implies, that differentiation and death of osteogenic cell dominate over their production. Therefore,
this situation is not relevant for the considered model of bone formation, and further m0 > 0 is
assumed a priori.

For the homogeneous steady-state solution z0 = (m0, 0, b0) matrix Akn
eigenvalues are:

λ10(k
2
n) = −αm0m0 − k2

nDm < 0, λ20(k
2
n) =

αm2

βm2
m0(1 +

αp0

Ab

) − As2 − k2
nDs2,

λ30(k
2
n) = −Ab < 0.

(3.22)

When expression αm2

βm2
m0(1 +

αp0

Ab
) − As2 takes positive value, which is true for the considered

parameter values (2.9), (2.10) and (2.11), then the steady-state z0 is unstable against perturbations

with wavenumbers k2
n <

(
αm2

βm2
m0(1 +

αp0

Ab
) − As2

)
/Ds2. The largest eigenvalue λ20 corresponds

to zero wavenumber k0, i.e. to the purely temporal mode of perturbation.
The eigenvalues of matrix Akn

defined at points z− and z+ could not be found in such a trivial
manner, as for steady-states zt and z0. They are obtained from the characteristic equation, which
is a non-trivial cubic algebraic equation. Therefore, instead of analyzing the expressions for the
eigenvalues, which are extremely complicated in this case, we propose another approach to study
the stability of the considered system of equations.

Remark 3.5 For the chosen parameter values (2.9), (2.10) and (2.9), (2.11) s2− is negative,
hence homogeneous steady-state z− is biologically irrelevant in that cases. Further we will analyze
only the stability of homogeneous steady-state solution z+ and not of z−. The stability analysis,
being introduced for z+, is not valid for the homogeneous steady-state z−, when it contains the
negative value of growth factor concentration. Calculations also show, that for parameter values
(2.9), (2.10) and (2.11), homogeneous steady-state z− is unstable against at least purely temporal
perturbations.

3.3 Stability of the system of two equations

To simplify the stability analysis, we reduce system (3.1)–(3.3) to a system of two equations. For
this reduced system we assume, that b(x, t) =

αp0

Ab
m(x, t) instead of equation (3.3). Later in the

text we will demonstrate, that stability properties of this reduced system are similar to those of
the system (3.1)–(3.3). We define:





∂m

∂t
= ∇ · [Dm∇m − Bm2m∇s2)]+

+
(
αm0 +

αms2

βm + s2

)
m(1 − m) − (αp0 + Am)m,

∂s2

∂t
= ∇ · [Ds2∇s2] +

αm2s2

βm2 + s2
(1 +

αp0

Ab

)m − As2s2

(3.23)
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This system has the homogeneous steady-states analogous to those of the system (3.1)–(3.3). They
are: z̃t = (0, 0), z̃0 = (m0, 0), z̃+ = (m+, s2+), z̃− = (m−, s2−). Linearizing the system near point
(m′, s′2), with m(x, t) = m′ + εmp(x, t) and s2(x, t) = s′2 + εs2p(x, t), we get:





∂mp

∂t
=Dm∇2mp − m′Bm2∇2s2p +

[(
αm0 +

αms′2
βm + s′2

)
(1 − 2m′)−

− (αp0 + Am)
]
mp +

αmβm

(βm + s′2)
2
m′(1 − m′)s2p,

∂s2p

∂t
=Ds2∇2s2p +

αm2s
′
2

βm2 + s′2
(1 +

αp0

Ab

)mp +
[ αm2βm2

(βm2 + s′2)
2
(1 +

αp0

Ab

)m′ − As2

]
s2p

(3.24)

Considering the solution in the form





mp(x, t) =

∞∑

n=0

Cm
n (t)φn(x),

s2p(x, t) =

∞∑

n=0

Cs2
n (t)φn(x)

and substituting it in (3.24), for each n = 0, 1, . . . we derive:




dCm
n (t)

dt
dCs2

n (t)

dt


 = Ãkn

[
Cm

n (t)

Cs2
n (t)

]

where

Ãkn
=




(
αm0 +

αms′2
βm + s′2

)
(1 − 2m′) − (αp0 + Am) − k2

nDm

αm2s
′
2

βm2 + s′2
(1 +

αp0

Ab

)

· · ·

· · ·

αmβm

(βm + s′2)
2
m′(1 − m′) + k2

nBm2m
′

αm2βm2

(βm2 + s′2)
2
(1 +

αp0

Ab

)m′ − As2 − k2
nDs2


.

First we investigate the stability properties of the system (3.24) and then determine, how they
are related to the stability properties of the system of three equations (3.14). Since s2+ 6= −βm2,

then from (3.9) m+ 6= 0. Therefore, matrix Ãkn
, evaluated at point (m+, s2+), can be simplified.

From (3.4) we get: (
αm0 +

αms2+

βm + s2+

)
(1 − m+) − (αp0 + Am) = 0. (3.25)

Then:

Ãkn(1,1)(m+, s2+) =
(
αm0 + αms2+

βm+s2+

)
(1 − 2m+) − (αp0 + Am) − k2

nDm =

= 2
((

αm0 + αms2+

βm+s2+

)
(1 − m+) − (αp0 + Am)

)
−

−
((

αm0 + αms2+

βm+s2+

)
− (αp0 + Am)

)
− k2

nDm =

= −αm0m0 − αms2+

βm+s2+
− k2

nDm,
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Ãkn(2,1)(m+, s2+) =
αm2s2+

βm2 + s2+
(1 +

αp0

Ab

) = χ
s2+

βm2 + s2+
,

where χ is defined in (3.8). Considering (3.9), we derive

Ãkn(1,2)(m+, s2+) =
αmβm

(βm + s2+)2
m+(1 − m+) + k2

nBm2m+ =

=
As2αmβm

χ(βm + s2+)

βm2 + s2+

βm + s2+
(1 − m+) + k2

nBm2m+.

Everywhere in the calculations, presented in [Moreo, 2008] and in this paper, the same values are
used for parameters βm and βm2. So both notations βm and βm2 is used, though βm2 = βm is
supposed below. Then

Ãkn(1,2)(m+, s2+) =
As2αmβm

χ(βm + s2+)
(1 − m+) + k2

nBm2m+,

Ãkn(2,2)(m+, s2+) =
αm2βm2

(βm2 + s2+)2
(1 +

αp0

Ab

)m+ − As2 − k2
nDs2 =

= As2(
βm2

βm2 + s2+
− 1) − k2

nDs2 = −As2
s2+

βm2 + s2+
− k2

nDs2.

Therefore, we end up with

Ãkn
(m+, s2+) =




−αm0m0 − αms2+

βm+s2+
− k2

nDm
As2αmβm

χ(βm+s2+) (1 − m+) + k2
nBm2m+

χ s2+

βm2+s2+
−As2

s2+

βm2+s2+
− k2

nDs2


 .

Then the characteristic equation for matrix Ãkn
, evaluated at point (m+, s2+), is given as:

λ2(k2
n) + b(k2

n)λ(k2
n) + c(k2

n) = 0, (3.26)

where
b(k2

n) = −(Ãkn(1,1)(m+, s2+) + Ãkn(2,2)(m+, s2+)) =

= k2
nDm + αm0m0 +

αms2+

βm + s2+
+ k2

nDs2 + As2
s2+

βm2 + s2+
=

= k2
n(Dm + Ds2) + αm0m0 + (αm + As2)

s2+

βm + s2+
,

c(k2
n) = Ãkn(1,1)(m+, s2+)Ãkn(2,2)(m+, s2+) − Ãkn(1,2)(m+, s2+)Ãkn(2,1)(m+, s2+) =

=

(
k2

nDm + αm0m0 +
αms2+

βm + s2+

) (
k2

nDs2 + As2
s2+

βm2 + s2+

)
−

−
(

k2
nBm2m+ +

As2αmβm

χ(βm + s2+)
(1 − m+)

)
χ

s2+

βm2 + s2+
.

From equation (3.26) the eigenvalues of Ãkn
(m+, s2+) are determined as:

λ1,2(k
2
n) = −b(k2

n)

2
± 1

2

√
b2(k2

n) − 4c(k2
n). (3.27)

We mention that, if {
s2+ > 0,

m0 > 0
⇒ b(k2

n) > 0. (3.28)

Thus, we can formulate the lemma.
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Lemma 3.3.1 Suppose, that for the chosen parameter values m0 defined in (3.5) is positive,
βm = βm2 and that there exists a real positive s2+ defined in (3.6). Then the nature of eigenvalues

of matrix Ãkn
(m+, s2+) is determined by the sign of c(k2

n):

• if c(k2
n) < 0, then one of eigenvalues is positive and the other is negative,

• if c(k2
n) = 0, then matrix Ãkn

(m+, s2+) has one zero eigenvalue and one negative.

• if c(k2
n) > 0 then both eigenvalues are either negative, or complex with negative real part.

Thus, the wavenumbers which lead to growing perturbations are determined by inequality
c(k2

n) < 0. We can write c(k2
n) is the form:

c(k2
n) = γ2k

4
n + γ1k

2
n + γ0, (3.29)

where

γ2 = DmDs2, (3.30)

γ1 = (DmAs2 + Ds2αm − χm+Bm2)
s2+

βm2 + s2+
+ Ds2αm0m0, (3.31)

γ0 = As2
s2+

βm2 + s2+

(
αm0m0 + αm

s2+

βm + s2+
(2 − m+) + αm(m+ − 1)

)
. (3.32)

Lemma 3.3.2 Suppose, that for the chosen parameter values m0 defined in (3.5) is positive, and
that βm2 = βm. Then if there exists a real positive s2+ defined in (3.6), then γ0 defined in (3.32)
is non-negative.

Proof. Since s2+ > 0, then it is necessary to prove, that

αm0m0 + αm

s2+

βm + s2+
(2 − m+) + αm(m+ − 1) ≥ 0.

Using (3.25) and (3.5), we simplify the previous inequality:

αm0m0 + αm

s2+

βm + s2+
(2 − m+) + αm(m+ − 1) =

=

(
αm0m0 + αm

s2+

βm + s2+
(1 − m+) − αm0m+

)
+ αm

s2+

βm + s2+
+ αm0m+ + αm(m+ − 1) =

= m+(αm0 + αm) + αm

(
s2+

βm + s2+
− 1

)
≥ 0.

That is equivalent to m+(αm0 + αm) ≥
(

αmβm

βm+s2+

)
. Considering (3.9), this transforms to

(βm + s2+)2 ≥ αmβmχ

As2(αm0 + αm)
, (3.33)

where χ is defined in (3.8). First, we show, that inequality (3.33) holds. From equation (3.6) and
assumption βm2 = βm it follows, that

s2+ + βm =
−a1 +

√
a2
1 − 4a2a0

2a2
+ βm ≥ − a1

2a2
+ βm =

= − (αm0 + αm)(βmAs2
− χm0) + αmχ(m0 − 1) + αm0βmAs2

− 2βmAs2(αm0 + αm)

2As2(αm0 + αm)
=

=
αmβmAs2 + χ(αm + αm0m0)

2As2(αm0 + αm)
,

(3.34)
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where a2, a1, a0 are defined in (3.7). Since χ = αm2 (1 + αp0/Ab) > 0 and m0 is supposed to be
positive, then from (3.12) we get:

χ

(
m0 +

αm

αm0

)
≥ −As2βm

αm

αm0
+

√
η

αm

αm0
χ. (3.35)

where η is defined in (3.11). Thus from (3.34) and (3.35) we get:

βm + s2+ ≥ αmβmAs2 + χ(αm + αm0m0)

2As2(αm0 + αm)
≥

αmβmAs2 − αmβmAs2 +
√

ηαmαm0χ

2As2(αm0 + αm)
=

√
ηαmαm0χ

2As2(αm0 + αm)
=

√
αmβmχ

As2(αm0 + αm)

Thus inequality (3.33) holds, and consequently γ0 ≥ 0. 2

Remark 3.6 From the proof of Lemma 3.3.2 it follows, that γ0 = 0, if and only if a2
1 − 4a2a0 = 0

which is equivalent for m0 > 0 to

χ

(
m0 +

αm

αm0

)
= −As2βm

αm

αm0
+

√
η

αm

αm0
χ. (3.36)

where η is defined in (3.11). In this case two steady-states z− and z+ coincide, since s2− = s2+ =
− a1

2a0
.

Remark 3.7 We mention here, that under assumptions of Lemma 3.3.2, c(0) = γ0 ≥ 0. Then

from Lemma 3.3.1 we deduce, that for zero wavenumber k0, matrix Ãkn
(m+, s2+) has either one

zero eigenvalue and one negative, or two negative eigenvalues, or two complex eigenvalues with
negative real part. This means, that the steady-state (m+, s2+) of the system (3.23) is stable
against the purely temporal perturbations.

Since kn ∈ [0,∞), then c(k2
n), given in (3.29) could be considered as a real function of a real

non-negative argument. It is a quadratic polynomial. The interval, where c(k2
n) < 0, is defined by

the roots of the polynomial. If this polynomial has no roots among non-negative real numbers,
then for ∀kn ∈ [0,∞), c(k2

n) > 0, since γ2 defined (3.30) is positive. Thus, it is necessary to find
the conditions, when polynomial defined in (3.29) has at least one non-negative real root. The
general formula for the roots of the polynomial is:

κ2
1,2 =

−γ1 ±
√

γ2
1 − 4γ2γ0

2γ2
. (3.37)

The discriminant of the polynomial is:

Dγ = γ2
1 − 4γ0γ2. (3.38)

Since γ2 > 0 and γ0 ≥ 0 under the conditions of Lemma 3.3.2, the polynomial c(k2
n) has either

two real roots of the same sign as −γ1, which are different when Dγ > 0, and coincident when
Dγ = 0; or two complex roots, when Dγ < 0. In other words, the following cases are possible:

Theorem 3.3.1 Suppose, that for the chosen parameter values m0 defined in (3.5) is positive,
βm = βm2 and that there exists a real positive s2+ defined in (3.6). Let λ1(k

2
n) and λ2(k

2
n) be the

eigenvalues of matrix Ãkn
(m+, s2+) defined in (3.27); c(k2

n) be defined in (3.29), discriminant Dγ

be defined in (3.38) and parameter γ1 be defined in (3.31). Then:

1. If Dγ > 0, and

(a) if γ1 < 0, then ∃κ2
1, κ

2
2 ∈ R defined by expression (3.37), such that 0 ≤ κ2

1 < κ2
2 and:
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• for k2
n ∈ (κ2

1, κ
2
2): c(k2

n) < 0, and consequently λ1(k
2
n) < 0 and λ2(k

2
n) > 0;

• for k2
n = {κ2

1;κ
2
2}: c(k2

n) = 0, and λ1(k
2
n) < 0 and λ2(k

2
n) = 0;

• for k2
n ∈ [0,∞)/[κ2

1, κ
2
2]: c(k2

n) > 0, and λ1(k
2
n), λ2(k

2
n) are either real and negative,

or complex with negative real part;

(b) if γ1 > 0, then:

i. if γ0 > 0, then for ∀k2
n ∈ [0,∞): c(k2

n) > 0 and λ1(k
2
n), λ2(k

2
n) are either real and

negative, or complex with negative real part;

ii. if γ0 = 0, then

• for ∀k2
n ∈ (0,∞) c(k2

n) > 0 and λ1(k
2
n), λ2(k

2
n) are either real and negative, or

complex with negative real part;

• c(0) = 0 and λ1(0) < 0 and λ2(0) = 0.

2. If Dγ = 0, and

(a) if γ1 ≤ 0, then ∃κ2
1 = κ2

2 = − γ1

2γ2
≥ 0 , such that

• c(κ2
1) = 0, and λ1(κ

2
1) < 0 and λ2(κ

2
1) = 0;

• for k2
n ∈ [0,∞)/{κ2

1}: c(k2
n) > 0 and λ1(k

2
n), λ2(k

2
n) are either real and negative,

or complex with negative real part;

(b) if γ1 > 0, then for ∀k2
n ∈ [0,∞): c(k2

n) > 0 and λ1(k
2
n), λ2(k

2
n) are either real and

negative, or complex with negative real part;

3. if Dγ < 0, then for ∀k2
n ∈ [0,∞) c(k2

n) > 0 and λ1(k
2
n), λ2(k

2
n) are either real and negative,

or complex with negative real part.

Parameters γ1 and Dγ , could be written in terms of model parameters as

γ1 = (DmAs2 + Ds2αm − χm+Bm2)
s2+

βm2 + s2+
+ Ds2αm0m0, (3.39)

Dγ =
(
(DmAs2 + Ds2αm − χm+Bm2)

s2+

βm2 + s2+
+ Ds2αm0m0

)2

−

− 4DmDs2As2
s2+

βm2 + s2+

(
αm0m0 + αm

s2+

βm2 + s2+
(2 − m+) + αm(m+ − 1)

)
.

(3.40)

In Theorem 3.3.1 we have stated the correspondence between the wavenumber and the signs
of eigenvalues of matrix Ãkn

(m+, s2+) for different cases, defined by the conditions on model
parameters Dγ and γ1.

3.4 Correspondence between the systems of two and three equations

Further we will determine the relations between the eigenvalues of matrices Ãkn
(m+, s2+) and

Akn
(m+, s2+, b+). Let us define matrix Mkn

:

Mkn
=

[
Akn(1,1) − λ Akn(1,2)

Akn(2,1) Akn(2,2) − λ

]
.
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From the definition of Akn
we have: Akn(2,3) = Akn(2,1). Then

Akn
− λI =




Akn(1,1) − λ Akn(1,2) 0

Akn(2,1) Akn(2,2) − λ Akn(2,1)

αp0 0 −Ab − λ




=

=





 Mkn




αp0 0

0

Akn(2,1)

−Ab − λ




.

The determinant of this matrix is the characteristic polynomial of Akn
:

det (Akn
− λI) =

(
− Ab − λ

)
det(Mkn

) + αp0Akn(1,2)Akn(2,1). (3.41)

From the definition of matrices Ãkn
and Akn

, it follows that Ãkn(2,1) =
(
1 +

αp0

Ab

)
Akn(2,1),

Ãkn(1,1) = Akn(1,1), Ãkn(1,2) = Akn(1,2), Ãkn(2,2) = Akn(2,2). Therefore, the determinant of

matrix Ãkn
− λI and characteristic polynomial of matrix Ãkn

is

det
(
Ãkn

− λI
)

= det







Akn(1,1) − λ Akn(1,2)

Akn(2,1) +
αp0

Ab
Akn(2,1) Akn(2,2) − λ





 =

= det(Mkn
) − αp0

Ab

Akn(1,2)Akn(2,1).

(3.42)

From (3.41) and (3.42) we derive:

det (Akn
− λI) =

(
− Ab − λ

)
det

(
Ãkn

− λI
)
− λ

αp0

Ab

Akn(1,2)Akn(2,1). (3.43)

Then we denote the characteristic polynomials of matrices Ãkn
and Akn

, which are evaluated
at the steady-states (m+, s2+) and (m+, s2+, b+) respectively, as cubic polynomial P3(λ) and
quadratic polynomial P2(λ) with regard to λ: P3(λ) = det(Akn

(m+, s2+, b+) − λI), P2(λ) =

det(Ãkn
(m+, s2+, b+) − λI). Equation (3.43) could be written as:

P3(λ) =
(
− Ab − λ

)
P2(λ) − C(k2

n)λ, (3.44)

where
C(k2

n) =
αp0

Ab

Akn(1,2)(m+, s2+, b+)Akn(2,1)(m+, s2+, b+) =

=
αp0

Ab

αm2s2+

βm2 + s2+

(
αmβm

(βm + s2+)2
m+(1 − m+) + k2

nBm2m+

)
.

(3.45)

If s2+ > 0, it follows from (3.9) that m+ > 0, and from (3.25) that m+ = 1 − αp0+Am

αm0+
αms2+

βm+s2+

< 1.

Thus,
s2+ > 0 ⇒ 0 < m+ < 1 ⇒ C(k2

n) > 0, ∀k2
n ∈ [0,∞). (3.46)

Lemma 3.4.1 Suppose, that for the chosen parameter values m0 defined in (3.5) is positive, and

that there exists a real positive s2+ defined in (3.6). If the matrix Ãkn
(m+, s2+) has one real

negative eigenvalue λ̃1 < 0 and one real positive eigenvalue λ̃2 > 0, then Akn
(m+, s2+, b+) has

one real positive eigenvalue and either two real negative eigenvalues, or two complex conjugated
eigenvalues with negative real part.
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Proof. From the assumption of the lemma and from (3.46) it follows, that C(k2
n) > 0. Let

Ãkn
(m+, s2+) have one real negative eigenvalue λ̃1 < 0 and one real positive eigenvalue λ̃2 > 0.

The characteristic polynomial can be written as P2(λ) = (λ − λ̃1)(λ − λ̃2). Then

P3(λ) =
(
− Ab − λ

)
(λ − λ̃1)(λ − λ̃2) − C(k2

n)λ =

= −λ3 + (λ̃1 + λ̃2 − Ab)λ
2 + (−λ̃1λ̃2 + Ab(λ̃1 + λ̃2) − C(k2

n))λ − Abλ̃1λ̃2.
(3.47)

From (3.47) we get:

P3(0) = −λ̃1λ̃2Ab > 0 and P3(λ̃2) = −λ̃2C(k2
n) < 0. (3.48)

Since P3(λ) is continuous, it follows from (3.48), that polynomial P3(λ) has at least one real
positive root λ1 on the interval (0, λ̃2).

The other two eigenvalues λ2 and λ3 of Akn
(m+, s2+, b+) could be real (negative or positive)

or complex conjugated numbers (as the coefficients of the polynomial are real). We can write:

P3(λ) = −λ3 + (λ1 + λ2 + λ3)λ
2 − (λ1λ2 + λ1λ3 + λ2λ3)λ + λ1λ2λ3 (3.49)

As the coefficients at the second degree of λ in two expressions for P3(λ) from (3.47) and (3.49)
should be equal, we have λ2 + λ3 = λ̃1 + λ̃2 − Ab − λ1. From (3.27) it is derived:

λ2 + λ3 = −b(k2
n) − Ab − λ1 < 0 (3.50)

The above inequality holds, since it was mentioned in (3.28), that b(k2
n) > 0, if m0 > 0 and s+ > 0.

Thus, if two other eigenvalues are real, then from (3.50) it follows, that at least one of them is
negative. Let us suppose λ2 < 0. Then

lim
λ→−∞

P3(λ) = ∞

and P3(0) = −λ̃1λ̃2Ab > 0. That means that on the interval (−∞, 0) polynomial P3(λ) does
not change its sign, or changes it twice. Since P3(λ) is continuous, it follows from λ2 < 0 that
λ3 also is negative. In the case, when λ2 and λ3 are complex conjugated, their real part is
λre = (λ2 + λ3)/2 < 0. 2

Lemma 3.4.2 Suppose, that for the chosen parameter values there exists a real positive s2+ de-

fined in (3.6). If Ãkn
(m+, s2+) has one zero eigenvalue and one real negative eigenvalue, then

Akn
(m+, s2+, b+) has one zero eigenvalue and either two real negative eigenvalues, or two complex

conjugated eigenvalues with negative real part.

Proof. From the assumption of the lemma and from (3.46) it follows, that C(k2
n) > 0. Let

Ãkn
(m+, s2+) have one zero eigenvalue and one real negative eigenvalue, λ̃1 < λ̃2 = 0. Then

characteristic polynomial P2(λ) has the form P2(λ) = λ(λ − λ̃1). Then

P3(λ) =
(
− Ab − λ

)
λ(λ − λ̃1) − C(k2

n)λ =

= −λ(λ2 + (Ab − λ̃1)λ + (C(k2
n) − λ̃1Ab)).

(3.51)

And eigenvalues of Akn
(m+, s2+, b+) are following:

λ1 = 0, λ2,3 =
−Ab + λ̃1 ±

√
(Ab − λ̃1)2 − 4(C(k2

n) − λ̃1Ab)

2
. (3.52)

Since C(k2
n) − λ̃1Ab > 0 and Ab − λ̃1 > 0, then from (3.52) it follows, that eigenvalues λ2,3 are

either real and negative (possible coincident), or complex with negative real part. 2
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Lemma 3.4.3 Suppose, that for the chosen parameter values there exists a real positive s2+ de-

fined in (3.6). If Ãkn
(m+, s2+) has two real negative eigenvalues, then Akn

(m+, s2+, b+) has either
three real negative eigenvalues, or one real negative eigenvalue, and two complex eigenvalues with
negative real part.

Proof. From the assumption of the lemma and from (3.46) it follows, that C(k2
n) > 0. Let

Ãkn
(m+, s2+) have two real negative eigenvalues λ̃1 ≤ λ̃2 < 0. Then the characteristic polynomial

P2(λ) has the form P2(λ) = (λ − λ̃1)(λ − λ̃2). Then

P3(λ) =
(
− Ab − λ

)
(λ − λ̃1)(λ − λ̃2) − C(k2

n)λ =

= −λ3 + (λ̃1 + λ̃2 − Ab)λ
2 + (−λ̃1λ̃2 + Ab(λ̃1 + λ̃2) − C(k2

n))λ − Abλ̃1λ̃2.
(3.53)

From (3.53) we get:

P3(−Ab) = C(k2
n)Ab > 0 and P3(0) = −λ̃1λ̃2Ab < 0. (3.54)

Since P3(λ) is continuous, it follows from (3.54), that polynomial P3(λ) has at least one root on
the interval (−Ab, 0). Thus we can suppose, that −Ab < λ1 < 0. From (3.53) it follows, that
for λ ≥ 0 polynomial P3(λ) only takes values less than zero. That means, that P3(λ) has no
non-negative real roots P3(λ). Thus, if two other eigenvalues of Akn

(m+, s2+, b+) are real, they
are also negative. Though it is possible, that polynomial P3(λ) has two complex conjugated roots.
Let us denote them as λ2,3 = λre ± iλim. Then:

P3(λ) = −(λ − λ1)(λ
2 − 2λreλ + λ2

re + λ2
im) =

= −λ3 + (λ1 + 2λre)λ
2 − (2λ1λre + λ2

re + λ2
im)λ + λ1(λ

2
re + λ2

im).
(3.55)

As the coefficients at the second degree of λ in two expressions for P3(λ) (3.53) and (3.55) should
be equal, we derive: 2λre = λ̃1 + λ̃2 − Ab − λ1. As λ̃1 ≤ λ̃2 < 0 and −Ab − λ1 < 0, we get that
λre < 0. That is, if two eigenvalues of Akn

(m+, s2+, b+) are complex, then their real part is less
than zero. 2

Lemma 3.4.4 Suppose, that for the chosen parameter values there exists a real positive s2+ de-

fined in (3.6). If Ãkn
(m+, s2+) has two complex conjugated eigenvalues with negative real part,

then Akn
(m+, s2+, b+) has either three real negative eigenvalues, or one real negative eigenvalue,

and two complex eigenvalues with negative real part.

Proof. From the assumption of the lemma and from (3.46) it follows, that C(k2
n) > 0. Let

Ãkn
(m+, s2+) have the complex conjugated eigenvalues with negative real part λ̃1,2 = λ̃re ± iλ̃im,

λ̃re < 0. Then characteristic polynomial P2(λ) takes positive values for ∀λ ∈ R and has the form
P2(λ) = (λ2 − 2λ̃reλ + λ̃2

re + λ̃2
im). Then

P3(λ) =
(
− Ab − λ

)
(λ2 − 2λ̃reλ + λ̃2

re + λ̃2
im) − C(k2

n)λ =

= −λ3 + (2λ̃re − Ab)λ
2 + (−λ̃2

re − λ̃2
im + 2Abλ̃re − C(k2

n))λ − Ab(λ̃
2
re + λ̃2

im).
(3.56)

From (3.56) we get:

P3(−Ab) = C(k2
n)Ab > 0 and P3(0) = −Ab(λ̃

2
re + λ̃2

im) < 0. (3.57)

Since P3(λ) is continuous, it follows from (3.57), that polynomial P3(λ) has at least one root on
the interval (−Ab, 0). Thus we can suppose −Ab < λ1 < 0.

From (3.56) it follows, that for λ ≥ 0 polynomial P3(λ) takes values less than zero. That
means, that P3(λ) has no non-negative real roots P3(λ). Therefore, if two other roots of P3(λ) are
real, they are also negative.
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Though it is possible, that polynomial P3(λ) has two complex conjugated roots. We denote
them as λ2,3 = λre ± iλim. Then:

P3(λ) = −(λ − λ1)(λ
2 − 2λreλ + λ2

re + λ2
im) =

= −λ3 + (λ1 + 2λre)λ
2 − (2λ1λre + λ2

re + λ2
im)λ + λ1(λ

2
re + λ2

im).
(3.58)

As the coefficients of λ2 in two expressions for P3(λ) (3.56) and (3.58) should be equal, we derive:
2λre = 2λ̃re − Ab − λ1. As λ̃re < 0 and −Ab − λ1 < 0, we get that λre < 0. That is, if two
eigenvalues of Akn

(m+, s2+, b+) are complex, then their real part is less than zero. 2

3.5 Stability of the system of three equations

From Remark 3.7 and Lemmas 3.4.2, 3.4.3 and 3.4.4 we deduce:

Remark 3.8 Suppose, that for the chosen parameter values, m0 defined in (3.5) is positive, βm =
βm2 and there exists a real positive s2+. Then for zero wavenumber k0, matrix Akn

evaluated at
the steady-state z+ = (m+, s2+, b+) has either

• two negative eigenvalues and one zero eigenvalue; or

• three real negative eigenvalues; or

• one real non-posistive eigenvalue, and two complex eigenvalues with negative real part.

That means that the steady-state solution z+ = (m+, s2+, b+) of the system (3.1)–(3.3) is stable
against purely temporal perturbations.

Using Lemma 3.4.1 – 3.4.4, we can reformulate Theorem 3.3.1 for the system of three equations
(3.14).

Theorem 3.5.1 Suppose, that for the chosen parameter values m0 defined in (3.5) is positive,
βm = βm2 and there exists a real positive s2+ defined in (3.6). Let matrix Akn

be defined in
(3.18) and evaluated at the steady-state z+ = (m+, s2+, b+), parameter γ1 be defined in (3.39) and
discriminant Dγ be defined in (3.40). Then:

1. If Dγ > 0, and

(a) if γ1 < 0, then ∃κ2
1, κ

2
2 ∈ R defined by expression (3.37), such that 0 ≤ κ2

1 < κ2
2 and:

• for k2
n ∈ (κ2

1, κ
2
2) matrix Akn

has one real positive eigenvalue and either two real
negative eigenvalues, or two complex conjugated eigenvalues with negative real part;

• for k2
n = {κ2

1;κ
2
2} matrix Akn

has one zero eigenvalue and either two real negative
eigenvalues, or two complex conjugated eigenvalues with negative real part;

• for k2
n ∈ [0,∞)/[κ2

1, κ
2
2] matrix Akn

has either three real negative eigenvalues, or
one real negative eigenvalue, and two complex eigenvalues with negative real part;

(b) if γ1 > 0, then:

i. if γ0 > 0, then for ∀k2
n ∈ [0,∞), matrix Akn

has either three real negative eigen-
values, or one real negative eigenvalue, and two complex eigenvalues with negative
real part;

ii. if γ0 = 0, then
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• for ∀k2
n ∈ (0,∞) matrix Akn

has either three real negative eigenvalues, or one
real negative eigenvalue, and two complex eigenvalues with negative real part;

• for k2
n = 0 matrix Akn

has one zero eigenvalue and either two real negative
eigenvalues, or two complex conjugated eigenvalues with negative real part;

2. If Dγ = 0, and

(a) if γ1 ≤ 0, then ∃κ2
1 = κ2

2 = − γ1

2γ2
≥ 0 , such that

• for k2
n = κ2

1 matrix Akn
has one zero eigenvalue and either two real negative eigen-

values, or two complex conjugated eigenvalues with negative real part;

• for k2
n ∈ [0,∞)/{κ2

1} matrix Akn
has either three real negative eigenvalues, or one

real negative eigenvalue, and two complex eigenvalues with negative real part;

(b) if γ1 > 0, then for ∀k2
n ∈ [0,∞) matrix Akn

has either three real negative eigenvalues,
or one real negative eigenvalue, and two complex eigenvalues with negative real part;

3. if Dγ < 0, then for ∀k2
n ∈ [0,∞), and matrix Akn

has either three real negative eigenvalues,
or one real negative eigenvalue, and two complex eigenvalues with negative real part.

Corollary 3.5.1 Suppose that the conditions of Theorem 3.5.1 hold. Then if Dγ defined in (3.40)
is positive and γ1 defined in (3.39) is negative, then ∃κ2

1, κ
2
2 ∈ R defined by expression (3.37), such

that the magnitude of perturbation modes with wavenumbers k2
n ∈ (κ2

1, κ
2
2) grow monotonically

after a certain period of time. Otherwise, i.e. when Dγ ≤ 0 or when γ1 ≥ 0, then initially small
perturbations remain small during any period of time, or even disappear when t → ∞.

4 Numerical results

The predictions from the linear stability analysis are validated against a sequence of numerical
simulations. For the chosen parameter value sets (2.9), (2.10) and (2.9), (2.11), the inequalities
Dγ > 0 and γ1 < 0 hold. They are most sensitive against parameters Bm2 and Dm. Using (3.38),
(3.30), (3.31) and (3.32) we derive:

{
γ1 < 0,
Dγ = γ2

1 − 4γ0γ2 > 0
⇔ γ1 < −2

√
γ2γ0 ⇔,

Bm2 >
DmAs2

χm+
+ Ds2

(
αm

χm+
+

αm0m0

As2s2+

)
+

+ 2

√
DmDs2

As2s2+(βm2 + s2+)

(
αm0m0 +

αms2+

βm + s2+
(2 − m+) + αm(m+ − 1)

)
.

(4.1)

The region in the first quadrant of plane (Dm, Bm2), defined by inequality (4.1), is shown in
Figure 3.

If we fix the values of all parameters, except Bm2, then the right part of inequality (4.1)
could be denoted as the ultimate value Blim

m2 , such that for Bm2 ≤ Blim
m2 small perturbations near

(m+, s2+, b+) are predicted not to grow with time. For Bm2 > Blim
m2 small perturbations of mode

φn(x) will grow, if κ1 < kn < κ2. We mention here, that when Bm2 → Blim
m2 + 0, then κ1 → κ2.

That means, that if Bm2 is close to ultimate value Blim
m2 , then the interval (κ1, κ2) is small, and

it could happen, that no wavenumber kn lies inside this interval. In this case perturbations near
the homogeneous steady-state will not grow, in spite of the fact, that condition (4.1) holds.

From (3.21) and (3.22) it follows, that parameter Bm2 does not influence the stability of
the steady-states zt = (0, 0, 0) and z0 = (m0, 0, b0). The stability of the steady-state z− =
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Figure 3: Plot of the region, where γ1 < 0 and Dγ > 0 in the first quadrant of plane (Dm, Bm2).
The rest of parameters are initialized: (a) as in (2.9), (2.10), and (b) as in (2.9), (2.11).

(m−, s2−, b−) against purely temporal perturbations is determined from the eigenvalues of matrix
Ak0

(m−, s2−, b−) (3.18). As k0 = 0, then this matrix does not depend on parameter Bm2. For
the considered parameter values (2.9), (2.10) and (2.11), and for any Bm2, z− is unstable against
purely temporal perturbations. Therefore, varying Bm2, we can change the stability of the steady-
state z+, while the stability of the steady-states zt, z0 and z− remains unchanged. Since for
parameter values (2.9), (2.10) and (2.11) (Bm2 can be arbitrary), homogeneous steady-states zt,
z0 and z− are unstable, the solution will not converge to these steady-states.

For the cases when the model parameters are initialized as in (2.9), (2.10) and (2.9), (2.11),
the ultimate values are Blim

m2 ≈ 0.4571 ∗ 0.167 mm2/day and Blim
m2 ≈ 0.02481 ∗ 0.167 mm2/day.

First, the parameter values (2.9), (2.10) are considered. When the problem domain is a 1D
interval x ∈ [1, 6] in Cartesian coordinates, the wavenumbers are determined as kn = πn/5 mm−1,
n = 0, 1, 2, . . . . Then for Bm2 = 0.4572 ∗ 0.167 mm2/day, which is larger than the ultimate
value, still no wavenumber lies inside (κ1, κ2) = (≈ 4.2805mm−1,≈ 4.3838mm−1). Though, for
Bm2 = 0.4573∗0.167 mm2/day, k7 ≈ 4.3982mm−1 ∈ (κ1, κ2) = (≈ 4.2322mm−1,≈ 4.4339mm−1).
When the parameter values (2.9), (2.11) are chosen, then for Bm2 = 0.0249 ∗ 0.167 mm2/day,
k6 ≈ 3.7699mm−1 ∈ (κ1, κ2) = (≈ 3.6417mm−1,≈ 4.324mm−1).

In Figure 4, 5 the results of numerical simulations are shown. The solutions were obtained with
use of finite element method. Zero flux of m, s2 on the boundaries was specified as the boundary
conditions. Initial conditions were taken in the form of small random perturbations near the
homogeneous steady-state solution (m+, s2+, b+). To introduce the perturbations in the initial
solution during simulations, the corresponding steady-state value plus a small random number
were assigned to every degree of freedom at time t = 0. From Figure 4, 5 it follows, that for
values Bm2 less than the ultimate value, the numerical solution tends to the homogeneous steady-
state solution (m+, s2+, b+) with time. And when parameter Bm2 is larger than Blim

m2 and such,
that ∃kn ∈ (κ1, κ2), then there is no convergence to the homogeneous solution, and a wave-like
profile occurs in the solution. However, when Bm2 is larger than Blim

m2 , though such that still no
wave number lies inside (κ1, κ2), then the numerical solutions again converge to the homogeneous
steady-state (m+, s2+, b+). Thus, the predictions of the linear stability analysis are fully confirmed
by the numerical simulations.

The introduced linear stability analysis allows to assess the stability of the considered ho-
mogeneous steady-state solution. From its stability it can be concluded, whether or not small
perturbations grow with time. Though, what could be said, when the perturbations are not
small? The only thing, that can be asserted, is that if the homogeneous steady-state solution
is not stable, then the solution of the problem will never converge to that steady-state solution,
unless the initial conditions are identical to the steady-state solution. Though, when the steady-
state solution is stable, it is still unknown, how large initial perturbations behave, whether they
disappear or prevail, or even grow.
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Figure 4: Solution of equations (3.1)–(3.3) in Cartesian coordinates at different time moments.
Small random initial perturbations near the homogeneous steady-state solution (m+, s2+, b+) are
considered. Zero fluxes of m, s2, b on the boundaries are taken as the boundary conditions.
Parameter Bm2 takes different values: Bm2 = k · 0.167 mm2/day, (a) k = 0.3, (b) k = 0.4571, (c)
k = 0.4572, (d) k = 0.4573, (e) k = 0.4574, (f) k = 0.4575, (g) k = 0.6, (h) k = 1. The rest of
parameters are initialized as in (2.9), (2.10).
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Figure 5: Solution of equations (3.1)–(3.3) in Cartesian coordinates at different time moments.
Small random initial perturbations near the homogeneous steady-state solution (m+, s2+, b+) are
considered. Zero fluxes of m, s2, b on the boundaries are taken as the boundary conditions.
Parameter Bm2 takes different values: Bm2 = k · 0.167 mm2/day, (a) k = 0.01, (b) k = 0.0248,
(c) k = 0.0249, (d) k = 0.0250, (e) k = 0.0251, (f) k = 0.04, (g) k = 0.09, (h) k = 0.2. The rest of
parameters are initialized as in (2.9), (2.11).
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Figure 6: Solution of equations (3.1)–(3.3) in axisymmetric coordinates at different time moments.
Initial and boundary conditions are as proposed in [Moreo, 2008]. Parameter Bm2 takes different
values: Bm2 = k · 0.167 mm2/day, (a) k = 0.3, (b) k = 0.4571, (c) k = 0.4572, (d) k = 0.4573,
(e) k = 0.4574, (f) k = 0.4575, (g) k = 0.6, (h) k = 1. The rest of parameters are initialized as in
(2.9), (2.10).
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Figure 7: Solution of equations (3.1)–(3.3) in Cartesian coordinates at different time moments.
Initial and boundary conditions are as proposed in [Moreo, 2008]. Parameter Bm2 takes different
values: Bm2 = k · 0.167 mm2/day, (a) k = 0.01, (b) k = 0.0248, (c) k = 0.0249, (d) k = 0.0250,
(e) k = 0.0251, (f) k = 0.04, (g) k = 0.09, (h) k = 0.2. The rest of parameters are initialized as in
(2.9), (2.11).
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Figure 8: Solution of equations (2.1)–(2.8) in axisymmetric coordinates at different time moments.
Initial and boundary conditions are as proposed in [Moreo, 2008]. Parameter Bm2 takes different
values: Bm2 = k · 0.167 mm2/day, (a) k = 0.3, (b) k = 0.4571, (c) k = 0.4572, (d) k = 0.4573,
(e) k = 0.4574, (f) k = 0.4575, (g) k = 0.6, (h) k = 1. The rest of parameters are initialized as in
(2.9), (2.10).
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Figure 9: Solution of equations (2.1)–(2.8) in axisymmetric coordinates at different time moments.
Initial and boundary conditions are as proposed in [Moreo, 2008]. Parameter Bm2 takes different
values: Bm2 = k · 0.167 mm2/day, (a) k = 0.01, (b) k = 0.0248, (c) k = 0.0249, (d) k = 0.0250,
(e) k = 0.0251, (f) k = 0.04, (g) k = 0.09, (h) k = 0.2. The rest of parameters are initialized as in
(2.9), (2.11).
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In reality, we have to deal with large deviations from the steady-state. [Moreo, 2008] proposed
the following initial and boundary conditions for the model, which resembles the bone formation
process near a dental implant. Let Ω be a problem domain with the boundary Γ, and Γb is a part
of boundary, corresponding to bone surface, and n is an outward unit normal. Then, according
to [Moreo, 2008]: 




c(x, 0) = 0.25, m(x, 0) = 0.001,

b(x, 0) = 0.001, s1(x, 0) = 0.01,

s2(x, 0) = 0.01, vfn(x, 0) = 1,

vw(x, 0) = 0, vl(x, 0) = 0,

x ∈ Ω. (4.2)





(Dc∇c(x, t) − Hcc(x, t)∇p(x)) · n = 0,

Ds1∇s1(x, t) · n = 0, Ds2∇s2(x, t) · n = 0,
x ∈ Γ, t ∈ (0,∞)

m(x, t) = 0.2, x ∈ Γb, t ∈ (0, 14] [days]

(Dm∇m(x, t) − m(x, t)(Bm1∇s1(x, t)+

+ Bm2∇s2(x, t))) · n = 0,

x ∈ Γ\Γb, t ∈ (0, 14] [days], and

x ∈ Γ, t ∈ (14,∞) [days].

(4.3)

When adapted to the simplified system of three equations, initial and boundary conditions (4.2),
(4.3) are rewritten as:

m(x, 0) = 0.001, b(x, 0) = 0.001, s2(x, 0) = 0.01, x ∈ Ω. (4.4)





Ds1∇s1(x, t) · n = 0, Ds2∇s2(x, t) · n = 0, x ∈ Γ, t ∈ (0,∞)

m(x, t) = 0.2, x ∈ Γb, t ∈ (0, 14] [days]

(Dm∇m(x, t) − m(x, t)Bm2∇s2(x, t)) · n = 0,
x ∈ Γ\Γb, t ∈ (0, 14] [days], and

x ∈ Γ, t ∈ (14,∞) [days].

(4.5)

Initial conditions (4.4) are far from the small perturbations near the homogeneous steady-state
(m+, s2+, b+).

The simplified system (3.1)–(3.3), and the full system (2.1)–(2.8) were solved numerically for
initial and boundary conditions (4.2), (4.3) and (4.4), (4.5) respectively, and for a number of
parameter value sets. The solutions are plotted in Figure 6, 7, 8, 9. The numerical simulations
show, that if parameter values are such, that the homogeneous steady-state (m+, s2+, b+) is stable,
then the numerical solutions of both systems for the unknowns m(x, t), s2(x, t), b(x, t) converge
to this homogeneous state after a certain period of time. Though, if the homogeneous solution
(m+, s2+, b+) is not stable, then a wave-like profile develops in the solution for osteogenic cells
and growth factor 2 and for parameter values (2.9), (2.11) also in the solution for osteoblasts.
For some values of parameter Bm2 that ’wave-like’ profile is steady (e.g. Figure 6(e)). Though,
when Bm2 is much larger than the ultimate value, then the waves in the numerical solution are
not steady, but moving (e.g. Figure 6(h)).

5 Conclusions

We have defined a simplified system of three equations, characterized by the appearance of the
wave-like profile in the solution under the same conditions, as for the solution of the full system
of eight equations. For the considered parameter values the simplified system has four homo-
geneous steady-state solutions. The stability conditions for one of the steady-states, denoted as
z+ = (m+, s2+, b+), are determined in terms of model parameters. By changing the value of the
model parameter Bm2, it is possible to make the solution z+ unstable or stable, while three other
homogeneous steady-states zt, z0 and z− remain unstable. The analytical predictions on the sta-
bility of steady-state z+ for various parameter sets are confirmed by numerical simulations, when
starting from small perturbations near the homogeneous steady-state solution.
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If the initial perturbations are not small, then one can only conclude, that the homogeneous
steady-state will never be reached, if it is not stable. That is confirmed by the numerical simu-
lations, which evidence, that a wave-like profile appears in the solution, if all the homogeneous
steady-states are unstable. The numerical simulations also show, that if the solution z+ is stable
and zt, z0, z− are unstable, then numerical solutions for unknowns m(x, t), s2(x, t), b(x, t) of full
and simplified systems converge to the homogeneous steady-state solution (m+, s2+, b+) after a
certain period of time, when starting with initial conditions proposed in [Moreo, 2008].

Therefore, the numerical simulations demonstrate, that if homogeneous steady-states zt, z0,
z− are unstable, then stability of the homogeneous steady-state z+ could determine the behavior
of the solution of the whole system, when specific initial conditions are considered. That makes it
possible to assess the values of model parameters, for which biologically irrelevant solutions with
a ’wave-like’ profile can be obtained.
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[Doblaré et al. (2005)] Doblaré, M., Garćıa-Aznar, J.M. On the numerical modeling of growth,
differentiation and damage in structural living tissues. Arch. Comput. Meth. Engng., Vol.11,
4, 1-45, 2005.

[Miyata, 2006] Susumu Miyata, Toru Sasaki, 2006. Asymptotic analysis of a chemotactic model
of bacteria colonies. Mathematical Biosciences 201 (2006), 184–194.

[Myerscough and Murray, 1992] M. R. Myerscough, J. D. Murray, 1992. Analysis of propogating
pattern in a chemotaxis system. Bulletin of Mathematical Biology Vol. 54, No. 1, pp. 77–94.

[Moreo, 2008] Pedro Moreo Calvo, 2008. Mathematical modeling and computational simulation
of the mechanobiological behavior of bone implants interfaces. PhD thesis. Zaragoza.
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