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On the statistical properties of solutions of completely

random linear systems.

Peter Sonneveld∗

June 1, 2010

Abstract
In this report the probability distributions of x and ‖x‖ are derived, where x is the

solution of a finite square, completely random linear system, i.e. a system Ax = b,
of which all entries are stochastically independent, and standard Gaussian distributed
stochastic variables.

The question on the statistical behaviour of ‖x‖ came up in [5], the convergence
analysis of IDR(s), which is a recently developed, short-recurrence Krylov subspace
based iterative solution method for large sparse non-symmetric linear systems of equa-
tions, ([6], [4]).

Keywords: Random matrices, Wishart distribution, IDR(s)

1 Introduction

In [6] IDR(s), a new short-recurrence Krylov subspace solution method for large sparse lin-
ear systems is introduced. Experiments with this method showed a convergence behaviour
which was rather similar to the convergence of GMRES, a very stable solution method
for the same class of linear systems. GMRES is a long-recurrence method, which means
that the computing time as well as the memory load contain a component that is growing
linearly with the iteration count. For large scale problems requiring many iteration steps
for convergence, the GMRES procedure often turns out to be too expensive.
In general, a Krylov subspace method produces approximations xn to the solution x of a
linear system Ax = b, for which the residuals rn = b−Axn are in the Krylov subspaces
Kn(A, r0) = span(r0,Ar0, . . . ,A

nr0), where r0 = b−Ax0, and x0 is an initial guess.
In [5] IDR(s) was compared to GMRES, and it turned out that for large values of the
parameter s, the IDR(s)-residuals rn and the GMRES-residuals r̂n are related by

rn = Ωj(A) ( r̂n−j + ‖r̂n−j‖z )

where Ωj(A) is a matrix polynomial of degree j, usually acting as a contraction. The
vector z is perpendicular to r̂n−j , and is the solution of an (n− j)× (n− j) linear system
with random matrix and random right-hand side. This phenomenon is related to the fact
that the IDR(s) procedure uses s auxiliary, randomly chosen, so-called ‘shadow vectors’.
These shadow vectors may be chosen real or complex. The experiments suggested that
‖z‖ behaves like C

√
n− j.

Since GMRES produces in each step the approximation x̂n for which the residual r̂n has
minimal norm, estimates for ‖z‖ measure the quality of the IDR(s) algorithms.

∗Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD, The
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2 Samples of ‖A−1b‖ for random A and b.

We started with an experimental exploration of the distributions of ‖x‖, where x is the
solution of an n×n system Ax = b with Gaussian A and b. The class of these stochastic
vectors is denoted by Qn

1 if A and b are real Gaussian, and by Qn
2 if A and b are complex

(See section 3).
We made 500 samples of this stochastic variable, for n = 25, 50, 100, 200, using the function
‘randn’ in matlab.
In the IDR(s) convergence analysis, this stochastic variable can be interpreted as a rel-
ative deviation from the GMRES convergence. Therefore we plotted the histograms of
log10(‖x‖), since this quantity measures the number of digits that IDR(s) is ‘behind’ the
GMRES procedure. The results are shown in Figure 1 and Figure 3. The histograms for
different n are plotted in different colors.
A slight shift to the right can be seen at increasing n. The heuristically expected behaviour
‖x‖ ≈ C

√
n for an n×n completely random system, would imply the shift to be log10(n)/2.

Therefore we also plotted the histograms for f‖Qn
κ‖ shifted to the left with log10(n)/2 in

Figure 2 and Figure 4.
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Figure 1: log10(‖x‖), x ∈ Qn
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), x ∈ Qn
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Figure 3: log10(‖x‖), x ∈ Qn
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The calculated means and variances are shown in Table 1–4.
The histograms as well as the calculated means seem to show that the variable log10(‖x‖/

√
n)

has a distribution function that is nearly independent of n.
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n mean var stdd
25 0.953 0.239 0.488
50 1.099 0.226 0.476
100 1.270 0.211 0.459
200 1.413 0.264 0.514

Table 1: log10(‖x‖), x ∈ Qn
1

n mean var stdd
25 0.254 0.239 0.488
50 0.249 0.226 0.476
100 0.270 0.211 0.459
200 0.263 0.264 0.514

Table 2: log10(‖x‖/
√

n), x ∈ Qn
1

n mean var stdd
25 0.816 0.080 0.283
50 0.996 0.083 0.288
100 1.097 0.064 0.253
200 1.270 0.068 0.261

Table 3: log10(‖x‖), x ∈ Qn
2

n mean var stdd
25 0.117 0.080 0.283
50 0.146 0.083 0.288
100 0.097 0.064 0.253
200 0.120 0.068 0.261

Table 4: log10(‖x‖/
√

n), x ∈ Qn
2

We also tried to estimate ‖x‖ analytically, with help of available theory on random ma-
trices, as described in [1], [2], [3] and [7]. These attempts didn’t even produce a clear
explanation of the

√
n behaviour which is visible in the histograms. So we started search-

ing for a better heuristic argument for this behaviour, resulting finally in a complete
probability analysis for the stochastic vectors x = A−1b, with Gaussian A and b, and
their norms.

3 Elementary prerequisites.

3.1 Notational conventions.

Volume element. Let x be a stochastic variable in RN , with a probability density
function (PDF ) f(x), then

Prob

{
N⋂

k=1

( xk ∈ [xk, xk + dxk) )

}
= f(x)dx1dx2 · · · dxN

In the case of a complex stochastic vector z = x + iy with x and y in RN , we have

Prob

{
N⋂

k=1

(
xk ∈ [xk, xk + dxk)

⋂
(yk ∈ [yk, yk + dyk)

)}
= f(z)dx1dy1dx2dy2 · · · dxNdyN

The difference between real and complex stochastic variables causes an essential difference
in the formulae encountered. In order to improve the readability of the analysis, we’ll use
the following convention for volume elements like dx1dx2 · · · dxN :

x ∈ RN : µ(dx) = dx1dx2 · · · dxN (1)
z = x + iy ∈ CN : µ(dz) = dx1dy1dx2dy2 · · · dxNdyN (2)

Normalization constant. In working with probability densities, we often encounter
formulae like

f(x) = C · Φ(x), with C not depending on x

3



The constant C must be chosen such that∫∫∫
. . .

∫
f(x)µ(dx) = 1

In many cases, the scaling constant is a beautiful, yet complicated expression, that only
depends on the size of the problem.
In order to keep the formulae clear, we use the symbol C in these cases. C only means:
there has to be a normalization constant at this place. So in each formula, C may mean
something completely different.
Only if absolutely necessary, we’ll produce actual scaling constants explicitly.

3.2 Complex random matrices

As objects in probability theory, complex stochastic variables are similar to stochastic
variables in R2. Similarly, stochastic vectors in Cn are similar to stochastic vectors in R2n.
Every z ∈ Cn can be represented as z = x + iy, with x,y ∈ Rn. Similarly a matrix
C ∈ Cm×n can be written as C = A + iB, with A,B ∈ Rm×n. The product w = Cz can
be calculated as

w = (A + iB)(x + iy) = Ax−By + i(Bx + Ay)

Writing w = u + iv, with u,v ∈ Rm, this product can be written as[
u
v

]
=
[

A −B
B A

] [
x
y

]
Every vector z ∈ Cn is associated to a vector ẑ ∈ R2n, and every matrix C ∈ Cm×n is
associated to a matrix Ĉ ∈ R2m×2n according to

ẑ =
[

x
y

]
, Ĉ =

[
A −B
B A

]
,

Then w = Cz ⇐⇒ ŵ = Ĉẑ.
For the norm of a vector we have ‖z‖2 = ‖x‖2 + ‖y‖2 = ‖ẑ‖2. A unitary mapping Q
from Cn to Cn then automatically translates into a real orthogonal mapping Q̂ from R2n

to R2n.

3.3 Special mathematical formulae.

As usual, the derivation of probability density functions requires a heavy use of high-
dimensional calculus, Γ-functions, and some elementary standard distributions. The rele-
vant properties will be listed without proof; backgrounds can be found in [8].

- Gamma function:

Γ(z) =
∫ ∞

0
exp(−t)tz−1dt, <(z) > 0 (3)

The Gamma function is the only logarithmic convex solution of the functional equa-
tion

Γ(z + 1) = zΓ(z), Γ(1) = 1 (4)
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Logarithm of Gamma function:

Φ(z) = log(Γ(z)) = −γz− log(z)−
∞∑

n=1

[
log(1 +

z

n
)− z

n

]
, z 6= 0,−1,−2, . . . (5)

where γ is Euler’s constant:

γ = lim
n→∞

n∑
k=1

1
k
− log(n) (6)

Stirlings aymptotic formula:

Γ(z) ≈ zz− 1
2 e−z

√
2π(1 + O(

1
z
)), as z →∞ (7)

- Beta function:

B(a, b) =
∫ 1

0
ua−1(1− u)b−1du =

Γ(a)Γ(b)
Γ(a + b)

(8)

First alternative, using u = sin2(φ):

B(a, b) = 2
∫ 1

2
π

0
sin2a−1(φ) cos2b−1(φ)dφ (9)

Second alternative, using tan(φ) = t:

B(a, b) = 2
∫ ∞

0

t2a−1

(1 + t2)b+a
dt (10)

3.4 Prerequisites from probability theory.

- Normal distribution N (µ, σ), expectation = µ, standard deviation = σ:

fN (µ,σ)(x) = CN (µ,σ) exp
(
−(x− µ)2

2σ2

)
, with CN (µ,σ) =

1
σ
√

2π
(11)

- Standard Normal distribution N = N (0, 1):

fN (x) = CN exp
(
−x2

2

)
, with CN =

1√
2π

(12)

- Real Gaussian matrices Nm×n.

fNm×n(X) = (CN )mn
m∏

k=1

n∏
l=1

exp
(
−1

2
x2

kl

)
= (CN )mn exp

(
−1

2
tr(XT X)

)
(13)

From the formula in the middle follows immediately that all entries are stochastically
independent.

- χn distribution, the distribution of ‖x‖ when x ∈ N n.

fχn = Cχn exp
(
−1

2
x2

)
xn−1, with Cχn =

1

2
1
2
n−1Γ(1

2n)
(14)
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- Linear combinations of Gaussian variables: Let x ∈ N n, let c ∈ Rn, then the
stochastic variable ξ = cT x is distributed N (0, ‖c‖). Therefore ξ can be written as

ξ = ‖c‖z, where z ∈ N

- Orthogonal transformation of Gaussian matrices: Let A ∈ Nm×n, let Q be
a real unitary m× n matrix, and let A′ = QA, then A′ ∈ Nm×n

This follows from (QA)T (QA) = AT (QT Q)A = AT A, and from the invariance of
the volume element.

Complex Gaussian matrices. The class of complex Gaussian m×n matrices is denoted
by N̂m×n. Let Z ∈ N̂m×n, then Z has the following probability density:

f bNm×n(Z) = (C bN )mn
m∏

k=1

n∏
l=1

exp
(
−1

2
|zkl|2

)
= (CN )2mn exp

(
−1

2
tr(Z∗Z)

)
(15)

where Z∗ = Z
T , the complex transpose. In fact this is the distribution of 2mn indepen-

dent, normally distributed real numbers.

Generic probability densities. It is convenient to combine the analysis for real ma-
trices and vectors. This is done by adding an extra index κ to a class identifier, where
κ = 1 means real variables, and κ = 2 means complex variables. For instance

N n
κ =

{
N n if κ = 1
N̂ n if κ = 2

Using this convention, we simply can write

fNm×n
κ

(Z) = (CN )κmn exp
(
−1

2
tr(Z∗Z)

)
(16)

Gaussian vectors are isotropic in space, i.e. the probability densities are invariant with
respect to unitary transformations. In fact, the PDF only depends on the norm of the
stochastic vector. This property plays an explicit role in the current analysis.
Let f be the probability density of an isotropic stochastic vector x ∈ Rn, then the marginal
probability density f̂ with respect to r = ‖x‖ can be found from a ‘surface integral’:
Let Vn(r) and Sn(r) denote respectively the volume and the surface area of the sphere of
radius r in Rn, then

Vn(r) =
∫∫∫

· · ·
∫
‖x‖<r

µ(dx) = rn

∫∫∫
· · ·
∫
‖ex‖<1

µ(dx̃) = rnV1(1)

Also we may write

Vn(r) =
∫ r

0
Sn(r)dr

It follows Sn(r) = V ′
n(r) = nrn−1V1(1) = rn−1Sn(1).

The functions Vn and Sn may be calculated recursively from relations like

Vn(r) = 2
∫ r

0
Vn−1(

√
r2 − t2)dtl = 2

∫ r

0
Vn−1(t̃)

t̃dt̃√
r2 − t̃2

6



but easier is using two alternative calculations for one specific integral. We use the integral

I =
∫∫

· · ·
∫ ∞

−∞
exp

(
−

n∑
k=1

x2
k

)
µ(dx) = π

1
2
n

I =
∫ ∞

0
exp(−r2)Sn(r)dr = Sn(1)

∫ ∞

0
exp(−r2)rn−1dr =

1
2
Sn(1)Γ(

1
2
n)

from which follows

Sn(1) =
2π

1
2
n

Γ(1
2n)

(17)

Sn(1) is the surface area of the unit sphere in Rn. We’ll denote it simply by Sn.
Returning to isotropic stochastic variables, we can write∫∫∫

‖z‖=r
f(‖z‖2)µ(dz1, dz2, . . . , dzn) = f(r2)rκn−1Sκn · dr =⇒ f̂(r) = f(r2)rκn−1Sκn

with κ = 1 if z ∈ Rn, and κ = 2 if z ∈ Cn.

4 Completely random linear n× n systems.

4.1 Probability distributions.

We want to derive the probability distribution or -density of the (norm of the) solution of
a square system with completely random matrix and right-hand side, i.e. systems Ax = b
with A ∈ N n×n

κ , and b ∈ N n
κ . Since the set of singular random matrices is a boundary

subset of N n×n
κ , the probability that A−1 doesn’t exist is zero, and we may write the

solution as x = A−1b.
We consider the solution x as an n-dimensional generalization of the quotient of two
random numbers. Therefore we name the class of stochastic solution vectors Qn

κ, from
‘Quotient’.

Definition 1 A completely random linear system is a system Ax = b, with A ∈ N n×n
κ

and b ∈ N n
κ . The class Qn

κ is the set of solutions of completely random n× n systems:

Qn
κ =

{
x = A−1b, A ∈ N n×n

κ , b ∈ N n
κ

}
The probability density function of a vector x ∈ Qn

κ is denoted by fQn
κ
(x). The PDF of

the norm ‖x‖ for these vectors is denoted by f‖Qn
κ‖(x), where x = ‖x‖.

In the derivation of the PDF ’s we need the following lemma

Lemma 1 Let α ∼ χn, for n ≥ 1 and b ∼ N k, k ≥ 1, be stochastically independent. Let
x = b

α , then this stochastic vector has the PDF

f(x) =
Cn

k

(1 + ‖x‖2)
1
2
(n+k)

(18)

with

Cn
k =

Γ(1
2(n + k))

π
k
2 Γ(n

2 )
(19)
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Proof: Let g(α, b) be the joint distribution of α and b, then since α and b are stochas-
tically independent, g is the product of the PDF ’s for α and b:

g(α, b) = C exp(−1
2
(α2 + ‖b‖2))αn−1

Define the new stochastic variables s and x1, x2, . . . , xk:

α = s, bj = sxj , j = 1, 2, . . . , k

Then the Jacobian of this transformation in block form reads

J =
∂(α, b1, b2, . . . , bk)
∂(s, x1, x2, . . . , xk)

=
[

1 0T

x sI

]
=⇒ det(J) = sk

and we have

µ(dαdb) = |det(J)|µ(dsdx) = skdsµ(dx)

Furthermore:

α2 + ‖b‖2 = s2(1 + ‖x‖2)

Denote the mutual density for s,x by ĝ(s,x), then g(α, b)µ(dαdb) = ĝ(s,x)µ(dsdx), and
therefore

ĝ(s,x) = g(α, b) · |det(J)| = C exp
(
−1

2
s2(1 + ‖x‖2)

)
sn+k−1

The PDF f(x) is the marginal distribution of x, i.e. the integral

f(x) =
∫ ∞

0
ĝ(s,x)ds = C

∫ ∞

0
exp(−1

2
s2(1 + ‖x‖2))sn+k−1

= C

∫ ∞

0

exp(−1
2 t2)tn+k−1

(1 + ‖x‖2)
1
2
(n+k)

dt

=
C′

(1 + ‖x‖2)
1
2
(n+k)

The actual value Cn
k for C′ must satisfy

[Cn
k ]−1 =

∫∫
· · ·
∫

µ(dx)

(1 + ‖x‖2)
1
2
(n+k)

= Sk

∫ ∞

0

rk−1dr

(1 + r2)
1
2
(n+k)

=
2π

k
2

Γ(k
2 )
· 1
2
B(a, b)

with 2a = k, and a + b = 1
2(n + k), according to (10). Working this out, we get

Cn
k =

Γ(k
2 )

2π
k
2

·
2Γ(n+k

2 )

Γ(n
2 )Γ(k

2 )
=

Γ(n+k
2 )

π
k
2 Γ(n

2 )

which proves the lemma. 4

Theorem 1 The stochastic vectors in Qn
κ have the following probability density function:

fQn
κ
(x) =

CQn
κ

(1 + ‖x‖2)
κ
2
(n+1)

, (20)

with

CQn
κ

=
Γ(κ

2 (n + 1))

Γ(κ
2 ) · π

κ
2
n

(21)
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Proof: Denote the columns of A by a1,a2, . . . an. Let Q be unitary, such that QA
has ‖an‖en as last column. Such a Q can be constructed with for instance a Householder
reflection matrix H = I − 2uu∗

‖u‖2 , with u = an − ‖an‖en. With this choice, H is a
stochastic matrix that depends only on an. Therefore H is stochastically independent
from a1,a2, . . . ,an−1 and b.
Let HA = A′, Hb = b′, then the system Ax = b is equivalent to the system A′x = b′.
Moreover, all entries of A′ except those in the last column, and all entries of b′ are
stochastically independent, and standard normally distributed. (prerequisite 3.4).
We can write the matrix and the relevant vectors in blocks:

x =
[

x̃
xn

]
, b′ =

[
b̃
b′n

]
, A′ =

[
Ã 0
ã∗ α

]
with α = a′nn = ‖an‖. The system can now be written as

αxn = b′n − ã∗x̃, with Ãx̃ = b̃

Here x̃ is completely determined by Ã and b̃. Now Ã ∈ N (n−1)×(n−1)
κ , b̃ ∈ N n−1

κ , and
hence x̃ ∈ Qn−1

κ . Furthermore ã ∈ N n−1
κ , b′n ∈ Nκ, and α ∈ χκn. Finally ã, α and b′n

are stochastically independent from x̃, since these variables are stochastically independent
from Ã and b̃.

We are after the PDF of x, that is the joint distribution of x̃ and xn. This is the product
of fQn−1

κ
(x̃) — the PDF of x̃— and the distribution of xn conditional with respect to x̃:

fQn
κ
(x) = fQn

κ
(x̃, xn) = fQn

κ
(x̃, xn | x̃) · fQn−1

κ
(x̃)

We’ll denote the conditional density by g(xn):

g(xn) = fQn
κ
(x̃, xn | x̃) =

fQn
κ
(x̃, xn)

fQn−1
κ

(x̃)
=

fQn
κ
(x)

fQn−1
κ

(x̃)
(22)

g is the PDF of the stochastic quotient

xn =
b′n − ã∗x̃

α
=

β

α

in which x̃ is considered a known vector. The numerator β of this expression is a linear
combination of n stochastically independent standard normally distributed variables:

β = b′n − ã∗x̃ = [x̃∗ 1]
[
−ã
b′n

]
and according to prerequisite 3.4, we have β =

√
1 + ‖x̃‖2 · w, with w ∈ Nκ. Now let

xn =
√

1 + ‖x̃‖2ξ, then

ξ =
xn√

1 + ‖x̃‖2
=

w

α
(23)

with w ∈ Nκ, and α ∈ χκn. Bearing in mind the equivalence of Nκ and N κ, we may apply
lemma 1 with k = κ.

f(ξ) =
Cκn

κ

(1 + ξ2)
κ
2
(n+1)

(24)
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f(ξ) and g(xn) are related by g(xn)µ(dxn) = f(ξ)µ(dξ). Using µ(dxn) =
(√

1 + ‖x̃‖2
)κ

µ(dξ),
we can write

g(xn)µ(dxn) = f(ξ)µ(dξ) =⇒ g(xn) = f(ξ)
µ(dξ)
µ(dxn)

=
f(ξ)

(1 + ‖x̃‖2)
κ
2

(25)

Now since

1
1 + |ξ|2

=
(

1 +
|xn|2

1 + ‖x̃‖2

)−1

=
1 + ‖x̃‖2

1 + |xn|2 + ‖x̃‖2
=

1 + ‖x̃‖2

1 + ‖x‖2

(24) can be written as

f(ξ) = Cκn
κ

(
1 + ‖x̃‖2

1 + ‖x‖2

)κ
2
(n+1)

Substitution this in (25) then produces the PDF g(xn) explicitly:

g(xn) =
f(ξ)

(1 + ‖x̃‖2)
κ
2

= Cκn
κ

(1 + ‖x̃‖2)
κ
2
n

(1 + |xn|2 + ‖x̃‖2)
κ
2
(n+1)

(26)

We now prove the theorem by induction. The induction hypothesis is (20).
If n = 1, the conditional density is the absolute density, since there is no x̃. So ξ = xn = x,
the only entry of the vector x. Therefore we have

fQ1
κ
(x) =

CQ1
κ

(1 + |x|2)κ
=

Cκ
κ

(1 + |x|2)κ
=

1
π
· 1
(1 + |x|2)κ

(27)

Here the value π−1 for C1
1 as well for C2

2 follows directly from (19). By comparing (21)
with n = 1 and (19) with k = n = κ, we find CQ1

κ
= Cκ

κ = π−1 for κ = 1, 2. Finally, it is
easily verified that∫

Rκ

1
π
· 1
(1 + |x|2)κ

µ(dx) = 1

According to (22), and the induction hypothesis for n− 1, we must have

fQn
κ
(x) = g(xn)fQn−1

κ
(x̃) = Cκn

κ

(1 + ‖x̃‖2)
κ
2
n

(1 + |xn|2 + ‖x̃‖2)
κ
2
(n+1)

·
CQn−1

κ

(1 + ‖x̃‖2)
κ
2
n

=
Cκn

κ CQn−1
κ

(1 + ‖x‖2)
κ
2
(n+1)

This is (20), provided the constants satify CQn
κ

= Cκn
κ CQn−1

κ
. This is easily verified:

Cκn
κ CQn−1

κ
=

Γ(κ
2 (n + 1))

π
κ
2 Γ(κ

2n)
·

Γ(κ
2n)

π
κ(n−1)

2 Γ(κ
2 )

=
Γ(κ

2 (n + 1))

π
κn
2 Γ(κ

2 )

which is CQn
κ

according to (21). Furthermore, the constant CQn
κ

must satisfy

(
CQn

κ

)−1 =
∫

µ(dx)
(1 + ‖x‖2)

κ
2
(n+1)

10



Using
∫
‖x‖=1 µ(dx) = Sκnrκn−1dr and (10), this results in

(
CQn

κ

)−1 = Sκn ·
∫ ∞

0

rκn−1dr

(1 + r2)
κ
2
(n+1)

=
2π

κn
2

Γ(κn
2 )
· 1
2
B(a, b)

with 2a− 1 = κn− 1, a + b = κ
2 (n + 1). It follows

CQn
κ

=
Γ(κn

2 )

π
κn
2

·
Γ(κ

2 (n + 1))
Γ(κ

2n)Γ(κ
2 )

=
Γ(κ

2 (n + 1))

π
κn
2 Γ(κ

2 )

which is (21). This proves the theorem. 4
The PDF for vectors x in Qn

κ is symmetric in the components of x, which is natural
because permutations of columns of A do not change the stochastic distribution of A.
More interesting is the fact that the PDF only depends on ‖x‖. This makes is quite
easy to derive the PDF for the norms of vectors in Qn

κ, which was required in the IDR(s)
convergence analysis.

Theorem 2 Let x ∈ Qn
κ, let x = ‖x‖, then x is a stochastic variable with the following

PDF :

f‖Qn
κ‖(x) = C‖Qn

κ‖ ·
xκn−1

(1 + x2)
κ
2
(n+1)

(28)

with

C‖Qn
κ‖ =

2Γ(κ
2 (n + 1)

Γ(κ
2n)Γ(κ

2 )
(29)

Proof: The required PDF can be defined as

f‖Qn
κ‖(r) =

∫∫∫
‖x‖=r

fQn
κ
(x)µ(dx1dx2 · · · dxn)

= CQn
κ
Sκn

rκn−1

(1 + r2)
κ
2
(n+1)

= C
rκn−1

(1 + r2)
κ
2
(n+1)

The constant C must satisfy

C−1 =
∫ ∞

0

r
κ
2
(n−1)

(1 + r2)
κ
2
(n+1)

=
1
2
B(a, b)

with a = κ
2n and b = κ

2 , according to (10). Hence

C‖Qn
κ‖ =

2
B(κ

2n, κ
2 )

=
2Γκ

2 (n + 1))
Γ(κ

2n)Γ(κ
2 )

= CQn
κ
Sκn

This proves the theorem. 4
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4.2 Percentage points for f‖Qn
κ‖.

For practical use, it is interesting which values of ‖x‖ will occur with probability less than
a particular value, say 10−j . It is easy to give estimates that are reasonably sharp for
j ≥ 2.
For x ∈ Qn

κ, we have

Prob(‖x‖ > λ) = C‖Qn
κ‖

∫ ∞

λ

xκn−1dx

(1 + x2)
κ
2
(n+1)

< C‖Qn
κ‖

∫ ∞

λ

xκn−1dx

xκ(n+1)

= C‖Qn
κ‖

∫ ∞

λ
x−1−κdx = C‖Qn

κ‖
λ−κ

κ
(30)

In order to find the asymptotic behaviour of C‖Qn
κ‖ for large n, we need the asymptotic

behaviour for Γ(z + α)/Γ(z) for large z. With Stirlings formula (7) we may write

Γ(z + α)
Γ(z)

≈ (z + α)z+α− 1
2 e−z−α

zz− 1
2 e−z

= (z + α)αe−α
(
1 +

α

z

)z− 1
2 ≈ zα(1 + O(

1
z
))

Now, with α = κ
2 and Γ(κ

2 ) = π1−κ
2 for κ = 1, 2, we get

C‖Qn
κ‖ = 2

Γκ
2 (n + 1))

Γ(κ
2n)Γ(κ

2 )
≈ 2

(
κ
2n
)κ

2

Γ(κ
2 )

=
2
π

(
κ

2
πn)

κ
2 (31)

Hence, with (30), we arrive at

Prob(‖x‖ > λ) < C‖Qn
κ‖

λ−κ

κ
≈ 2

π

(κ

2
πn
)κ

2 λ−κ

κ
=
(

2
πκ

)1−κ
2
(√

n

λ

)κ

We want this probability to be smaller than 10−j , and this is acomplished by choosing(
2

πκ

)1−κ
2
(√

n

λ

)κ

= 10−j =⇒ λ =
√

nπκ

2

(
2

πκ
10j

) 1
κ

For j = 2 we get the 99%-point for this distribution:

κ = 1 : λ =

√
2n

π
102 ≈ 80

√
n

κ = 2 : λ = 10
√

n

4.3 Expectation and variance.

The distribution f‖Qn
1 ‖ of ‖x‖ with x ∈ Qn

1 has no finite moments, and the distribution
f‖Qn

2 ‖ only has a finite first moment. In the IDR(s) application, we are interested in
the behaviour of log10(‖x‖) rather than ‖x‖ itself, since the 10-logarithm represents the
number of digits that the IDR(s) process is ‘behind’ the GMRES procedure. Therefore we
study the logarithmic moments.

Let Cf(x) be the PDF for some nonnegative stochastic variable, then the logarithmic
moments are defined as

µk = C

∫ ∞

0
f(x) logk(x)dx

12



These moments can be found by expanding the following generating function F (t) in
powers of t:

F (t) =
∫ ∞

0
f(x)xtdx = C−1

∞∑
k=0

µk
tk

k!

using xt = exp(t log(x)). Then we have, since µ0 = 1

F (k)(0) = C−1µk = F (0)µk, k = 0, 1, 2, . . .

It follows

µ1 =
F ′(0)
F (0)

, µ2 =
F ′′(0)
F (0)

, σ2 = µ2 − µ2
1 =

F ′′(0)
F (0)

−
[
F ′(0)
F (0)

]2

For µ1 and σ2 this can be written elegantly as

µ1 =
d

dt
log(F (t))|t=0 , σ2 =

d2

dt2
log(F (t))|t=0 (32)

The PDF ’s related to completely random systems read

f(x) = C
xp

(1 + x2)q

with p = κn − 1, q = κ
2 (n + 1), where κ = 1 for the real distributions, and κ = 2 for the

complex distributions. Calculating the integral of f(x)xt is a mere replacement of p by
p + t. Using (10) we get

F (t) =
∫ ∞

0

xp+t

(1 + x2)q
dx =

1
2
B(a, b)

with 2a− 1 = p + t, a + b = q. It follows

a =
1
2
(p + t + 1) =

1
2
(κn + t), b = q − a =

1
2
(κ− t)

Hence we have

F (t) =
1
2
B(

κn + t

2
,
κ− t

2
) =

1
2

Γ(1
2(κn + t))Γ(1

2(κ− t))
Γ(κ

2 (n + 1))

Let log(F (t)) = Ψ(t), then using (5) we get

Ψ(t) = Φ(
κn + t

2
) + Φ(

κ− t

2
)− Φ(

κ(n + 1)
2

)− log(2)

According to (32), we now may write

µ1 = Ψ′(0) =
1
2

(
Φ′(

κn

2
)− Φ′(

κ

2
)
)

(33)

σ2 = Ψ′′(0) =
1
4

(
Φ′′(

κn

2
) + Φ′′(

κ

2
)
)

(34)

Differentiating (5), we find series expansions for the derivatives of the Φ(z):

Φ′(z) = −γ − 1
z

+
∞∑

k=1

[
1
k
− 1

k + z

]

Φ′′(z) =
1
z2

+
∞∑

k=1

1
(k + z)2

13



We need to evaluate these expressions for z = κ
2n, for integer values of n and for κ = 1, 2.

Fortunately, Φ′(z) and Φ′′(z) can be obtained in closed form for this family of z-values.

Define the (hyper-) harmonic sums by

S(r)
n =

n∑
k=1

1
kr

Then for integer values of l, we find after some calculations

Φ′(l) = Φ′(1) + S
(1)
l−1 , Φ′′(l) =

π2

6
− S

(2)
l−1

Φ′(l +
1
2
) =

π2

2
+ 2S1

2l − S
(1)
l , Φ′′(l +

1
2
) = Φ′′(

1
2
)− 4S

(2)
2l + S

(2)
l

Now we evaluate the expressions (33) and (34)

n = 2l, κ = 1 : µ1 =
1
2
S

(1)
l−1 + log(2), σ2 =

1
6
π2 − 1

4
S

(2)
l−1

n = 2l + 1, κ = 1 : µ1 = S
(1)
2l −

1
2
S

(1)
l , σ2 =

1
4
(π2 + S

(2)
l )− S

(2)
2l

κ = 2 : µ1 =
1
2
Sn−1, σ2 =

π2

12
− 1

4
S

(2)
n−1

For large n we get approximately

κ = 1 : µ(n) ≈ 1
2
(log(2n) + γ) + O(

1
n

), σ2(n) ≈ 1
8
π2 + O(

1
n

) (35)

κ = 2 : µ(n) ≈ 1
2
(log(n) + γ) + O(

1
n

), σ2(n) ≈ 1
24

π2 + O(
1
n

) (36)

4.4 Asymptotic behaviour.

We try to find out wether this distribution, when x is scaled by
√

n, indeed depends only
weakly on n.

f‖Qn
κ‖(x) = C‖Qn

κ‖
xκn−1

(1 + x2)
κ
2
(n+1)

For α ∈ (−1, 1), and m > 0, the following inequality holds ([8]):

(1−mα2)emα < (1 + α)m < emα =⇒ (1 + α)m = (1− θmα2)emα

where θ ∈ (0, 1). With α = x−2, and m = κ
2 (n + 1), we can apply this to f‖Qn

κ‖(x):

xκn−1

(1 + x2)
κ
2
(n+1)

= x−κ−1 exp(−κ(n + 1)
2x2

)
(

1− θ
κ(n + 1)

2x4

)−1

(37)

Now let y be defined by

x2 =
κ

2
(n + 1)y2

and let gn(y) denote the PDF for y, then f‖Qn
κ‖(x)dx = gn(y)dy. Using (31) and (37), we

can write

gn(y)dy = f‖Qn
κ‖(x)dx = C‖Qn

κ‖x
−κ−1 exp(−κ(n + 1)

2x2
)
(

1− θ
κ(n + 1)

2x4

)−1

dx

≈ π
κ
2
−1 · y−κ−1 exp(− 1

y2
)dy (38)
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For y → 0 and fixed n, gn(y) tends to zero like Cyκn−1 for some C, whereas the asymptotic
approximation is tending to zero faster than any power of y. Despite a completely different
behaviour, the difference for small y is hardly visible in practice.
For large values of y, the aymptotic approximation is uniform O

(
1
n

)
. Therefore the

asymptotic formula may replace the original distribution perfectly well if only n is not too
small, say n > 20.
In Figure 6 and Figure 8 of the next section, the densities gn(y) are plotted against log10(y)
for n = 25, 50, 100, 200. Also the means and variances are displayed. The result is in very
good agreement with (38) as well as with the experimental histograms in Figure 2 and
Figure 4.

4.5 Numerical verification.
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Figure 5: f‖Qn
1 ‖(x)
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Figure 6: f‖Qn
1 ‖(x), shifted
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Figure 7: f‖Qn
2 ‖(x)
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Figure 8: f‖Qn
2 ‖(x), shifted

We now verify the theory with the sampling experiments shown in section 2. We plot the
analytic densities for the dimensions n = 25, 50, 100, 200.

In Figure 5 and Figure 7 the densities f‖Qn
1 ‖ and f‖Qn

2 ‖ are plotted against log10(x) for
n = 25, 50, 100, 200. The shifted variants are present in Figure 6 and Figure 8. We also
calculate the mean and variance for log10(x), see Table 5–8

The analytic results are in good agrement with the sampling experiments.
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n mean var stdd
25 0.9660 0.2366 0.4864
50 1.1210 0.2346 0.4844
100 1.2737 0.2336 0.4834
200 1.4253 0.2332 0.4829

Table 5: Parameters for f‖Qn
1 ‖(x)

n mean var stdd
25 0.2671 0.2366 0.4864
50 0.2715 0.2346 0.4844
100 0.2737 0.2336 0.4834
200 0.2748 0.2332 0.4829

Table 6: Parameters for f‖Qn
1 ‖(x), shifted

n mean var stdd
25 0.8199 0.0795 0.2819
50 0.9727 0.0785 0.2802
100 1.1243 0.0780 0.2794
200 1.2753 0.0778 0.2789

Table 7: Parameters for f‖Qn
1 ‖(x)

n mean var stdd
25 0.1210 0.0795 0.2819
50 0.1232 0.0785 0.2802
100 0.1243 0.0780 0.2794
200 0.1248 0.0778 0.2789

Table 8: Parameters for f‖Qn
1 ‖(x), shifted

5 Concluding remarks.

There have been written numerous papers on the statistical behaviour of norms and condi-
tion numbers of random matrices ([1] [2], [3], [7]). However, norms and condition numbers
are worst case indicators in the error analysis of linear systems. Therefore these estimates
are often very pessimistic.
The distributions derived in this paper have a direct application in [5], the convergence
analysis of the Krylov solver IDR(s). In the IDR(s) method, real or complex random
‘shadow vectors’ are used in a similar way as the test-vectors in a Galerkin approximation of
a linear system. In [5], the IDR(s) method is compared to the rather expensive full-GMRES
procedure, of which a sharp convergence analysis is available. The results obtained in this
report provide a good explanation of the observed convergence behaviour of IDR(s).

In the future it may be interesting to study the IDR(s) behaviour for smaller values of s, say
s < 8. In the corresponding analysis, completely random linear systems are encountered
in which the stochastic independency requirements have partly been dropped. However,
we have not yet formulated a precise description of these systems.
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