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Abstract

We consider the solution of large and sparse linear systems of equations by GM-

RES. Due to the appearance of unfavorable eigenvalues in the spectrum of the coeffi-

cient matrix, the convergence of GMRES may hamper. To overcome this, a deflated

variant of GMRES can be used, which treats those unfavorable eigenvalues effec-

tively. In the literature, several deflated GMRES variants are applied successfully

to various problems, while a theoretical justification is often lacking. In contrast to

deflated CG, the convergence of deflated GMRES seems to be harder to analyze and

to understand.

This paper presents some new theoretical insights into deflated GMRES based

on A-invariant deflation subspaces. Fundamental results regarding the convergence

of deflated GMRES are proved in order to show the effectiveness and robustness of

this method. Numerical experiments are provided to illustrate the theoretical results

and to show some further properties of deflated GMRES. Consequently, practical

variants of deflated GMRES from the literature can be better understood based on

the results presented in this paper.
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1 Introduction

This paper is devoted to the solution of large and sparse linear systems of the form

Ax = b, (1)

where A ∈ CN×N and b ∈ CN are a given nonsingular coefficient matrix and right-hand

side, respectively. Eq. (1) arises in many practical applications, and much attention in the

literature is paid to its efficient solvers.

Popular methods to solve (1) are Krylov-subspace methods, such as CG [12], LSQR [25],

GCR [8], GMRES [29], and Bi-CGSTAB [35]. For a comprehensive overview of those meth-

ods, we refer to [28]. Recently, some promising Krylov-subspace methods have appeared,

such as ML(k)BiCGSTAB [38] and IDR(s) [31].

Krylov-subspace methods based on a symmetric positive-definite matrix A, such as CG,

are analyzed in, e.g., [20, 19, 14, 13, 34]. Convergence bounds of CG can be given in terms

of the spectral properties of A. Krylov-subpace methods applied to general matrices are

usually harder to analyze, and mostly restricted to methods with an optimality property,

such as GMRES, see, e.g., [8, 11, 18, 29, 36]. Convergence bounds of GMRES can be

provided in terms of the spectral properties of A and the condition of its eigenvector

matrix.

A Krylov-subspace method is usually combined with preconditioning in order to obtain

a fast convergence of the iterative process, see [28] for a discussion of various precon-

ditioning techniques. For relatively simple problems, a preconditioned Krylov-subspace

method is proved to be a successful method. However, for more ill-conditioned problems,

the convergence of preconditioned Krylov-subspace methods may deteriorate, due to the

appearance of unfavorable eigenvalues in the spectrum of the preconditioned coefficient

matrix. A cure for this problem is to project the corresponding eigenvector components

out of the residuals, so that the effect of those eigenvalues on the convergence is elimi-

nated. This technique is known as second-level preconditioning, which includes deflation,

coarse-grid correction, augmentation, and recycling techniques. In most of these second-

level preconditioning approaches, spectral information is projected out of the error. In this

paper, we focus on deflation methods [7, 21, 24], and note that some results presented here

may be generalized to other methods.

As exact eigenvectors are usually not available and hard to compute, approximations

of them are often adopted in the deflation approach. This strategy works surprisingly well
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for many problems. For CG-like methods with deflation, this is illustrated in, e.g., [10, 17,

22, 23, 30, 37]. It can be shown that the use of approximated eigenvectors or even arbi-

trary vectors as deflation vectors accelerates the CG convergence [22]. For a discussion on

GMRES-like methods with deflation, we refer to, e.g., [2, 3, 4, 5, 6, 9, 15, 16, 26, 27, 32]. In

contrast to deflated variants of CG, a convergence analysis for deflated variants of GMRES

is more complicated to perform. This is partially caused by the fact that deflation seems

not always be effective, for example if A is nonnormal. In this case, convergence bounds

on (deflated) GMRES do not necessarily predict the actual convergence. In addition,

restarted and truncated variants rather than the original GMRES method are frequently

used in practice, whose convergence is usually not easy to predict. It has been shown in

the literature that deflated GMRES based on well-approximated eigenvectors, such as Ritz

vectors, is effective in several applications. The choice for approximated eigenvectors as

deflation vectors is usually justified by numerical experiments, while an appropriate theo-

retical justification is often lacking. It even seems that the convergence theory on deflated

GMRES based on exact eigenvectors is hardly explored, while it is fundamental to un-

derstand the performance of advanced deflation approaches. Most convergence theory on

deflated GMRES and their advanced variants are solely based on showing that practical

deflation vectors span an approximate invariant subspace that is sufficiently close to the

exact invariant subspace, under the assumption that deflation based on this exact invariant

subspace is effective. To the best of our knowledge, there are however no theoretical results

known in the literature that justisfy the latter assumption.

Here, we focus on solving Eq. (1) by deflated GMRES, also denoted by D-GMRES.

A straightforward implementation of D-GMRES is adopted in which the deflation vectors

span an exact invariant subspace of A and no restart or truncation of the iterative procedure

is used. The aim of this paper is to provide some fundamental but new convergence analysis

of D-GMRES. Major results include that D-GMRES does not break down and always

converges faster than GMRES. Those insights can be used to get a better understanding

of the performance of practical deflated GMRES methods in which more general deflation

vectors and restarted/truncated variants are applied.

The outline of the rest of this paper is as follows. In Section 2, we define the considered

problem and review some convergence results for GMRES. Section 3 is devoted to describe

the D-GMRES and compare the spectrum of GMRES and D-GMRES. In Section 4, we

prove that D-GMRES can be interpreted as GMRES applied to solve a smaller linear

system. As a consequence of the latter result, it can be shown that D-GMRES always
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converges to the correct solution for any initial guess, see Section 4. The (convergence of)

residuals of D-GMRES are further analyzed in Section 5. We prove that the norm of the

D-GMRES residuals is always smaller than that of the GMRES residual during the whole

iterative process. In addition, we show that increasing the dimension of the A-invariant

subspace leads to a faster convergence. Finally, we generalize some theoretical bounds on

the GMRES residuals to D-GMRES residuals. Section 6 is devoted to the application of

D-GMRES for solving real linear systems, and show how all computations can be kept in

real arithmetic. Numerical experiments are presented in Section 7 in order to illustrate

the theory and to provide some additional insights into D-GMRES. We end up with the

conclusions in Section 8.

2 Problem Definition

The linear system (1) is considered, where we assume that A ∈ C
N×N is nonsingular and

b ∈ CN throughout this paper. Generalized Minimal Residual method (GMRES) [29] is

chosen to solve (1). Some results on GMRES are reviewed below.

Let an initial guess x0 ∈ CN be given along with its residual r0 ≡ b − Ax0. Then,

GMRES recursively constructs an approximate solution, xm, such that

xm ∈ x0 + Km(A, r0) ≡ x0 + span{r0, Ar0, . . . , A
m−1r0}, (2)

and

‖rm‖2 = min
ξ∈x0+Km(A,r0)

‖b − Aξ‖2, (3)

where rm ≡ b − Axm and m = 1, 2, . . .. We call Km(A, r0) the m-th searching subspace,

as GMRES searches for an approximate solution in the affine subspace x0 + Km(A, r0) at

iteration m. Because of (2), xm can be written as

xm = x0 + pm−1(A)r0,

for some pm−1 ∈ Pm−1, where Pm−1 denotes the set of all the polynomials with degree at

most m − 1. In addition, we have

‖rm‖2 = ‖b − Axm‖2 = ‖(I − Apm−1(A))r0‖2

= min
p∈Pm−1

‖(I − Ap(A))r0‖2 = min
p∈Pm,p(0)=1

‖p(A)r0‖2.
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On the other hand, we can apply the Arnoldi process [1], starting with u1 = r0/‖r0‖2, to

generate an orthonormal basis {u1, u2, . . . , um+1} of Km+1(A, r0) and an upper Hessenberg

matrix Hm+1,m ∈ C(m+1)×m such that they satisfy

AUm = Um+1Hm+1,m, (4)

where Uj ≡ [u1, u2, . . . , uj]. Then, Eq. (2) can be rewritten as xm = x0 + Umη, for some

η ∈ Cm. Therefore, (3) becomes

‖rm‖2 = ‖b − A(x0 + Umη)‖2 = min
θ∈Cm

‖b − A(x0 + Umθ)‖2

= min
θ∈Cm

‖r0 − AUmθ‖2 = min
θ∈Cm

‖‖r0‖2u1 − Um+1Hm+1,mθ‖2

= min
θ∈Cm

‖‖r0‖2e1 − Hm+1,mθ‖2,

(5)

where e1 is the first column of the (m + 1) × (m + 1) identity matrix, I.

Remark 2.1 In the Arnoldi process, if we assume that all entries in the lower sub-diagonal

of Hm+1,m are nonnegative, then Um and Hm+1,m are uniquely determined by A and u1.

If A is diagonalizable, an upper bound on ‖rm‖2 is provided by the following result.

Proposition 2.2 (see [28, Prop. 6.32]) Assume that A can be decomposed as

A = V ΛV −1, (6)

with Λ being the diagonal matrix of eigenvalues. Then,

‖rm‖2 ≤ κ2(V )ǫm‖r0‖2,

where κ2(V ) = ‖V ‖2‖V −1‖2 and ǫm = min
p∈Pm,p(0)=1

max
λ∈σ(A)

|p(λ)|.

An upper bound for ǫm can be derived based on Chebyshev polynomials and ellipses in

which the spectrum of A is contained. The result is given in Corollary 2.3.

Corollary 2.3 (see [28, Cor. 6.3.3]) Suppose that A has a spectral decomposition (6). Let

E(c, d, a) denote the ellipse with center c ∈ R, focal distance d ≥ 0, and semi-major axis

a ≥ 0. Let Cm be the Chebyshev polynomial of degree m. If all eigenvalues of A are located
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in E(c, d, a) that excludes the origin of the complex plane, then

‖rm‖2 ≤ κ2(V )
Cm(a

d
)

Cm( c
d
)
‖r0‖2 ≈ κ2(V )δm‖r0‖2, (7)

where δ = a+
√

a2−d2

c+
√

c2−d2
.

The upper bound in (7) contains two factors: the condition number of the eigenvector

matrix V , κ2(V ), and the scalar δ determined by the distribution of the eigenvalues. If A is

nearly normal and has a spectrum σ(A) which is clustered around 1, we obtain κ2(V ) ≈ 1

and δ < 1. In this case, ‖rm‖2 decays in a rate of power δm, resulting in a fast convergence

of GMRES.

In practice, GMRES is generally applied to solve a preconditioned system rather than

to solve (1) directly. For example, the right-preconditioned system

AM−1y = b and y = Mx,

can be solved by GMRES. The preconditioner M ∈ CN×N is usually a good approximation

of A, namely AM−1 ≈ I, so that we can assume without loss of generality that the

eigenvalues of A in (1) are clustered around 1 with a few possible outliers, and avoid the

explicit use of M in the remainder of this paper.

Since the ellipse E(c, d, a) in Corollary 2.3 is required to include all eigenvalues of A,

the outlying eigenvalues may keep the ellipse large, implying a large δ. To reduce the δ

in (7), we therefore wish to remove these outlying eigenvalues from σ(A). Any procedure

of doing so is known as deflation. GMRES in combination with deflation is called deflated

GMRES (D-GMRES).

In this paper, we focus on deflated GMRES based on the following. Suppose {v1, . . . , vk}
is a set of vectors to be deflated that span a basis of some A-invariant subspace. For

example, those vectors can be eigenvectors of A. Then, in D-GMRES, the m-th searching

subspace Km(A, r0) is projected onto a subspace that is orthogonal to v1, . . . , vk. Therefore,

approximate solutions are found that are orthogonal to v1, . . . , vk. As a consequence, these

(eigen)vectors have no effect on the solution process, and the iterative process could be

improved significantly.

Remark 2.4 There are several other variants known of deflation that is applied to GM-

RES. For example, an approach referred to as Augmented GMRES proceeds as follows.
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Add eigenvectors v1, . . . , vk to the m-th searching subspace Km(A, r0) to form an aug-

mented subspace Kaug

m . Then, find xm ∈ x0+Kaug

m with the property ‖rm‖2 = minξ∈x0+Kaug
m

‖b−
Aξ‖2, or, equivalently, rm ∈ (AKaug

m )⊥. Note that the subspace (AKaug

m )⊥ is orthogonal to

v1, . . . , vk, so that it is mathematically equivalent to deflated GMRES as described above.

3 Deflated GMRES

In this section, we describe the deflated GMRES in more detail.

Consider the solution of system (1) and suppose x∗ is its exact solution. Suppose that

a so-called deflation-subspace matrix Z = [z1, . . . , zk] ∈ CN×k is given, whose columns are

linearly independent. Define the two projectors

P ≡ I − AZ(ZHAZ)−1ZH and P̃ ≡ I − Z(ZHAZ)−1ZHA, (8)

where ZHAZ is assumed to be invertible. It is straightforward to verify that P 2 = P, P̃ 2 =

P̃ and PA = AP̃ . Using P̃ , we split x∗ into two parts:

x∗ = (I − P̃ )x∗ + P̃ x∗ ≡ x∗
1 + x∗

2.

For x∗
1, we have

x∗
1 = (I − P̃ )x∗ = Z(ZHAZ)−1ZHAx∗ = Z(ZHAZ)−1ZHb.

For x∗
2, we obtain

x∗
2 = A−1Pb,

since Ax∗
2 = AP̃x∗ = PAx∗ = Pb. Now, if x# is a solution of the singular system

PAx = Pb, (9)

then

AP̃x# = Pb ⇔ P̃ x# = A−1Pb = x∗
2.

Based on the above observations, a deflated GMRES algorithm is given in Algorithm 1.

Unless stated otherwise, the following assumption holds in the remainder of this paper.

Assumption 3.1 The columns of Z form a basis for an A-invariant subspace.
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Algorithm 1: Deflated GMRES

Choose Z1

Compute x∗
1 = Z(ZHAZ)−1ZHb2

Solve PAx = Pb by GMRES to obtain a solution x#
3

Compute x∗
2 = P̃ x#

4

Determine x∗ = x∗
1 + x∗

25

For example, if A = V JV −1 is a Jordan canonical form of A with V = [v1, . . . , vN ], then

{v1, . . . , vk} with 1 ≤ k ≤ N can be used for Z, as it is a basis for the A-invariant subspace

span{v1, . . . , vk}. Furthermore, except for the results in Section 5.3, all theoretical results

presented next also hold for A that is not necessarily diagonalizable. If A is diagonalizable,

a spectral decomposition exists and eigenvectors can be used as columns for Z.

Suppose that A is diagonalizable, and set Z = [v1, . . . , vk], whose columns are eigenvec-

tors of A associated with eigenvalues λ1, . . . , λk, respectively. Then, the spectrum σ(PA)

would contain the same eigenvalues of A except λ1, . . . , λk. This is a consequence of Propo-

sition 3.2, which is given below.

When GMRES is applied to solve (9), the m-th searching subspace is Km(PA, Pr0).

Since PAP = PA follows from Lemma 4.1, we have Km(PA, Pr0) = PKm(A, r0). There-

fore, Km(PA, Pr0) is the projection (induced by the projector P ) of Km(A, r0) onto the

full Krylov subspace K(PA, Pr0) ≡ span{(PA)k(Pr0) | k = 0, 1, 2, . . .}, so that this full

Krylov subspace is orthogonal to v1, . . . , vk.

Proposition 3.2 Suppose that A ∈ CN×N is nonsingular and Z ∈ CN×k has columns

that form a basis for some A-invariant subspace, Z. Choose W ∈ C
N×(N−k) such that its

columns form a basis for Z⊥.1 Then,

(a) A can be decomposed as

A = [Z, W ]

[
B11 B12

0 B22

]
[Z, W ]−1, (10)

for some B11 ∈ Ck×k, B12 ∈ Ck×(N−k) and B22 ∈ C(N−k)×(N−k);

(b) ZHAZ is nonsingular;

1W is an auxiliary quantity in this and the following proofs. In an application of deflated GMRES, we
do not need to compute W explicitly, while Z should be provided to form the deflation matrix P .
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(c) PA = [Z, W ]

[
0 0

0 B22

]
[Z, W ]−1.

Proof. Part (a) is obvious. To prove Parts (b) and (c), we rewrite (10) as

A[Z, W ] = [Z, W ]

[
B11 B12

0 B22

]
,

which yields

AZ = ZB11 and AW = ZB12 + WB22. (11)

Since det(A) = det(B11) det(B22) holds due to (10) and A is nonsingular, B11 and B22 are

both nonsingular. Therefore, ZHAZ = ZH(ZB11) = (ZHZ)B11. The nonsingularity of

ZHAZ follows from those of ZHZ and B11.

By noting that ZHW = 0, we have

PAW = [I − AZ(ZHAZ)−1ZH ]AW = AW − AZ(ZHAZ)−1ZHAW

= AW − AZ(ZHAZ)−1ZH(ZB12 + WB22) = AW − AZ(ZHAZ)−1(ZHZ)B12

= AW − (ZB11)(Z
HZB11)

−1(ZHZ)B12 = AW − ZB12 = WB22.

Moreover, PAZ = [I − AZ(ZHAZ)−1ZH ]AZ = 0. Hence,

PA[Z, W ] = [0, WB22] = [Z, W ]

[
0 0

0 B22

]
.

Corollary 3.3 Under the assumptions of Proposition 3.2, σ(A) = σ(B11) ∪ σ(B22) and

σ(PA) = {0, . . . , 0} ∪ σ(B22) hold.

Thus, σ(B11) is deflated from σ(A), when the projector P (with Z consisting of vectors

that form a basis for an A-invariant subspace) is applied to A. Moreover, it is not required

to assume ZHAZ to be nonsingular in D-GMRES, as it is automatically satisfied for A-

invariant subspace deflation.

4 Solution Equivalence of Linear Systems

In this section, we show that solving the deflated and singular system (9) is equivalent to

solving a smaller and nonsingular system by GMRES. Based on this result, we prove that
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GMRES finds a solution of (9) starting with an arbitrary initial guess.

Let the columns {z1, . . . , zk} of Z be extended to a basis {z1, . . . , zk, zk+1, . . . , zN} of

CN . Then, perform a QR factorization on the matrix [z1, . . . , zk, zk+1, . . . , zN ] ≡ [Z, Z̃] as

follows:

[Z, Z̃] = QR ≡ [Q1, Q2]

[
R11 R12

0 R22

]
, (12)

where Q1 ∈ CN×k and R11 ∈ Ck×k. This yields

Z = Q1R11 and Z̃ = Q1R12 + Q2R22. (13)

Lemma 4.1 now shows that the deflation matrix, P , and deflated coefficient matrix, PA,

can be written in terms of Q2 and B22.

Lemma 4.1 Set W = Q2 in Proposition 3.2. Then, matrices P and PA in the proposition

become

P = Q2Q
H
2 and PA = Q2B22Q

H
2 ,

and the equality PAP = PA holds.

Proof. First, by using (11) and (13), we have

P = I − AZ(ZHAZ)−1ZH = I − ZB11(Z
HZB11)

−1ZH = I − Z(ZHZ)−1ZH

= I − Q1R11(R
H
11R11)

−1(Q1R11)
H = I − Q1Q

H
1 = QQH − Q1Q

H
1

= [Q1, Q2][Q1, Q2]
H − Q1Q

H
1 = Q2Q

H
2 .

For the equation of PA, we first note that

A = [Z, Q2]

[
B11 B12

0 B22

]
[Z, Q2]

−1 = [Q1R11, Q2]

[
B11 B12

0 B22

]
[Q1R11, Q2]

−1

= [Q1, Q2]

[
R11 0

0 I

][
B11 B12

0 B22

][
R11 0

0 I

]−1

[Q1, Q2]
−1

= [Q1, Q2]

[
R11B11R

−1
11 R11B12

0 B22

]
[Q1, Q2]

−1.

(14)
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Hence,

PA = Q2Q
H
2 [Q1, Q2]

[
R11B11R

−1
11 R11B12

0 B22

]
[Q1, Q2]

H

= Q2[0, I]

[
R11B11R

−1
11 R11B12

0 B22

]
[Q1, Q2]

H

= Q2

[
0 B22

]
[Q1, Q2]

H = Q2B22Q
H
2 .

Finally, we obtain

PAP = (Q2B22Q
H
2 )(Q2Q

H
2 ) = Q2B22Q

H
2 = PA.

Next, we consider the solution of the systems

PAx(1) = Pb and B22x
(2) = QH

2 b (15)

by GMRES. The superscripts (1) and (2) are used to distinguish similar quantities involved

in the two solution processes. According to Lemma 4.1, the first equation of (15) can be

written as Q2B22Q
H
2 x(1) = Q2Q

H
2 b.

Let x
(1)
0 ∈ C

N be an initial guess of the first system of (15). The corresponding residual

is

r
(1)
0 = Pb − PAx

(1)
0 = Q2Q

H
2 b − Q2B22Q

H
2 x

(1)
0 .

For the second system of (15), we choose x
(2)
0 = QH

2 x
(1)
0 ∈ CN−k as its initial guess.

Let us assume that r
(1)
0 6= 0. Then, r

(2)
0 6= 0 since r

(1)
0 = Q2r

(2)
0 . In the Arnoldi process

associated with the first system of (15), we set u
(1)
1 = r

(1)
0 /‖r(1)

0 ‖2. Then, Eq. (4) becomes

PAU (1)
m = U

(1)
m+1H

(1)
m+1,m. (16)

The approximate solution at the m-th iteration is x
(1)
m = x

(1)
0 +U

(1)
m η

(1)
m , where η

(1)
m minimizes

(cf. Eq. (5))

‖r(1)
m ‖2 = ‖‖r(1)

0 ‖2e1 − H
(1)
m+1,mη(1)

m ‖2 = min
θ∈Cm

‖‖r(1)
0 ‖2e1 − H

(1)
m+1,mθ‖2.

On the other hand, for the Arnoldi process associated with the second equation of (15),
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we set u
(2)
1 = r

(2)
0 /‖r(2)

0 ‖2. Then (4) becomes

B22U
(2)
m = U

(2)
m+1H

(2)
m+1,m, (17)

and the approximate solution at the m-th iteration is

x(2)
m = x

(2)
0 + U (2)

m η(2)
m ,

where η
(2)
m minimizes (cf. Eq. (5))

‖r(2)
m ‖2 = ‖‖r(2)

0 ‖2e1 − H
(2)
m+1,mη(2)

m ‖2 = min
θ∈Cm

‖‖r(2)
0 ‖2e1 − H

(2)
m+1,mθ‖2.

We now rewrite (17) as follows:

B22(Q
H
2 Q2)U

(2)
m = U

(2)
m+1H

(2)
m+1,m

⇒ (Q2B22Q
H
2 )(Q2U

(2)
m ) = (Q2U

(2)
m+1)H

(2)
m+1,m

⇒ PA(Q2U
(2)
m ) = (Q2U

(2)
m+1)H

(2)
m+1,m.

(18)

Since r
(1)
0 = Q2r

(2)
0 , the first column of Q2U

(2)
m is

Q2u
(2)
1 =

Q2r
(2)
0

‖r(2)
0 ‖2

=
Q2r

(2)
0

‖Q2r
(2)
0 ‖2

=
r
(1)
0

‖r(1)
0 ‖2

= u
(1)
1 .

Moreover,

(Q2U
(2)
m )H(Q2U

(2)
m ) = (U (2)

m )HQH
2 Q2U

(2)
m = (U (2)

m )HU (2)
m = I.

Thus, the last equation of (18) is an Arnoldi process applied to PA with starting vector

u
(1)
1 . Recall that Eq. (16) is also an Arnoldi process applied to PA with the same starting

vector u
(1)
1 . Hence, we have

H
(1)
m+1,m = H

(2)
m+1,m and Q2U

(2)
m = U

(1)
m , (19)

by the uniqueness of the Arnoldi process (see Remark 2.1). Therefore,

‖r(1)
m ‖2 = minθ∈Cm ‖‖r(1)

0 ‖2e1 − H
(1)
m+1,mθ‖2

= minθ∈Cm ‖‖r(2)
0 ‖2e1 − H

(2)
m+1,mθ‖2

= ‖r(2)
m ‖2.

(20)
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Moreover, since B22 is nonsingular, rank(H
(2)
m+1,m) = m. Therefore, rank(H

(1)
m+1,m) = m

follows from (19), and

η
(1)
m = [(H

(1)
m+1,m)HH

(1)
m+1,m]−1(H

(1)
m+1,m)H(‖r(1)

0 ‖2e1)

= [(H
(2)
m+1,m)HH

(2)
m+1,m]−1(H

(2)
m+1,m)H(‖r(2)

0 ‖2e1)

= η
(2)
m .

Hence,

x(2)
m = x

(2)
0 + U (2)

m η(2)
m = QH

2 x
(1)
0 + QH

2 U (1)
m η(1)

m = QH
2 x(1)

m . (21)

The above results considering the solution equivalences are summarized in Lemma 4.3.

Remark 4.2 In the above discussion, we have implicitly assumed that all the entries in the

lower sub-diagonals of H
(1)
m+1,m and H

(2)
m+1,m are nonnegative. This assumption, however, is

not essential for the truth of (20) and (21), namely, (20) and (21) still hold for GMRES

built on a general Arnoldi process.

Lemma 4.3 Let the two systems in (15) be solved by GMRES with initial guesses x
(1)
0 and

x
(2)
0 = QH

2 x
(1)
0 , respectively. Then, the approximate solutions at the m-th iteration, x

(1)
m and

x
(2)
m , satisfy

‖r(1)
m ‖2 = ‖r(2)

m ‖2 and x(2)
m = QH

2 x(1)
m .

Subsequently, Lemma 4.3 can be used to prove the following theorem. Other side results

can be found in Section 5.3.

Theorem 4.4 Suppose A ∈ C
N×N is nonsingular and the deflation matrix Z ∈ C

N×k is

chosen such that its columns form a basis of an A-invariant subspace. If GMRES is applied

to solve the singular system (9), then GMRES always finds a solution to (9) starting with

any initial guess.

Proof. Let x
(1)
0 be an arbitrary initial guess to the first equation of (15) and set x

(2)
0 =

QH
2 x

(1)
0 for the second equation of (15) . Since the second equation is a nonsingular system,

GMRES finds its solution at some iteration t for t ≤ N − k, namely, r
(2)
t = 0. Therefore,

x
(1)
t is a solution of the first equation due to Lemma 4.3.

Thus, Theorem 4.4 guarantees that deflated GMRES converges to the solution. This

is not a trivial result, see the following remark.
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Remark 4.5 The singular system (9) is always consistent, so there exists at least one

solution. However, the consistency of a singular system is generally not a sufficient con-

dition for a Krylov-subspace method to converge to a solution of the system. For example,

consider the system [
0 1

0 0

]
x =

[
1

0

]
,

which is clearly consistent. If we select the initial guess x0 = [1, 0]T , then the affine

subspace (2) would contain no solution of the system for any m. Therefore, a Krylov-

subspace method would fail to find a solution starting with this initial guess.

5 Bounds on Deflated GMRES Residuals

This section presents some results on bounds of residuals computed by deflated GMRES.

In Section 5.1, those residual bounds are used to show that D-GMRES converges faster

than GMRES. Subsequently, residual bounds are provided in Section 5.2 showing that the

convergence of D-GMRES is accelerated if the deflation subspace is extended. Finally, we

generalize Proposition 2.2 and Corollary 2.3 to D-GMRES in Section 5.3.

5.1 Comparison of GMRES and Deflated GMRES

We consider the solution of Eqs. (1) and (9) by GMRES, and denote the corresponding

residuals by rm and rD
m, respectively. Let x0 ∈ CN be an initial guess of the two solution

processes. Then, for any scalars c1, c2, . . . , cm, we have

Pr0 +

m∑

k=1

ck(PA)kPr0 = Pr0 +

m∑

k=1

ckPAkr0 = P

(
r0 +

m∑

k=1

ckA
kr0

)
, (22)

where we have used the fact that PAP = PA due to Lemma 4.1. Let pm(λ) = 1 +
∑m

k=1 ckλ
k. Then, (22) becomes

pm(PA)rD
0 = pm(PA)Pr0 = Ppm(A)r0.
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Therefore,

‖rD
m‖2 = min

p∈Pm,p(0)=1
‖p(PA)rD

0 ‖2 ≤ ‖pm(PA)rD
0 ‖2 = ‖Ppm(A)r0‖2

= ‖Q2Q
H
2 pm(A)r0‖2 = ‖QH

2 pm(A)r0‖2.
(23)

Moreover, since

pm(A)r0 = QQHpm(A)r0 = (Q1Q
H
1 + Q2Q

H
2 )pm(A)r0

= Q1Q
H
1 pm(A)r0 + Q2Q

H
2 pm(A)r0 ≡ d1 + d2,

and dH
1 d2 = 0, we have

‖pm(A)r0‖2
2 = ‖d1‖2

2 + ‖d2‖2
2 = ‖QH

1 pm(A)r0‖2
2 + ‖QH

2 pm(A)r0‖2
2.

Thus, (23) can be written as

‖rD
m‖2

2 ≤ ‖QH
2 pm(A)r0‖2

2 = ‖pm(A)r0‖2
2 − ‖QH

1 pm(A)r0‖2
2. (24)

Note that (24) holds for any pm ∈ Pm with pm(0) = 1. If we choose pm such that

pm(A)r0 = rm, then (24) yields

‖rD
m‖2

2 ≤ ‖QH
2 rm‖2

2 = ‖rm‖2
2 − ‖QH

1 rm‖2
2. (25)

Therefore, we have proved the following theorem.

Theorem 5.1 Suppose A ∈ CN×N is nonsingular and Z ∈ CN×k is a deflation-subspace

matrix whose columns form a basis of some A-invariant subspace. Let GMRES be used to

solve (1) and (9), where rm and rD
m denote the corresponding m-th residual, respectively.

Then, starting with the same initial guess, rm and rD
m obey (25). In particular, we obtain

‖rD
m‖2 ≤ ‖rm‖2 for all m = 1, 2, . . ..

We note that, for a general choice of Z, Theorem 5.1 is not necessarily true, see the

experiment in Section 7.1.3. The theorem only holds for an A-invariant deflation subspace;

in this case, deflated GMRES always converges faster than GMRES. This result is quite

strong by regarding the fact that spectral properties of the (deflated) coefficient matrix do

not necessarily predict the GMRES convergence, see, e.g., [11].

Remark 5.2 For any polynomial method starting with the same initial guess x0 and ap-
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plied to solve (1), the inequality (24) indicates that the residual, denoted by rpol
m , computed

by the method at the m-th iteration satisfies

‖rD
m‖2

2 ≤ ‖QH
2 rpol

m ‖2
2 = ‖rpol

m ‖2
2 − ‖QH

1 rpol
m ‖2

2.

In particular,

‖rD
m‖2

2 ≤ ‖QH
2 rBi-CG

m ‖2
2 = ‖rBi-CG

m ‖2
2 − ‖QH

1 rBi-CG

m ‖2
2,

and

‖rD
m‖2

2 ≤ ‖QH
2 rBi-CGSTAB

m/2 ‖2
2 = ‖rBi-CGSTAB

m/2 ‖2
2 − ‖QH

1 rBi-CGSTAB

m/2 ‖2
2,

where rBi-CG

m is the Bi-CG residual, and rBi-CGSTAB

m/2 is the Bi-CGSTAB residual at iteration

m/2. In other words, Theorem 5.1 can be easily generalized to Bi-CG and Bi-CGSTAB.

5.2 Deflated GMRES for Different Deflation Subspaces

The argument that leads to (25) also implies a relation between different deflation processes.

Suppose Z1 and Z2 are two A-invariant subspaces with Z1 ⊆ Z2. Let Z1 = [z
(1)
1 , . . . , z

(1)
k1

]

be a basis of Z1 and Z2 = [z
(2)
1 , . . . , z

(2)
k2

] a basis of Z2. Form the projectors

P (1) = I − AZ1(Z
H
1 AZ1)

−1ZH
1 and P (2) = I − AZ2(Z

H
2 AZ2)

−1ZH
2 ,

and consider the solution of

P (1)Ax = P (1)b and P (2)Ax = P (2)b, (26)

by GMRES.

Lemma 5.3 shows that the projector P = I − AZ(ZHAZ)−1ZH is independent of the

choice of a basis of an A-invariant subspace.

Lemma 5.3 If Z1 = Z2, then P (1) = P (2).

Proof. Let Z = Z1 = Z2 and k = k1 = k2. Then, {z(1)
1 , . . . , z

(1)
k } and {z(2)

1 , . . . , z
(2)
k } are

two bases of the same space Z, and, therefore, there exists a nonsingular matrix B ∈ Ck×k

such that Z1 = Z2B. Thus,

P (1) = I − AZ1(Z
H
1 AZ1)

−1ZH
1 = I − A(Z2B)

(
(Z2B)HA(Z2B)

)−1
(Z2B)H

= I − AZ2(Z
H
2 AZ2)

−1ZH
2 = P (2).
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We now pick a basis {z1, . . . , zk1
, . . . , zk2

, . . . , zN} of C
N with Z1 = span{z1, . . . , zk1

}
and Z2 = span{z1, . . . , zk2

}. Because of Lemma 5.3, it can be assumed without loss of

generality that z
(1)
i = zi for i = 1, 2, . . . , k1 and z

(2)
i = zi for i = 1, 2, . . . , k2. We perform a

QR factorization on the basis matrix:

[z1, . . . , zk1
, . . . , zk2

, . . . , zN ] = QR. (27)

Lemma 4.1 then indicates that

P (1) = Q
(1)
2 (Q

(1)
2 )H and P (2) = Q

(2)
2 (Q

(2)
2 )H ,

where Q
(1)
2 and Q

(2)
2 are the matrices of the last N−k1 and N−k2 columns of Q, respectively.

From this, it can be seen that P (2) = P (2)P (1).

Let c1, . . . , cm be any scalars. Similar to (22), we obtain

P (2)r0 +
m∑

k=1

ck(P
(2)A)kP (2)r0 = P (2)r0 +

m∑

k=1

ckP
(2)Akr0

= P (2)

(
r0 +

m∑

k=1

ckA
kr0

)
= P (2)P (1)

(
r0 +

m∑

k=1

ckA
kr0

)

= P (2)

(
P (1)r0 +

m∑

k=1

ckP
(1)Akr0

)
= P (2)

(
P (1)r0 +

m∑

k=1

ck(P
(1)A)kP (1)r0

)
.

Therefore,

pm(P (2)A)P (2)r0 = P (2)pm(P (1)A)P (1)r0, (28)

where pm(λ) = 1 +
∑m

k=1 ckλ
k.

Subsequently, let rD1
m and rD2

m denote the residuals computed at the m-th iteration of

GMRES, applied to solve the first and the second system in (26), respectively. Then, (28)

implies

‖rD2
m ‖2 = min

p∈Pm,p(0)=1
‖p(P (2)A)rD2

0 ‖2 ≤ ‖pm(P (2)A)rD2
0 ‖2

= ‖P (2)pm(P (1)A)rD1
0 ‖2 = ‖(Q(2)

2 )Hpm(P (1)A)rD1
0 ‖2.

Starting with the above inequality and using the same argument that leads to (24), we

have

‖rD2
m ‖2

2 ≤ ‖pm(P (1)A)rD1
0 ‖2

2 − ‖(Q(2)
1 )Hpm(P (1)A)rD1

0 ‖2
2,
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where Q
(2)
1 is the matrix consisting of the first k2 columns of the Q in (27). Then, by

choosing pm so that pm(P (1)A)rD1
0 = rD1

m , this yields

‖rD2
m ‖2

2 ≤ ‖rD1
m ‖2

2 − ‖(Q(2)
1 )HrD1

m ‖2
2. (29)

Thus, we have proved Theorem 5.4 (cf. Theorem 5.1), which states that extending the

deflation subspace results in a faster convergence of Deflated GMRES.

Theorem 5.4 Suppose A ∈ CN×N is nonsingular and Z1,Z2 are two A-invariant sub-

spaces with Z1 ⊆ Z2. Let Z1 ∈ CN×k1 and Z2 ∈ CN×k2 be chosen so that their columns

form a basis of Z1 and a basis of Z2, respectively. Suppose GMRES is used to solve the

systems in (26). Then, by starting with the same initial guess, the residuals rD1
m and rD2

m

satisfy (29). In particular, ‖rD2
m ‖2 ≤ ‖rD1

m ‖2 holds for all m = 1, 2, . . ..

5.3 Generalization of GMRES Results

We aim at extending Proposition 2.2 and Corollary 2.3 from GMRES to deflated GMRES.

To do so, we need the following assumption, which holds throughout this subsection.

Assumption 5.5 We assume that the nonsingular A ∈ CN×N has a spectral decom-

position (6) with V = [v1, . . . , vN ] and Λ = diag{λ1, . . . , λN}. Moreover, we choose

Z = [v1, . . . , vk] ∈ CN×k, perform a QR factorization on the matrix V = [v1, . . . , vk,

vk+1, . . . , vN ] ≡ [Z, Z̃] as in (12), and set W = Q2.

Thus, the columns of the matrix Z form a basis of the A-invariant subspace spanned

by the eigenvectors {v1, . . . , vk}.

Lemma 5.6 Under Assumption 5.5, the matrix B22 from Proposition 3.2 satisfies

B22 = R22Λ2R
−1
22 ,

where Λ2 = diag{λk+1, . . . , λN}, and matrices B22 and R22 are the same as in Eqs. (10)

and (12), respectively.

Proof. Right-multiplying (14) by [Q1, Q2] yields AQ2 = Q1R11B12+Q2B22. This implies

B22 = QH
2 Q2B22 = QH

2 (AQ2 − Q1R11B12) = QH
2 AQ2. (30)
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On the other hand, combining (11) and (13) yields

AQ2R22 = A(Z̃ − Q1R12) = AZ̃ − AQ1R12 = AZ̃ − AZR−1
11 R12

= Z̃Λ2 − ZB11R
−1
11 R12 = (Q1R12 + Q2R22)Λ2 − (Q1R11)B11R

−1
11 R12,

(31)

where we have used

AZ̃ = A[vk+1, . . . , vN ] = [vk+1, . . . , vN ]Λ2 = Z̃Λ2.

Left-multiplying (31) by QH
2 leads to

QH
2 AQ2R22 = R22Λ2. (32)

By combining Eqs. (30) and (32), the lemma follows immediately.

In Section 4, we have proved the solution equivalence (20) and (21), when GMRES

is used to solve the two systems in (15). Subsequently, by applying Proposition 2.2 and

Lemma 5.6 to the second equation of (15), we obtain the following result.

Theorem 5.7 Suppose that GMRES is used to solve Eq. (9). Then, under Assump-

tion 5.5, rD
m obeys

‖rD
m‖2 ≤ κ2(R22)ǫ

(2)
m ‖rD

0 ‖2, (33)

where ǫ(2)
m = min

p∈Pm,p(0)=1
max

λ∈{λk+1,...,λN}
|p(λ)|.

Similarly, by applying Corollary 2.3 and Lemma 5.6 to the second equation of (15), we

obtain the following result.

Corollary 5.8 Under the assumptions of Theorem 5.7, if all the eigenvalues λk+1, . . . , λN

of A are located in an ellipse, E(c, d, a), that excludes the origin of the complex plane, then

‖rD
m‖2 ≤ κ2(R22)

Cm(a
d
)

Cm( c
d
)
‖rD

0 ‖2 ≈ κ2(R22)δ
m‖rD

0 ‖2, (34)

where δ = a+
√

a2−d2

c+
√

c2−d2
.

Thus, the upper bound of the residual norm of deflated GMRES is determined by the

condition number of R22 (rather than V ), and the scalar δ determined by the distribution
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of the undeflated eigenvalues. Furthermore, we note that the ellipse E(c, d, a) as used in

Corollary 5.8 is smaller than that of Corollary 2.3 for the same A. Additionally, we notice

that it depends on the exact eigenvalue distribution of A which eigenvalues of A can be

deflated best. This is further illustrated in Section 7.

6 Solving Real Linear Systems by Deflated GMRES

The results presented in Sections 4, 5.1, and 5.2 remain unchanged in real arithmetic.

In this subsection, we focus on the results of Section 5.3, and show how to choose Z

from complex eigenvectors such that all computations remain in real arithmetic while the

effectiveness of deflation does not change.

Suppose A has a spectral decomposition A = Ṽ Λ̃Ṽ −1, where Ṽ and Λ̃ are N × N

complex matrices. Since A is real, its eigenvalues and eigenvectors appear in conjugate

pairs. Therefore, with appropriate permutations, we can express Λ̃ and Ṽ as follows:

Λ̃ = diag{λ1, λ̄1, . . . , λl, λ̄l, µ1, . . . , µN−2l},

and

Ṽ = [v1, v̄1, . . . , vl, v̄l, w1, . . . , wN−2l],

where µ1, . . . , µN−2l and w1, . . . , wN−2l are real, and the overbar denotes complex conjuga-

tion.

Now, suppose that we want to remove

λ1, λ̄1, . . . , λi, λ̄i, µ1, . . . , µj, 2i + j = k, (35)

from σ(A). Further permutations allow us to rearrange these eigenvalues and the associated

eigenvectors such that they come first in Λ̃ and Ṽ , i.e.,

Λ̃ = diag{λ1, λ̄1, . . . , λi, λ̄i, µ1, . . . , µj, λi+1, λ̄i+1, . . . , λl, λ̄l, µj+1, . . . , µN−2l},

and

Ṽ = [v1, v̄1, . . . , vi, v̄i, w1, . . . , wj, vi+1, v̄i+1, . . . , vl, v̄l, wj+1, . . . , wN−2l].

In order to remove the desired eigenvalues (35) while keeping all the quantities real, we

want to choose an appropriate deflation-subspace matrix Z ∈ RN×k in (8). To that end,
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we set

Kt =

[
λreal

t λimag

t

−λimag

t λreal

t

]
, F =

[
1

√
−1√

−1 1

]
, G =

1

2

[
1 −

√
−1

1
√
−1

]
,

where the superscripts ‘real’ and ‘imag’ denote the real and imaginary parts of a complex

quantity, respectively. It is then straightforward to verify that

Kt = F

[
λt 0

0 λ̄t

]
F−1, [vreal

t , vimag

t ] = [vt, v̄t]G.

Therefore, if we set

Λ = diag{K1, . . . , Ki, µ1, . . . , µj, Ki+1, . . . , Kl, µj+1, . . . , µN−2l} ≡
[

Λ1 0

0 Λ2

]
;

V = [vreal

1 , vimag

1 , . . . , vreal

i , vimag

i , w1, . . . , wj, v
real

i+1, v
imag

i+1 , . . . , vreal

l , vimag

l , wj+1, . . . , wN−2l]

≡ [V1, V2];

Γ = diag{F, . . . , F︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
j

, F, . . . , F︸ ︷︷ ︸
l−i

, 1, . . . , 1︸ ︷︷ ︸
N−2l−j

} ≡
[

Γ1 0

0 Γ2

]
;

Ω = diag{G, . . . , G︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
j

, G, . . . , G︸ ︷︷ ︸
l−i

, 1, . . . , 1︸ ︷︷ ︸
N−2l−j

},

where Λ1 ∈ Rk×k, V1 ∈ RN×k and Γ1 ∈ Ck×k, we obtain

Λ = ΓΛ̃Γ−1, V = Ṽ Ω,

and

A = Ṽ Λ̃Ṽ −1 = (V Ω−1)(Γ−1ΛΓ)(V Ω−1)−1 = V (ΓΩ)−1Λ(ΓΩ)V −1 = V ΛV −1, (36)

since (ΓΩ)−1Λ(ΓΩ) = Λ.

Equation (36) is a spectral decomposition of A in RN×N . By setting Z = V1, we obtain

the result that σ(PA) does not contain the eigenvalues (35) according to Proposition 3.2.

Moreover, the same procedures of derivation in real arithmetic can be used to derive

the results as presented in Sections 4 and 5. All results remain true with real quantities

B22, R22, Λ2, r
D
0 and rD

m, except that κ2(R22) in both (33) and (34) should be replaced by

κ2(R22Γ2). This is because (33) and (34) were obtained by applying Proposition 2.2 and
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Corollary 2.3 to the second system of (15), and we now have

B22 = R22Λ2R
−1
22 = (R22Γ2)Λ̃2(R22Γ2)

−1,

where Λ̃2 is the (N − k) × (N − k) lower-diagonal block of Λ̃.

7 Numerical Experiments

To illustrate the theoretical results as presented in the previous sections, we perform some

numerical experiments in which the performance of GMRES and deflated GMRES (D-

GMRES) is tested. The computations are carried out in MATLAB 7.4.0 on a sequential

LINUX machine (Dell Precision T5500 with a Quad-core Intel Xeon 5500 series processor

and 4 GB memory).

Our main application is a variant of the 2-D convection-diffusion-reaction equation, i.e.,

−uxx − uyy + α(ux + uy) − βu = f,

with homogeneous Dirichlet boundary conditions and

x, y ∈ [0, 1]2, u = u(x, y), f = f(x, y) = 1 + sin(πx) sin(πy), α ≥ 0, β ∈ C.

The equation is discretized by a standard second-order finite-difference scheme on a uniform

Cartesian grid, where central discretization is used for the first-order derivatives, and Nx

and Ny grid points are chosen in the x- and y-direction, respectively. The resulting matrix

is A ∈ CN×N with N = NxNy, and is non-Hermitian and unsymmetric if α, β 6= 0. In the

experiments, we fix Nx = Ny = 20, while parameters α and β are varied to control the

symmetry and the definiteness of A, respectively.

We consider the linear system Ax = b for various classes of matrices:

(a) real and positive-definite A (i.e., β = 0);

(b) real and indefinite A (i.e., a real β > 0);

(c) complex and indefinite A (i.e., a complex β with a positive real and imaginary part).

For both GMRES and D-GMRES, we choose a random initial guess, no preconditioner,

and a relative termination tolerance of 10−8. In the experiments, the eigenvalues and
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eigenvectors of A are explicitly computed via the MATLAB command [V,D]=eig(A).

Matrix V is the eigenvector-matrix. In most experiments, we can write V = [Z, Z̃], where

Z ∈ CN×k is the deflation-subspace matrix containing k eigenvectors of A. The value of

k is varied in the experiments. Notice that, for the sake of convenience, eigenvectors are

not divided into their real and imaginary parts for the deflation vectors as described in

Section 6. Furthermore, we measure the exact residuals (rather than the GMRES-generated

residuals) in the experiments, i.e., rm = b − Axm for m = 1, 2 . . . are analyzed.

We emphasize that the results of the experiments are mainly meant to illustrate the

theoretical results rather than to come up with an efficient solver. Therefore, we do not

present results in terms of computational cost, but in terms of number of iterations, residual

convergence and spectral plots. We note that, for large and realistic problems, a good pre-

conditioner is required to reduce the number of iterations, approximations of eigenvectors

should be used, and attention should be paid to an efficient implementation of D-GMRES,

see, e.g., [5, 26].

7.1 Experiments with a Real and Positive-Definite Matrix

In the first experiment, we set β = 0 and vary the value of α. The resulting matrix, A, is

real and positive definite.

7.1.1 Deflation of the Smallest Eigenvalues

We perform the experiment with k = 10 deflation vectors, which are equal to eigenvectors

associated with eigenvalues of A that are the smallest in magnitude. The results can

be found in Table 1, Figure 1 and Figure 2. In the table, we measure the condition

numbers of A, V and ZHAZ, which are denoted by κ(A), κ(V ) and κ(ZHAZ), respectively.

Moreover, the quantity ||A−AT ||2
||A||2 measures the symmetry of A. In addition, the quantity

||ZT eZ||2
||eZ||2

measures the orthogonality of Z with respect to Z̃. Finally, we can perform a

QR factorization on V as in (12). The condition number of block R22 of the matrix R is

measured, which gives some insights into the residuals, see Theorem 5.7.

We can see in Figure 2 that the imaginary parts of the eigenvalues of A become larger

for an increasing α. Moreover, as can be observed in Table 1, a larger α also yields the

following:

• A becomes better conditioned, while κ(V ) and κ(ZHAZ) becomes worse conditioned;
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α κ(A) κ(V ) κ(ZHAZ) κ(R22)
||ZT eZ||2
||Z||2

||A−AT ||2
||A||2 GMRES D-GMRES Benefit

0 1.8E2 1.0 8.3 1.0 0.0 0.00 73 47 36%
1 1.8E2 27 11 1.6 0.3 0.02 72 47 35%
5 1.5E2 1.2E3 2.8E2 8.6 1.3 0.12 72 49 32%
10 1.1E2 2.3E4 1.4E4 60 2.6 0.24 68 50 26%
20 68 8.4E8 9.5E6 3.1E3 5.5 0.47 57 48 16%

Table 1: Results for k = 10, β = 0, and various values of α. The matrix Z consists of
eigenvectors associated with the smallest eigenvalues of A. The columns associated with
‘GMRES’ and ‘D-GMRES’ present the numbers of required iterations for convergence.
The ‘Benefit’ denotes the improvement of using D-GMRES instead of GMRES in terms of
iterations.
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(b) α = 20.

Figure 1: Residual plots of GMRES and D-GMRES for k = 10, β = 0, and various values
of α. Deflation vectors are eigenvectors corresponding to the smallest eigenvalues of A in
magnitude.

• κ(R22) grows, so the residuals as given in Eqs. (33) and (34) are bounded by larger

values;

• the space spanned by the columns of Z becomes less orthogonal to that of Z̃;

• A becomes more unsymmetric;

• GMRES requires fewer iterations;

• the benefit of D-GMRES decreases compared to GMRES.

Those observations are in agreement with Theorem 5.7 and Corollary 5.8. Due to an

increasing κ(R22), the bound in both Eqs. (33) and (34) increases correspondingly. There-

fore, the improvement of D-GMRES with respect to GMRES becomes less significant as

the symmetry of A decreases.
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Figure 2: Spectral properties of GMRES and D-GMRES for k = 10, β = 0, and various
values of α. Deflation vectors are eigenvectors corresponding to the smallest eigenvalues
of A in magnitude.

Furthermore, in Figure 1, we observe that all residuals of D-GMRES are smaller than

those of GMRES for all iterations. This is in conformation with Theorem 5.1.

To conclude this subsection, we give the results of D-GMRES for a various number of

deflation vectors, see Figure 3. As can be seen in this figure, D-GMRES converges faster

as k grows. This statement is even stronger: the residuals for D-GMRES with s deflation

vectors are equal or greater than those residuals for D-GMRES with more than s deflation

vectors. This is in agreement with Theorem 5.4.
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Figure 3: Residual plots of GMRES and D-GMRES for α = 10, β = 0, and various values
of k. Deflation vectors are eigenvectors corresponding to the smallest eigenvalues of A in
magnitude.
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7.1.2 Deflation of Other Eigenvalues

We test the performance of D-GMRES in which the largest or middle, instead of the

smallest, eigenvalues in magnitude are deflated. The convergence results of this experiment

can be found in Figures 4 and 5.

From the figures, we observe that GMRES and D-GMRES show a similar convergence

behavior. Hence, deflating eigenvalues other than the smallest ones does not significantly

improve the convergence of GMRES for this test case. Note that the residuals of D-GMRES

are equal or slightly smaller than those of GMRES, in agreement of Theorem 5.1.

The fact that deflating the smallest eigenvalues of A has the best performance could be

explained by examining the parameter δ as used in Eq. (34). Recall that δ = a+
√

a2−d2

c+
√

c2−d2
where

a, c, d are derived from the ellipse E(c, d, a) in which all the eigenvalues of PA are located.

If this E(c, d, a) is chosen to be a circle with center c (on the x-axis) and radius r, then

δ = r
c
. The eigenvalues of A in this experiment are all nearly real. Let λ1, . . . , λN be the

eigenvalues of A in an increasing order of magnitude. Then, we find that the circle centered

at c1 = λk+1+λN

2
with radius r1 = λN−λk+1

2
contains all of the eigenvalues λk+1, . . . , λN .

Similarly, if the largest k eigenvalues are deleted, the circle centered at c2 = λ1+λN−k

2
with

radius r2 =
λN−k−λ1

2
contains the remaining eigenvalues λ1, . . . , λN−k. In this experiment,

it happens that r1

c1
< r2

c2
, so the δ associated with deflating the smallest eigenvalues is

smaller than the δ associated with deflated the largest eigenvalues. In addition, deflating

interior eigenvalues of A does obviously not change δ. Hence, it can be motivated by

inequality (34) that deflating the smallest eigenvalues results in a faster convergence of

D-GMRES compared to deflating the middle or largest eigenvalues of A for this specific

test case.
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Figure 4: Residual plots of GMRES and D-GMRES for k = 10, β = 0, and various values
of α. Deflation vectors are eigenvectors of A corresponding to the largest eigenvalues in
magnitude.
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(b) α = 20.

Figure 5: Residual plots of GMRES and D-GMRES for k = 10, β = 0, and various values
of α. Deflation vectors are eigenvectors of A associated with the eigenvalues in the center
of the spectrum.

7.1.3 Deflation with General Vectors

In the next experiment, we use random vectors as deflation vectors in D-GMRES. The the-

ory, as presented in the previous sections, is not valid for this case, but it is interesting to

see how D-GMRES performs. For symmetric matrices, it is known that deflation with gen-

eral vectors would not harm the convergence of the iterative process, see [22, Section 2.3].

In the next experiment, we test if this is also the case for nonsymmetric matrices.

We take the same parameter set as above (i.e., k = 10, β = 0, and various values of α).

The convergence results of GMRES and D-GMRES can be found in Figure 6.

From Figure 6, it can be observed that for a symmetric A, GMRES and D-GMRES

show a similar convergence behavior, while D-GMRES is significantly slower than GMRES

for a (strongly) unsymmetric A. Hence, the theory for symmetric matrices, as provided

in [22], does not apply to unsymmetric matrices.
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Figure 6: Residual plots of GMRES and D-GMRES for k = 10, β = 0, and various values
of α. Random vectors are used as deflation vectors in D-GMRES.
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7.2 Experiment with a Real and Indefinite Matrix

In the next experiment, we fix all parameters in the problem (α = 10, and k = 20), and

set β = 500. Choosing a positive β implies a shift of the eigenvalues of A towards the left

half-plane, resulting in a real and indefinite matrix A. The corresponding eigenvalues of A

can be found in Figure 7. Different choices of deflation vectors are examined; we consider

eigenvectors of A associated with

1. the smallest eigenvalues in absolute sense;

2. the eigenvalues with the largest negative real parts;

3. the eigenvalues with the largest positive real parts;

4. the largest eigenvalues in absolute sense.

For this specific test case, Choice 3 and 4 are the same. The results for GMRES and

D-GMRES can be found in Table 2 and Figure 8.
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Figure 7: Eigenvalues of A corresponding to α = 10 and β = 500.

Method Iterations Benefit

GMRES 176 –
D-GMRES with Choice 1 109 38.1%
D-GMRES with Choice 2 128 27.3%
D-GMRES with Choice 3 / 4 165 6.3%

Table 2: Results for GMRES and D-GMRES (with Choices 1, 2, 3, and 4 for the deflation
vectors) for the test case of α = 10, β = 500, and k = 20.

From the table and figure, we observe that D-GMRES based on eigenvectors associated

with the smallest eigenvalues in absolute sense is the best choice. In this case, the deflated
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Figure 8: Residual plots for GMRES and D-GMRES (with Choices 1, 2, 3, and 4 for the
deflation vectors) for the test case of α = 10, β = 500, and k = 20.

matrix consists of two spectral clusters away from zero, and this seems to be more favorable

than reducing the size of one spectral cluster, which happens when deflation vectors are

taken to be eigenvectors corresponding to eigenvalues with the largest negative or positive

real parts or are largest in absolute sense.

The effectiveness of deflating eigenvalues from the interior of the spectrum of A looks

counterintuitive by considering Corollary 5.8. However, note that this corollary cannot be

applied to motivate this result, as the eigenvalues of A do not lie in the same half plane,

Therefore, one cannot find an ellipse E(c, d, a) that contains all the desired eigenvalues

while the origin is excluded.

7.3 Experiment with a Complex and Indefinite Matrix

In the next experiment, we take the same parameters as above (α = 10 and k = 20),

and set β = 500(1 + i), so that A is a complex matrix. Then, the imaginary parts of

the eigenvalues of A are approximately constant (around -500), while the real parts vary

between -500 and 3000.

We again investigate the four different choices of deflation vectors, as done in Subsec-

tion 7.2. The results of the experiment can be found in Table 3 and Figure 9.

Method Iterations Benefit

GMRES 64 –
D-GMRES with Choice 1 61 4.7%
D-GMRES with Choice 2 51 20.3%
D-GMRES with Choice 3 /4 61 4.7%

Table 3: Results for GMRES and D-GMRES with different choices for the deflation vectors
for the test case of a complex A with α = 10, β = 500(1 + i), and k = 20.
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Figure 9: Residual plots for GMRES and D-GMRES (with Choices 1, 2, 3, and 4 for the
deflation vectors) for the test case of α = 10, β = 500(1 + i), and k = 20.

From the table and figure, we can observe that D-GMRES based on eigenvectors asso-

ciated with the eigenvalues with largest negative parts is the best choice. Note that this is

a different observation compared to the case in which A is real, see Table 2. Hence, when

A is indefinite, the choice of the eigenvalues to be deflated depends on the exact eigenvalue

distribution of A.

Moreover, we note that a similar experiment as presented in Section 7.1.1 can be per-

formed here, where the performance of D-GMRES is examined by varying the number of

deflation vectors. As the results are similar to Figure 3 (and, therefore, obey Theorem 5.4),

they are omitted here.

7.4 Stability of D-GMRES

In theory, D-GMRES always converges faster than GMRES when eigenvectors are used as

deflation vectors, see Theorem 5.1. However, there are cases where D-GMRES is less effec-

tive than GMRES, as computations are done in finite precision. An example is presented

below.

We consider the same problem setting as in the previous subsection (i.e., β = 500(1+ i)

and k = 20), but we now use α = 20. We apply D-GMRES where the deflation vectors

are eigenvectors associated with the eigenvalues with the largest negative real parts. We

show that D-GMRES fails for this specific test case, see Figure 10.

As can be observed in the figure, D-GMRES stagnates around 1E-4. This phenomenon

may be explained by the fact that A is strongly nonnormal in this test case. Consider the
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Figure 10: Residual plots of GMRES and D-GMRES for a complex A and parameters
α = 20, β = 500(1 + i), and k = 20.

condition numbers of the corresponding matrices A, V , and ZHAZ:

κ(A) = 129, κ(V ) = 5.8E8, κ(ZHAZ) = 1.7E10.

As V is ill-conditioned, ZHAZ is also ill-conditioned. This results in the fact that the

deflation matrix, as given in Eq. (8), cannot be constructed accurately in machine precision.

Therefore, the projection of eigenvalues in D-GMRES can also not be performed accurately;

eigenvalues are not projected to exactly zero, but close to zero. This problem could be

resolved by stabilizing the deflation operator by projecting eigenvalues to a value in a

cluster of the spectrum of A rather than to zero, so that perturbations of these deflated

eigenvalues would not harm the convergence of the iterative process, see also [33].

8 Conclusions

In this paper, the convergence of Deflated GMRES is analyzed, where the deflation vectors

span an A-invariant subspace. We deduce that the deflated eigenvalues are shifted to zero,

whereas the other eigenvalues are unchanged. Then, by proving that deflated GMRES is

equivalent to GMRES applied to solve a reduced linear system, we derive that deflated

GMRES does not break down in exact arithmetic. Subsequently, we prove that the norm

of the residuals of deflated GMRES are always below the norm of the residuals of GMRES.

Hence, deflated GMRES always converges faster than GMRES. Furthermore, a monotonic-

ity property of deflated GMRES is obtained: extending the deflation subspace leads to a

faster convergence. In addition, bounds of residual norms that are valid for GMRES are

generalized to deflated GMRES. Thereafter, for real-valued systems with possibly complex

eigenvalues and eigenvectors, an analysis is provided to show how the computations in
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deflated GMRES can be kept in real arithmetic, while the theoretical results still remain

valid. Finally, numerical experiments are presented to illustrate the theoretical results.

In addition, those experiments show that deflated GMRES might break down when the

eigenvector-matrix is ill-conditioned, and deflated GMRES with general deflation vectors

does not necessarily work well.

This paper provides some more fundamental insights into the theory of deflated GM-

RES. Future research should include the development of the theory for practical deflated

GMRES variants: restarted and truncated GMRES with deflation can be examined, and

deflation based on nearly A-invariant subspaces can be further explored.
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