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A Multi-wavelet type limiter for discontinuous
Galerkin Approximations

Vani Cheruvid and Jennifer K. Ryan

Abstract

In this report, we present a multi-wavelet type limiter faetdiscontinuous Galerkin
method for limiting the solution when spurious oscillasotievelop near a shock. This lim-
iting leads to a loss of information in the approximationtttan be detrimental to a higher
order approximationk(> 2). The goal is therefore to retain as much information as pos
sible in the higher order approximation. This is done byrigkhdvantage of the evolution
in time of more degrees of freedom of a DG approximation by intakise of ideas from
multi-resolution analysis (MRA) [3]. This differs from miulevel method [18] in that it
only seeks to apply MRA ideas locally, on elements where gpaximation requires lim-
iting. This combination of techniques seems a natural pagias it is well known that the
wavelet linear approximation.¢., truncating the high frequencies) can approximate smooth
functions very efficiently. Previously, the major hurdlesaa devising wavelets that satisfy
boundary conditions. With the discontinuous Galerkin rodtthis is no longer an issue.
Multi-wavelets can achieve arbitrary high accuracy withGibbs’ phenomena by selecting
an appropriate wavelet basis, concentrating the energymdrequencies. Standard wavelet
linear approximation techniques cannot achieve similaulte for functions which are not
smooth, such as piecewise continuous functions with largeg. In this paper we present
results showing that the multi-wavelet idea is a promiseahhique for limiting solutions.
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1 Introduction

The Discontinuous Galerkin (DG) method has establisheidhp®rtance in an ever increas-
ing variety of applications including neutron transpomjdidynamics, and electromagnetic
problems. In particular, the properties of this method fe\a natural extension to such
areas as chemistry, physics, and geophysical applicatibhs popularity of DG is due in
part to its local nature and because it satisfies a local ceettsen property. Other nice prop-
erties of this method include its flexibility for adaptivitgasy implementation of boundary
conditions and it is easy to parallelize. If polynomials efycee less than or equal kaare
used for the basis of the approximation, the approximatias(k+ %) order of accuracy
(and typically(k+ 1)" order of accuracy is observed).

This paper examines a multi-wavelet technique for imprguime limiting process for
the discontinuous Galerkin method for hyperbolic equatiaen using higher order poly-
nomial approximationsk(> 2). One of the challenges of implementing the discontinuous
Galerkin method is that it requires the time evolution of endegrees of freedom per an
element and that for applications which contain shocksetli®mno consensus on a proper
limiting procedure. While evolving more degrees of freedomay be a disadvantage in
some applications, we seek to take advantage of this thrieggbhse of multi-wavelet trans-
forms. Initially, the ideas will be implemented locally, fegions where limiting is neces-
sary instead of applying the usual total variation bound@dB) limiter. The discontinuous
Galerkin method is a promising tool for many as yet unexplapplications but finding a
proper limiting procedure is challenging. Further, a maeust limiter that also accounts
for higher order approximations will aid in the expansiortted applicability of the discon-
tinuous Galerkin method.

1.1 Limiting for DG

The discontinuous Galerkin method, without further modiiien, can compute solutions
which are either smooth or have weak shocks and other discdtigs. However if the dis-
continuities are strong, the scheme will generate sigmifioacillations and even nonlinear
instability. For this purpose, typically a slope limiterfexhnique borrowed from the finite
volume methodology, is used after each Runge-Kutta inraggesto control the numerical
solution. There are many such limiters that exist in literat e.g., minmod type limiters
[14], [7], WENO based limiters [25], and generalize minmodment based limiting [21]
which are employed to control these oscillations. The slopier used in the DG methods
involve a parameter, by means of which the limiting does restry accuracy at critical
points. This parameter is problem dependent and often nhamsea trial and error basis. In
one dimensional scalar conservation laws, this parameteothing but an upper bound of
the second order derivative of the solution at critical mirMoment limiting [21] seeks to
maintain as high order approximation while reducing oatidhs inherent to the numerical
method. Active research is focused on finding a problem ieddent limiter that can control
the numerical oscillations and does not destroy the acgwtfihe solution at critical points
[22]. We seek to accomplish this through ideas used in nudirelet techniques.



2 Background

2.1 The discontinuous Galerkin method

The discontinuous Galerkin method has shown to be advamiageecause of its ability
to handle complicated geometries, allowance for simplattnent of boundary conditions,
high-order accuracy, and because it is highly paralleleabhere are several places in the
literature that contain a more in depth discussion [12, 019113, 14].

The discontinuous Galerkin method for the one-dimensionakervation law

W+ f(u)x=0 1)

is defined as follows: Begin by defining a mesh given by meshAig, = Xip1 =X 1 and
cell centeng, wherel; = (x — 5%, x + 5%) = (%_3:%,1), i=1,--.N. Then an approxi-
mation space is chosen to consist of piecewise polynomiaegree less than or equalko
wherek+ 1 is the order of accuracy of the approximation, thatjisz {v|ve Z* for xc I;}.
The discontinuous Galerkin method is found by multiplyirguation (1) by a test function
V € V, and integrating by parts to obtain the variational formolat

Find un(X,t) € W, such that

! Wvdx= ! f(U)VXdX— f(Ui+1/2)Vi+1/2 + f(ui—l/Z)Vi—1/2 YV € W.

The numerical scheme is then given by:
/(uh)tvdx: /| f (Un)VedX— ﬂ+1/2vi‘+1/2+ fAi—1/2Vi+_1/2 2)

for all test functionsv € Vi. The numerical flux,fi 12 = f(U, .U\, ), is chosen to

be an upwind monotone flux, i.e. it is a non-decreasing fonctf the first argument~
and a non-increasing function of the second argurnéniThe test functiorv is taken from
inside the cell. The numerical integration of (2) is donetpliementing the third-order SSP
Runge-Kutta method (see e.g. [19], [20], and [26]) and tgkire appropriate time step so
that spatial errors dominate.

2.2 Multi-Wavelet Methods

Wavelet analysis is now an established tool in many areasiehcse and engineering. It
provides a systematic way of representing and analyzingisnale phenomena and has ap-
plications in diverse areas including signal and imagegssitig, data compression, solution
of partial differential equations and statistics.

The notion of multiresolution analysis (MRA) was introddce [23] and [24]. Since
then, there appeared many new constructions of orthogombhan-orthogonal bases with
controllable localization in the time-frequency domain.

The multi-resolution analysis technique we seek to implenmedue to Alpert and col-
laborators [1, 2]. The idea is as follows: The scaling fumtsiq, . .., @_1 were chosen to
beg(x) =+/(j +1/2)P;(x), j =0,...,k—1, whereP,; are the Legendre polynomials. These
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functions form an orthonormal basis for the space of polyiatsrof degree less thanon
the interval[—1,1]. Alpert, Beylkin, Gines, and Vozovoi [3] introduced an aftative basis
for this space, using interpolating polynomials. Givenemx, ..., X1 which are roots of
R(x), and the associated Gauss-Legendre quadrature wevahts, ,wx_1, the functions
Rj(X) = \/LWJ_IJ'(X), j=0,...,k—1where

(%) = ”!‘—_&#1%

form an orthonormal basis dr-1,1] such that for any polynomial of degree less thak
can be represented by the expansion

k-1
f(x) =Y djR;
() ,; iRj(x)

where the coefficients are given by=, /wjf(x;), j =0,...,k—1. We have two cases:
1. {cg{k(x) = 2i/2q(2ix—k)} scaling function basis
2. {¢fy , W, (%) =2/241 (2x—k)} wavelet basis

as presented in [3]. We may use the basis in the case (2) folealk@esolution of a partial
differential equation, then any functidne L2[—1, 1] in terms of its wavelet coefficients (plus
its coefficients on the coarsest sCe{g as

o 2l-1m

al X),
kZO |; I7kw|’k( )

whereqj_k = (f, (qj_k) anddlj’k = (f, L[llj_k). If we use the scaling function basis on some séale
given in the case (1), then this discretization correspondstypical discontinuous Galerkin
approximation.

) = 3 Lol
() I;so,ocn,o(X)JrJ

3 Multi-Wavelet limiter

The incorporation of multi-resolution analysis into theatintinuous Galerkin method as
a limiting technique is an exciting undertaking. One of thainmdifficulties is devising
wavelets satisfying boundary conditions, but with the UsB@®, this is no longer an issue.
This differs from multi-level method [18] in that it only deeto apply MRA ideas locally,
on elements where the approximation requires limiting.

The idea behind using MRA for limiting is the following: The@coefficients are de-
composed and the information is represented at variousschhis leads to separation of the
information into low frequency components and high fregquyecomponents. We can now
remove unnecessary components using a pre-defined thotemtabkeconstruct the resulting
coefficients back to the original scale to obtain the limisetution.

Lets'j‘l1 be the Legendre expansion coefficient of the given functidevel m. The rela-
tions between the coefficiens§j on two consecutive levels= mandn = m+ 1 are given
by decomposition and reconstruction steps using the qtuadrenirror filter coefficients as
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matricesH© . H® GO andz® [3]. The matrix coefficientd;li(jo), hi(jl),gi(jo) andgi(jl) allow us

to change representation between two consecutive levelosax.,n=mandn=m+ 1.
We can use this information to examine the coefficients abthin the discontinuous

Galerkin approximation by decomposing the informatioddimg the extraneous oscilla-

tions, and reconstructing the approximation.

3.1 Multi-wavelet decomposition

To construct the multiwavelet decomposition for Legendskypomials, the coefﬁcientdjf}1

on scalem may be computed using the coeﬁicies‘}ﬁl from the nearest finer leveh+ 1.
The relations between the coefficients on two consecutixgddenandm-+ 1 are

K 0wt L (D amia
& — %(hij St

J:

k-1

0 1
i = Zo(gi(j)stle'i'gi(j)sg?;—lil)
J:

Thus, starting with 2k valuess], we apply repeatedly the decomposition procedure given
above to compute the coefficients on coarser levals,n—1,n—2,....0.

3.2 Multi-wavelet reconstruction

For multi-wavelet reconstruction, the coefficiedﬁscan be computed from the multi-wavelet

coeﬁicient$?0, JT, m=0,...,nusing recursively the reconstruction step,

k—1

Tat = 3 (s gld)
il = 3 (W)

3.3 Nonlinear Wavelet Transform

It is well known that wavelet linear approximatione(, truncating the high frequencies) can
approximate smooth functions very efficiently. It can aghiarbitrary high accuracy without
Gibbs’ phenomena by selecting an appropriate wavelet besixentrating the energy to
low frequencies. Standard wavelet linear approximati@hrneyues cannot achieve similar
results for functions which are not smooth, such as pieewistinuous functions with
large jumps. Many problems arise near discontinuitiessedyorimarily by the well known
Gibbs’ phenomenon.

Several approaches have been proposed to overcome thddenmso Nonlinear and
data dependent methods are often used to overcome thigprolVithin the wavelet pyra-
midal filtering framework, non-linear data dependent apijpnations are often usea,g.,
Donoho’s hard and soft thresholding techniques [17]. A nmfarelamental approach is to
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modify the wavelet transforms so as not to generate largelebeoefficients near jumps.
Claypoolet al. use an adaptive lifting scheme which lowers the order of@ppration near
jumps [8], thus minimizing the Gibbs’ effect. All these appches have their limitations,
and some residual Gibbs’ phenomenon still exists. Anotperaach, due to Donoho, is
to construct an orthonormal basis such as wedgelets aneletgd16] to represent the dis-
continuities. Avudainayagam and Vani developed a datardkpe Haar wavelet transform
and later extended to Daubechies wavelet transform [5fs WMork proposes to modify this
algorithm to apply to the coefficients of the discontinuowseskin approximation and apply
it as a limiter, if needed.

This work is similar to the multi-level method of Gopalakngn and Kanschat [18].
In [18], the authors combined an interior penalty methochveitDG scheme and applied
it to an advection-diffusion equation with an arbitrarilynall diffusion term. This scheme
reduces to the standard DG method for advection problems tieediffusion term is zero.
Their method is stable and accurate in diffusion dominatedell as convection dominated
regime. This research also uses a multilevel method, butisnwork we first determine
the elements where a limiter is necessary and then apply MR&lly. We emphasize that
this paper only concentrates on the limiting aspect andheoshock detection. However, a
natural extension is to use the MRA as a shock detector as well

3.4 Implementation of the multi-wavelet limiter

In implementing the multi-wavelet limiter, we first choo$e telement on which limiting is
required. This is possible through using multi-waveletslit or the traditional minmod lim-
iter to pick up the element where unphysical oscillatiorganp due to Gibbs’ phenomena.
Another possibility is to use the local edge detection meshaf Archibald, Gelb, and Yun
[4]. Once we have determined the elements on which the appabion needs to be limited,
we then use the information obtained from the multiwavesstainposition to remove these
oscillations. This is done by first decomposing the giverffanents. The decomposition
represents the transformation of the information which aginally given at one scale to
multi-scales. The given information at one scale is decaagaonto lower and higher fre-
guency components at various scales using the multi-watralesformation of Beylkin et
al. [3]. We then start by looking at the higher frequencied Bmit these coefficients by
removing those components which are smaller than a paatitolerance thus removing the
oscillations and then reconstruct the modified values backiginal scale. This is an effec-
tive method since application of wavelet transform on amisealing function coefficients
leads to averages (low frequency components) and diffesefiigh frequency components).

The criteria for truncation of wavelet coefficients is thdéldwing: We first define a
threshold value based on the order of the method. Given a funcfipand its approximation
f", (on scalen), we set to zero the difference coefficiedfs(in intervall) whenevetd'| < &
wherece is the desired accuracy of the approximation. After we haterchined this, we
can use this criteria at each step of decomposition till vaehiethe last stage where no
further decomposition is required. We then reconstructloe frequency and truncated
high frequency components back to the function values orotiggnal scale. Due to this
truncation process, the unphysical oscillations whiclsearn high-order methods can be
removed.
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Figure 1: k = 3)N = 32 plot of the solution to Burgers equation. Left figuré:= 0.4 the
multiwavelet limiter does not affect the approximation.gRii figure: T = 2 the multiwavelet
limiter helps to control spurious oscillations. Whereexact andk=approximation.

4 Numerical Examples

We demonstrate the effectiveness of the multiwaveletéinon a few preliminary test cases.
First, we test it on the nonlinear scalar Burgers equatidh sihe initial condition. Secondly
we test it on the standard Euler equations with Sod initiabitions. The cases we consider
use the Legendre basis for the discontinuous Galerkin appation with polynomial ex-
pansion of degree three and MRA tolerance ef 104

4.1 Burgers
The first case we consider is Burgers equation with sinealrgtndition.
U + Ul =0,
u(x,0) = sin(mx), xe (—-1,1). (3)

The final solution is calculated before and after the shotk=a.3 andt = 2.

Figure 1 shows the exact and approximate solutions scalduetinterval(—1,1) for
k=3 andN = 32. On the left is the solution before the shock occursTat 0.4. It is
desirable that the multiwavelet limiter not affect the $ioln unnecessarily, which is the
case in this instance. Secondly, the figure on the right phetsolution after the shock has
occurred, ail = 2. In this case, we can see that indeed the approximation daeont@in
spurious oscillations and remains stable even after theksthevelops.

4.2 Euler Equation with Riemann Initial Condition

Next, we investigate the effectiveness of the multiwavieiter for the Euler equation of
gas dynamics for a polytropic gas,

g +f(u), =0, x € (—5,5) (4)



Figure 2: The density obtained by the DG approximation toEbker equations with Sod ini-
tial conditions using the multiwavelet limiter fdt= 3, N = 100, T = 2. The multi-wavelet
limiter allows for retaining higher order information as afuas possible. Where=exact and
kx=approximation.

with Riemann initial conditions

u, x<0,
U(X’O):{ uUg, x>0

Recall that
u=(p,pv,E)T, f(u) =wu+ (0,v,vp)"

with E = % + %pvz, andy = 1.4. In this test case, we specifically consider Sod’s shock
tube problem [27]

(pL7VL7 pL) = (17 07 1)7 (pR7VR7 pR) = (0125 07 010)7

calculated at final tim&@ = 2 with N = 100 elements. In Figure 2, we plot the density
for k = 3. The multiwavelet limiter allows for retaining as much higlweder information
as much as possible which does allow for oscillations to nbatween shocks. The DG
solution remains stable and maintains a high resolutiomcqpation.

5 Concluding Remarks

The multi-wavelet idea is a promising technique for limitifThis technique allows for lim-
iting the discontinuous Galerkin approximation withouving to reconstruct the approxi-
mation. This is done through application of ideas in mudgalution analysis. That is, we
can decompose coefficients obtained from the discontin@alerkin approximation into
differences and averages using a multiwavelet decompnosigéxamine where the spurious
oscillations occur in the higher modes, and then recoristhec coefficients. It is similar
to the minmod technique, but does not require a evaluatidheofpproximation itself, the
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limiting can be accomplished in the multi-wavelet basise finmerical examples presented
demonstrate the possibility of this re-expansion. Futuoekws in applying to more chal-
lenging examples, examining the modification of the sotytas well as expansion to higher
dimensions.
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