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A Multi-wavelet type limiter for discontinuous
Galerkin Approximations

Vani Cheruvu1 and Jennifer K. Ryan2

Abstract

In this report, we present a multi-wavelet type limiter for the discontinuous Galerkin
method for limiting the solution when spurious oscillations develop near a shock. This lim-
iting leads to a loss of information in the approximation that can be detrimental to a higher
order approximation (k > 2). The goal is therefore to retain as much information as pos-
sible in the higher order approximation. This is done by taking advantage of the evolution
in time of more degrees of freedom of a DG approximation by making use of ideas from
multi-resolution analysis (MRA) [3]. This differs from multi-level method [18] in that it
only seeks to apply MRA ideas locally, on elements where the approximation requires lim-
iting. This combination of techniques seems a natural pairing as it is well known that the
wavelet linear approximation (i.e., truncating the high frequencies) can approximate smooth
functions very efficiently. Previously, the major hurdle was in devising wavelets that satisfy
boundary conditions. With the discontinuous Galerkin method this is no longer an issue.
Multi-wavelets can achieve arbitrary high accuracy without Gibbs’ phenomena by selecting
an appropriate wavelet basis, concentrating the energy to low frequencies. Standard wavelet
linear approximation techniques cannot achieve similar results for functions which are not
smooth, such as piecewise continuous functions with large jumps. In this paper we present
results showing that the multi-wavelet idea is a promising technique for limiting solutions.
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1 Introduction

The Discontinuous Galerkin (DG) method has established itsimportance in an ever increas-
ing variety of applications including neutron transport, fluid dynamics, and electromagnetic
problems. In particular, the properties of this method provide a natural extension to such
areas as chemistry, physics, and geophysical applications. The popularity of DG is due in
part to its local nature and because it satisfies a local conservation property. Other nice prop-
erties of this method include its flexibility for adaptivity, easy implementation of boundary
conditions and it is easy to parallelize. If polynomials of degree less than or equal tok are
used for the basis of the approximation, the approximation has (k+ 1

2) order of accuracy
(and typically(k+1)th order of accuracy is observed).

This paper examines a multi-wavelet technique for improving the limiting process for
the discontinuous Galerkin method for hyperbolic equations when using higher order poly-
nomial approximations (k > 2). One of the challenges of implementing the discontinuous
Galerkin method is that it requires the time evolution of more degrees of freedom per an
element and that for applications which contain shocks there is no consensus on a proper
limiting procedure. While evolving more degrees of freedommay be a disadvantage in
some applications, we seek to take advantage of this throughthe use of multi-wavelet trans-
forms. Initially, the ideas will be implemented locally, inregions where limiting is neces-
sary instead of applying the usual total variation bounded (TVB) limiter. The discontinuous
Galerkin method is a promising tool for many as yet unexplored applications but finding a
proper limiting procedure is challenging. Further, a more robust limiter that also accounts
for higher order approximations will aid in the expansion ofthe applicability of the discon-
tinuous Galerkin method.

1.1 Limiting for DG

The discontinuous Galerkin method, without further modification, can compute solutions
which are either smooth or have weak shocks and other discontinuities. However if the dis-
continuities are strong, the scheme will generate significant oscillations and even nonlinear
instability. For this purpose, typically a slope limiter, atechnique borrowed from the finite
volume methodology, is used after each Runge-Kutta inner stage to control the numerical
solution. There are many such limiters that exist in literature, e.g., minmod type limiters
[14], [7], WENO based limiters [25], and generalize minmod moment based limiting [21]
which are employed to control these oscillations. The slopelimiter used in the DG methods
involve a parameter, by means of which the limiting does not destroy accuracy at critical
points. This parameter is problem dependent and often chosen on a trial and error basis. In
one dimensional scalar conservation laws, this parameter is nothing but an upper bound of
the second order derivative of the solution at critical points. Moment limiting [21] seeks to
maintain as high order approximation while reducing oscillations inherent to the numerical
method. Active research is focused on finding a problem independent limiter that can control
the numerical oscillations and does not destroy the accuracy of the solution at critical points
[22]. We seek to accomplish this through ideas used in multi-wavelet techniques.
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2 Background

2.1 The discontinuous Galerkin method

The discontinuous Galerkin method has shown to be advantageous because of its ability
to handle complicated geometries, allowance for simple treatment of boundary conditions,
high-order accuracy, and because it is highly parallelizable. There are several places in the
literature that contain a more in depth discussion [12, 11, 10, 9, 13, 14].

The discontinuous Galerkin method for the one-dimensionalconservation law

ut + f (u)x = 0 (1)

is defined as follows: Begin by defining a mesh given by mesh size△xi = xi+ 1
2
− xi− 1

2
and

cell centerxi , whereIi = (xi − △xi
2 ,xi +

△xi
2 ) = (xi− 1

2
,xi+ 1

2
), i = 1, · · · ,N. Then an approxi-

mation space is chosen to consist of piecewise polynomials of degree less than or equal tok,
wherek+1 is the order of accuracy of the approximation, that is,Vh = {v|v∈Pk for x∈ Ii}.
The discontinuous Galerkin method is found by multiplying equation (1) by a test function
v∈Vh and integrating by parts to obtain the variational formulation:

Find uh(x, t) ∈Vh such that
∫

Ii
utvdx=

∫

Ii
f (u)vxdx− f (ui+1/2)vi+1/2 + f (ui−1/2)vi−1/2 ∀v∈Vh.

The numerical scheme is then given by:
∫

Ii
(uh)tvdx=

∫

Ii
f (uh)vxdx− f̂i+1/2v−i+1/2 + f̂i−1/2v+

i−1/2 (2)

for all test functionsv ∈ Vh. The numerical flux, f̂i+1/2 = f̂ (u−i+1/2,u
+
i+1/2), is chosen to

be an upwind monotone flux, i.e. it is a non-decreasing function of the first argumentu−

and a non-increasing function of the second argumentu+. The test functionv is taken from
inside the cell. The numerical integration of (2) is done by implementing the third-order SSP
Runge-Kutta method (see e.g. [19], [20], and [26]) and taking the appropriate time step so
that spatial errors dominate.

2.2 Multi-Wavelet Methods

Wavelet analysis is now an established tool in many areas of science and engineering. It
provides a systematic way of representing and analyzing multiscale phenomena and has ap-
plications in diverse areas including signal and image processing, data compression, solution
of partial differential equations and statistics.

The notion of multiresolution analysis (MRA) was introduced in [23] and [24]. Since
then, there appeared many new constructions of orthogonal and non-orthogonal bases with
controllable localization in the time-frequency domain.

The multi-resolution analysis technique we seek to implement is due to Alpert and col-
laborators [1, 2]. The idea is as follows: The scaling functionsφ0, . . . ,φk−1 were chosen to
beφ j(x) =

√

( j +1/2)Pj(x), j = 0, . . . ,k−1, wherePj are the Legendre polynomials. These
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functions form an orthonormal basis for the space of polynomials of degree less thank on
the interval[−1,1]. Alpert, Beylkin, Gines, and Vozovoi [3] introduced an alternative basis
for this space, using interpolating polynomials. Given nodesx0, . . . ,xk−1 which are roots of
Pk(x), and the associated Gauss-Legendre quadrature weights,w0, . . . ,wk−1, the functions
Rj(x) = 1√

wj
l j(x), j = 0, . . . ,k−1 where

l j(x) = Πk−1
i=0,i 6= j

(x−xi)

(x j −xi)

form an orthonormal basis on[−1,1] such that for any polynomialf of degree less thank
can be represented by the expansion

f (x) =
k−1

∑
j=0

d jRj(x)

where the coefficients are given byd j =
√

w j f (x j), j = 0, . . . ,k−1. We have two cases:

1. {φ j
l ,k(x) = 2 j/2φl (2 jx−k)} scaling function basis

2. {φ0
l ,0 , ψ j

l ,k(x) = 2 j/2ψl (2 jx−k)} wavelet basis

as presented in [3]. We may use the basis in the case (2) for a Galerkin solution of a partial
differential equation, then any functionf ∈ L2[−1,1] in terms of its wavelet coefficients (plus
its coefficients on the coarsest scaleV0) as

f (x) =
m

∑
l=0

s0
l ,0φ0

l ,0(x)+
∞

∑
j=0

2j−1

∑
k=0

m

∑
l=0

d j
l ,kψ j

l ,k(x),

wheresj
l ,k = ( f ,φ j

l ,k) andd j
l ,k = ( f ,ψ j

l ,k). If we use the scaling function basis on some scaleVj

given in the case (1), then this discretization correspondsto a typical discontinuous Galerkin
approximation.

3 Multi-Wavelet limiter

The incorporation of multi-resolution analysis into the discontinuous Galerkin method as
a limiting technique is an exciting undertaking. One of the main difficulties is devising
wavelets satisfying boundary conditions, but with the use of DG, this is no longer an issue.
This differs from multi-level method [18] in that it only seeks to apply MRA ideas locally,
on elements where the approximation requires limiting.

The idea behind using MRA for limiting is the following: The DG coefficients are de-
composed and the information is represented at various scales. This leads to separation of the
information into low frequency components and high frequency components. We can now
remove unnecessary components using a pre-defined threshold and reconstruct the resulting
coefficients back to the original scale to obtain the limitedsolution.

Let sm
jl be the Legendre expansion coefficient of the given function at level m. The rela-

tions between the coefficientssn
jl on two consecutive levelsn = m andn = m+ 1 are given

by decomposition and reconstruction steps using the quadrature mirror filter coefficients as
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matricesH(0),H(1),G(0),andG(1) [3]. The matrix coefficientsh(0)
i j ,h(1)

i j ,g(0)
i j andg(1)

i j allow us
to change representation between two consecutive levels say for ex.,n = m andn = m+1.

We can use this information to examine the coefficients obtained in the discontinuous
Galerkin approximation by decomposing the information, ridding the extraneous oscilla-
tions, and reconstructing the approximation.

3.1 Multi-wavelet decomposition

To construct the multiwavelet decomposition for Legendre polynomials, the coefficientsdm
jl

on scalem may be computed using the coefficientssm+1
jl from the nearest finer levelm+ 1.

The relations between the coefficients on two consecutive levelsmandm+1 are

sm
il =

k−1

∑
j=0

(

h(0)
i j sm+1

j,2l +h(1)
i j sm+1

j,2l+1

)

,

dm
il =

k−1

∑
j=0

(

g(0)
i j sm+1

j,2l +g(1)
i j sm+1

j,2l+1

)

Thus, starting with 2nk valuessn
il , we apply repeatedly the decomposition procedure given

above to compute the coefficients on coarser levels,m= n−1,n−2, . . . ,0.

3.2 Multi-wavelet reconstruction

For multi-wavelet reconstruction, the coefficientssn
jl can be computed from the multi-wavelet

coefficientss0
j0,d

m
jl ,m= 0, . . . ,n using recursively the reconstruction step,

sm+1
i,2l =

k−1

∑
j=0

(

h(0)
ji sm

jl +g(0)
ji dm

jl

)

sm+1
i,2l+1 =

k−1

∑
j=0

(

h(1)
ji sm

jl +g(1)
jl dm

jl

)

3.3 Nonlinear Wavelet Transform

It is well known that wavelet linear approximation (i.e., truncating the high frequencies) can
approximate smooth functions very efficiently. It can achieve arbitrary high accuracy without
Gibbs’ phenomena by selecting an appropriate wavelet basis, concentrating the energy to
low frequencies. Standard wavelet linear approximation techniques cannot achieve similar
results for functions which are not smooth, such as piecewise continuous functions with
large jumps. Many problems arise near discontinuities, caused primarily by the well known
Gibbs’ phenomenon.

Several approaches have been proposed to overcome these problems. Nonlinear and
data dependent methods are often used to overcome this problem. Within the wavelet pyra-
midal filtering framework, non-linear data dependent approximations are often used,e.g.,
Donoho’s hard and soft thresholding techniques [17]. A morefundamental approach is to
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modify the wavelet transforms so as not to generate large wavelet coefficients near jumps.
Claypoolet al. use an adaptive lifting scheme which lowers the order of approximation near
jumps [8], thus minimizing the Gibbs’ effect. All these approaches have their limitations,
and some residual Gibbs’ phenomenon still exists. Another approach, due to Donoho, is
to construct an orthonormal basis such as wedgelets and rigdelets [16] to represent the dis-
continuities. Avudainayagam and Vani developed a data dependent Haar wavelet transform
and later extended to Daubechies wavelet transform [5]. This work proposes to modify this
algorithm to apply to the coefficients of the discontinuous Galerkin approximation and apply
it as a limiter, if needed.

This work is similar to the multi-level method of Gopalakrishnan and Kanschat [18].
In [18], the authors combined an interior penalty method with a DG scheme and applied
it to an advection-diffusion equation with an arbitrarily small diffusion term. This scheme
reduces to the standard DG method for advection problems when the diffusion term is zero.
Their method is stable and accurate in diffusion dominated as well as convection dominated
regime. This research also uses a multilevel method, but in this work we first determine
the elements where a limiter is necessary and then apply MRA locally. We emphasize that
this paper only concentrates on the limiting aspect and not the shock detection. However, a
natural extension is to use the MRA as a shock detector as well.

3.4 Implementation of the multi-wavelet limiter

In implementing the multi-wavelet limiter, we first choose the element on which limiting is
required. This is possible through using multi-wavelets itself, or the traditional minmod lim-
iter to pick up the element where unphysical oscillations crop up due to Gibbs’ phenomena.
Another possibility is to use the local edge detection methods of Archibald, Gelb, and Yun
[4]. Once we have determined the elements on which the approximation needs to be limited,
we then use the information obtained from the multiwavelet decomposition to remove these
oscillations. This is done by first decomposing the given coefficients. The decomposition
represents the transformation of the information which wasoriginally given at one scale to
multi-scales. The given information at one scale is decomposed into lower and higher fre-
quency components at various scales using the multi-wavelet transformation of Beylkin et
al. [3]. We then start by looking at the higher frequencies and limit these coefficients by
removing those components which are smaller than a particular tolerance thus removing the
oscillations and then reconstruct the modified values back to original scale. This is an effec-
tive method since application of wavelet transform on a given scaling function coefficients
leads to averages (low frequency components) and differences (high frequency components).

The criteria for truncation of wavelet coefficients is the following: We first define a
threshold valueε based on the order of the method. Given a functionf , and its approximation
f n, (on scalen), we set to zero the difference coefficientsdn

l (in interval l ) whenever|dn
l | ≤ ε

whereε is the desired accuracy of the approximation. After we have determined this, we
can use this criteria at each step of decomposition till we reach the last stage where no
further decomposition is required. We then reconstruct thelow frequency and truncated
high frequency components back to the function values on theoriginal scale. Due to this
truncation process, the unphysical oscillations which arise in high-order methods can be
removed.
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Figure 1: k = 3,N = 32 plot of the solution to Burgers equation. Left figure:T = 0.4 the
multiwavelet limiter does not affect the approximation. Right figure: T = 2 the multiwavelet
limiter helps to control spurious oscillations. Where−=exact and∗=approximation.

4 Numerical Examples

We demonstrate the effectiveness of the multiwavelet limiter on a few preliminary test cases.
First, we test it on the nonlinear scalar Burgers equation with sine initial condition. Secondly
we test it on the standard Euler equations with Sod initial conditions. The cases we consider
use the Legendre basis for the discontinuous Galerkin approximation with polynomial ex-
pansion of degree three and MRA tolerance ofε = 10−4.

4.1 Burgers

The first case we consider is Burgers equation with sine initial condition.

ut +uux = 0,

u(x,0) = sin(πx), x∈ (−1,1). (3)

The final solution is calculated before and after the shock att = 0.3 andt = 2.
Figure 1 shows the exact and approximate solutions scaled tothe interval(−1,1) for

k = 3 andN = 32. On the left is the solution before the shock occurs, atT = 0.4. It is
desirable that the multiwavelet limiter not affect the solution unnecessarily, which is the
case in this instance. Secondly, the figure on the right plotsthe solution after the shock has
occurred, atT = 2. In this case, we can see that indeed the approximation does not contain
spurious oscillations and remains stable even after the shock develops.

4.2 Euler Equation with Riemann Initial Condition

Next, we investigate the effectiveness of the multiwaveletlimiter for the Euler equation of
gas dynamics for a polytropic gas,

ut + f(u)x = 0, x∈ (−5,5) (4)
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Figure 2: The density obtained by the DG approximation to theEuler equations with Sod ini-
tial conditions using the multiwavelet limiter fork = 3, N = 100, T = 2. The multi-wavelet
limiter allows for retaining higher order information as much as possible. Where−=exact and
∗=approximation.

with Riemann initial conditions

u(x,0) =

{

uL, x < 0,

uR, x > 0.

Recall that
u = (ρ ,ρv,E)T , f(u) = vu+(0,v,vp)T

with E = p
γ−1 + 1

2ρv2, andγ = 1.4. In this test case, we specifically consider Sod’s shock
tube problem [27]

(ρL,vL, pL) = (1,0,1), (ρR,vR, pR) = (0.125,0,0.10),

calculated at final timeT = 2 with N = 100 elements. In Figure 2, we plot the density
for k = 3. The multiwavelet limiter allows for retaining as much higher order information
as much as possible which does allow for oscillations to occur between shocks. The DG
solution remains stable and maintains a high resolution approximation.

5 Concluding Remarks

The multi-wavelet idea is a promising technique for limiting. This technique allows for lim-
iting the discontinuous Galerkin approximation without having to reconstruct the approxi-
mation. This is done through application of ideas in multi-resolution analysis. That is, we
can decompose coefficients obtained from the discontinuousGalerkin approximation into
differences and averages using a multiwavelet decomposition, examine where the spurious
oscillations occur in the higher modes, and then reconstruct the coefficients. It is similar
to the minmod technique, but does not require a evaluation ofthe approximation itself, the
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limiting can be accomplished in the multi-wavelet basis. The numerical examples presented
demonstrate the possibility of this re-expansion. Future work is in applying to more chal-
lenging examples, examining the modification of the solution, as well as expansion to higher
dimensions.
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