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Local Derivative Post-processing: Challenges for a
non-uniform mesh

Jennifer K. Ryah

Abstract

Previous investigations into accuracy enhancement fodéhigatives of a discontinuous
Galerkin solution demonstrated that there are many wayggdmach obtaining higher order
accuracy in the derivatives, each with different advartagepropertiesJ.K. Ryan and B.
Cockburn (2009), “Local Derivative Post-Processing foe thiscontinuous Galerkin Meth-
ods.” Journal of Computational Physics, 228:8642-864-0r the discontinuous Galerkin
method, the order of accuracy without post-processinghfedt'—derivative isk+1-d. For
the derivative of the post-processed solution itks2d. Additionally, it was demonstrated
that not only is calculating the derivative of the post-m®sed solution itself unnecessary,
but also that’(h®*1) can be obtained for the derivative solution for any ordeivaéve,
provided the solution i€2**. This is done using higher-order B-splines than used for the
post-processed solution itself convolved against a finiferdnce derivative. This intro-
duces higher levels of smoothness into the derivative pastessed approximation. How-
ever, this investigation was limited to a uniform mesh cdesation, which is highly restric-
tive for practical applications. In this report, we disctise advantages and disadvantages
of extending accuracy enhancement of derivatives to ndieram meshes in one-dimension
using the ideas of local®-projection, characteristic length as well as direct immatation
as done for the post-processed solution itselSinQurtis, R. M. Kirby, J. K. Ryan, C.-W. Shu
(2007), “Post-processing for the discontinuous Galerkiethod over non-uniform meshes.”
SIAM Journal on Scientific Computing. 30:272-289.
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1 Introduction

High order accurate information for derivatives is impatta applications such as chemistry
and continuum and fluid mechanics. We accomplish this by pastessing a discontinuous
Galerkin (DG) solution to a linear hyperbolic equation. Hmer, previous investigations
into improving the accuracy of the derivative through posieessing included restrictive
assumptions on the mesh [5]. In this paper, we consider haxtend this knowledge to
nonuniform meshes, specifically when the mesh is smoothilying

The post-processor itself is merely the discontinuous i®ialesolution convolved with
some specially designed kernel. That is,

U — Kﬁ(k—s—l),k-i-l U, (1)

whereuy is the discontinuous Galerkin solution at the final tin(é(,k“)k+1 is the convolu-
tion kernel, andu* is the post-processed solution. The post-processor warlextoacting

information that is already contained in the discontinu@aderkin solution. By plotting the
pointwise errors at many points within a given element, dléar that the errors are highly
oscillatory. By convolving the DG solution against a spkgiahosen kernel we are able
to extract extra orders of accuracy and smooth the osoffiatin the error. Here, we only
summarize the post-processor, more details about theppostssor can be found in [2, 6].

The properties of the kernel itself were initial establi$liy Bramble & Schatz [1] and
Mock & Lax [4]. Bramble & Schatz noted the increase in accyrggecifically for finite
element solutions. This work was extended to DG solution€dgkburn, Luskin, Shu, and
Sali [2].

The idea is the following: The discontinuous Galerkin appration itself can be shown,
in special cases, to b€(h*™1) in the L-norm for sufficiently smooth initial data,. How-
ever, in a negative order norm, the DG solutioigh®*1). The convolution kernel allows
us to extract this information from the solution so that wa oatain this¢’(h®*1) in the
easy to comput&2-norm. This is because of the specially chosen propertigseokernel
[1, 2].

The convolution kernel itself is of the form

k
2(k+1)kt1, 1 2(kt1) k1 (k1) (X
TR =g 3 G (5-v)- 2)
whereKﬁ(k”)’k“*u = u for polynomialsu of degree up to and includingk2 It is supported

in at most X+ 2 elements for a uniform mesh which makes the evaluationeoédimvolution
computationally efficient. We should note thg? is the B-spline obtained by convolving
the characteristic function of the inter\(alr%, %) with itself k times. Alternatively, one could
use the recursion formula from Schumaker [8]:

g = X-1/21/2)
1 k+1 1 k+1 1
(k+1) _ = ar- K = are K [y_ =
ot = (e 55wt (e )+ (557wt (3|
k>1 ©)



2 Post-Processing for Higher Order Derivative Infor-
mation

There are essentially two methods for derivative Posté&siog, each with their own ad-
vantages and disadvantages. The application of these dithoften problem dependent.
The first method is post-processing the discontinuous &alsplution and then taking the
derivative of the post-processed solution. The second adethto use a higher order B-
Splines with each successive derivative. Below we will fyidiscuss these two methods.
Further details can be found in [5].

2.1 Derivative of Post-Processed solution

In this section we briefly outline post-processing the digicmous Galerkin solution and

then taking thex"-derivative, 3% (K2 "Y1 uy (-, T))(x) as initially presented in [6]. We

know that the mapping— (K2 Ty, (- T))(x) is a¢*~(R)-function. If we calculate
the derivative of the post-processing polynomial dirgatlg obtain arng’(h?2-%) approx-
imation fora < k. However, the disadvantages of this method are that the ofdmrcuracy
decreases with successive derivatives and that osailfaiiothe error increase. Additionally,
in order to implement this method, it can require calcutatiew post-processing matrix, if
we are performing the post-processing using a small ma&tter format.

2.2 Derivative Post-Processing Using Higher Order B-Splias

The second method that we discuss was presented in [5].dmi&ihod, we again consider
the derivative of the post-processed solution,
dY  o(ktl)rakil

W(Kh( PO (-, T)), 4
which is an approximation t&-¥(x, T). However, due to the choice of our kernel, we now
have that the order or convergence is independeat of

For this particular case, our kernel is similar to that of past-processed solution. That
is, it is of the form

k+1)ak 1 k+1)ak X
Kﬁ( +1)a, +1(X) == Ezdg( +1)a +1w(k+1+a) (ﬁ _ V) ’ (5)
ye

where we point out that we have different coefficients weighthe B-splines, the B-splines
are of a higher order and therefore require a larger supplsing this implementation, we
are able to maintain the order of convergence independdheafrder of the derivative. This
essentially is usingmootheB-splines and was initially presented by Thomée [9].

Furthermore, we note that by the properties of B-splinesieitake thent"—derivative
of the (k+ 1+ a)™" B-spline, this is the same as thé" divided difference of thek + 1)t
B-spline. That is,

da

dxo

)



wheredzv(x) = (V(x+h/2) —v(x—h/2))/h. The consequence is that instead of actually
computing the higher-order B-splines, we can use our pnepeed(k + 1) B-spline,

a
d K2k akl Un(-,T))

> a,2(k+1) k+1
—a (Kq Ky
dxa

=Ky *(3ha Un. (6)

We emphasis again that using smoother B-splines increhsesupport width of the post-
processor. However, as already mentioned, once we confputmhvolution of translations

of the B-spliney k1) with uy, the derivative approximation can be readily computed fgr a
a.

2.3 A Comparison

Here we present a comparison of the derivative post-prowgssethods for the variable
coefficient equation

U+ (a(xt)u)x =0, xe [0,2r], T € R,u(x,0) = sin(x),u(0,t) = u(2m,t). (7)

These results were initially presented in [5]. We note thié equation is not supported
by the existing theory. However, we are still able to obtdia increase in accuracy. We
only display theP2-polynomial space and refer the reader to the original tesuhs we
can see from Table 1, we obtain the expected results. Thiatrithe a'h-derivative of the
DG solution we obtairg’(h1-%) accuracy and’(h?*2-9) for the derivative of the post-
processed solution. However, if we implement the methadgusigher order B-splines, then
we can improve the order of accuracy for the post-processedative to’(h?+1) for any
order derivative, provided the initial condition is smoetiough.

10, (u-u,)| lo,(u-K*u,)| 10.u-K,9,u,|

Figure 1:Errors in the first derivatives: DG solution (left), deriivat of post-processed solution (center),
and using higher-order B-splines (right).



Table 1: L2-errors for the derivatives of the DG solution (left) as wadl the derivatives of the post-
processing results (center and right) for the variablefement equation with sine initial condition.

]P>2
dfuh dxa(K*Uh) K*dﬁ’uh
mesh LZ error \ order L? error \ order L? error \ order
1st Derivatives
40 | 8.7240E-04 — | 5.5069E-08 — | 2.4411E-06 —

60 | 3.8775E-04| 2.00 | 6.9067E-08| 5.12 | 3.2245E-06| 4.99
80 | 2.1811E-04| 2.00| 1.6903E-09| 5.03| 7.6554E-08| 4.99
100 | 1.3959E-04| 2.00| 5.8972E-09| 4.72| 2.5074E-09| 5.00
2nd Derivatives
40 | 3.3923E-02| — | 3.2544E-07) — | 1.4294E-07| —
60 | 2.2619E-02| 1.00| 6.1855E-08| 4.10| 1.7735E-08| 5.15
80 | 1.6966E-02| 1.00| 1.9310E-08| 4.05| 4.2872E-09| 4.94
100 | 1.3573E-02| 1.00| 7.8612E-09| 4.03 | 1.4798E-09| 4.77
3rd Derivatives

40 — — | 1.0467E-05] — | 3.6493E-06| —
60 — — | 3.0913E-06| 3.01| 4.8281E-07| 4.99
80 — — | 1.3028E-06| 3.00| 1.1479E-07| 4.99
100 — — | 6.6672E-07| 3.00| 3.7663E-08| 4.99
4th Derivatives
40 — — | 7.7743E-04) — | 1.8014E-06| —
60 — — | 3.4533E-04| 2.00| 2.5066E-07| 4.86
80 — — | 1.9421E-04| 2.00| 6.3585E-08| 4.77
100 — — | 1.2428E-04| 2.00| 2.2566E-08| 4.64
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Figure 2: Errors in the second derivatives: DG solution (left), dative of post-processed solution
(center), and using higher-order B-splines (right).

3 Techniques for Post-Processing over a Non-uniform
Mesh

As noted above, there are two ways to agcomplish higher @ci=uracy in derivative cal-
culations. The first is by directly calculating the derivatiof the post-processed solution.



Figure 3:Errors in the third derivatives: derivative of post-prases solution (left), and using higher-
order B-splines (right).

Figure 4:Errors in the fourth derivatives: derivative of post-presed solution (left), and using higher-
order B-splines (right).

For this method, we can show that the resulting solutiomhz"”‘“ ), but in this case
there is no guarantee of increased smoothness. The secdahddnwses a higher order B-
spline kernel. For this case, we can provably mainta{h?) accuracy while increasing
smoothness. However, this assumes the ideal case of a liyparbolic problem with peri-
odic boundary conditions solved over a uniform mesh. Okshgwe need to extend these
results to more challenging problems. Here we addresswireliry work on the nonuniform



mesh case. That is, we want to calculate

Ay (x) = (k+1) k+1 (k+1+a) (Y —X a
o A,yZd [t () sy

where

k
Un(y) = ;}uﬁ“ V) (8)

is our discontinuous Galerkin solution on elemgnt (Xj_1/2,X;41/2)-
We first consider the case of a smoothly varying mesh whermtsh is defined by
interval length

Li=1,--,N.

x= & +bsin(§) where &= N ,

¢ is the uniform mesh variable andOb < 1 is our mesh variation. The difficulty of extend-
ing this to the nonuniform mesh case can be more clearly dstraied if we consider the
case where our DG basis consists of monomials:

* (k+1),k+1
OhU* (X) AXJAXH_J Z% ,+J z d

14
kitra) (Y=X 1 N erpay (Y—X 10 Y — Xy
./hﬂ. [w (ij 2 V) v <AxJ ) ey ) WY

where element;; is in the support of the post-processor and we are post-gsowe the
pointx € |j. We see from this equation thatjif# i, then we have two different mesh sizes:
one scaling our B-spline and one scaling our DG basis. Thisesa lose the translation
invariance of the post-processor so that we can no longectirimplement small matrix-
vector multiplications. To overcome this, we have two paidiies, either use a locdl?-
projection, or scale our kernel by some characteristic tengrhese ideas were initially
presented in [3] and are briefly summarized below.

3.1 LocalL?-projection

If we choose to implement the lochP-projection method, then we do not need to modify
the post-processing matrix that we obtained for a unifornshmé&Ve instead are modifying
the vector containing the DG coefficients. The algorithrmhis following: in order to post-
process the derivative on elemdntwe first create a locally uniform mesh of mesh size:
h = Ax;. We then project the elements from the DG solutiop(x, T), onto the locally
uniform mesh for all elements in the support of the post-pssing region (see Figure 3.1).
The projected DG solution over this locally uniform mestuigx, T). We then usei,(x, T)

to find post-processed derivative on elenherhat is, the post-processed derivative is given

by
Un,. ;) Dijk(X ()]
|_—2p’|% n( i

whereD; | (X) is our post-processing matrix given over a uniform mesh.
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Figure 5:Diagram demonstrating the projection from the nonuniforesmto the locally uniform mesh.
- indicates the created locally uniform mesh for post-preicgs element; onto which we project the
approximation.

3.1.1 Characteristic Length

By using a characteristic length for the post-processorargenodifying the coefficients in
the post-processing matrix and these will have to be relzdtml for each new mesh type.
For this, we denote bl the characteristic length used in the post-processor. Hicase we
take
L= max Ax.
i=1,-,N a

Then the modified coefficients used in the post-processirtgxaae given by
DL(i7|7k>X) =

VRN
Eh (w2 (2 =3 —y) — @2 (2 43 —y)] (—VM_’“;J_' ) dy

Notice that the B-splines are now scaled lby Therefore, once we have recalculated the
post-processing matrix, we can find the post-processedatieg onl; via

k
OU*(X) = IZI;UEBH-) Dy (i,1,k, ).
4 Combining the Ideas

In this section we present the results for combining theedkifit derivative post-processing
techniques with the different post-processing technigques a uniform mesh.
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4.1 Preliminary Results

For our preliminary results, we consider the projection of
u(x) = sin(x)

onto a space of piecewise polynomials. We choose this exaasthd 2-projection mimics
the discontinuous Galerkin solution. Additionally, this the first term in the errors for
calculating the negative-order norm. The results are pteden Table 2 and Figures 6 and
7. In Table 2, we can see that we indeed ggh**1-?), a = 1,2 k = 2 before post-
processing. This improves G(h®*2-) for the derivative of the post-processed solution
and 0 (h?<*1) for the derivative post-processor using higher order Basgl Additionally,
the magnitude of the errors significantly increase for bbthderivative post-processors. In
Figures 6 and 7, a comparison of the pointwise errors in &@jesusing six points per an
element are plotted. In the case of the first derivative, we s the highly oscillatory
nature of the DG errors (left), the reintroduction of theilbstions back into the derivative
of the post-processed solution (middle), and the smootholethe errors using higher-order
B-splines (right). This is more evident in the plot of theoesr for the second derivative
(Figure 7).

Table 2:L2—errors for the first and second derivatives of the discootisuGalerkin method as well as
the derivative of the post-processed solution and the alirév post-processed solution using higher-order
B-splines over a smoothly-varying mesh.

]P>2
DG Errors Local L?-projection | Characteristic Length
duh K % ahx Uh K % dhxuh
mesh L? error | order L? error | order LZerror | order
First Derivative
20 | 4.4448E-03] — | 2.7562E-04f — | 8.4862E-04 —

40| 1.1153E-03| 1.99| 8.7798E-06| 4.97 | 3.8223E-05| 4.47
60 | 4.9601E-04| 2.00| 1.1607E-06| 4.99| 6.1865E-06| 4.49
80 | 2.7907E-04| 2.00| 2.7596E-07| 4.99| 1.6973E-06| 4.50
100 | 1.7863E-04| 2.00| 9.0571E-08| 4.99| 6.2217E-07, 4.50
Second Derivative
20 | 7.3365E-02] — | 3.1253E-05| — | 5.9007E-05 —
40 | 3.6774E-02| 1.00| 2.6804E-06| 3.54 | 1.3287E-06 5.47
60 | 2.4527E-02| 1.00| 7.0356E-07| 3.30| 1.4336E-07 5.49
80 | 1.8398E-02| 1.00| 2.5186E-07| 3.57 | 2.9496E-08 5.50
100 | 1.4720E-02| 1.00| 1.1063E-07| 3.67 | 8.6490E-09 5.50
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Figure 6: Pointwise errors in the first derivatives over a smoothlgyvey mesh usingN =

10,20,40,60,80, and 100 elements: DG solution (left), derivative of posigassed solution (center),
and using higher-order B-splines (right).
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Figure 7: Pointwise errors in the second derivatives over a smoathitying mesh usingN =

10,20,40,60,80, and 100 elements: DG solution (left), derivative of posigessed solution (center),
and using higher-order B-splines (right).

5 Conclusions

There are two ways to accomplish higher order accuracy inatete calculations. The first
method uses a direct calculation of the derivative of thé-poscessed solution. This gives
us higher order accuracy than for the derivative of the disnaous Galerkin solution itself,
but the accuracy deteriorates with each successive deevaind there is no guarantee of
increased smoothness. The second method uses a smoothémeBkernel and is able to
maintain the R+1 order accuracy with each successive derivative while stsoothing the
derivative solution. Previous results only include theecafsa uniform mesh. In this report,
these ideas were paired with using a loc&lprojection as well as characteristic length for
scaling the B-splines so that the case of a non-uniform mesla e addressed. Preliminary
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results suggest that we can use this post-processing teehon smoothly-varying meshes
using both a local2-projection and characteristic length to obtain the insesia accuracy
for derivatives of the post-processed solution. Howewether studies need to be performed
on the mesh assumptions as well as implementation issuesiaes with the non-uniform
mesh.
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