
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 10-19

Fast Iterative Methods
for Discontinuous Galerkin Discretizations for Elliptic PDEs

P. van Slingerland, and C. Vuik

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2010



Copyright  2010 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission from Department of Applied Mathematical Analysis, Delft University of
Technology, The Netherlands.



Contents

1 Discontinuous Galerkin in One Dimension (Research Area) 3
1.1 Notation & Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Interior Penalty (IP) methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 DG Methods in the Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Discontinuous Galerkin in Two Dimensions (Research Area) 9
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 DG Methods in the Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Solution Techniques for Linear Systems (Research Framework) 15
3.1 Linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Conjugate Gradient method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Existing Preconditioners (Literature Overview) 21
4.1 h-Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 p-Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Schwarz Domain Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Space Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 BILU Preconditioning (Research Direction) 29
5.1 Exact Block LU-decomposition for Block Tridiagonal matrices . . . . . . . . . . . . 29
5.2 A Recursive BILU Preconditioner for Block Triangular Matrices . . . . . . . . . . 31
5.3 A More General BILU Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusion & Research questions 39

A Derivation of DG Methods 41
A.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Interior Penalty Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.3 DG Methods in the Unified Framework . . . . . . . . . . . . . . . . . . . . . . . . 42



CONTENTS i

B Computing the Coefficient Matrix for an IP scheme 45
B.1 One-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.2 Two-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C BILU in Detail 53



ii CONTENTS



Introduction

Discontinuous Galerkin (DG) finite element methods for elliptic problems approximate the solution
in the form of piecewise polynomials of degree p. The main advantages of these methods are the
flexibility in handling non-matching grids and in designing hp-refinement strategies. An important
drawback is that the resulting linear systems are usually large (due to the large number of degrees
of freedom), and ill-conditioned.

Therefore, efficient iterative algorithms are required to minimize the computational costs and
increase the practical applicability of DG methods. The main goal of this report is to obtain an
overview of the current literature regarding these methods for elliptic problems. Based on this
overview, research questions will be formulated that indicate how we will seek to improve on the
existing iterative methods in the near future.

The outline of this report is as follows. First, DG methods are discussed for one- and two-
dimensional elliptic problems in Chapter 1 and Chapter 2 respectively. These methods require
the solution to large sparse linear systems, for which efficient solution strategies, such as precon-
ditioning and deflation, are considered in Chapter 3. Chapter 4 provides an overview of exist-
ing preconditioners in the context of DG methods. It appears that preconditioners based on a
Block Incomplete LU-decomposition (BILU), which have been rather successful for finite difference
methods, have received little attention so far in this field. Therefore, existing BILU algorithms are
studied in Chapter 5 as a starting point of this research. Finally, a conclusion is given in Chapter
6, together with the resulting research questions.
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Chapter 1

Discontinuous Galerkin in One
Dimension (Research Area)

This research focuses on linear systems resulting from DG discretisations of elliptic problems.
Therefore, this type of discretisation will be discussed first. This chapter considers the one-
dimensional case. The two dimensional case is considered in Chapter 2. The main idea is to
assume that the solution is a polynomial of degree p within each mesh element. Furthermore, the
solution is allowed to be discontinuous at the element boundaries.

The outline of this chapter is as follows. First, Section 1.1 introduces the required notation
regarding the mesh and the trace operators for jumps and averages of the discontinuous solution
at the element boundaries. After that, Interior Penalty (IP) methods are discussed in Section
1.2. These methods are often studied in current literature on efficient solution techniques, as
we will see in Chapter 4 later on. Basically, IP methods penalize inter-element jumps to ensure
stability. Besides IP methods, a second class of DG methods exists which are formulated in
terms of numerical fluxes, inspired by finite volume techniques for hyperbolic problems. These
two families have been developed independently of each other and were presented in a unified
framework in [ABCM02]. This unified framework is discussed in Section 1.3. After that, Section
1.4 demonstrates how a DG approximation can be computed in terms of the solution to a linear
system. A numerical example that illustrates the performance of DG methods is provided in
Section 1.5. Finally, a conclusion is given in Section 1.6.

1.1 Notation & Preliminaries

Consider the one-dimensional Poisson equation:

−u′′ = f(x), (1.1)

on the interval Ω, together with homogeneous Dirichlet boundary conditions. Additionally, con-
sider a mesh {[xi−1, xi]}i=1,...,N with uniform element diameter h. Furthermore, let V denote the
test space which contains each (test) function v that is a polynomial of degree p or lower within
each mesh element, and that may be discontinuous at the element boundaries. Derivatives of test
functions should therefore be interpreted piecewise, existing within the element interiors only.

For any test function v ∈ V , let the function vi denote the continuous representation of
v|[xi−1,xi]. More generally, for each piecewise continuous function v and for each element [xi−1, xi]
with i = 1, ..., N , define vi : [xi−1, xi] → R such that vi = v in the element interior (xi−1, xi), and vi

is continuous at the boundaries xi−1 and xi. Using this definition, introduce the following so-called
trace operators for jumps and averages at each interior element boundary xi with i = 1, ..., N − 1:

[v]i := vi(xi)− vi+1(xi), {v}i :=
vi(xi) + vi+1(xi)

2
. (1.2)
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Similarly, at the domain boundary, define:

[v]0 := −v1(x0), [v]N := vN (xN ), {v}0 := v1(x0), {v}N := vN (xN ). (1.3)

1.2 Interior Penalty (IP) methods

Now that the required notation is introduced, we can formulate a family of classical Interior
Penalty (IP) methods: an IP approximation uh ∈ V for the exact solution u for model problem
(1.1) satisfies (cf. Appendix A.2 for a derivation):

B(uh, v) =
∫

Ω

fv, for all test functions v ∈ V, (1.4)

where the bilinear form is defined as:

B(uh, v) :=
∫

Ω

u′hv
′ +

N∑
i=0

(
−{u′h}i [v]i + ε [uh]i {v

′}i +
η0
h

[uh]i [v]i
)
. (1.5)

Depending on the parameters ε and η0, different types of interior penalty methods are obtained
(cf. [Riv08, p. 6] and references therein). Common types are:

ε Method
−1 Symmetric Interior Penalty Galerkin (SIPG)

1 Non-symmetric Interior Penalty Galerkin (NIPG)
0 Incomplete Interior Penalty Galerkin (IIPG)

If both ε and η0 are zero, the method is not convergent, and existence and uniqueness of uh cannot
be shown. This research will mainly focus on the SIPG method. The accuracy of this method is
O(hp+1) provided that the penalty parameter η0 is sufficiently large [Riv08, p. 12].

1.3 DG Methods in the Unified Framework

Besides the family of IP methods discussed in the previous section, there is also a large family of
DG methods inspired by finite volume techniques for hyperbolic problems, which are formulated
in terms of numerical fluxes. These two families have been developed independently of each other
and were presented in a unified framework by Arnold, Brezzi, Cockburn, and Marini [ABCM02],
by showing that the IP methods can be “obtained as special cases of the second family simply by
choosing the proper numerical fluxes”.

In this unified framework, a DG approximation uh ∈ V for the exact solution u for model
problem (1.1) satisfies (cf. Appendix A.3 for derivation):

B(uh, v) =
∫

Ω

fv, for all test functions v ∈ V, (1.6)

where the bilinear form is defined as:

B(uh, v) :=
∫

Ω

u′hv
′ +

N∑
i=0

([û− uh]i {v
′}i − {σ̂}i [v]i) +

N−1∑
i=1

({û− uh}i [v′]i − [σ̂]i {v}i) . (1.7)

Here, û and σ̂ are numerical fluxes that approximate u and σ := u′ at the element boundaries.
Depending on the choice of these numerical fluxes, different types of DG methods are obtained
[ABCM02, Section 3.4].
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For example, an IP method as described in Section 1.2 is obtained if the flux functions are
chosen such that, for all i = 0, .., N :

ûi(xi) = {uh}i +
1 + ε

2
[uh]i , ûi+1(xi) = {uh}i −

1 + ε

2
[uh]i ,

σ̂i(xi) = {u′h}i −
η0
h

[uh]i , σ̂i+1(xi) = {u′h}i −
η0
h

[uh]i ,

so that:

[û− uh]i = ε [uh]i , {σ̂}i = {u′h}i −
η0
h

[uh]i ,

{û− uh}i = 0, [σ̂]i = 0.

As a consequence, for this choice of numerical fluxes, the bilinear form (1.7) reduces to (1.5).

1.4 Linear System

This section discusses how a DG solution, defined by (1.6) and (1.7) in the previous section, can
be computed in terms of the solution to a linear system. The main idea is to first construct a
basis for the test space V . Here, we will use monomial basis functions, but other options exist as
well. After that, the DG solution uh is written as a linear combination of these basis functions,
of which the coefficients are now the unknowns to be solved for. Then, this expression for uh is
substituted into (1.6), and the result should be satisfied for any basis function v. More specifically,
the procedure reads as follows:

Consider a monomial of degree k ≤ p that is translated from the interval [−1, 1]2 to the element
[xi−1, xi] with cell center xi− 1

2
:

φ
(i)
k+1(x) =

(
x− xi− 1

2
1
2h

)k

, (1.8)

for all k = 0, ..., p, for all x ∈ [xi−1, xi], and for all i = 1, ..., N . For x /∈ [xi−1, xi], the function is
set to zero. Next, write the DG solution uh ∈ V as a linear combination of these monomial test
functions of degree p and lower:

uh(x) =
N∑

i=1

M :=p+1∑
k=1

α
(i)
k φ

(i)
k (x), (1.9)

Substitute this expression for uh, and the monomial basis functions φ(j)
` for v into the DG formu-

lation (1.6):

N∑
i=1

M∑
k=1

α
(i)
k B(φ(i)

k , φ
(j)
` ) =

∫
Ω

fφ
(j)
` , (1.10)

for all j = 1, .., N and for all ` = 1, ..,M . The unknowns α(i)
k determine the final DG solution as

defined in (1.9).
To obtain the unknowns α(i)

k , the system (1.10) can be rewritten as a linear system Ay = b of
the form: 

A11 A12 . . . A1N

A21 A22

...
...

. . .
AN1 . . . ANN



y1
y2
...
yN

 =


b1
b2
...
bN

 , (1.11)



6 Discontinuous Galerkin in One Dimension (Research Area)

where the blocks all have dimension M , and where, for all i, j = 1, ..., N :

Aji =


B(φ(i)

1 , φ
(j)
1 ) B(φ(i)

2 , φ
(j)
1 ) . . . B(φ(i)

M , φ
(j)
1 )

B(φ(i)
1 , φ

(j)
2 ) B(φ(i)

2 , φ
(j)
2 )

...
...

. . .
B(φ(i)

1 , φ
(j)
M ) . . . B(φ(i)

M , φ
(j)
M )

 , yi =


α

(i)
1

α
(i)
2
...

α
(i)
M

 , bj =


∫
Ω
fφ

(j)
1∫

Ω
fφ

(j)
2

...∫
Ω
fφ

(j)
M

 .
(1.12)

More details on the computation of the coefficient matrix A can be found in Appendix B.1.
For p = 0, the matrix A is equivalent to a matrix resulting from a central finite difference

method (aside from a constant that can be included in the right hand side). This means that each
off-diagonal element Aji is zero if mesh element i and j are not adjacent. For p > 0, the matrix
structure is similar, except that the matrix is now a block matrix, in which each off-diagonal block
Aji is zero if mesh element i and j are not adjacent. This is illustrated in Figure 1.1.

(a) p = 0 (b) p = 1 (c) p = 2

Figure 1.1: SIPG method for a 1D Poisson problem: for a mesh with N = 9 elements, the
coefficient matrix A consist of N ×N blocks, where each block is of size p+ 1× p+ 1

1.5 Numerical example

Now that the computational details are discussed, we will consider a numerical example to illustrate
the performance of the SIPG method.

Consider the one-dimensional Poisson equation:

−u′′(x) = (2π)2 sin(2πx),

on the interval [0, 1] together with homogeneous Dirichlet boundary conditions. For this particular
problem, the exact solution reads u(x) = sin(2πx).

Figure 1.2 displays the outcome of the SIPG method (cf. Section 1.2) for this problem, using
polynomial degree p = 2, 3 and penalty parameter η0 = 10. Observe that the errors decrease
rapidly as the number of elements increases. Table 1.1 illustrates that the L2-errors are O(hp+1)
for this problem, as predicted by theory.

1.6 Conclusion

This chapter considers DG methods elliptic problems, which form the main subject of this research,
in one dimension. The main idea is to assume that the solution is a polynomial of degree p within
each mesh element. Furthermore, the solution is allowed to be discontinuous at the element
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(a) p = 2 (b) p = 3

Figure 1.2: SIPG method (with η0 = 10) for a 1D Poisson problem: the errors decrease rapidly as
the number of elements increases.

Table 1.1: SIPG method (with η0 = 10) for a 1D Poisson problem: the L2-errors are O(hp+1) for
this problem.

mesh p=1 p=2 p=3
error order error order error order

10 2.47846e-02 - 6.80413e-04 - 9.68405e-05 -
20 6.32866e-03 1.96947 8.37268e-05 3.02265 3.10837e-06 4.96138
40 1.59013e-03 1.99275 1.04326e-05 3.00458 1.50392e-07 4.36936
80 3.98017e-04 1.99825 1.30359e-06 3.00054 8.99025e-09 4.06422
160 9.95340e-05 1.99957 1.62969e-07 2.99983 5.58708e-10 4.00819
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boundaries. A DG approximation can be computed in terms of the solution to a linear system.
For p = 0, the corresponding coefficient matrix is equivalent to a matrix resulting from a central
finite difference method. For p > 0, the matrix structure is similar, except that the matrix is
now a block matrix. In general, the matrix is an N ×N block matrix, where N is the number of
mesh elements, and each block in turn is an M ×M matrix, where M = p + 1 is the dimension
of the polynomial test space (within one mesh element). As a consequence, the size of the matrix
grows rapidly with both the number of elements and the polynomial degree. Since many practical
applications are not formulated as a one-dimensional problem, the next chapter will extend the
ideas in this chapter to the two-dimensional case.



Chapter 2

Discontinuous Galerkin in Two
Dimensions (Research Area)

This chapter extends the DG formulations of the previous chapter to two-dimensional elliptic
problems. Similar to the one-dimensional case, the main idea is to assume that the solution is
a polynomial of degree p within each mesh element. Furthermore, the solution is allowed to be
discontinuous at the element boundaries. The main difference is that two-dimensional problems
usually require the solution of much more unknowns.

The outline of this chapter is as follows. First, Section 2.1 introduces the required notation
regarding the mesh and the trace operators for jumps and averages of the discontinuous solution at
the element boundaries. After that, Section 2.2 formulates DG methods in the unified framework in
[ABCM02]. As before, the DG approximation can be computed in terms of the solution to a linear
system, which is discussed in Section 2.3. A numerical example that illustrates the performance
of DG methods is provided in Section 2.4. Finally, a conclusion is given in Section 2.5.

2.1 Notation

Consider the two-dimensional Poisson equation:

−∆u = f, (2.1)

on the domain Ω, together with homogeneous Dirichlet boundary conditions. Furthermore, con-
sider a mesh {Ki}i=1,...,N in which each element Ki is a compact polygonal and has an outward
normal ni. Let E◦ denote the collection of all interior edges e = ∂Ki∩∂Kj in the mesh shared by
two distinct elements. Furthermore, let E∂ denote the collection of all boundary edges e = ∂Ki∩∂Ω
shared by an element and the domain boundary. Finally, let E := E◦ ∪ E∂ denote the collection
of all edges.

Next, consider a test space V that contains each function v that is a polynomial of degree p
or lower within each mesh element, and that may be discontinuous at the element boundaries.
Derivatives of test functions should therefore be interpreted piecewise, existing within the element
interiors only.

For any test function v ∈ V , let the function vi denote the continuous representation of v|Ki
.

More generally, for any piecewise continuous function v ∈ L2(Ω) and for any i = 1, ..., N , define
vi : Ki → R such that vi = v in the interior of Ki, and vi is continuous at the boundary ∂Ki.
Using this definition, introduce the following trace operators for jumps and averages at each
interior element boundary ∂Ki ∩ ∂Kj ∈ E◦:

[v] := vini + vjnj , {v} :=
vi + vj

2
. (2.2)
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Observe that [v] is a vector, while v is a scalar. Analogously, we define for a vector-valued piecewise
continuous function τ ∈ L2(Ω)× L2(Ω):

[τ ] := τ i · ni + τ j · nj , {τ} :=
1
2
(τ i + τ j).

Observe that [τ ] is a scalar, while τ is a vector. Similarly, at the domain boundary, we define at
each element boundary ∂Ki ∩ ∂Ω ∈ E∂ :

[v] := vini, {v} := vi, [τ ] := τ i · ni, {τ} := τ i, (2.3)

2.2 DG Methods in the Unified Framework

Now that the required notation is introduced, we can formulate DG methods for two-dimensional
problems. In the unified framework in [ABCM02], a DG approximation uh ∈ V for the exact
solution u for model problem (2.1) satisfies (the derivation [ABCM02, Section 3.2] is similar to
the derivation for the one-dimensional case provided in Appendix A.3):

B(uh, v) =
∫

Ω

fv, for all test functions v ∈ V, (2.4)

where the bilinear form is defined as:

B(uh, v) =
∫

Ω

∇uh · ∇v +
∑
e∈E

∫
e

([û− uh] · {∇v} − {σ̂} · [v])

+
∑

e∈E◦

∫
e

({û− uh} [∇v]− [σ̂] {v}) . (2.5)

Here, û and σ̂ are numerical fluxes that approximate u and σ := ∇u at the element boundaries.
Depending on the choice of these numerical fluxes, different types of DG methods are obtained
[ABCM02, Section 3.4].

For example, similar to the one-dimensional case (Section 1.3), an IP method is obtained if
the flux functions û and σ̂ are chosen such that on the edge e ∈ E of Ki (for all i = 1, ..., N):

ûi = {uh}+
1 + ε

2
[uh] · ni, σ̂i = {∇uh} −

η0
|e|

[uh] .

where |e| denotes the length of the edge e. As a consequence:

[û− uh] = ε [uh] , {σ̂} = {∇uh} −
η0
|e|

[uh] ,

{û− uh} = 0, [σ̂] = 0.

Hence, for this choice of numerical fluxes, the bilinear form (2.5) becomes:

B(uh, v) =
∫

Ω

∇uh · ∇v +
∑
e∈E

∫
e

(
−{∇uh} · [v] + ε [uh] · {∇v}+

η0
|e|

[uh] · [v]
)
. (2.6)

2.3 Linear System

This section discusses how a DG solution, defined by (2.4) and (2.5) in the previous section, can
be computed in terms of the solution to a linear system. The procedure is quite similar to the
one-dimensional case described in Section 1.4.

We will assume that the mesh is uniform and has rectangular elements of size hx × hy. Fur-
thermore, for all i = 1, ..., N , we define the element Ki := [xi−1, xi] × [yi−1, yi] with cell center
(xi− 1

2
, yi− 1

2
).



2.3 Linear System 11

Table 2.1: kx and ky as function of k
k 1 2 3 4 5 6 7 8 9 10 . . .

kx 0 1 0 2 1 0 3 2 1 0 . . .
ky 0 0 1 0 1 2 0 1 2 3 . . .

p = 0 p = 1 p = 2 p = 3 . . .

To construct a basis for the test space, consider a monomial of degree kx in the first variable
and ky in the second, with kx +ky ≤ p, that is translated from the interval [−1, 1]2 to the element
Ki:

φ
(i)
k (x, y) =

(
x− xi− 1

2
1
2hx

)kx
(
y − yi− 1

2
1
2hy

)ky

, with kx and ky as in Table 2.1, (2.7)

for all k = 1, ...,M := (p+1)(p+2)
2 , for all (x, y) ∈ Ki, and for all i = 1, ..., N . For (x, y) /∈ Ki,

the function is set to zero. Next, write the DG solution uh ∈ V as a linear combination of these
monomial test functions of degree p and lower:

uh(x, y) =
N∑

i=1

M∑
k=1

α
(i)
k φ

(i)
k (x, y), (2.8)

Substitute this expression for uh, and the monomial basis functions φ(j)
` for v into the DG formu-

lation (2.4) to obtain (1.10). As in Section 1.4, the unknowns α(i)
k , which determine the final DG

solution as defined in (2.8), can be obtained as the solution a linear system Ay = b of the form
(1.11), (1.12). More details on the computation of the coefficient matrix A for two-dimensional
problems can be found in Appendix B.2.

Similar to the one-dimensional case, for p = 0, the matrix A is equivalent to a matrix resulting
from a central finite difference method (aside from a constant that can be included in the right
hand side). This means that each off-diagonal element Aji is zero if mesh element i and j are
not adjacent. For p > 0, the matrix structure is similar, except that the matrix is now a block
matrix, in which each off-diagonal block Aji is zero if mesh element i and j are not adjacent. This
is illustrated in Figure 2.1.

(a) p = 0 (b) p = 1 (c) p = 2

Figure 2.1: SIPG method for a 2D Poisson problem: for a mesh with Nx ×Ny = 3× 3 elements,
the coefficient matrix A consists of NxNy ×NxNy blocks, where each block is of size M ×M with
M := (p+1)(p+2)

2 and p the polynomial degree.
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2.4 Numerical example

Now that the computational details are discussed, we will consider a numerical example to illustrate
the performance of the SIPG method.

Consider the two-dimensional Poisson equation:

−∆u(x, y) = 2(2π)2 sin(2πx) sin(2πy),

on the domain [0, 1]2 together with homogeneous Dirichlet boundary conditions. For this particular
problem, the exact solution reads u(x) = sin(2πx) sin(2πy).

Figure 2.2 displays the outcome of the SIPG method (cf. Section 2.2) for this problem, using
polynomial degree p = 1, 2 and penalty parameter η0 = 10. Observe that the errors decrease
rapidly as the number of elements increases.

2.5 Conclusion

This chapter extends the DG formulations of the previous chapter to two-dimensional elliptic
problems. Similar to the one-dimensional case, the main idea is to assume that the solution is
a polynomial of degree p within each mesh element. Furthermore, the solution is allowed to be
discontinuous at the element boundaries. The main difference is that two-dimensional problems
usually require the solution of much more unknowns. As for one-dimensional problems, a DG
approximation can be computed in terms of the solution to a linear system. For p = 0, the
corresponding coefficient matrix is equivalent to a matrix resulting from a central finite difference
method. For p > 0, the matrix structure is similar, except that the matrix is now a block matrix.
In general, the matrix is an N ×N block matrix, where N is the number of mesh elements, and
each block in turn is an M ×M matrix, where M = (p+1)(p+2)

2 is the dimension of the polynomial
test space (within one mesh element). As a consequence, the size of the matrix grows rapidly with
both the number of elements and the polynomial degree. Therefore, the next chapter will provide
an overview of efficient solution techniques for such large sparse linear systems.
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(a) 10× 10 elements, p = 2 (b) 10× 10 elements, p = 3

(c) 20× 20 elements, p = 2 (d) 20× 20 elements, p = 3

(e) 40× 40 elements, p = 2 (f) 40× 40 elements, p = 3

Figure 2.2: SIPG method (with η0 = 10) for a 2D Poisson problem: the errors decrease rapidly as
the number of elements increases.
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Chapter 3

Solution Techniques for Linear
Systems (Research Framework)

As we have seenin the previous two chapters, a DG method for an elliptic problem requires the
solution to a large sparse linear system. Especially for two-dimensional (and three-dimensional)
problems, the computation of the solution can be challenging due to the size and nature of the
problem. This chapter provides an overview of efficient solution techniques for such systems, and
a framework within which this research will take place. The main idea is to consider the iterative
Conjugate Gradient (CG) method, and combine this method with preconditioning and deflation
to speed up the convergence.

The outline of this chapter is as follows. First, the type of linear systems under consideration
is analysed in Section 3.1. In this research, we will restrict ourselves (initially) to linear systems
resulting from SIPG methods for Poisson problems. After that, the CG method is presented
as a suitable iterative candidate for solving such systems in Section 3.2. It is also shown that
the number of iterations grows linearly with the number of mesh elements since the coefficient
matrix is ill-conditioned. Therefore, to enhance the convergence of CG, a preconditioner can be
applied. This results in the Preconditioned CG (PCG) method, which is discussed in Section 3.3.
Additionally, deflation can be incorporated in the algorithm. This results in the Deflated PCG
(DPCG) method, which is considered in Section 3.4. Both strategies seek to improve the spectrum
of the coefficient matrix. Finally a conclusion is given in Section 3.5.

3.1 Linear system

A DG discretisation requires the solution of the form Ax = b. The coefficient matrix A is typically
an N × N block matrix, where N is the number of mesh elements, and each block in turn is
an M × M matrix, where M is the dimension of the polynomial test space (within one mesh
element). As a consequence, the size of the matrix grows rapidly with the number of elements and
the polynomial degree (cf. Figure 1.1 and Figure 2.1).

In the remaining of this chapter, we will assume that A is the result of an SIPG discretisation
of a Poisson equation. In this case, it can be shown that A is Symmetric and Positive-Definite
(SPD), provided that the penalty parameter η0 is sufficiently large.

The symmetry of A follows from the fact that the bilinear form is symmetric: B(u, v) = B(v, u),
with B as in (1.7) and (2.5). That A is positive definite follows from the fact that B(u, u) > 0 if
the penalty parameter η0 is sufficiently large (cf. [GK03, p. 531] and [Arn82]).

Finally, it is a well-known result that, for quasi-uniform meshes with element diameter h, the
condition number is O(h−2):

κ2(A) = ‖A‖2
∥∥A−1

∥∥
2

A is SPD=
λmax

λmin
= O(h−2),
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where λmax > 0 and λmin > 0 are the largest and smallest eigenvalue of A respectively. It is
illustrated in Figure 3.1 that κ2(A) grows rapidly with the penalty parameter and the number
of mesh elements. A large condition number generally implies that it is challenging to solve the
linear system. This issue will be considered in more detail in the next section.

(a)

(b) (c)

Figure 3.1: SIPG method (with p = 2) for a 1D Poisson problem (cf. Section 1.5): the condition
number κ2(A) grows rapidly with the number of elements N and the penalty parameter η0.

3.2 Conjugate Gradient method

As we saw in the previous section, the size of the matrix A grows rapidly with the number
of elements and the polynomial degree. For such large sparse systems, iterative methods are
usually favoured over direct methods to compute the solution. Because A is SPD, the well-known
Conjugate Gradient (CG) method is a suitable iterative candidate (cf. [Saa00, Section 6.7]):

Algorithm 1 (Conjugate Gradient (CG) method)
Computes the solution x to the system Ax = b using an initial guess x0

1) r0 := b−Ax0

2) p0 := r0
3) for j = 0, 1, ... until convergence do
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4) wj := Apj

5) αj := (rj , rj)/(pj , wj)
6) xj+1 := xj + αjpj

7) rj+1 := rj − αjwj

8) βj := (rj+1, rj+1)/(rj , rj)
9) pj+1 := rj+1 + βjpj

10) end
11) x := xj+1

The performance of the CG method depends on the condition number κ2(A) [Saa00, p. 193]:

‖x− xm‖A

‖x− x0‖A

≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)m

.

Here, xm is the mth iterate of the CG algorithm and x is the exact solution of the linear system.
Because κ2(A) = O(h−2) (for quasi-uniform meshes with element diameter h), it follows from this
expression that the number of iterations required for convergence is O(h−1). This can be derived
in the following manner.

In order for the relative error ‖x−xm‖A

‖x−x0‖A
to be smaller than ε, the minimum number of iterations

m must satisfy, defining µ :=
√
κ2(A):

2
(
µ− 1
µ+ 1

)m

≤ ε.

Considering the logarithm of this expression yields:

m ≥
log
(

2
ε

)
log
(

µ+1
µ−1

) =
log
(

2
ε

)
log
(

1+ 1
µ

1− 1
µ

) =
log
(

2
ε

)
log
(
1 + 1

µ

)
− log

(
1− 1

µ

) .
Constructing the Taylor polynomial of degree 1 near x = 1 implies that log(x) = (x− 1)+O

(
(x−

1)2
)
. Hence, for µ sufficiently large:

m ≥
log
(

2
ε

)
2
µ +O

(
1

µ2

) ≈ µ

2
log
(

2
ε

)
=

√
κ2(A)
2

log
(

2
ε

)
= O(h−1),

where it was used in the last step that κ2(A) = O(h−2).
That the number of iterations required for convergence is O(h−1) is also demonstrated numer-

ically in Figure 3.2a. In this figure we consider the model problem defined in Section 1.5, and we
apply CG with the stopping criterion:

‖rk‖2
‖b‖2

≤ 10−11,

where rk is the residual after the kth iteration. We make use of a random start vector in order
to avoid untypically fast convergence due to the fact that the exact solution is a sine function.
As expected, the number of iterations grows linearly with the number of mesh elements in Figure
3.2a. However, the number of iterations appears to be larger than the order of the matrix, which
is theoretically impossible. This issue will be included in the research questions in Chapter 6.

Finally, in Figure 3.2b, the convergence during the iterative process in the A-norm is shown.
A typical acceleration in the convergence speed can be observed.
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(a) The number of iterations required for convergence
grows linearly with the number of mesh elements.

(b) Convergence in the A-norm
p

(x− xk)T A(x− xk)
(for p = 2): two accelerations can be observed.

Figure 3.2: SIPG method (with η0 = 10) for a 1D Poisson problem (cf. Section 1.5), using the
(unpreconditioned) CG method with a random start vector.

3.3 Preconditioning

In the previous section, we found that the number of iterations required for CG to converge
grows linearly with the number of mesh elements. In order to keep the computational time at an
acceptable level, the efficiency of CG can be enhanced through preconditioning.

To precondition the linear system Ax = b, the equation is multiplied by a matrix M−1:

M−1Ax = M−1b.

The main idea is that the preconditioning operator M−1 should be inexpensive to apply to an
arbitrary vector. At the same time, the matrix M−1A should have better spectral properties, i.e.
eigenvalues clustered around 1. The quality of the spectrum is usually measured in terms of the
condition number. In recent literature concerning DG methods for elliptic problems (an overview
is given in Chapter 4 later on), much attention is devoted to the construction of preconditioners
for which the condition number becomes independent of the number of mesh elements. For an
overview of basic general purpose preconditioners, such as Jacobi and Gauss-Seidel, cf. e.g. [Saa00,
Chapter 10].

The algorithm for Preconditioned CG (PCG) reads (cf. e.g. [Saa00, Section 9.2.1]):

Algorithm 2 (Preconditioned Conjugate Gradient (PCG) method)
Computes the solution x to the system Ax = b using a left-preconditioner M−1 and initial
guess x0

1) r0 := b−Ax0

2) z0 := M−1r0 (solve the linear system)
3) p0 := r0
4) for j = 0, 1, ... until convergence do
5) wj := Apj

6) αj := (rj , zj)/(pj , wj)
7) xj+1 := xj + αjpj

8) rj+1 := rj − αjwj

9) zj+1 := M−1rj+1 (solve the linear system)
10) βj := (rj+1, zj+1)/(rj , zj)
11) pj+1 := zj+1 + βjpj
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12) end
13) x := xj+1

3.4 Deflation

The previous section discussed how preconditioning can increase the efficiency of CG by enhancing
the spectrum of the coefficient matrix. However, even after preconditioning, some unfavorable
eigenvalues may still remain in the spectrum, and deteriorate the efficiency of the algorithm. This
section discusses the so-called deflation method, which can effectively treat these eigenvalues.

We follow [Tan08, Chapter 3]: consider a linear system Ax = b, where the coefficient matrix
A ∈ Rn×n is SPD. The main idea is to express the original solution x in terms of a deflated solution
x̂ in the following manner [Tan08, Corollary 3.1]:

x = Qb+ PT x̂, PAx̂ = Pb,

where

P := I −AQ ∈ Rn×n is the deflation matrix,

Q := ZE−1ZT ∈ Rn×n is the correction matrix,

E := ZTAZ ∈ Rk×k is the Galerkin or coarse matrix,

and Z ∈ Rn×k with k < n is the so-called deflation-subspace matrix, which we leave unspecified
for the moment. It is assumed that Z has full rank and that N (A) * R(Z), where N (A) denotes
the null space (kernel) of A, and R(Z) denotes the range (column space) of Z. The latter ensures
that E is non-singular [Tan08, Lemma 3.1].

Note that the deflated solution x̂ is the solution to a linear system with coefficient matrix PA.
It can be shown (similar to [Tan08, Lemma 3.4]) that the matrix PA is SPD, so that a CG type
algorithm can be used to compute x̂. Putting it all together, the following algorithm combines
CG, preconditioning and deflation to solve Ax = b (cf. [Tan08, Algorithm 4]):

Algorithm 3 (Deflated Preconditioned Conjugate Gradient (DPCG))
Computes the solution x to the system Ax = b using a left-preconditioner M−1, deflation
matrix P , correction matrix Q, and initial guess x0 ≡ x̂0

1) r0 := b−Ax0

2) r̂0 := Pr0
3) z0 := M−1r̂0 (solve the linear system)
4) p0 := z0
5) for j = 0, 1, ... until convergence do
6) wj := PApj

7) αj := (r̂j , zj)/(pj , wj)
8) x̂j+1 := x̂j + αjpj

9) r̂j+1 := r̂j − αjwj

10) zj+1 = M−1r̂j+1 (solve the linear system)
11) βj := (r̂j+1, zj+1)/(r̂j , zj)
12) pj+1 := zj+1 + βjpj

13) end
14) x := Qb+ PT x̂j+1
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It can be shown that the condition number of PA is always smaller than that of A, for all
choices of the deflation-subspace matrix Z [Tan08, Theorem 3.4]. Ideally, the columns of Z are
the eigenvectors corresponding to the most unfavourable eigenvalues of M−1A, which are often
the smallest values. Deflation basically takes them out of the process, which results in better
convergence.

On the other hand, the computation of eigenvectors can be expensive, and the use of eigenvec-
tors typically leads to a dense matrix Z. Therefore, it can be more effective to approximate the
eigenspace in some sense, using information of the application under consideration. Well-known
strategies include approximate eigenvector deflation, recycling deflation, subdomain deflation, and
multigrid deflation [Tan08, Section 4.2].

3.5 Conclusion

In this research, we will focus on linear systems resulting form the SIPG method for Poisson equa-
tions. It can be shown that the corresponding coefficient matrix is large, sparse, ill-conditioned,
and Symmetric and Positive-Definite (SPD) (provided that the penalty parameter is sufficiently
large). Therefore, the Conjugate Gradient (CG) method is considered a suitable iterative candi-
date for solving the system. It can be shown that the number of iterations grows linearly with
the number of mesh elements since the coefficient matrix is ill-conditioned. Therefore, to enhance
the convergence of CG, a combination of preconditioning and deflation can be incorporated in
the algorithm, resulting in the Deflated Preconditioned (DPCG) method. The main goal of this
research is to develop a new preconditioner for the aforementioned type of systems, and to com-
bine the new preconditioner with a suitable deflation technique. Therefore, the next chapter will
provide a literature overview of recent research in this area.



Chapter 4

Existing Preconditioners
(Literature Overview)

The CG method discussed in the previous chapter generally converges slowly for problems with a
large number of mesh elements. We also considered a brief introduction to preconditioning, which
is a common technique to speed up CG. This chapter considers preconditioners that have recently
received much attention in the context of DG/IP discretisations for elliptic problems. There are
four main classes of preconditioners that are popular in this context, and we devote a section to
each of them.

The outline of this chapter is as follows. Section 4.1 considers h-multigrid methods, which
make use of coarse grid corrections. p-Multigrid methods operate similarly, except that they use
a coarse problem with a lower polynomial degree to perform the correction. These methods are
discussed in Section 4.2. Schwarz domain decomposition methods, which are the subject of Section
4.3, solve many small problems on subdomains rather than one huge problem. Section 4.4 studies
space decomposition methods, which write the underlying DG finite element space as the direct
sum of two subspaces. Finally, a conclusion is given in Section 4.5.

4.1 h-Multigrid

This section discusses h-multigrid preconditioners. The main idea is to make use of global cor-
rections by solving coarser problems. These coarser problems are obtained by considering coarser
meshes.

Gopalakrishnan and Kanschat [GK03] present a V -cycle h-multigrid preconditioner for the
SIPG method. Their analysis is an application of the abstract theory of multigrid algorithms in
[Bra93, BPX91]. For the same type of discretisation, Brenner and Zhao [BZ05] propose V -cycle,
F -cycle, and W -cycle h-multigrid algorithms. They show that these algorithms produce uniform
preconditioners, if the pre- and post-smoothing steps are sufficiently smooth. Similar methods are
studied in [BS06] for C0 interior penalty methods for fourth-order problems.

The remaining of this section focusses on [GK03].

T1 T2 T3 T4

Figure 4.1: h-multigrid meshes
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Model Gopalakrishnan and Kanschat [GK03] consider the SIPG method for the two-dimensional
Poisson equation (cf. Section 2.2 in this report). They show that the resulting coefficient ma-
trix is symmetric and positive definite, provided that the penalty parameter is sufficiently large.
Furthermore, they extend their work for advection-diffusion problems.

Method To solve the linear system resulting from the SIPG scheme, a V-cycle h-multigrid
preconditioner is presented. To illustrate this method, consider a spatial domain T1 = [−1, 1]2

(more general domains are considered in the paper). For all k = 2, ..., J , define a mesh Tk

as the 2k−1 × 2k−1 partition of T1 (cf. Figure 4.1), and the corresponding DG test functions
{φ(i)

k }i=1,...,Nk
. Here, Nk denotes the number of degrees of freedom of the test space (determined

by the polynomial degree, the two space dimensions, and the number of elements). Observe that
each basis function can be written as a linear combination of basis functions on a finer mesh:

φ
(i)
k−1 =

Nk∑
j=1

α
(k)
ij φ

(j)
k .

Let Ck−1 be the matrix whose (i, j)-th entry is α(k)
ij . Then Ck−1 is the restriction operator and

its transpose CT
k−1 is the prolongation operator. Let Ak be the coefficient matrix resulting from

applying the SIPG method on the mesh Tk, i.e. its (i, j)-th element is equal to B(φ(j)
k , φ

(i)
k ), where

B is the bilinear form (cf. Section 2.2). In particular A := AJ is the coefficient matrix of the
system we need to solve (corresponding to the finest level). Let Rk denote the block Gauss-Seidel
smoother corresponding to Ak (but other smoothers, e.g. block Jacobi could be used as well).
Moreover set R(`)

k := Rk if ` is an odd integer, and R
(`)
k := RT

k if ` is even. Finally, let m(k)
denote a positive integer for all k = 1, .., J (typically m(k) = 2J−k).

Then, the result z of applying the preconditioner BJ ≈ A−1 to a vector r is obtained by
recursion in the following manner:

Algorithm 4
Computes z = Bkr

1) if k = 1, then z := B1r := A−1
1 r else:

2) x0 := 0
3) % apply the smoother:
4) for ` = 1, ...,m(k) do
5) x` := xl−1 +R

(`+m(k))
k (r −Akx

`−1)
6) end
7) % coarse grid correction:
8) ym(k) := xm(k) + CT

k−1Bk−1Ck−1(r −Axx
m(k)), using this algorithm (recursion)

9) % apply the smoother:
10) for ` = m(k), ..., 2m(k) do
11) y` := y`−1 +R

(`+m(k))
k (r −Aky

`−1)
12) end
13) z := Bkr := y2m(k)

Theoretical results For elliptic problems, the SIPG method yields a coefficient matrix A with a
condition number that is O(h−2) on quasiuniform grids with element diameter h. Under a certain
regularity assumption, the condition number of the preconditioned matrix BJA becomes O(1), i.e.
bounded independently of h (and the element diameters hk of the subgrids). Furthermore, the
preconditioning matrix BJ is symmetric and positive-definite, which makes it particularly suitable
for CG, which then “converges in O(N) operations, where N is the number of unknowns”.
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Numerical results Numerical results that illustrate the theory are provided for the two-dimensional
Poisson equation. They consider the domain [−1, 1]2 as well as an L-shaped domain. Further-
more, they use m(k) = 2J−k (and other values), polynomial degree p = 1, 2, 3, and J = 2, 3, ..., 8.
Additionally, the block Gauss-Seidel smoother is compared to a block Jacobi smoother (with
relaxation). Besides verifying the theory above, they find that the condition number of the pre-
conditioned matrix BJA grows linearly with the penalty parameter.

Conclusion The V -cycle h-multigrid preconditioner predicts convergence rates independent of
the mesh size. Although the preconditioner is designed for elliptic problems, it can be extended
for advection-diffusion problems. It is noted that it should be possible to obtain similar results
for a W -cycle preconditioner.

4.2 p-Multigrid

This section discusses p-multigrid preconditioners. Similar to h-multigrid, the main idea is to
make use of global corrections by solving coarser problems. The main difference with h-multigrid
is that the coarser problem is obtained by reducing the polynomial degree, rather than coarsening
the mesh.

The original idea behind p-multigrid is the work by Ronquist and Patera [RP87]. Fidkowski,
Oliver, Lu and Darmofal [FOLd05] present a p-multigrid algorithm with an element line Jacobi
smoother for the solution of higher-order DG discretizations of the compressible Navier-Stokes
equations. Nastase and Mavriplis [NM06] combine h- and p-multigrid into one hp-multigrid
scheme. Their method is developed for the two-dimensional non-linear Euler equations on un-
structured grids. Persson and Peraire [PP08] consider similar methods, and propose a reordering
strategy to enhance the robustness. Hillewaert, Chevaugeon, Geuzaine, and Remacle [HCGR06]
study a hierachic multigrid iteration strategy that is “applicable to both p-multigrid and classical
h-multigrid for any weak formulation using discontinuous interpolation, even when interpolation
spaces are not nested”. Bassi, Ghidoni, Rebay, and Tesini [BGRT09] propose a p-multigrid scheme
which employs a semi-implicit RK smoother at the finer levels and the implicit backward Euler
smoother at the coarsest level with polynomial degree p = 0.

The remaining of this section focusses on [PP08].

Model Persson and Peraire [PP08] consider a DG formulation for the incompressible Navier-
Stokes equations on triangular meshes. The inviscid flux is determined using Roe’s scheme, whereas
the viscous flux is calculated using the Compact DG (CDG) method. Since practical applications
require a large variation in element size, the time-discretization is implicit (BDF-k scheme). The
resulting nonlinear system is solved using a damped Newton method, which requires the solution
of several linear systems with coefficient matrix A during each time step.

Method The linear systems are solved using restarted GMRES(20) with a p-multigrid pre-
conditioner [RP87, FOLd05]. They consider two-level variants only, as this gives better overall
performance in their experience.

The preconditioner is combined with a smoother based on the well-known BILU(0) decompo-
sition. The latter is constructed by modifying the algorithm for a full block LU decomposition in
such a way that no nonzero matrix entries outside the sparsity pattern of the coefficient matrix
occur. It is used that this sparsity pattern is given directly by the connectivity between the mesh
elements. They simplify the algorithm by neglecting the rare cases that three elements are fully
connected.

The performance of the BILU(0) smoother can depend strongly on the numbering of the mesh
elements. Therefore, they propose to construct the decomposition in combination with a reordering
technique that is inspired by the well-known MDF method. The main idea is to start with the
mesh element that produces the least discarded fill-in, and then repeat the process in a greedy
way.
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Putting it all together, the preconditioner for the coefficient matrix A can be defined as follows.
Let {φ(p)

i }i=1,...,N(p) be a basis for the finite element space with polynomial degree p. Similarly,
let {φ(0)

i }i=1,...,N(0) be a basis for the coarse space, which operates on the same mesh, but uses a
lower polynomial degree that is typically 0 or 1. Similar to h-multigrid (cf. Section 4.1), we can
define a prolongation P and restriction operator PT by observing that

φ
(0)
i =

N(p)∑
j=1

αijφ
(p)
j ,

and setting Pij = αji. Next, let γ be a smoothing factor that is typically close to 1, and let Ã−1

denote the BILU(0) smoother (but other smoothers, e.g. block Jacobi, block Gauss-Seidel, can
be used as well). Now, the result z of applying the preconditioner to a residual r is obtained as
follows (cf. [FOLd05] for more details on p-multigrid algorithms):

Algorithm 5
Computes z ≈ A−1r:

1) Restriction: A(0) := PTAP , r(0) := PT b
2) Solve the coarse scale problem: A(0)z(0) = r(0)

3) Prolongation: z := Pz(0)

4) Apply the smoother: z := z + γÃ−1(r −Az)

Numerical results For several scalar convection-diffusion equations (including the Poisson
equation) and the compressible Navier-Stokes equations, the performance of the following pre-
conditioners is compared: block Jacobi, block Gauss-Seidel, BILU(0), and p-multigrid combined
with any of the three aforementioned preconditioners as smoother, using either p = 0 or p = 1 at
the coarse level.

The p-multigrid preconditioner with BILU(0) smoother performs better than the (standalone)
BILU(0) preconditioner, especially for diffusion-dominated problems. Furthermore, reordering
seems very effective for convection-dominated problems, but hardly for diffusion-dominated prob-
lems. For the Navier-Stokes equations, the BILU(0) smoother performed significantly better than
the block Gauss-Seidel smoother.

Conclusion Element ordering can be critical for incomplete factorisations. For this reason,
an MDF-type algorithm is presented to enhance the performance of a BILU(0) smoother in a
p-multigrid preconditioner. This strategy is compared to many other types of preconditioning in
the context of advection-diffusion and Navier-Stokes problems.

4.3 Schwarz Domain Decomposition

This section discusses Schwarz domain decomposition preconditioners. The main idea is to subdi-
vide the spatial domain into smaller subdomains, and to solve many small local problems, rather
than one huge problem.

Classical theory for Schwarz methods is discussed in [TW05]. Feng and Karakashian [FK01]
propose a Schwarz preconditioner for SIPG schemes, which they extend for fourth-order prob-
lems in [FK05]. Lasser and Toselli [LT03] present Schwarz preconditioners for advection-reaction-
diffusion problems, in which case the resulting matrix is no longer SPD. Sarkis and Szyld [SS07]
consider additive Schwarz methods that maintain the Schwarz optimality. Antonietti and Ayuso
[AA07] study Schwarz methods in the unified framework in [ABCM02]. They extend their work
for non-matching grids in [AA08], and for non-consistent super penalty methods in [AA09].

The remaining of this section focusses on [AA07].
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Figure 4.2: Schwarz preconditioning: meshes, test spaces, and restriction and prolongation oper-
ators.

Model Anonietti and Ayuso [AA07] study a large class of stable and consistent DG methods
in the unified framework in [ABCM02] (cf. Section 1.3 and Section 2.2). Their application is the
two- or three-dimensional Poisson equation with homogeneous Dirichlet boundary conditions:

−∆u = f, in Ω, u = 0, on ∂Ω (4.1)

Nevertheless, it is claimed that their results also apply for more general second order elliptic
problems in divergence form.

Method To solve the linear system resulting from such methods, an additive two-level non-
overlapping Schwarz preconditioner is proposed.

Consider three (regular and quasi-uniform) meshes: TS , TH and Th, which are illustrated
in Figure 4.2. Here, Th is the fine mesh with mesh size h on which we wish to obtain a DG
approximation. TH is a coarser mesh with mesh size H such that each element in TH can be
written as the union of a number of elements in Th. Similarly, TS is an even coarser mesh (with
NS elements) such that each element in TS can be written as the union of a number of elements
in TH . The preconditioner is based on the solution of local problems on TS and a coarse solver on
TH in the following manner.

Let Vh denote the test space consisting of each function on Ω that is a polynomial of degree
ph or lower within each element in Th. Similarly, for all i = 1, ..., NS , let V i

h denote the test space
consisting of each function on Ωi ∈ TS that is a polynomial of degree ph or lower within each
element in Th that is a subset of Ωi. Moreover, let V 0

h denote the test space consisting of each
function on Ω that is a polynomial of degree pH ≤ ph or lower within each element in TH . It
should be stressed that, despite the notation, the test space V 0

h is based on elements in TH rather
than Th, and, in that sense, has little in common with V 1

h , ..., V
NS

h .
Furthermore, for all i = 1, ..., NS , define the restriction operator Ri : Vh → V i

h such that
Ri(v) = v|Ωi for all v ∈ Vh, and define the prolongation operator RT

i : V i
h → Vh as its (unique)

transpose with respect to the Euclidean scalar product, i.e. Ri(v)w = vRT
i (w) for all v ∈ Vh and

all w ∈ V i
h . Additionally, define the the prolongation operator RT

0 : V 0
h → Vh, such that RT

0 (v) = v
for all v ∈ V 0

h , and define the restriction operator R0 : Vh → V 0
h as its transpose (also cf. Section

4.1).
Let Ah : Vh × Vh denote the bilinear form of the DG method for the global problem (4.1) on

the fine mesh Th. Moreover, for all i = 1, ..., NS let ui denote the solution to the local problem:

−∆ui = f |Ωi , in Ωi, ui = 0, on ∂Ωi, (4.2)

and let Ai : V i
h×V i

h → R denote the bilinear form of the DG method for this local problem. The use
of homogeneous Dirichlet boundary conditions in the local problem (4.2) is generally inconsistent
with the global model for u and in that sense an approximation. On the other hand, this approach
is advantageous in terms of parallelization. Alternatively, the local solver could be obtained by
restricting the global DG approximation to the subdomain Ωi, which is the strategy followed
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earlier in [FK01, LT03]. This alternative does not make use of artificial boundary conditions, but
is less suitable for parallelization.

Finally, construct the coarse solverA0 : V 0
h×V 0

h → R such thatA0(u0, v0) = Ah(RT
0 u0, R

T
0 v0) 6=

AH(u0, v0), where AH is defined similar to Ah, but on the coarser mesh TH

Defining A, Ai, RT
i , and Ri as the matrix representations of Ah, Ai, RT

i , and Ri respectively,
the Schwarz preconditioning matrix B ≈ A−1 is now defined as follows:

B =
NS∑
i=0

RT
i A−1

i Ri.

Theoretical results For symmetric DG methods, such as SIPG, BRMPS, BMMPR, LDG,
BZ, BMMPR, it is shown that the condition number of the preconditioned system is O

(
H
h

)
,

independent of the number of Schwarz subdomains NS , and linearly dependent on the stabilisation
parameter (which is the penalty parameter η0 for IP methods used in Section 1.3 and Section 2.2).

For nonsymmetric DG methods, such as IIPG and NIPG, it is found that the “Eisenstat
et al. (...) GMRES convergence theory, generally used in the analysis of Schwarz methods for
non-symmetric problems, cannot be applied even if the numerical results show that the GMRES
applied to the preconditioned systems converges in a finite number of steps and the proposed
preconditioners seem to be scalable”.

Numerical results Numerical results are presented to illustrate the performance of the pro-
posed Schwarz preconditioner on the domain [0, 1]2 for both Cartesian and triangular meshes.
Symmetric systems are solved using the preconditioned CG method, nonsymmetric systems are
solved using GMRES. Besides a validation of the theoretical results, it is found that larger values
of pH lead to better performance. Furthermore, their results are comparable to those in [FK01] for
similar problems. Moreover, it is pointed out that, for smaller H (and fixed h), the coarse system
becomes more expensive. Similarly, the local systems corresponding to (4.2) are more costly to
solve for smaller Ns (and fixed h).

Conclusion An additive two-level non-overlapping Schwarz preconditioner is proposed for a
large class of stable and consistent DG methods in the unified framework in [ABCM02]. Optimal
estimates are provided for symmetric systems.

4.4 Space Decomposition

This section discusses methods in the framework of space decomposition and subspace correction
methods. The main idea is to write the DG test space as the direct sum of two subspaces. This
results in new matrix properties that can be exploited.

By using such a decomposition, Ayuso and Zikatanov [AdDZ09] propose uniform precondition-
ers for the symmetric SIPG method, and a uniform iterative method for the non-symmetric NIPG
and IIPG methods. Their ideas are based on the work in [Xu92, XZ02].

The remaining of this section focusses on [AdDZ09].

Model Ayuso and Zikatanov [AdDZ09] consider symmetric (SIPG) and non-symmetric (NIPG,
IIPG) interior penalty methods for the Poisson equation (though it is claimed that the results
apply to more general elliptic problems).

A distinction is made between the classical type-1 methods, with bilinear form (cf. (2.6) in
this report):

A(u,w) =
∫

Ω

∇u · ∇w +
∑
e∈E

∫
e

(
−{∇u} · [w] + ε [u] · {∇w}+

η0
|e|

[u] · [w]
)
,
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and the type-0 methods, whose bilinear from results by approximating the penalty terms:

A0(u,w) =
∫

Ω

∇u · ∇w +
∑
e∈E

∫
e

(
−{∇u} · [w] + ε [u] · {∇w}+

η0
|e|
P0

e [u] · P0
e [w]

)
,

where P0
e denotes the L2-projection onto the constants on the edge e.

To compute the solution defined by these bilinear forms, they propose to decompose the test
space V , which consists of each function that is a polynomial of degree p = 1 or lower within each
mesh element, into two subspaces V CR and Z. The first subspace V CR consists of all functions
v ∈ V such that the projected jump P0

e [v] = 0 for each interior edge e. This space is also referred
to as the Crouzeix-Raviart finite element space. The second space Z consists of all functions v ∈ V
such that the projected average P0

e {v} = 0 for each interior edge e.
It is shown that, for every u ∈ V , there exists a unique v ∈ V CR and a unique z ∈ Z such

that u = v + z. As a consequence, for all u,w ∈ V , we can write u = v + z and w = φ+ ψ, with
v, φ ∈ V CR and z, ψ ∈ Z, so that:

A(u,w) = A(v, φ) +A(v, ψ) +A(z, φ) +A(z, ψ).

Furthermore, we can use bases for V CR and Z (rather than one basis for V ) to write the IP
solution as the solution to a linear system with a coefficient matrix of the form:

A =
[
Azz Azv

Avz Avv

]
.

Observe that the matrix is twice as large as usual, but due to the properties of the bases, the
number of nonzeros is typically about twice as small. For instance, Azv = 0 for methods of type-0.
So the system becomes block lower triangular for those methods. More information on how to
solve the linear system for type-0 methods is provided in [AdDZ09, Section 4].

Method To compute the solution to the resulting linear system, two preconditioners for the
symmetric SIPG method are proposed, as well as an iterative solver for the non-symmetric NIPG
and IIPG methods.

The preconditioners for the symmetric SIPG method are constructed as follows. First, the
bilinear form A is approximated by a bilinear form B. Then, the preconditioning matrix is defined
as B−1, where B is the matrix representation of B (obtained using the aforementioned bases for
V CR and Z). For the bilinear form B ≈ A, two options are suggested:

B(u, v) := A0(u, v), and B(u,w) := A(v, φ) +A(z, ψ).

The resulting preconditioners are 2× 2 block diagonal matrices, due to the properties of V CR and
Z. So in order to apply the preconditioner, two symmetric relatively sparse systems need to be
solved.

The iterative solver for the non-symmetric NIPG and IIPG methods is constructed as follows.
First, define the bilinear form B as the symmetric part ofA, so that B(u,w) = 1

2 (A(u,w) +A(w, u)).
Then, the iterative algorithm reads, assuming an initial guess u0 is specified:

Algorithm 6
1) for k = 0, 1, ... until convergence
2) Solve B(ek, w) = (f, w)−A(uk, w) for all w ∈ V
3) update uk+1 = uk + ek

4) end

Observe that this algorithm requires the solution to a symmetric system only.
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Theoretical results For the preconditioners for the SIPG method, it is shown that A and B
are spectrally equivalent. This implies that the condition number of the preconditioned system is
O(1), depending on the penalty parameter only.

For non-symmetric IP methods, it is shown that the proposed iterative method converges
uniformly in the norm defined by B, under certain restrictions on the penalty parameter:

‖u− uk+1‖B ≤ Λ ‖u− uk‖B ,

where Λ < 1 is a positive constant.

Numerical results The main purpose of the numerical results is to validate the theories; re-
quired computational times are left out of consideration.

Numerical results on a square two-dimensional domain are shown that validate the theoreti-
cal uniform convergence of the proposed methods. The meshes are triangular, and six levels of
refinement are used. Indeed, the `2 condition number of the preconditioned SIPG system is O(1),
whereas it scales quadratically with the number of elements in the unpreconditioned case. The
latter is a well-known theoretical result.

The iterative method for the non-symmetric IP schemes is tested for several penalty parameters.
As predicted, uniform convergence is observed. Furthermore, the convergence rate improves for
larger values of the penalty parameter.

Conclusion It is possible to write the DG test space as the internal direct sum of the Crouzeix-
Raviart finite element space and a second subspace. This decomposition can be used to obtain
uniform preconditioners for the symmetric SIPG method and a uniform iterative method for the
non-symmetric NIPG and IIPG methods. According to the authors, this the first time that a
uniform iterative scheme is proposed for non-symmetric problems.

4.5 Conclusion

This chapter considers preconditioners that have recently received much attention in the context
of DG/IP discretisations for elliptic problems. There are four main classes of preconditioners that
are popular in this context: h-multigrid, p-multigrid, Schwarz domain decomposition, and space
decomposition. One preconditioning type that is not in this list, but that has been very successful
for finite difference methods, is the class of preconditioners that are based on a Block Incomplete
LU-decomposition (BILU). Therefore, we will choose this to be our research direction, and we will
study existing BILU algorithms in the next chapter.



Chapter 5

BILU Preconditioning (Research
Direction)

While preconditioners based on a Block Incomplete LU-decomposition (BILU) have been applied
successfully for finite difference discretisations in the past, it was found in the previous chapter
that this type of preconditioning has received little attention in the context of DG discretisations.
Therefore, this chapter studies existing BILU algorithms as a starting point for our research. An
exact Block LU factorisation of a matrix A is of the form A = LDU , where D is a block diagonal
matrix and L and U are block lower and upper triangular matrices respectively with identity blocks
on the diagonal. The main idea behind a BILU preconditioner is to make use of an approximation
of such a factorisation.

The outline of this chapter is as follows. The computation of an exact block LU factorisation
is discussed in Section 5.1 for block tridiagonal matrices. Section 5.2 discusses a recursive BILU
preconditioner, which assumes and exploits a recursive block tridiagonal structure of the matrix.
A more general BILU framework is considered in Section 5.3. The recursive BILU decomposition
can be obtained as a special case in this framework, which is shown in Section 5.4. Numerical
examples that illustrate the definition and performance of the recursive BILU preconditioner are
considered in Section 5.5. Finally, a conclusion is given in Section 5.6.

5.1 Exact Block LU-decomposition for Block Tridiagonal
matrices

This section discusses the construction of an exact block LU-decomposition for block triangu-
lar matrices. Incomplete factorisations that can be used as a preconditioner can be derived by
approximating this algorithm.

Consider a matrix with a block tridiagonal structure:

A :=


A1 C1

B2 A2
. . .

. . . . . . Cn−1

Bn An

 . (5.1)
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The exact block-LU decomposition of A reads:

A =


I
L2 I

. . . . . .
Ln I


︸ ︷︷ ︸

=:L


D1

D2

. . .
Dn


︸ ︷︷ ︸

=:D


I U1

I
. . .
. . . Un−1

I


︸ ︷︷ ︸

=:U

, (5.2)

where D1 = A1, and, for all j = 2, ..., n,

Lj = BjD
−1
j−1, Uj−1 = D−1

j−1Cj−1, Dj = Aj −BjD
−1
j−1Cj−1. (5.3)

This can be verified by performing the multiplications. In other words, the block LU decomposition
can be computed by the following algorithm:

Algorithm 7
Computes the exact LU decomposition A = LDU :

1) D1 = A1

2) for j = 2, ..., n do
3) Lj := BjD

−1
j−1

4) Uj−1 := D−1
j−1Cj−1

5) Dj := Aj −BjD
−1
j−1Cj−1

6) end

Observe that this algorithm is expensive in the sense that the inverses D−1
j , which are applied

to matrices, need to be computed. Nevertheless, in theory, we could choose (LDU)−1 = A−1

as a ‘preconditioner’. In that case, the result z = [z1, ..., zn]T of applying (LDU)−1 = A−1 to
r = [r1, ..., rn]T could be computed in the following manner:

Algorithm 8
Computes z = (LDU)−1r, assuming that D1, ..., Dn are precomputed.

1) s1 := r1
2) for j = 2, 3, ..., n do
3) sj := rj −BjD

−1
j−1sj−1 (by solving the linear system)

4) end
5) zn = D−1

n sn (by solving the linear system)
6) for j = n− 1, n− 2, ..., 1 do
7) zj = D−1

j (sj − Cjzj+1) (by solving the linear system)
8) end

Note that only the matrices Dj are required to execute this algorithm; the matrices Lj and Uj

are not needed. The reason for this is that we can write:

A = LDU = (B +D)D−1(D + C), (5.4)

where the matrix B denotes the lower triangular part of A, and the matrix C the upper triangular
part.

Finally, observe that Algorithm 8 is actually a direct method to solve the system Az = r.
Therefore, it is not a suitable preconditioner in practice. However, by using approximations that
lower the computational costs of the application of the inverses, an efficient preconditioner can be
obtained. An example of such a strategy is discussed in the next section.
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5.2 A Recursive BILU Preconditioner for Block Triangular
Matrices

This section considers the Block Incomplete LU-decomposition (BILU) studied by Van ’t Slot in
[Slo08, p. 15-17]. The main idea is to approximate the exact algorithm of the previous section.
To this end, both an approximation of both the decomposition (cf. Algorithm 7) and the solver
(cf. Algorithm 8) needs to be constructed. It should be noted that the approximation for the
decomposition described below (cf. Algorithm 9) is also proposed in a more general framework
in [Mei83], which is discussed in the next section. Furthermore, an algorithm that is similar the
approximation for the solver below (cf. Algorithm 10) can be found in [AC83].

We consider a matrix of the form (5.1) with a recursive block tridiagonal structure: each off-
diagonal block is assumed to be a regular diagonal matrix, and each diagonal block is assumed
to have a recursive block tridiagonal structure similar to A. Here, we restrict ourselves to the
case that each diagonal block in A is a (regular) tridiagonal matrix. The preconditioner described
below can also be applied to matrices with a deeper nested recursive block tridiagonal structure,
such as those resulting from a central difference discretisation for a three-dimensional Poisson
problem. The more general case is considered in detail in Appendix C of this report.

A complete block-LU decomposition for the matrix A was specified earlier in Algorithm 7. A
disadvantage of using this factorisation is that the inverses D−1

j are usually full matrices and too
expensive to apply. Therefore, it is proposed to construct a preconditioner by replacing the inverse
D−1

j by a certain approximation Tj (specified below) that has the same (regular tridiagonal)
structure as Aj . As a consequence, the factorization has now become a Block Incomplete LU
(BILU) decomposition. Furthermore, because the off-diagonal blocks Bj and Cj are (regular)
diagonal matrices, the diagonal factors Dj = Aj − BjTj−1Cj−1 will have the same tridiagonal
structure as Aj . This property is characteristic for the BILU method, and makes it possible to
exploit the recursive block tridiagonal structure of the matrix, as will become clear later on.

The approximation Tj ≈ D−1
j is computed as follows:

Algorithm 9
Computes the BILU factors D1, ..., Dn for (a matrix with a similar structure as) A (cf. (5.1)),
as well as an approximation T ≈ A−1, using the notation:

T =


E1 G1

F2 E2
. . .

. . . . . . Gn−1

Fn En

 . (5.5)

1) if A is a scalar, compute T = 1/A directly, else:
2) D1 := A1

3) for j = 2, ..., n do
4) compute Tj−1 ≈ D−1

j−1 by calling this algorithm recursively
5) Lj := BjTj−1

6) Uj−1 := Tj−1Cj−1

7) Dj := Aj −BjTj−1Cj−1

8) end
9) En := Tn

10) for j = n− 1, ..., 1 do
11) Ej := Tj + UjEj+1Lj+1

12) end
13) for j = 2, ..., n do
14) Fj := −TjLj
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15) Gj−1 := −Uj−1Tj

16) end
17) Construct T according to (5.5) and set all of its elements outside the nonzero pattern

of A equal to zero.

Observe that the approximation T ≈ A−1 is constructed using approximations Tj ≈ D−1
j

at deeper recursion levels (see Appendix C for more details on the relations between recursion
levels). Therefore, ‘incompleteness’ at deeper recursion levels also increases the incompleteness at
the higher levels. An example of an outcome of Algorithm 9 is discussed in Section 5.5 later on.

Once the BILU decompositions are obtained at all levels, the result z of applying the pre-
conditioner to r can be obtained similar to Algorithm 8, except that whenever the inverse of a
tridiagonal matrix D−1

j−1 is required, the algorithm is called recursively:

Algorithm 10
Computes the result z ≈ A−1r for a matrix (with a similar structure as) A, assuming that a
BILU decomposition is precomputed (in terms of D1,...,Dn) by Algorithm 9

1) if A is a scalar, compute z = A−1r directly, else:
2) s1 := r1
3) for j = 2, 3, ..., n do
4) sj := rj −BjD

−1
j−1sj−1 (by applying this algorithm recursively)

5) end
6) znk

:= D−1
n sn (by applying this algorithm recursively)

7) for j = n− 1, n− 2, ..., 1 do
8) zj := D−1

j (sj − Cjzj+1) (by applying this algorithm recursively)
9) end

As before in Algorithm 8, only the matrices Dj are required to execute this algorithm; the
matrices Lj and Uj are not needed (cf. (5.4)). Furthermore, because the algorithm is applied
recursively, the incompleteness at deeper recursion levels increases the incompleteness at the higher
levels. An example of an outcome of Algorithm 10 is discussed in Section 2.4.

Finally, it should be stressed that, even if Algorithm 10 is applied using the results of an exact
block LU factorisation (cf. Algorithm 7), the preconditioner can not be interpreted as a direct
solver. This is due to the recursive applications in lines 4, 6 and 8. In those lines, it is assumed
that the matrices Dj have a tridiagonal structure. The latter is not the case (in general) for exact
block LU decompositions.

Remark 5.2.1 (Modified BILU)
Inspired by the latter, Algorithm 10 could be modified such that the inverses D−1

j in lines 4, 6 and
8 are handled by performing the multiplication with Tj ≈ D−1

j rather than the recursive approach.
The resulting modified BILU preconditioner can be interpreted as a direct solver, if the block LU
factorisation is exact, and if the inverses Tj = D−1

j are exact as well. However, if the factorisation
and the inverses Tj are not exact, the accuracy of the modified BILU algorithm can be worse than
the original BILU algorithm. This is numerically validated in Section 5.5 later on. y

5.3 A More General BILU Framework

The BILU preconditioner discussed in the previous section leans heavily on the recursive block
tridiagonal structure of the matrix. Unfortunately, the coefficient matrix resulting from an SIPG
discretisation of the Poisson equation generally only has this structure for polynomial degree p = 0
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and certain types of meshes only. In order to modify the BILU algorithm to make it suitable for
more general discretisations, this section discusses the work of Meijerink [Mei83], which can be
seen as a generalisation of the ideas in [MvdV77].

Consider a matrix of the form:

A =


A11 A12 . . . A1N

A21 A22 . . . A2N

...
AN1 AN2 . . . ANN

 .
The diagonal submatrices Aii are square, but they do not have to be of equal size. It is assumed
that A is an M-matrix (cf. e.g. [HJ91, p. 114] for equivalent definitions).

Next, we construct a splitting

A = LU −R, (5.6)

such that

i) L is a block lower-triangular matrix with identity matrices on the diagonal;

ii) U is a block upper-triangular matrix;

iii) (LU)−1 ≥ 0 and R ≥ 0, so that the splitting is regular (by definition, cf. e.g. [Saa00,
definition 4.1]).

The matrices L, U and R are of the form:

L := (LN−1LN−2...L1)−1,

U := AN ,

R := R1 +Q1 +R2 +Q2 + ...+QN−1 +RN ,

where the matrices Ak, Lk, Rk and Qk are formed in stage k of the following process. The main
idea is to gradually transform the matrix A into a block upper-triangular matrix. To this end,
initially, we define A0 := A. In stage k ∈ {1, 2, ..., N}, the following two steps are taken to define
Ak, Lk, Rk and Qk:

1) Consider the M-matrix Ak−1. Choose a matrix Ãk that approximates Ak−1 such that

i) Ak−1
kk = Ãk

kk − Rk
kk is a regular splitting, and Ãk

kk can easily be ‘inverted’ by solving a
linear system.

ii) Ak−1
ik ≤ Ãk

ik ≤ 0 for all i > k (in this chapter, inequalities for matrices should be
interpreted elementwise);

iii) Ak−1
kj ≤ Ãk

kj ≤ 0 for all j > k;

iv) Ãk
ij = Ak−1

ij for all other blocks.

It can be verified that Ãk is an M-matrix and that Rk := Ãk −Ak−1 ≥ 0.

2) Next, each row i > k in Ãk is eliminated by premultiplying row k in Ãk with Ãk
ik

(
Ãk

kk

)−1

and subtracting the result from row i:

Ãk
ij := Ãk

ij − Ãk
ik

(
Ãk

kk

)−1

Ãk
kj , for all j ≥ i > k.
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(for j < i the result would be zero, which is actually the point of this step). To avoid fill-in,

the term Ãk
ik

(
Ãk

kk

)−1

Ãk
kj shall be approximated by a sparse matrix Mk

ij :

Ãk
ij :≈ Ãk

ij − Ãk
ik

(
Ãk

kk

)−1

Ãk
kj︸ ︷︷ ︸

≈Mk
ij

+ Ãk
ik

(
Ãk

kk

)−1

Ãk
kj −Mk

ij︸ ︷︷ ︸
=:Qk

ij

=: Ak
ij , for all j ≥ i > k.

In other words:

Ak := LkÃk +Qk,

where Lk is the identity matrix (of the same size as A), except for column k:

Lk :=



I
. . .

I
I

−Ãk
k+1,k

(
Ãk

kk

)−1

I

...
. . .

−Ãk
Nk

(
Ãk

kk

)−1

I


.

Observe that Lk is exact in the sense that it is not expressed in terms of Mk. Furthermore,
the nonzero values of Qk read, for j ≥ i > k:

Qk
ij := Ãk

ik

(
Ãk

kk

)−1

Ãk
kj −Mk

ij .

Furthermore, the matrix Mk
ij approximates Ãk

ik

(
Ãk

kk

)−1

Ãk
kj such that

i) ‘too much’ fill-in is avoided

ii) Ak is an M-matrix (in order to obtain this property, it can be used that Ãk
ik

(
Ãk

kk

)−1

Ãk
kj ≥

0)

Finally, the following remarks can be made:

• In order to use the splitting (5.6) as a preconditioner, it is often not necessary to perform all
the computations above. For instance, for block triangular matrices (with arbitrary sparsity
pattern), (an approximation of ) Algorithm 8 could be used, which only requires the diagonal
elements of U (cf. (5.4)).

• The method “can be modified such that either the row-sums or the column-sums of the error
matrix R = A− LU are equal to zero”. The resulting splitting is not regular anymore, but
the “condition of (LU)−1A” may be better, e.g. scale with 1

h rather than 1
h2 , depending on

the model problem.

• Clearly, the choices for Ãk (in step 1), and Mk (in step 2), determine the efficiency and
accuracy of the decomposition. Examples are considered in the next section.

5.4 Examples

The recursive BILU decomposition discussed in Section 5.2 can be formulated in terms of the more
general BILU framework that was formulated in Section 5.3. As a matter of fact, the recursive
decomposition defined by Algorithm 9 is one of the main examples considered in [Mei83].
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To indicate the link between the two approaches, suppose that A is a block tridigonal matrix:

A :=


A11 A12

A21 A22
. . .

. . . . . . AN−1,N

AN,N−1 AN,N

 .

As in Section 5.2, the diagonal blocks are assumed to be (regular) tridiagonal matrices, and the off-
diagonal blocks are assumed to be diagonal matrices. We will now discuss specific choices for Ãk,
and Mk in the algorithm in Section 5.3, so that the method becomes equivalent to Algorithm 9.

To this end, note that for this block tridiagonal matrix, the matrix Lk contains only one
non-trivial element:

Lk :=



I
. . .

I
I

−Ãk
k+1,k

(
Ãk

kk

)−1

I

0 I
...

. . .
0 I


.

As a consequence, only the diagonal element Ak
k+1,k+1 needs to be computed in step 2 of the

algorithm; all other elements are either zero or unchanged. Thus, only Mk
k+1,k+1 needs to be

chosen. We choose:

Ãk = Ak−1, Mk
k+1,k+1 = T

(
Ãk

k+1,k(Ãk
kk)−1Ãk

k,k+1

)
,

where the notation T (B) denotes the tridiagonal matrix of which the three diagonals are equal to
the corresponding diagonals of B. Since the off-diagonal elements of Ãk are diagonal matrices, we
may write:

Mk
k+1,k+1 = Ãk

k+1,kT
(
(Ãk

kk)−1
)
Ãk

k,k+1,

It becomes clear from the claim in [Mei83, Appendix 1] that T
(
(Ãk

kk)−1
)

is equivalent to the result
T of applying Algorithm 9, using the input Ãk

kk for A.
Other choices for Mk

k+1,k+1 that are given in [Mei83] for the tridiagonal matrix above read:

• Mk
k+1,k+1 = 0 (in this case, the block upper-diagonal elements are not updated in the second

step of the algorithm);

• Mk
k+1,k+1 = Ãk

k+1,kD
(
(Ãk

kk)−1
)
Ãk

k,k+1, where D(B) indicates the diagonal matrix of which
the diagonal is equal to B. Note that a strategy to compute D(B−1) can be derived from
the strategy to compute T (B−1) by simply not computing the off-diagonal elements, and
setting them equal to zero instead.

• Mk
k+1,k+1 = Ãk

k+1,k

(
D−1

kk (Ãk
kk − Dkk)D−1

kk

)
Ãk

k,k+1, where Dkk = D(Ãk
kk) and D−1

kk (Ãk
kk −

Dkk)D−1
kk is an approximation for

(
Ãk

kk

)−1

consisting of the first two terms of the Taylor

series expansion of
(
Ãk

kk

)−1

around Dkk.
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5.5 Numerical Example

In this section, we investigate the performance of the BILU preconditioner formulated in Section
5.2 numerically. To this end, we consider the SIPG method for the two-dimensional Poisson
problem introduced in Section 2.4.

For p = 0, the matrix A has the required recursive tridiagonal structure, since it is equivalent to
the matrix resulting from a central difference scheme in that case (cf. Figure 2.1). An illustration
of the outcome of the BILU decomposition defined by Algorithm 9 (with n = Nx = Ny) for this
case can be found in Figure 5.1 for 3 × 3 elements and 4 × 4 elements. The following definitions
and conclusions can be stated.

First, note that the matrices Aj (only the cases with j = 1 and j = n are displayed) are the
familiar tridiagonal matrices corresponding to the diagonal blocks of the coefficient matrix resulting
from a central difference discretisation. Next, observe that the matrices Dj and Tj ≈ D−1

j are
tridiagonal matrices, just like Aj . Indeed, this was how the algorithm was designed.

Next, we are interested in the errors in Dj and Tj , which are denoted by ∆Dj and ∆Tj

respectively. The matrix ∆Dj denotes the difference between Dj , as defined by Algorithm 9,
and the ‘exact version’ of Dj , as would be the result of Algorithm 7. The error ∆D1 = 0, since
D1 = A1 is not approximated. The errors ∆Dn appear to be relatively small.

The matrix ∆Tj is the difference between Tj , as computed by Algorithm 9, and D−1
j , as would

be the result of computing the inverse of the approximation (!) Dj exactly. It can be observed
that ∆Tj = 0 on the three ‘main’ diagonals, as predicted in [Mei83] (cf. Section 5.4). Outside
these three diagonals, the errors appear to be relatively small.

Finally, we consider the performance of the preconditioner defined by Algorithm 10. We use the
CG method with a random start vector and the stopping criterion (note that we used a different
tolerance in earlier CG examples):

‖rk‖2
‖b‖2

≤ 10−3.

Figure 5.2 compares the convergence during the iterations without preconditioning, with the BILU
preconditioner, and with a modified version of the BILU preconditioner (defined in Remark 5.2.1).
The (original) BILU preconditioner reduces the number of iterations by about a factor 7 (compared
to the unpreconditioned case). Furthermore, it can be seen that the modified BILU algorithm
performs worse than the original algorithm.

5.6 Conclusion

This chapter studies existing BILU algorithms as a starting point for our research. An exact Block
LU factorisation of a matrix A is of the form A = LDU , where D is a block diagonal matrix and
L and U are block lower and upper triangular matrices respectively with identity blocks on the
diagonal. The main idea behind a BILU preconditioner is to make use of an approximation of
such a factorisation. An example of such a preconditioner is the recursive BILU preconditioner.
It was demonstrated numerically that this algorithm can effectively enhance the convergence of
CG for matrices with a recursive block tridiagonal structure. Unfortunately, the coefficient matrix
resulting from an SIPG discretisation of the Poisson equation generally only has this structure for
polynomial degree p = 0 and certain types of meshes only. Furthermore, this chapter discusses
a general framework that includes the recursive BILU preconditioner. It is the main challenge of
this research to find a generalisation of the recursive BILU algorithm within this framework that
is suitable for our application.
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A1 =

24 4.000 −1.000 0.000
−1.000 4.000 −1.000
0.000 −1.000 4.000

35 A3 =

24 4.000 −1.000 0.000
−1.000 4.000 −1.000
0.000 −1.000 4.000

35
D1 =

24 4.000 −1.000 0.000
−1.000 4.000 −1.000
0.000 −1.000 4.000

35 D3 =

24 3.705 −1.093 0.000
−1.093 3.677 −1.093
0.000 −1.093 3.705

35
T1 =

240.268 0.071 0.000
0.071 0.286 0.071
0.000 0.071 0.268

35 T3 =

240.299 0.097 0.000
0.097 0.330 0.097
0.000 0.097 0.299

35
∆D1 =

240.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

35 ∆D3 =

240.000 0.001 0.028
0.001 0.000 0.001
0.028 0.001 0.000

35
∆T1 =

24 0.000 0.000 −0.018
0.000 0.000 0.000
−0.018 0.000 0.000

35 ∆T3 =

24 0.000 0.000 −0.029
0.000 0.000 0.000
−0.029 0.000 0.000

35
(a) 3× 3 elements

A1 =

2664
4.000 −1.000 0.000 0.000
−1.000 4.000 −1.000 0.000
0.000 −1.000 4.000 −1.000
0.000 0.000 −1.000 4.000

3775 A4 =

2664
4.000 −1.000 0.000 0.000
−1.000 4.000 −1.000 0.000
0.000 −1.000 4.000 −1.000
0.000 0.000 −1.000 4.000

3775

D1 =

2664
4.000 −1.000 0.000 0.000
−1.000 4.000 −1.000 0.000
0.000 −1.000 4.000 −1.000
0.000 0.000 −1.000 4.000

3775 D4 =

2664
3.701 −1.099 0.000 0.000
−1.099 3.665 −1.110 0.000
0.000 −1.110 3.665 −1.099
0.000 0.000 −1.099 3.701

3775

T1 =

2664
0.268 0.072 0.000 0.000
0.072 0.287 0.077 0.000
0.000 0.077 0.287 0.072
0.000 0.000 0.072 0.268

3775 T4 =

2664
0.300 0.100 0.000 0.000
0.100 0.337 0.112 0.000
0.000 0.112 0.337 0.100
0.000 0.000 0.100 0.300

3775

∆D1 =

2664
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

3775 ∆D4 =

2664
0.001 0.002 0.037 0.012
0.002 0.002 0.003 0.037
0.037 0.003 0.002 0.002
0.012 0.037 0.002 0.001

3775

∆T1 =

2664
0.000 0.000 −0.019 −0.005
0.000 0.000 0.000 −0.019
−0.019 0.000 0.000 0.000
−0.005 −0.019 0.000 0.000

3775 ∆T4 =

2664
0.000 0.000 −0.033 −0.010
0.000 0.000 0.000 −0.033
−0.033 0.000 0.000 −0.000
−0.010 −0.033 0.000 0.000

3775
(b) 4× 4 elements

Figure 5.1: BILU decomposition (Algorithm 9) for an SIPG discretisation with p = 0 and η0 = 1
for the two-dimensional Poisson equation
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(a) 10× 10 mesh elements (b) 20× 20 mesh elements

(c) 40× 40 mesh elements (d) 80× 80 mesh elements

Figure 5.2: Convergence of CG in A-norm
√

(x− xk)TA(x− xk): BILU preconditioning reduces
the number of iterations.



Chapter 6

Conclusion & Research questions

Discontinuous Galerkin (DG) finite element methods for elliptic problems approximate the solution
in the form of piecewise polynomials of degree p. The main advantages of these methods are the
flexibility in handling non-matching grids and in designing hp-refinement strategies. An important
drawback is that the resulting linear systems are usually large (due to the large number of degrees of
freedom), and ill-conditioned. Therefore, efficient iterative algorithms are required to minimize the
computational costs and increase the practical applicability of DG methods. Two main strategies
to tackle this problem are preconditioning and deflation.

Recently, new preconditioning techniques have been proposed for DG methods, such as multi-
grid, Schwarz domain decomposition, and subspace decomposition. It appears that BILU pre-
conditioners, which have been rather successful for finite difference methods, have received little
attention so far in this field. Therefore, we choose this to be our research direction. Furthermore,
we will restrict ourselves (initially) to matrices resulting from SIPG discretisations for Poisson
equations.

An example of an efficient BILU method is the recursive BILU preconditioner. Unfortunately,
this method is only applicable to matrices with a recursive block tridiagonal structure. As a
consequence, it can not be used readily for our application, because the corresponding coefficient
matrix does not have the required structure in general.

Instead, the matrix has the following properties: it is an N ×N block matrix, where N is the
number of mesh elements, and each block in turn is an M ×M matrix, where M is the dimension
of the polynomial test space (within one mesh element). For polynomial degree p = 0, the matrix
is equivalent to a matrix resulting from a central finite difference method. For p > 0, the nonzero
pattern is similar, except that it now consists of (full) M ×M blocks (cf. Figure 1.1 and Figure
2.1). It can be shown that the matrix is Symmetric and Positive-Definite (SPD) (provided that
the penalty parameter η0 is sufficiently large). Furthermore, it is well-known that the condition
number is O(h−2) for quasi-uniform meshes with element diameter h. The latter is the main
reason why CG (without preconditioning) requires O(h−1) iterations for convergence.

The main goal of this research is to enhance the efficiency of CG for linear systems
resulting from SIPG discretisations for Poisson equations through an optimal combi-
nation of a generalisation of the recursive BILU preconditioner and deflation.

To this end, we will seek an answer to the following research questions:

1) How can we generalise the decomposition defined in Algorithm 9?

i) We could simply nullify all elements outside the required sparsity pattern, or lump them
onto the diagonal. What is the (expected) performance of the resulting two algorithms?

ii) Another idea is to first apply a p-multigrid preconditioner, so that the system at the
coarsest level has the required sparsity pattern. What is the performance of the resulting
combination of preconditioners?
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iii) We could implement another version of the algorithm defined in Section 5.3. Possibilities
are specified in Section 5.4. What is their (expected) performance?

iv) What are other possibilities for the algorithm defined in Section 5.3 (in terms of the
matrices Ãk, and Mk)? What is their (expected) performance?

v) What other literature is related to [Mei83]?
vi) Incomplete Cholesky factorisations (IC, MIC, RIC) have been used often as a pre-

conditioner for the CG method. Can we make use of the underlying ideas of these
factorisations?

vii) It is stated in [Mei83] that the BILU decomposition “can be modified such that either
the row-sums or the column-sums of the error matrix R = A− LU are equal to zero”.
The resulting splitting is not regular anymore, but the “condition of (LU)−1A” may
be better, e.g. scale with 1

h rather than 1
h2 (where h is the mesh element diameter),

depending on the model problem. For our application, do we prefer zero row-sums (or
column-sums) to regularity?

2) How can we generalise the solver defined in Algorithm 10?

i) We could simply nullify all elements outside the required sparsity pattern, or lump them
onto the diagonal. What is the (expected) performance of the resulting two algorithms?

ii) Appleyard [AC83] also studies recursive solvers for BILU decompositions: What is the
precise implementation proposed in that reference? How does it relate to Algorithm 10?

iii) What other literature is related to [AC83]?

3) What type of deflation is suitable to complement the new preconditioner resulting from the
answers to the previous questions?

Here, we will measure the ‘performance’ in terms of:

- the condition number,
- the number of iterations required for PCG to convergence (compared to the unpreconditioned

case, or to a standard preconditioner (e.g. Jacobi)),
- the variations in the convergence speed per iteration (stagnation and accelaration during the

convergence process),
- the CPU time (or flops) required to construct the decomposition,
- the CPU time (or flops) required to apply the solver,
- and the number of nonzero elements in the decomposition (fill-in).

Other questions are:

- What are the main drawbacks of the existing preconditioners for DG discretisations for
elliptic problems?

- The SIPG method only leads to a positive definite matrix provided that the penalty parame-
ter is sufficiently large [GK03, p. 531]. A similar condition is required for convergence of the
SIPG solution [Riv08, Chapter 1, Chapter 2]. What is an explicit (computable) expression
for a sufficiently high lower bound for the penalty parameter?



Appendix A

Derivation of DG Methods

This chapter provides the derivations for the DG methods formulated in Chapter 1. First, some
required preliminaries are derived in Section A.1. Section A.2 considers interior penalty methods.
Section A.3 discusses DG methods in the unified framework [ABCM02].

A.1 Preliminaries

In order to derive the DG formulations, we need the following preliminaries (see Section 1.1 for
notational aspects):

N∑
i=0

[uv]i =
N∑

i=0

[u]i {v}i +
N−1∑
n=1

{u}i [v]i , or equivalently: (A.1)

N∑
i=0

[uv]i =
N−1∑
i=1

[u]i {v}i +
N∑

n=0

{u}i [v]i . (A.2)

Notice the difference in the bounds of the sum.
These preliminaries can be derived as follows. First, observe that if follows from (1.2) that, at

the interior element boundaries xi with i = 1, ..., N − 1:

[uv]i = [u]i {v}i + {u}i [v]i .

Similarly, at the domain boundary, we obtain from (1.3):

[uv]0 = −u1(x0)v1(x0) =

{
[u]0 {v}0 , or equivalently,
{u}0 [v]0 ,

[uv]N = uN (xN )vN (xN ) =

{
[u]N {v}N , or equivalently,
{u}N [v]N .

Summing over all element boundaries with index i = 0, ..., N , we obtain (A.1) and (A.2).

A.2 Interior Penalty Methods

This section derives the IP formulation defined by (1.4) and (1.5). We follow [Riv08, Chapter 1]:
first, multiply the model equation (1.1) by a test function v, integrate over a mesh element, and
apply integration by parts:∫ xi

xi−1

u′v′ − u′i(xi)vi(xi) + u′i(xi−1)vi(xi−1) =
∫ xi

xi−1

fv.
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Sum over all mesh elements: ∫
Ω

u′v′ −
N∑

i=0

[u′v]i =
∫

Ω

fv. (A.3)

Rewrite the second term using (A.1) and the fact that [u′]i = 0 for all i = 1, ..., N − 1 (due to the
continuity of u′): ∫

Ω

u′v′ −
N∑

i=0

{u′}i [v]i =
∫

Ω

fv,

Because the boundary conditions are homogeneous, and because u is continuous, it follows that
[u]i = 0 for all i = 0, ..., N . Thus, we may write for any ε ∈ R:∫

Ω

u′v′ −
N∑

i=0

{u′}i [v]i + ε

N∑
i=0

[u]i {v
′}i =

∫
Ω

fv.

The final IP formulation is obtained by substituting the approximation uh ∈ V for u and adding
terms that penalize the jumps in the functions uh and v:∫

Ω

u′hv
′ −

N∑
i=0

{u′h}i [v]i + ε

N∑
i=0

[uh]i {v
′}i +

N∑
i=0

η0
h

[uh]i [v]i =
∫

Ω

fv.

This completes the derivation of the IP formulation defined by (1.4) and (1.5). It should be noted
that there are also IP methods that penalize the jumps in the derivatives of uh and v (cf. [Riv08,
Chapter 1]). These methods are not considered here.

A.3 DG Methods in the Unified Framework

This section derives the DG formulation defined by (1.6) and (1.7). We follow [ABCM02, Section
3.2]: first, rewrite the second-order system (1.1) as a first-order system by defining σ := u′:

σ(x) = u′(x),
−σ′(x) = f(x).

Multiply both equations with test functions τ and v respectively, integrate over an element, and
apply integration by parts:∫ xi

xi−1

στ − ui(xi)τi(xi) + ui(xi−1)τi(xi−1) = −
∫ xi

xi−1

uτ ′,∫ xi

xi−1

σv′ − σi(xi)vi(xi) + σi(xi−1)vi(xi−1) =
∫ xi

xi−1

fv.

This is a weak formulation of (1.1) if [xi−1, xi] is interpreted as any subinterval of Ω, rather than
a mesh element. Next, let the test functions uh ∈ V and σh ∈ V × V denote an approximation
for u and σ = u′ in the element interiors. Similarly, let the piecewise continuous functions û ∈ V
and σ̂ ∈ V × V denote an approximation for u and σ = u′ at the element boundaries. These
numerical fluxes are allowed to be discontinuous at the element boundaries. Next, consider the
weak formulation for each mesh element, sum the results, and substitute the aforementioned
approximations: ∫

Ω

σhτ −
N∑

i=1

(
ûi(xi)τi(xi)− ûi(xi−1)τi(xi−1)

)
= −

∫
Ω

uhτ
′,

∫
Ω

σhv
′ −

N∑
i=1

(
σ̂i(xi)vi(xi)− σ̂i(xi−1)vi(xi−1)

)
=
∫

Ω

fv.
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This can be rewritten in terms of the jump operator:∫
Ω

σhτ −
N∑

i=0

[ûτ ]i = −
∫

Ω

uhτ
′

∫
Ω

σhv
′ −

N∑
i=0

[σ̂v]i =
∫

Ω

fv,

where, û and σ̂ are numerical fluxes that approximate u and σ on the element boundaries. De-
pending on the choice of these numerical fluxes, different types of DG methods are obtained.
Application of (A.1) to the first and (A.2) to the second equation gives:∫

Ω

σhτ −
N∑

i=0

[û]i {τ}i −
N−1∑
i=1

{û}i [τ ]i = −
∫

Ω

uhτ
′, (A.4)

∫
Ω

σhv
′ −

N−1∑
i=1

[σ̂]i {v}i −
N∑

i=0

{σ̂}i [v]i =
∫ b

a

fv. (A.5)

Using integration by parts and (A.1), the right hand side of (A.4) can be rewritten as:

−
∫

Ω

uhτ
′ =

∫
Ω

u′hτ −
N∑

i=0

[uh]i {τ}i −
N−1∑
i=1

{uh}i [τ ]i .

Substitution of this expression into (A.4) yields:∫
Ω

σhτ −
N∑

i=0

[û− uh]i {τ}i −
N−1∑
i=1

{û− uh}i [τ ]i =
∫

Ω

u′hτ.

Substituting of τ = v′ in this expression, and applying the result to the first term in (A.5), we
obtain (1.6) and (1.7).
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Appendix B

Computing the Coefficient Matrix
for an IP scheme

In Chapter 1 and Chapter 2, DG methods for elliptic problems were considered. These methods
require the solution of a linear system of the form (1.11), (1.12). This chapter discusses in detail
how the corresponding coefficient matrix can be computed for IP methods. The one-dimensional
case is considered in Section B.1. The two-dimensional case in Section B.2.

B.1 One-dimensional case

This section derives an explicit expression for the linear system of the form (1.11), (1.12) resulting
from an IP method for the one-dimensional Poisson equation. To this end, consider the bilinear
form (1.5) (see Section 1.1 for notational aspects):

B(u, v) =
∫

Ω

u′v′ +
N∑

i=0

(
−{u′}i [v]i + ε [u]i {v

′}i +
η0
h

[u]i [v]i
)
.

In the interior, for i = 1, ..., N − 1, we can use the definition of the jump and average operator
(1.2) to write:

−{u′}i [v]i = −1
2
(u′i(xi) + u′i+1(xi))(vi(xi)− vi+1(xi))

= −1
2
u′i(xi)vi(xi) +

1
2
u′i(xi)vi+1(xi)−

1
2
u′i+1(xi)vi(xi) +

1
2
u′i+1(xi)vi+1(xi),

ε [u]i {v
′}i =

ε

2
(ui − ui+1)(v′i + v′i+1)

=
ε

2
ui(xi)v′i(xi) +

ε

2
ui(xi)v′i+1(xi)−

ε

2
ui+1(xi)v′i(xi)−

ε

2
ui+1(xi)v′i+1(xi),

η0
h

[u]i [v]i =
η0
h

(ui(xi)− ui+1(xi))(vi(xi)− vi+1(xi))

=
η0
h
ui(xi)vi(xi)−

η0
h
ui(xi)vi+1(xi)−

η0
h
ui+1(xi)vi(xi) +

η0
h
ui+1(xi)vi+1(xi).

Similarly, at the boundary, for i = 0, N , we can use the definition of the jump and average operator
(1.3) to write:

−{u′}0 [v]0 = u′1(x0)v1(x0), −{u′}N [v]N = −u′N (xN )vN (xN ),
ε [u]0 {v

′}0 = −εu1(x0)v′1(x0), ε [u]N {v′}N = εuN (xN )v′N (xN ),
η0
h

[u]0 [v]0 =
η0
h
u1(x0)v1(x0),

η0
h

[u]N [v]N =
η0
h
uN (xN )vN (xN ).
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Using these expressions, the bilinear form can be rewritten in terms of volume integrals, contri-
butions of interior edges, and contributions of boundary edges:

B(u, v) =
N∑

i=1

∫ xi

xi−1

u′v′

+
N−1∑
i=1

(
D−

i (u, v) + C−
i (u, v) + C+

i (u, v) +D+
i (u, v)

)
+D+

0 (u, v) +D−
N (u, v),

where the contributions from the interior edges read, for i = 1, ..., N − 1:

D−
i (u, v) := −1

2
u′i(xi)vi(xi) +

ε

2
ui(xi)v′i(xi) +

η0
h
ui(xi)vi(xi),

C−
i (u, v) :=

1
2
u′i(xi)vi+1(xi) +

ε

2
ui(xi)v′i+1(xi)−

η0
h
ui(xi)vi+1(xi),

C+
i (u, v) := −1

2
u′i+1(xi)vi(xi)−

ε

2
ui+1(xi)v′i(xi)−

η0
h
ui+1(xi)vi(xi),

D+
i (u, v) :=

1
2
u′i+1(xi)vi+1(xi)−

ε

2
ui+1(xi)v′i+1(xi) +

η0
h
ui+1(xi)vi+1(xi),

and the contributions from the edges located at the domain boundary read:

D+
0 (u, v) := u′1(x0)v1(x0)− εu1(x0)v′1(x0) +

η0
h
u1(x0)v1(x0),

D−
N (u, v) := −u′N (xN )vN (xN ) + εuN (xN )v′N (xN ) +

η0
h
uN (xN )vN (xN ).

Taking the local support of the monomial basis functions into account, the diagonal blocks in
the matrix A read, for all i = 1, ..., N :

(Aii)`k = B(φ(i)
k , φ

(i)
` ) =

∫ xi

xi−1

(φ(i)
k )′(φ(i)

` )′ +D+
i−1(φ

(i)
k , φ

(i)
` ) +D−

i (φ(i)
k , φ

(i)
` )

and the off-diagonal blocks:

(Ai+1,i)`k = B(φ(i)
k , φ

(i+1)
` ) = C−

i (φ(i)
k , φ

(i+1)
` ), for all i = 1, ..., N − 1,

(Ai−1,i)`k = B(φ(i)
k , φ

(i−1)
` ) = C+

i−1(φ
(i)
k , φ

(i−1)
` ), for all i = 2, ..., N,

All other off-diagonal blocks are zero, since they correspond to non-adjacent elements.
Using the definition of the monomial test functions (1.8), the individual terms in these expres-

sions can be computed. For the volume integrals, we obtain:

∫ xi

xi−1

(φ(i)
k )′(φ(i)

` )′ =


0, for k = 1, or l = 1,(

2
h

)2 (k − 1)(`− 1)
∫ xi

xi−1

(
x−x

i− 1
2

1
2 h

)k+`−4

dx, else

=

{
0, for k = 1, or l = 1,
2
h

(k−1)(`−1)
k+`−3 (1 + (−1)k+`), else.
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For the edge contributions, it follows that:

D−
i (φ(i)

k , φ
(i)
` ) =

{
1
h

(
− 2(k − 1) + 2ε(`− 1) + η0

)
, for i = N,

1
h

(
− (k − 1) + ε(`− 1) + η0

)
, else,

D+
i−1(φ

(i)
k , φ

(i)
` ) =

{
1
h

(
− 2(k − 1) + 2ε(`− 1) + η0

)
(−1)k+`−2, for i = 1,

1
h

(
− (k − 1) + ε(`− 1) + η0

)
(−1)k+`−2, else,

C−
i (φ(i)

k , φ
(i+1)
` ) =

1
h

(
(k − 1)− ε(`− 1)− η0

)
(−1)`−1, for i = 1, ...N − 1,

C+
i−1(φ

(i)
k , φ

(i−1)
` ) =

1
h

(
(k − 1)− ε(`− 1)− η0

)
(−1)k−1, for i = 2, ...N.

B.2 Two-dimensional case

This section derives an explicit expression for the linear system of the form (1.11), (1.12) resulting
from an IP method for the two-dimensional Poisson equation. To this end, consider the bilinear
form (2.6) (see Section 2.1 for notational aspects):

B(u, v) =
∫

Ω

∇u · ∇v +
∑
e∈E

∫
e

(
−{∇u} · [v] + ε [u] · {∇v}+

η0
|e|

[u] · [v]
)
.

For an interior edge e = ∂Ki ∩ ∂Kj ∈ E◦, we can use the definition of the jump and average
operator (2.2) to write:

−{∇u} · [v] = −1
2
(∇ui +∇uj) · (vini + vjnj)

= −1
2
∇ui · (vini)−

1
2
∇ui · (vjnj)−

1
2
∇uj · (vini)−

1
2
∇uj · (vjnj)

ε [u] · {∇v} =
ε

2
(uini + ujnj) · (∇vi +∇vj)

=
ε

2
(uini) · ∇vi +

ε

2
(uini) · ∇vj +

ε

2
(ujnj) · ∇vi +

ε

2
(ujnj) · ∇vj

η0
|e|

[u] · [v] =
η0
|e|

(uini + ujnj) · (vini + vjnj)

=
η0
|e|
uivi −

η0
|e|
uivj −

η0
|e|
ujvi +

η0
|e|
ujvj

Similarly, for a boundary edge e = ∂Ki ∩ ∂Ω ∈ E∂ , we can use the definition of the jump and
average operator (2.3) to write:

−{∇u} · [v] = −(∇ui) · (vini)
ε [u] · {∇v} = ε(uini) · ∇vi

η0
|e|

[u] · [v] =
η0
|e|

(uini) · (vini) =
η0
|e|
uivi

Using these expressions, the bilinear form can be rewritten in terms of volume integrals, contri-
butions of interior edges, and contributions of boundary edges:

B(u, v) =
N∑

i=1

∫
Ki

∇u · ∇v

+
∑

e=∂Ki∩∂Kj∈E◦

(
Dii

e (u, v) + Cij
e (u, v) + Cji

e (u, v) +Djj
e (u, v)

)
+

∑
e=∂Ki∩∂Ω∈E∂

Dii
e (u, v),
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where the contributions from the interior edge e = ∂Ki ∩ ∂Kj ∈ E◦ read:

Dii
e (u, v) :=

∫
e

(
−1

2
∇ui · (vini) +

ε

2
(uini) · ∇vi +

η0
|e|
uivi

)
,

Cij
e (u, v) :=

∫
e

(
−1

2
∇ui · (vjnj) +

ε

2
(uini) · ∇vj −

η0
|e|
uivj

)
,

and the contributions from the boundary edge e = ∂Ki ∩ ∂Kj ∈ E∂ are defined as:

Dii
e (u, v) :=

∫
e

(
−∇ui · (vini) + ε(uini) · ∇vi +

η0
|e|
uivi

)
.

Taking the local support of the monomial basis functions into account, the diagonal blocks in
the matrix A read, for all i = 1, ..., N :

(Aii)`k = B(φ(i)
k , φ

(i)
` ) =

∫
Ki

∇φ(i)
k · ∇φ(i)

` +
∑

e∈E, e∩∂Ki 6=∅
Dii

e (φ(i)
k , φ

(i)
` ),

and the off-diagonal blocks, for all i, j = 1, ..., N with e = ∂Ki ∩ ∂Kj ∈ E◦:

(Aji)`k = B(φ(i)
k , φ

(j)
` ) = Cij

e (φ(i)
k , φ

(j)
` ).

All other off-diagonal blocks are zero, since they correspond to non-adjacent elements.
Using the definition of the monomial test functions (2.7), the individual terms in these expres-

sions can be computed. To this end, define:

p
(i)
k (x) :=

(
x− xi− 1

2
1
2hx

)k

=

{
1, for x = xi,

(−1)k, for x = xi−1,

q
(i)
k (y) :=

(
y − yi− 1

2
1
2hy

)k

=

{
1, for y = yi,

(−1)k, for y = yi−1,

Pk :=

{∫ xi

xi−1
p
(i)
k (x) dx =

(
hx

2
1

k+1 (1− (−1)k+1)
)
, for k ≥ 0,

0, else

Qk :=

{∫ yi

yi−1
q
(i)
k (x) dx =

(
hy

2
1

k+1 (1− (−1)k+1)
)
, for k ≥ 0,

0, else.

Using this notation, the gradient of a test function reads:

∇φ(i)
k (x, y) =

[
2kx

hx
p
(i)
kx−1(x)q

(i)
ky

(y)
2ky

hy
p
(i)
kx

(x)q(i)ky−1(y)

]

Compute the volume integrals:∫
Ki

∇φ(i)
k · ∇φ(i)

` =
∫ xi

xi−1

∫ yi

yi−1

(
2kx

hx
p
(i)
kx−1(x)q

(i)
ky

(y)
2`x
hx

p
(i)
`x−1(x)q

(i)
`y

(y)

2ky

hy
p
(i)
kx

(x)q(i)ky−1(y)
2`y
hy

p
(i)
`x

(x)q(i)`y−1(y)
)

dy dx

=
(

2
hx

)2

kxlxPkx+`x−2Qky+`y +
(

2
hy

)2

ky`yPkx+`xQky+`y−2

Next, observe that

φ
(i)
k (x, y)φ(j)

` (x, y) = p
(i)
kx

(x)q(j)ky
(y)p(i)

`x
(x)q(j)`y

(y)
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and

∇φ(i)
k (x, y) ·

(
φ

(j)
` (x, y)

[
nx

ny

])
=

2kxnx

hx
p
(i)
kx−1(x)q

(i)
ky

(y)p(j)
`x

(x)q(j)`y
(y) +

2kyny

hy
p
(i)
kx

(x)q(i)ky−1(y)p
(j)
`x

(x)q(j)`y
(y)

Using these expressions, the edge contributions can be computed.
For a horizontal edge e ∈ E defined by the line segment between (xi−1, yi) and (xi, yi) with

outward normal ni =
[
0
1

]

6
ni

Ki

Kj

xi−1

e

xi

yi = yj−1

we obtain:

Dii
e (φ(i)

k , φ
(i)
` ) = −1

2
b

(
2ky

hy
Pkx+`x

q
(i)
ky+`y−1(yi)

)
+
ε

2
b

(
2`y
hy

Pkx+`xq
(i)
ky+`y−1(yi)

)
+
η0
hx

(
Pkx+`x

q
(i)
ky+`y

(yi)
)

=
(
−b ky

hy
+ εb

`y
hy

+
η0
hx

)
Pkx+`x ,

where b = 2 if the edge e ∈ E∂ is located at the boundary, and b = 1 if e ∈ E◦ is in the interior.

If e = ∂Ki ∩ ∂Kj is an interior edge , we can use that yi = yj−1 and that nj = −ni =
[

0
−1

]
to

obtain:

Cij
e (φ(i)

k , φ
(j)
` )

yi=yj−1= −1
2

(
−2ky

hy
Pkx+`xq

(i)
ky−1(yi)q

(j)
`y

(yj−1)
)

+
ε

2

(
2`y
hy

Pkx+`xq
(i)
ky

(yi)q
(j)
`y−1(yj−1)

)
− η0
hx

(
Pkx+`xq

(i)
ky

(yi)q
(j)
`y

(yj−1)
)

=
(
ky

hy
− ε

`y
hy

− η0
hx

)
Pkx+`x(−1)`y .

Similarly, for a horizontal interior edge e ∈ E between (xi−1, yi−1) and (xi, yi−1) with outward

normal ni =
[

0
−1

]
, we get:

Dii
e (φ(i)

k , φ
(i)
` ) = −1

2
b

(
−2ky

hy
Pkx+`x

q
(i)
ky+`y−1(yi−1)

)
+
ε

2
b

(
−2`y
hy

Pkx+`x
q
(i)
ky+`y−1(yi−1)

)
+
η0
hx

(
Pkx+`x

q
(i)
ky+`y

(yi−1)
)

=
(
−b ky

hy
+ εb

`y
hy

+
η0
hx

)
Pkx+`x

(−1)ky+`y ,
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and, if e is in the interior:

Cij
e (φ(i)

k , φ
(j)
` )

yi−1=yj= −1
2

(
2ky

hy
Pkx+`xq

(i)
ky−1(yi−1)q

(j)
`y

(yj)
)

+
ε

2

(
−2`y
hy

Pkx+`x
q
(i)
ky

(yi−1)q
(j)
`y−1(yj)

)
− η0
hx

(
Pkx+`x

q
(i)
ky

(yi−1)q
(j)
`y

(yj)
)

=
(
ky

hy
− ε

`y
hy

− η0
hx

)
Pkx+`x(−1)ky .

For a vertical interior edge e ∈ E between (xi, yi−1) and (xi, yi) with outward normal ni =
[
1
0

]
,

we get:

Dii
e (φ(i)

k , φ
(i)
` ) = −1

2
b

(
2kx

hx
p
(i)
ky+`y−1(xi)Qky+`y

)
+
ε

2
b

(
2`x
hx

p
(i)
ky+`y−1(xi)Qky+`y

)
+
η0
hy

(
p
(i)
ky+`y

(xi)Qky+`y

)
=

(
−b kx

hx
+ εb

`x
hx

+
η0
hy

)
Qky+`y ,

and, if e is in the interior:

Cij
e (φ(i)

k , φ
(j)
` )

xi=xj−1= −1
2

(
−2kx

hx
p
(i)
kx−1(xi)p

(j)
`x

(xj−1)Qky+`y

)
+
ε

2

(
2`x
hx

p
(i)
kx

(xi)p
(j)
`x−1(xj−1)Qky+`y

)
− η0
hy

(
p
(i)
kx

(xi)p
(j)
`x

(xj−1)Qky+`y

)
=

(
kx

hx
− ε

`x
hx

− η0
hy

)
(−1)`xQky+`y .

For a vertical interior edge e ∈ E◦ between (xi−1, yi−1) and (xi−1, yi) with outward normal

ni =
[
−1
0

]
, we get:

Dii
e (φ(i)

k , φ
(i)
` ) = −1

2
b

(
−2kx

hx
p
(i)
kx+`x−1(xi−1)Qky+`y

)
+
ε

2
b

(
−2`x
hx

p
(i)
kx+`x−1(xi−1)Qky+`y

)
+
η0
hx

(
p
(i)
kx+`x

(xi−1)Qky+`y

)
=

(
−b kx

hx
+ εb

`x
hx

+
η0
hy

)
(−1)kx+`xQky+`y

.
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and, if e is in the interior:

Cij
e (φ(i)

k , φ
(j)
` )

xi−1=xj= −1
2

(
−2kx

hx
p
(i)
kx−1(xi−1)p

(j)
`x

(xj)Qky+`y

)
+
ε

2

(
2`x
hx

p
(i)
kx

(xi−1)p
(j)
`x−1(xj)Qky+`y

)
− η0
hy

(
p
(i)
kx

(xi−1)p
(j)
`x

(xj)Qky+`y

)
=

(
kx

hx
− ε

`x
hx

− η0
hy

)
(−1)kxQky+`y .
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Appendix C

BILU in Detail

This section considers the BILU preconditioner described in Section 5.2 on a more detailed level,
by specifying what happens at each recursion level.

Consider a coefficient matrix A that has the following recursive block tridiagonal structure
with K ‘levels’: it is an n1 × n1 block tridiagonal matrix,

A :=


A1 C1

B2 A2
. . .

. . . . . . Cn1−1

Bn1 An1

 ,

in which each diagonal block Aj itself is an n2×n2 block tridiagonal matrix, in which each diagonal
block in turn is an n3×n3 block tridiagonal matrix, and so on, until the diagonal blocks are scalars
(nK := 1). Every off-diagonal block under consideration is assumed to be a (regular) diagonal
matrix.

To construct the BILU decompositions, introduce the following notation to identify the different
recursion levels:

A = D
{}
1 ,

and

D
{j1,...,jk−1}
jk

=


A
{j1,...,jk}
1 C

{j1,...,jk}
1

B
{j1,...,jk}
2 A

{j1,...,jk}
2

. . .
. . . . . . C

{j1,...,jk}
nk−1

B
{j1,...,jk}
nk A

{j1,...,jk}
nk

 ,

T
{j1,...,jk−1}
jk

=


E
{j1,...,jk}
1 G

{j1,...,jk}
1

F
{j1,...,jk}
2 E

{j1,...,jk}
2

. . .
. . . . . . G

{j1,...,jk}
nk−1

F
{j1,...,jk}
nk E

{j1,...,jk}
nk

 ,

for all k = 1, ...,K, and for all jk = 1, ..., nk−1 (setting n0 := 1).

The BILU decomposition of the matrix D
{j1,...,jk−1}
jk

, and of A = D
{}
1 in particular, can now
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be written as:

D
{j1,...,jk−1}
jk

≈


I

L
{j1,...,jk}
2 I

. . . . . .
L
{j1,...,jk}
nk I



D
{j1,...,jk}
1

D
{j1,...,jk}
2

. . .
D
{j1,...,jk}
nk



I U

{j1,...,jk}
1

I
. . .
. . . U

{j1,...,jk}
nk−1

I

 ,

where D{j1,...,jk}
1 = A

{j1,...,jk}
1 , and, for all ` = 2, ..., nk,

L
{j1,...,jk}
` = B

{j1,...,jk}
` T

{j1,...,jk}
`−1 ,

U
{j1,...,jk}
`−1 = T

{j1,...,jk}
`−1 C

{j1,...,jk}
`−1 ,

D
{j1,...,jk}
` = A

{j1,...,jk}
` −B

{j1,...,jk}
` T

{j1,...,jk}
`−1 C

{j1,...,jk}
`−1 .

Using these BILU decompositions, the matrices D{j1,...,jk}
1 , ..., D

{j1,...,jk}
nk and the approxima-

tion T
{j1,...,jk−1}
jk

for the inverse of D{j1,...,jk−1}
jk

are computed simultaneously in the following
manner (cf. Algorithm 9):

Algorithm 11
Computes the BILU factors D{j1,...,jk}

1 , ..., D
{j1,...,jk}
nk , as well as an approximation T {j1,...,jk−1}

jk

for the inverse of the input D{j1,...,jk−1}
jk

.

1) if D{j1,...,jk−1}
jk

is a scalar (k = K), compute T {j1,...,jk−1}
jk

= 1/D{j1,...,jk−1}
jk

directly, else:

2) D{j1,...,jk}
1 := A

{j1,...,jk}
1

3) for ` = 2, ..., nk do
4) compute T {j1,...,jk}

`−1 that approximates the inverse of D{j1,...,jk}
`−1 by calling this al-

gorithm (recursion)
5) L

{j1,...,jk}
` := B

{j1,...,jk}
` T

{j1,...,jk}
`−1

6) U
{j1,...,jk}
`−1 := T

{j1,...,jk}
`−1 C

{j1,...,jk}
`−1

7) D
{j1,...,jk}
` := A

{j1,...,jk}
` −B

{j1,...,jk}
` T

{j1,...,jk}
`−1 C

{j1,...,jk}
`−1

8) end
9) E{j1,...,jk}

nk := T
{j1,...,jk}
nk

10) for ` = nk − 1, ..., 1 do
11) E

{j1,...,jk}
` := T

{j1,...,jk}
` + U

{j1,...,jk}
` E

{j1,...,jk}
`+1 L

{j1,...,jk}
`+1

12) end
13) for ` = 2, ..., nk do
14) F

{j1,...,jk}
` := −T {j1,...,jk}

` L
{j1,...,jk}
`

15) G
{j1,...,jk}
`−1 := −U{j1,...,jk}

`−1 T
{j1,...,jk}
`

16) end
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17) observe that T {j1,...,jk−1}
jk

is fully determined by the matrices E F and G above and

ensure that T {j1,...,jk−1}
jk

is an nk × nk block tridiagonal matrix by setting elements
outside the required nonzero pattern equal to zero.

Once the BILU decompositions are obtained at all levels, the result z of applying the precon-
ditioner to r can be obtained similar to Algorithm 7, except that whenever the inverse of a block
tridiagonal matrix is required, the algorithm is called recursively (cf. Algorithm 10):

Algorithm 12
Computes z ≈ (D{j1,...,jk−1}

jk
)−1r, assuming D{j1,...,jbk}

1 , ..., D
{j1,...,jbk}
nbk are precomputed for k̂ =

k, ...,K.
1) if D{j1,...,jk−1}

jk
is a scalar (k = K), compute z = 1/D{j1,...,jk−1}

jk
r directly, else:

2) s1 := r1
3) for ` = 2, 3, ..., nk do
4) s` := r` −B

{j1,...,jk}
` (D{j1,...,jk}

`−1 )−1s`−1 (by applying this algorithm recursively)
5) end
6) znk

:= (D{j1,...,jk}
nk )−1snk

(by applying this algorithm recursively)
7) for ` = nk − 1, nk − 2, ..., 1 do
8) z` := (D{j1,...,jk}

` )−1(s` − C`z`+1) (by applying this algorithm recursively)
9) end

The BILU preconditioner applies this algorithm for A = D
{}
1 .
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