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Abstract

A Linear System of the pressure equation resulting from the Finite Difference
Discretization of Two-Phase Flows has been implemented and solved on the GPU.
Conjugate Gradient(CG) Method was used to solve the linear system with two levels
of preconditioning. After implementing Block Incomplete Cholesky on CG, Deflation
was applied as a second level preconditioner to improve the convergence rate. The
GPU versions of the code benefit from the parallelism available in deflation step. For
improving the parallel properties of the preconditioning step we use the novel, Incom-
plete Poisson Preconditioning. The final version with two levels of Preconditioning
demonstrated up to 20 times speedup in the complete solution when compared to a
single core CPU for a system of 1 million unknowns. Analysis of the results and a
brief report on our experiments is presented.

Keyword: Conjugate Gradient, Preconditioning, Deflation, GPGPU, CUDA

1 Introduction

Large Sparse Linear Systems are mostly solved by Preconditioned Krylov Methods com-
bined with some form of coarse grid acceleration. Specifically the convergence of Conjugate
Gradient(CG) Method can be improved by Preconditioning. Many of the important build-
ing blocks of these algorithms could be optimized for execution on parallel architectures.
Recently, with the advent of General Purpose Computing on the Graphical Processing
Unit (GPU) it is possible to achieve 10 — 100 times reduction in computing times. How-
ever, some of the methods involved in the Solution of the systems of interest do not run
optimally on the GPU. In this paper we show that it is possible to achieve 10 fold speedup
for a combination of suitable building blocks.

*Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, Delft Institute of Applied Mathematics, P.O. Box 5031, 2600 GA Delft, The Netherlands,
(r.gupta@student.tudelft.nl, c.vuik@tudelft.nl, kees.lemmens@tudelft.nl)
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In this paper we use two levels of Preconditioning with the CG method to solve a linear
system. This system arises from the discretization of the Pressure Correction Equation.
This equation is the most time-consuming step in the solution of the Incompressible Navier-
Stokes Equation using the Level Set Method. This method as suggested in [Pijl, Segal,
Vuik, and Wesseling, 2005], is of interest to us in modeling Physical Systems, especially
Bubbly Flows. The Partial Differential Equations describing the Pressure Correction have
been discretized through the use of finite differences. The linear system is of the form

Az =0, A € R™™, (1)

where n is the number of degrees of freedom. We assume that A is symmetric positive
definite(SPD), i.e.,
A=A" yTAy> 0Vy €Ry#0. (2)

The linear system given by (1) is usually sparse and ill-conditioned. This means that
there are few non-zero elements per row of A and also that the condition number x(A) is
usually large. Put in other words, the ratio of the largest eigenvalue to the smallest is large
and this leads to slow convergence of the Conjugate Gradient Method.

K(A): = i_’ll (3)

where 0 < A} < Ay < ... < A, are eigenvalues of matrix A. See [Saad, 2003| for more
details.

In order to have a smaller number of iterations for convergence, the matrix A is pre-
conditioned to bring down the condition number from x(A) to k(M ~'A). The coefficient
matrix A is multiplied by M~!, the preconditioner (discussed in detail in [Meijerink and
Vorst, 1977]). The original system (1) is then transformed into ,

M~'Az = M™'b, (4)

where M is SPD. M~! is chosen in such a way that the cost of the operation M 'y with a
vector y is computationally cheap. However, sometimes preconditioning might also not be
enough. In that case we use second level of preconditioning or Deflation in order to reduce
k(A). Details about the method could be found out in |Tang and Vuik, 2007].

In this work some previous results [Tang and Vuik, 2008| are used for implementation.
The focus is to implement these methods on the Graphical Processing Unit (GPU). Re-
cently Scientific Computing has largely benefited from the data parallel architecture of
graphical processors. Many interesting problems which are computationally intensive are
ideally suited to the GPU, especially matrix calculations. It is only intuitive to use them
for solution of discretized partial equations. With the advent of the Component Unified
Device Architecture (CUDA) paradigm of computing available on NVIDIA GPU devices,
it has become easier to write such applications. First we take up the work already done
on the GPU with respect to these iterative methods in the following section. We also
bring out the contribution this study makes that is different from earlier results. Then we
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briefly define the problem of Bubbly flows and a few words about the Two-Phase Matrix
that we are interested in solving in Section 3. We take a short tour of the Iterative So-
lution Methods in Section 4 followed by some parallel implementations of preconditioners
in Section 5. Finally we discuss implementation of the Conjugate Gradient Method with
Preconditioning on the GPU in Section 6 supported by Numerical Results in Section 7
. We end this paper with conclusions in Section 8. For more details we refer to [Gupta,
2010].

2 Related Work

A variety of studies have been done to study Iterative Solution Methods on the GPU. Some
of them discuss optimizations of basic building blocks and optimization techniques which
we found useful for our work.

2.1 Sparse Matrix Vector Products- SpMVs

Sparse Matrix Vector(SpMV) Products take up the majority amount of execution time
during the iterations of the Conjugate Gradient Algorithm. NVIDIA recently released
a study, [Bell and Garland, 2008] in which they compare different sparse matrix storage
formats and suggest some new methods and representative kernels for achieving upto 36
GFlop/s in Single Precision implementations of the SpMV kernel. They also compare the
performance of the GPU with several architectures like STI Cell, and CPUs like Xeon,
Opteron etc.

A recent study, [Monakov and Avetisyan, 2009| suggests to store a Sparse Matrix in
a hybrid ELL-COO format to achieve maximum throughput in the SpMV kernel. Their
method relies on an initial sweep on the matrix to find out the number of non-zero elements
and the decision to divide the matrix into two different formats(ELL and COO) for storage.

The CUDA library can also be enriched with CUDPP [Harris, Sengupta, Owens, Tseng,
Zhang, and Davidson, 2009] which provides a routine cudppSparseMatriz, for sparse matrix
vector multiply which comes in handy when applying iterative methods. To use a method
the user first declares a Plan in which the input output arrays, the number of elements
etc. are specified

In [M. Baskaran and Bordawekar, 2008| improvements are demonstrated over the meth-
ods discussed above in [Bell and Garland, 2008| and [Harris, Sengupta, Owens, Tseng,
Zhang, and Davidson, 2009] by exploiting some of the architectural optimizations to the
Sparse Matrix-Vector Multiplication code. In particular the optimization efforts are cen-
tered on the following four guidelines:

e Exploiting Synchronization-Free Parallelism,
e Optimized Thread Mapping,

e Aligned Global Memory Access;
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e Data-Reuse.

We utilize the knowledge given in [Bell and Garland, 2008| to write our own version of the
Sparse Matrix Vector Multiplication Kernel and achieve a much higher memory through-
put.

2.2 Conjugate Gradient

Aligning conjugate gradient method to the GPU has been discussed in [Georgescu and
Okuda, 2007|. They also discuss the problems with precision and implementing precon-
ditioners to accelerate convergence. In particular they state that for double precision
calculations problems having condition numbers less than 10° may converge and give a
speed-up also. They however warn that above a threshold value of the condition num-
ber the Conjugate Gradient Method will not converge. This observation relates to the
limited(double) precision performance available on current GPUs.

Implementing single precision iterative solvers on the GPU is explored in [Buatois,
Caumon, and Levy, 2009]. They limit the preconditioning to Jacobi-Type preconditioners.
Further they report that for a limited number of iterations the GPU is able to provide
a solution of comparable accuracy but as the iterations increase the precision drops in
comparison to the CPU. In our results the relative error norm of the solution and the
number of iterations required for convergence remain the same on the device(GPU) and
the host(CPU).

2.3 Preconditioning

Techniques that are basically dependent on the Sparse Matrix Vector Multiply discussed
in previous sections have been suggested in literature for accelerating Preconditioning of
Iterative Solvers like GMRES and Conjugate Gradient. In [Wang, Klie, Parashar, and
Sudan, 2009] an ILU Block Preconditioner is used, which has poor convergence qualities but
is easier to parallelize, for solving a sparse linear system by the GMRES method. Coefficient
matrix A is divided into equal sized sub-matrices which are then locally decomposed using
ILU, as shown in Figure 1. The blocks shown in Figure 1 do not communicate to each
other during the decomposition and also in solving it, this scheme fits well in the data
parallel paradigm.

In [Asgasri and Tate, 2009] it is shown how a Chebyshev polynomial based precondi-
tioner could be utilized for achieving speedups in the Conjugate Gradient method. The said
preconditioner effectively reduces the condition number of the coefficient matrix thereby
achieving convergence quickly. It approximates the inverse of the coefficient matrix with
linear combinations of matrix-valued Chebyshev polynomials.

In [Ament, Knittel, Weiskopf, and Strafer, 2010] a new kind of preconditioning called
the Incomplete Poisson Preconditioning is presented which takes the approximation of the
preconditioner as follows
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Mt =KK" (5)

where

K=I-LD" (6)

In equation 6, L is the lower triangular part of A and D is the diagonal of A. This is
comparable to an SSOR type preconditioner.
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Figure 2: Two-Phase Flow Computational
Figure 1: Block ILU preconditioner Model

This preconditioner introduces some fill-in (other than the normal sparsity pattern of
A) in the multiplication of K with K7. Their experiments suggest that the fill-in could
be dropped due to it’s comparatively small effect on the preconditioning process. The
convergence might suffer however the method then maps well to the GPU. Hence the
Incomplete nature of the stencil that emerges gives the method its name. We utilize
a combination of IP Preconditioning and Deflation which shows significant performance
benefits.

2.4 Precision Improvement

The GPUs have a comparatively low performance to Double Precision Computing. In
[Baboulin, Buttari, Dongarra, Kurzak, Langou, Langou, Luszczek, and Tomov, 2008| dou-
ble precision calculations are used for some part of the iterative method and single precision
for others. Thus, achieving a trade-off that meets precision criteria and converges as good
as the double precision case. At the same time the rate of convergence is also not af-
fected very much. They have reported the results for a non-symmetric solver wherein the
outer iteration is FMGRES and the inner one (for calculating M~') is a GMRES cycle.
The idea here is that a single precision arithmetic matrix-vector product is used as a fast
approximation of the double precision operator in the inner iterative solver.
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All of our experiments have been in Single Precision. We progressively increase the
performance gains by exposing higher levels of parallelism through the use of parallel Pre-
conditioning Methods (IP) in place of Block Incomplete Cholesky Preconditioning which
has comparatively less degree of parallelism. We also show how using architectural provi-
sions within the GPU (efficient coalescing, better data structures, shared memory) one can
improve the deflation kernels. The end result being that we are able to produce speedups
of more than 20 times for a two level preconditioned Conjugate Gradient Solver. We have
got up to 5 times speedup for the Block Incomplete Cholesky Preconditioned Deflated CG
Solver. We are able to achieve up to 68 GFlops/s on NVIDIA Tesla Hardware. To our
knowledge this is the first study that utilizes two level preconditioning on the GPU.

3 Problem Definition

Computations of Two-Phase (Bubbly) flows is the main application for this implementa-
tion. Two phase flows are complicated to simulate, because the geometry of the problem
typically varies with time, and the fluids involved have very different material proper-
ties. This leads to large differences in the Matrix coefficients resulting from the discretized
Pressure Correction Equation. Mathematically bubbly flows are modeled using the Navier
Stokes equations including boundary and interface conditions, which can be approximated
numerically using operator splitting techniques. In these schemes, equations for the velocity
and pressure are solved sequentially at each time step. In many popular operator-splitting
methods, the pressure correction is formulated implicitly, requiring the solution of a lin-
ear system (1) at each time step. This system takes the form of a Poisson equation with
discontinuous coefficients and Neumann boundary conditions, i.e.,

1
-9 (55 Vo)) = fl@hz e Y
Spl) = gla),x € 00, ®)

where €2, p, p, z and n denote the computational domain, pressure, density, spatial co-
ordinates, and the unit normal vector to the boundary, 02, respectively. Right-hand sides
f and g follow explicitly from the operator-splitting method, where ¢ is such that mass
is conserved, leading to a singular but compatible linear system (1). In an earlier work
[Pijl, Segal, Vuik, and Wesseling, 2005] the subject has been dealt at length about how the
Navier Stokes Equation is utilized to model such a flow. In our experiments we are inter-
ested in Solving the Linear System that results from discretization of equation 7. In Figure
2 we present the simplified Computational Domain that we work with in our experiments
for generating a Two-Phase Matrix. We use a 5-point Stencil for a 2-D grid(n x n) with
N = n x n unknowns.

The square domain in the Figure 2 is divided into two parts and an interface and
surrounded by Neumann Boundary conditions. Finite Difference Discretization translates
the Grid (imposed over the domain) to a matrix which has coefficients placed on the 5
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diagonals with the jumps appearing at the interface region. We follow a mass conserving
approach while calculating the coefficients on the interface. There is some flux that enters
horizontally and vertically and some of it leaves a cell. By taking the cell-centered approach
(wherein the discretization point is at the center of the cell) and taking into account the
contribution of all the flows through that point, we arrive on stencils for individual points
on the grid. An example Stencil can be like
1 1 1 1

—1 0 1-+1= —_— — = —€l. 9

| (15 +150) (-5 5°) SR
for a point on the interface and also adjoining the boundary. Here € is the ratio of the
densities of the two mediums.

4 Iterative Solvers

We choose the Conjugate Gradient Method for solving the Linear System arising from the
discretization of the Pressure Equation.

4.1 Conjugate Gradient
The algorithm for Conjugate Gradient is given by [Saad, 2003|.

Algorithm 1 Conjugate Gradient Algorithm
1: Compute rg := b — Axg, py := 7o.
2: for j = 0,1, ..., until convergence do

3 aj = (ry,15)/(Apj, p))
4: Tjy1 = Tj + ;P

5: Tjit1 :=Tj; — OéjApj

6: B = (rj1,741)/ (r5,75)
T P = T+ Op;

8: end for

To improve the rate of convergence of the CG method we apply subsequent levels of
preconditioning.
4.2 Preconditioning
After Preconditioning we apply Conjugate Gradient to the system
M 'Ar = M~ (10)

where M~'A comes closer to I so that the method converges to the solution much faster
as compared to plain CG. A host of Preconditioning methods are known [Saad, 2003|. ILU
Preconditioning and Incomplete Cholesky are the most popular.
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4.2.1 Diagonal Preconditioning

Diagonal or Jacobi Preconditioning is the simplest (and also the least effective) of the pre-
conditioning methods that can be applied to the linear system Axz = b. The preconditioner
matrix in this case is the main diagonal of A.

4.2.2 Incomplete Cholesky Preconditioning

Incomplete Cholesky Preconditioning involves a preconditioner of the form
M = LL" (11)

where L is lower triangular. It is made ’incomplete’ by dropping off some of the elements.
From the Cholesky factor we take the non-zeros that overlap with the sparsity pattern of
the lower triangular part of A.

4.2.3 Second Level Preconditioning

To improve the convergence of our method we also use a second level of preconditioning.
Deflation is an attempt to treat the remaining bad eigenvalues from the preconditioned
matrix, M ~1A. This operation reduces the convergence iterations for the Preconditioned
Conjugate Gradient (PCG) method and makes it more robust.

The linear system can be solved by employing the splitting

r=(1—-PHa+Plrer=Qb+Px (12)
& Az = AQb+ APz (13)
& b= AQb+ PAzx (14)
& Pb= PAxz, (15)
where
P=1-AQ,Q=ZE"'Z" E=7"AZ. (16)

Here E € R*** is the invertible Galerkin Matrix, Q € R™™ is the correction Matrix, and
P € R™™ is the deflation operator. Z is the so-called 'deflation-subspace matrix’ whose
k columns are called ’deflation’ vectors or ’projection’ vectors. The x at the end of the
expression is not necessarily a solution of the original linear system, since it might contain
components of the null space of PA, N(PA). Therefor this 'deflated’ solution is denoted
as 2 rather than x. The deflated system is now

PA# = Pb. (17)

The Preconditioned deflated version of the Conjugate Gradient Method can now be pre-
sented. The deflated method (17) can be solved using a symmetric positive definite (SPD)
preconditioner, M ~1. We therefore now seek a solution to
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PA% = Pb, (18)
where
A=M2AM 2, = M23,b:= M 2b, (19)
and
P=1-140,0=ZE177 F = 77AZ, (20)

where Z € R™* can be interpreted as a preconditioned deflation-subspace matrix.
The resulting method is called the Deflated Preconditioned Conjugate Gradient (DPCG)
method (details in [Vuik, Segal, and Meijerink, 1999]).

Algorithm 2 Deflated Preconditioned Conjugate Gradient Algorithm
1: Select z¢. Compute ro := b — Axy and 79 = Prg, Solve Myg = ry and set py := 1.
2: for j:=0,..., until convergence do
o (55)

?‘7 T (p];\’u?])

Tjp1 = Tj + a;p;j

Tjp1 =15 — Qi

Solve Myj+1 = 'fj—i—l

B = (Pj+1,Yj+1)

J [GET))
9 Pj1 = Yj+1 T O5p;

10: end for

11: Tyt - — Qb + PT.TJ'+1

Note that P or M2 are never calculated explicitly. Hence the linear system is often
denoted by

M 'PA: = M~'Pb (21)

Some Observations:

All known properties of Preconditioned Conjugate Gradient (PCG) also hold for DPCG,
where PA can be interpreted as the coefficient matrix A after preconditioning. Moreover
if P = I is taken the algorithm above reduces to the Preconditioned Conjugate Gradi-
ent(PCG) algorithm.

Careful selection of Deflation vectors is required for this method to prove useful. Two
methods, one based on eigenvector (of M~'A) based subspace for Z and the other based
on an arbitrary choice of the deflation subspace, are worth mentioning.

However to calculate the eigenvectors itself could be computationally intensive so an
arbitrary choice which closely resembles part of the eigenspace is the way out. In short the
ideal deflation method should satisfy the following criteria:
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The deflation-subspace matrix Z must be sparse;

The deflation vectors approximate the eigenspace corresponding to the unfavorable
eigenvalues;

The cost of constructing deflation vectors is relatively low;

The method has favorable parallel properties.

5 Parallel Preconditioning

In order to introduce parallelism in the completely sequential Incomplete Cholesky Precon-
ditioner we use the Block-IC version. In this case we make blocks that grow in multiples
of the grid dimension n for a grid with n x n points. This is very important for our im-
plementation since we would like to expose (and utilize) parallelism in every step of the
Algorithm.

5.1 Block-Incomplete Cholesky Preconditioning

Shown in Figure 3 is an 8 X 8 grid and the resulting matrix which has 64 rows. In our
implementation the blocks have to be at least twice as big as grid dimension n or else a
major part of the outer diagonals with offsets +n is discarded and that leads to delayed
convergence (and sometimes stagnation) of the iterative method.

5.2 Incomplete Poisson Preconditioning

Although Block Incomplete Cholesky Preconditioning is very effective in achieving con-
vergence for the Conjugate Gradient Method. It is highly sequential within the block.
Since in this study we implement Preconditioned Conjugate Gradient on a Data Parallel
Architecture we also consider a recently suggested method of preconditioning called the
Incomplete Poisson Preconditioning [Ament, Knittel, Weiskopf, and Strager, 2010).

There is a price to pay for this ’parallelism’ in terms of convergence speed. However,
our experiments show that it is still at least as fast or comparable to the Block Incomplete
Cholesky version (for a particular grid size) when the number of blocks is the maximum
possible.

5.3 Domain Decomposition for Deflation

In Sub-domain deflation, the deflation vectors are chosen in an algebraic way. The compu-
tational domain is divided into several sub-domains, where each sub-domain corresponds to
one or more deflation vectors. In our experiments we use Stripe-Wise domains as depicted
in Figure 4.
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o

----H- 57 58 59 60 61 62 63 64

Main Diagonal 49 50 51 52 53 54 55 56
Diagonals with Offset + n (where N=nxn)
Diagonals with Offset + 1 41 42 43 44 45 46 47 48
Shows how Block-IC cuts out some 33 34 35 36 37 38 39 40
of the elements of the outer
diagonals 25 26 27 28 29 30 31 32

Shows the Block Size for the Grid. 17 18 19 20 21 22 23 24

Here it is of the minimal size 9 10 11 12 13 14 15 16
possible that is 2n.

Figure 3: Matrix for an 8 x 8 Grid. 64 Un-  Figure 4: Stripe-Wise Deflation Domains. 4
knowns. N=64, n=8 and BlockSize=2n domains in an 8 x 8 grid.

6 Implementation on the GPU

We have implemented our Iterative method on an NVIDIA GPU. We now give a primer of
the various constructs provided by the language extensions on the GPU that are needed to
write applications for the GPU. GPUs are based on the idea of Single Instruction Multiple
Data (SIMD). This means that they can take a sequence of instructions and run them on
a data set, dividing it amongst multiple processors and computing the result in parallel.
Each unit of execution is called a thread. The sequence of instructions executed by every
thread on a processor (there are many of these processors on the GPU) is called a kernel.

In order to utilize the GPU one has to identify these basic units of computation (i.e.
kernels) inside the application and then launch the kernels on the 100s of processors si-
multaneously in parallel. The execution configuration before the kernel launch takes care
of informing the GPU how many threads to launch and how to organize them in a logical
block and further those blocks are organized in a logical grid.

GPU has a huge memory bandwidth and one of the keys to extracting performance
out of the GPU is to utilize the above 100 Gb/s memory bandwidth available on the
GPU. GPU also has different levels of memory like the CPU. However unlike the CPU
the application developer has to manage these memories explicitly. Among these the most
important is the Shared Memory which is as good as a small cache in which one can keep
the heavily accessed data to minimize traffic to and fro between the chip and the global
memory. Memory transfer between the CPU and the GPU should be kept to a minimum
to maximize benefits from executing application code on the GPU.
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6.1 Description of Kernel Design

Our complete iteration runs on the GPU with minimal transfers between the CPU and
the GPU. This is one of the most important reasons for the performance boost we get
from our implementation. Starting with the plain Conjugate Gradient Method and adding
step-by-step the modules for preconditioning and Deflation we developed the code side by
side on the GPU and the CPU. For this the following points were kept in mind.

1. Identifying Kernels of Computation.
2. Organizing code in form of kernels.

3. Prioritized Optimization of Kernels after analyzing the profiler results (% Time taken,
Bandwidth utilised, Occupancy).

On the CPU we have used the Meschach BLAS Library for Dot Products and Saxpys. The
kernels that were hand-coded are

1. Sparse Matrix Vector Multiply Kernel
2. Preconditioning Kernel(s)

3. Deflation Kernels

After testing with two levels of preconditioning on the CG method it was noticed that
with increasing size of preconditioning blocks and increasing number of deflation vectors
the number of iterations fall. On the GPU the CUBLAS library provided some useful
functions for saxpy and dot products which we have used. For other operations custom
kernels were written.

6.2 Sparse Matrix Vector Product (SpMV) - Kernel

Our matrix has a regular pattern that of a 5 point Laplacean Matrix in two dimensions.
So there are 5 diagonals which contain the complete matrix. The storage format that we
choose is called the Diagonal Storage format. All the diagonals are stored in a 1-D array,
starting from the lowest sub-diagonal(with offset —n) followed by sub-diagonal with offset
(-1), then the main diagonal and then the two super-diagonals. Also an important feature
is that they all have the same length. This kind of uniformity of size makes coalesced
access possible. So for example if say the sub-diagonal with offset —1 has one element less,
then at that position a zero fills in to make it equal in size to the main diagonal.

Once stored in this way for each row of the matrix we have 5 fetches from the array
holding the 5 diagonals and 5 from the vector. On the GPU we assign one thread to
compute one element of the resulting Matrix-Vector Product. Additional optimizations
include using shared memory and texture memory. The of fsets array is accessed by every
thread and hence we store it on the shared memory to optimize the SpMV Kernel.
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6.3 Preconditioning Kernel

The preconditioning kernel is the most sequential part of the entire algorithm. We ini-
tially begin with the Block Incomplete Cholesky Preconditioning. The Block Variant of
Incomplete Cholesky Preconditioning basically exposes the parallelism at the block level.
However each block has considerable amount of serial work to be done. One technique that
we have employed is to break down the steps of preconditioning into three.

1. Forward Substitution
2. Diagonal Scaling.
3. Back Substitution

The diagonal scaling step can be heavily optimized using shared memory. This is possible
since it is inherently parallel with two reads every thread and one multiplication all the
calculations(V) are independent. For the first and the final step we can also use shared
memory. The trick is to load the elements using a number of threads (number same as the
block size) in parallel and then work on them and store them back in global memory. Later
in the development process we used Incomplete Poisson(IP) Preconditioning to maximize
benefits of parallelism. It has been discussed earlier in Section 5.2.

6.4 Deflation Kernels

For deflation we sub-divide the tasks into a couple of kernels at the outset. Namely,
1. Calculate b = Z7x
2. Calculate Matrix-Vector Product of E~! with b.

3. Calculate Matrix-Vector Product of AZ with the result of the previous step and
subtract from .

For the first kernel b = Z7x we have used the parallel sum approach as suggested
in [SenGupta, Harris, Zhang, and Owens, 2007]. We only use the first part of the two
part approach discussed in the paper. Details can be found out in the GPU Gems article
[Harris, Sengupta, and Owens, 2007| for further optimizations to avoid divergence and
warp-serialization.For the other two kernels it is useful to tailor the matrix multiplication
example and use shared memory instead. This is better than the cublasSegmv (for some
grid sizes) since we do not have an additional vector scaling and addition as required by
cublasSgemyv.

The decision to calculate E~! explicitly is instrumental since it greatly reduces the
time for the iterations. Though the setup time for the algorithm is affected but the overall
gain in the running time of the method more than compensate the costly operation. If
the number of deflation vectors become very high then, since E~! is sparse, this approach
might not be very efficient.
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For the calculation of AZ times E~! x b we used the cublasSgemuv call. The final calcu-
lation z;; = Qb+ PTx can also utilize the kernels discussed here and also the cublasSgemv.
In the later stages of development we optimize the storage of AZ and re-write the kernels
for calculations involving AZ.

7 Results and Discussion

Initially we perform our experiments using 5 point Laplacean matrix resulting from a 2D
square grid. We talk about those experiments in the first subsection that follows and after
that we report the results from a matrix that results from a Grid having two phases and an
interface layer. For the two different matrices in question we performed several experiments
on three grid sizes for three different preconditioning block sizes and three different choices
of Deflation Vectors. All the experiments were done in single precision on the GPU as
well as on the CPU. We use a Q9650 Intel Quad Core CPU however we only utilize a
single core. We optimize it to use SSE instructions, unrolling loops and vectorizing using
compiler switches. We also use the Meschach Blas Library for the Blas routines on the
CPU. The GPU we use is a Tesla C1060 from NVIDIA. We use CUDA for writing our code
on the GPU. We use the CUBLAS and M AGM A libraries when using Blas functions in
the GPU version.

7.1 Numerical Experiments

We summarize our important findings in a speedup graph. It shows the speedups that we
have got with different versions of the code. These results are for a grid size of 512 x 512.
In the versions where we use Block Incomplete Cholesky preconditioning we use a block
size of 1024. In the Deflated Preconditioned versions we use 4096 deflation vectors. The
stopping criteria is ”b_lljl?llzklh < 107°. Note that in this version we have the maximum degree
of parallelism for our experiments. We have the largest grid size so more rows in parallel
for Sparse Matrix Vector Multiplication. We have the largest number of Preconditioning
Blocks and we take the highest number of deflation vectors (8 x n). We now elaborate on

the versions used:

1. (CGVV) Conjugate Gradient - Vanilla Version - The only kernel in this version of the
solution is the Sparse matrix vector kernel. It takes the majority of the time in the
execution time profile. However the kernel utilizes around 85 Gb/s of the Memory

bandwidth on the GPU.

2. (CGBIC) Conjugate Gradient - Block Incomplete Cholesky Preconditioning - When
we add preconditioning to the Conjugate Gradient version in the previous step the
convergence is faster, however the speedup suffers due to the inherent serial nature of
the Block Incomplete Cholesky Preconditioning within a block. We tried using shared
memory for co-operative loading and writing of elements however that approach
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Figure 5: SpeedUp Graph across different Code Versions. Grid Size (512 x 512)

Execution Times || No. of Iterations
Code Version || CPU GPU CPU GPU
CGVV 5.92 0.5004 652 649
CGBIC 5.0723 | 5.594 327 327
DPCG 110.45 4.45 42 42
DPCGI1 1.5944 | 1.0102 41 41
DIPCG1 1.7285 | 0.2494 49 49
DPCG2 1.5938 | 0.8866 41 41
DIPCG2 1.7528 | 0.0975 49 49

Table 1: Comparison GPU vs. CPU. Number of iterations required for convergence and
execution times.

suffers at larger block sizes (for e.g. 4096 elements mean 16384 bytes of shared
memory).

3. (DPCG) Conjugate Gradient - Deflation and Block Incomplete Cholesky Precon-
ditioning - Adding deflation to the Preconditioned Conjugate Gradient introduces
considerable scope for parallelism. Also in order to leverage the computing power
available of the GPU we use the explicit inverse of the matrix £ and do dense ma-
trix vector multiplication which can be done in parallel on the GPU. One important
point that we found in our results is that the calculation involving the matrix AZ
was taking most of the time so our focus became to optimize AZ storage and calcu-
lation. Table 1 shows that deflation decimates the number of iterations required for
convergence.

4. (DPCG1) Conjugate Gradient - Deflation(Optimized - Level 1) and Block Incomplete
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Cholesky Preconditioning - AZ is inherently a sparse matrix. Since A is sparse and
Z has piece-wise constant deflation vectors. So we store AZ in a data structure 5% N
wide since it is also symmetric just like A and has 5 diagonals. However some of
the diagonals are % wide where, d is the number of deflation vectors and n is the
dimension of the square grid (N = n x n). In this version we also optimize the CPU
version by use of some compiler flags to use SSE instructions, unrolling of loops etc.
Result being that the CPU version gets very fast (up to 20 times) whereas the GPU
version becomes 2 times as fast. The result is that speedup is decimated with respect
to DPCG. The profiler in this version points to the Preconditioning as the most time
consuming task.

5. (DIPCG1) Conjugate Gradient - Deflation(Optimized - Level 1) and Incomplete Pois-
son Preconditioning - We use a novel preconditioning method recently published. The
parallel properties of this method are very well suited to the GPU. In effect it is as
parallel as the Jacobi preconditioner, albeit much better mathematically and is as
parallel as sparse matrix vector multiplication we used for doing the operation Ax.
Its convergence rate is as good as the convergence of block-IC Preconditioner when
the number of the blocks is maximum (35, whereN = n x n) as shown in Table 1.
This version gives us a speedup that is almost 4 times that of the Block-IC version
in the previous step. The profiler results show that now most of the time is take up
by the computation step £~'b where E~! is a dense d x d matrix and bis a d x 1

vector.

6. (DPCG2) Conjugate Gradient - Deflation(Optimized - Level 2) and Block Incomplete
Cholesky Preconditioning - We optimize the Matrix vector product £~1b by using the
MAGM A Blas library developed for CUDA. In some cases M AGM A Blas delivers
3 times as much memory throughput for matrix vector multiplication compared to
CUBLAS. Result being that we get almost double the speedup as we had for DPCG1
version of the code.

7. (DIPCG2) Conjugate Gradient - Deflation(Optimized - Level 2) and Incomplete Pois-
son Preconditioning - In this version we replace the Block-IC Preconditioning used in
the previous step with Incomplete Poisson Preconditioning and we get much better
speedup for this particular grid size (speedup grows across all grid sizes, deflation
vectors and preconditioning blocks).

||Xezact_Xk ||2

||Xe:cact||2 at con-

For all these versions we get the Relative error norm of the solution,

vergence (the k-th iteration) in the range of 107>

We repeat experiments 1, 2, 6 and 7 for the Two-Phase Matrix as well. We have
to set the stopping criterion at 1072. The Relative Error Norm of the Solution is also
heavily affected and it stays at 107!, This is because of the very high condition number
of the matrix A since the density contrast between the two mediums is 1000 : 1. Also
the deflation matrix P has an even worse condition number, so we see that as the number
of deflation vectors increase the method misses convergence. The speedups remain the
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same since all that we change is the matrix A and that does not change the number of
computations involved. Please note that in case of missed convergence our method runs
till 1000 iterations and the speedup is defined as

Time taken on the Host(CPU) to do 1000 iterations
Time taken on the Device(GPU) to do 1000 iterations
Another interesting feature that we noticed in the results for Two-Phase Matrices was

that of False convergence. This was noticeable in versions 1 and 2. This means that the
relative norm of the residual reaches below the required tolerance

SpeedUp = (22)

I e | <€ e=10"2 (23)
7o |l

but it rises and falls above and below this level (if we continue the iterations after that
and record the residual). At one point the norm falls below machine precision and that
does not make any sense. This behavior was consistent in Conjugate Gradient Method and
Conjugate Gradient with Preconditioning for a two phase matrix.

7.2 Discussion

In this section we look at the different aspects of our implementation. We try to find
out how much parallelism we exploit and how much bandwidth we are able to utilize on
the GPU. We end this section with a discussion on what might be possibly limiting the
achievable speedup and how far we are from that point. Throughout this section we analyze
the results with a grid size of 512 x 512 and 4096 deflation vectors and Incomplete Poisson
Preconditioning.

7.2.1 Static Analysis

In this section we calculate how many Floating Point Operations (FLOPs) each kernel does
in each run and how many memory accesses happen both during loads and stores. We list
this both for all the Kernels. The following notations are used.

e N, Number of Unknowns
e d, Number of Deflation Vectors
e m, Number of Iterations

From Table 2 one can find the number of FLOPs being performed in one complete run
of the methods we have implemented.

We now elaborate some of the Kernel names:

ZTx, E='b and AZ x E~'b form the steps of the deflation operation. Forward Substitu-
tion, Diagonal Scaling and Back Substitution form the steps of Block Incomplete Cholesky
Preconditioning. Sdot is the Dot product function as named in BLAS libraries. We use
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cublasSdot. Saxpy is the Saxpy Kernel as available in BLAS libraries. We use cublasSaxpy
and also write custom kernels to club saxpy with scaling operations to minimize memory
transfers. Sscal is the BLAS scaling operation and Snrm is the 2-Norm operation available
in the BLAS libraries.

Let us take the case of the method DIPCG2 discussed in Section 7.1. It is the Deflated
Preconditioned (Incomplete Poisson) Conjugate Gradient method that uses optimized AZ
storage and the gemuv routine from M AGM A Blas library. It also has some optimizations
that combine certain operations like scaling and saxpy for calculation of 3 as given in the
step 9 of Algorithm 2.

The kernels involved in this variant then are listed in Table 3.

Summing up the FLOPs for m iterations we have

IN (m~+1)+N(m~+2)+d*(m+3)+9IN (m+1)+9IN (m+1)+8Nm+6Nm+Nm+2Nm. (24)

or
45Nm + d*m + 29N + 3d* (25)

So the computational intensity is governed by the first two factors of the expression
in (25). Now let us take a specific case of N = 262144, d = 4096 and m = 49. These
correspond to the experiment DIPCG2 discussed in 7.1 with grid size as 512 x 512 and the
Number of Deflation Vectors = 4096. It takes the 49 iterations to converge both on the
host and the device. The time on the device is 0.0987 seconds and on the host is 2.237
seconds. The speedup is 22.7 times.

Now the GPU theoretically(peak throughput) can deliver 933 GFlops/s. The CPU
on the other hand, when talking about one core (which we use in our experiments), can
deliver a peak throughput of 12 GFlops/s. The numbers for NVIDIA are available from
the website which talks about the Tesla C1060 specifications [NVIDIA, 2010] . For Intel
Processors also the numbers are provided on the website [Intel, 2010].

The computational load as calculated in (25) comes out to be 1.46 GFlops. Dividing
this by the time taken we get 0.65GFlops/s for the CPU and 14.79 GFlops/s for the GPU.

These numbers can be further divided by the peak throughput to understand the Plat-
form Utilization on the GPU as 1.585% and on the CPU as 5.41%.

7.2.2 Kernels- Performance

We refer to some of the works that outline how to effectively characterize a kernels’ per-
formance and its ability to scale across new generations of hardware that will have more
processors to facilitate parallel execution. [Nickolls, Buck, Garland, and Skadron, 2008]
and [Ryoo, Rodrigues, Baghsorkhi, Stone, Kirk, and Hwu, 2008] and [Komatitsch, Michéa,
and Erlebacher, 2009| bring about certain methods by which we can find

1. How to find if a kernel is compute bound or bandwidth bound?

2. Expected Speedup from an application.
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Kernel Data Computations Writes Degree of Number of Calls
Read In Done Performed | Parallelism in use
Sparse-Matrix 6N IN N N m—+1
Vector Product
and
[P Preconditioning
ZTx N N d d m+ 2
E~1b d(d+1) dxd d d m+3
(gemv)

AZ x E71b 5N +d 9N N N m+1
Forward AN 3N N YN m+1
and Back

Substitution
Diagonal 2N N N N m-+1
Scaling
(AZ)Tx 6N 5N d d 1

Sdot N 2N N — 4m
Saxpy 2N 2N N — 3m
Sscal N N N — m
Snrm N 2N N - m

Table 2: Kernels - Computation and Parallelism

SpMV

ZTy

E

~1b(gemv)

AZ x E~1b  Sdot

Saxpy

IP Preconditioning

Snrm

(AZ)Tx

Table 3: Kernels in the DIPCG2 version of the code in Section 7.1
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Kernel Characteristics
Method Caching Divergence | Shared-Memory Warp
(Shared Memory) Bank Conflicts | Serialization
Magma__Sgemv Yes No No No
1P Preconditioning Minimal Yes Yes No
SpMV Minimal Yes Yes No
AZE ' Minimal Yes Yes No
7Tz Yes Yes Yes Yes
saxpy alpha Yes No No No
saxpy beta No No No No

Table 4: Grid of 512x512 points. Number of Deflation Vectors = 4096. With optimizations
applied to AZ storage and calculation, £~!b with Magma_Sgemv and other optimizations.

3. Examination of PTX(CUDA assembly) code for finding percentage of code that is
memory or compute intensive.

Also these documents detail important things to keep in mind when designing a kernel or
optimizing it. These documents put to use, in their respective contexts, the Best Practices
guide provided by NVIDIA [NVIDIA, 2009].

The most important factor in a kernels’ effectiveness is its ability to do memory accesses
in the best possible way. To this end a couple of important techniques are instrumental.
This step comes obviously after the point of minimizing memory transfers as much as
possible between the CPU and GPU.

1. coalesced memory access
2. caching
3. minimize divergence among threads within the same block

In Table 4 we list which techniques are used by the (except CUBLAS) kernels in our
implementations. Memory coalescing has been used in all the kernels. We also list if there
are shared memory conflicts.

7.2.3 Bandwidth Utilization

Let us take a look at the bandwidth utilization of the kernels in the most optimized
version DIPCG2 (Section 7.1) of the code that we have. This is the Deflated Incomplete
Poisson Preconditioned Conjugate Gradient Method with optimizations for AZ storage
and calculation and also with the gemv operation from the M AGM A library.

In this version we consider the Grid Size 512 x 512 with 4096 deflation vectors. In Table
5 we list the Memory Throughput of Individual Kernels and the percentage of time they
take of the total execution on the device. It also lists the occupancy of the kernels.
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Kernel Statistics

P %GPUTime Read Write Overall Occupancy
Throughput | Throughput | Throughput

MagmaSgemuv 44 85.2 0.02 85.4 50%
1P Preconditioning 9.6 66.39 5.75 72.15 100%
SpMV 9.6 66.44 5.76 72.2 100%
AZE1b 9.4 51.93 6.08 58.02 100%
ZTx 6.6 8.175 1.02 9.19 50%
saxpy _alpha 3.2 34.85 34.85 69.7 100%
saxpy _beta 2.5 42.64 21.3 63.67 100%
cublas _Sdot 8.6 53.88 0.197 54.08 100%
cublas _Sazpy 2.9 42.34 21.17 63.52 100%
cublas 2 — Norm 1.81 37.69 0.223 37.92 100%

Table 5: Grid of 512 x 512 points. Number of Deflation Vectors =4096. CG with Deflation
and Incomplete Poisson Preconditioning. With optimizations applied to AZ storage and
calculation, £~1b with MagmaSgemv and other optimizations.

The CUBLAS Kernels are prefixed with Cublas and other kernels have been hand-
coded with exception of the Magma_Sgemwv which is from the M AGM A blas library. In
Table 5 we show kernels that form more than 98% of the total execution time. The last
2% or so is taken up by transfers from Device to Host and a few calls to kernels used for
correcting z at the end of the iteration by doing z = Qb+ PTx as the last step of Algorithm
2.

The Tesla system on which we have run all of our tests offers a memory bandwidth
of 101Gb/s. As can be seen the Gemu is utilizing a majority of the available bandwidth
(85Gb/s). Followed closely by the IP Preconditioning and SpMV Kernels at 72 Gb/s.
These three kernels form 60% of the total execution time. Except for the CUBLAS call
for calculating the 2-Norm of the updated residual (stopping criterion - required to be
checked every iteration) and the call to calculate Z7z all the kernels utilise more than half
of the available bandwidth. The average Memory throughput of this execution is 68 Gb/s.

7.2.4 Discussion on Possible Speedup Limits

Given that two of the kernels seem to be operating at 50% occupany we try to find out if
they can deliver more performance and hence, a possibility of a higher speedup.

The current kernel for Z7z is trying to utilize both shared memory and parallel reduc-
tion in order to achieve its current bandwidth utilization. We have kept as many threads
in the block as are the elements whose sum is required to make one element of the new
vector y resulting from y = ZTx. Since in this kernel N/d elements have to be summed in
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chunks to produce d elements where

N = Number of Unknowns, d = Number of Deflation Vectors. (26)
y =d x 1 vector, x =mn x 1 vector. (27)

The occupancy varies according to the ratio of N/d but the bandwidth never crosses that
indicated in Table 5. The kernel’s occupancy varies with the factor N/d. For N/d above
and equal to 128 (we have values like 16, 32, 64, 128, 256 and so on.) the occupancy is
100%. For the case under consideration the occupancy is 50% but for a lower number
of deflation vectors (for e.g. 2048) it is 100% (since N/d becomes 128). Even then the
bandwidth does not change. This means that the kernel cannot perform better than this.
Trying to comment out the summing operations shows that the Z7z kernel can deliver a
maximum of 28Gb/s and only takes 2% of the total execution time. The speedup varies
by only 5%.

This kernel has a large amount of Shared Memory Bank conflicts. They can be overcome
by changing the storage structure of the vector x however this is not useful since this would
require changing many other kernels (which are already performing at 100% occupancy and
are bandwidth limited) and also because this kernel is not the most time consuming kernel
in the whole operation.

Other than this kernel (y = Z7z) the other place where there is a possibility of im-
provement is the Magma Sgemv kernel. Although it is utilizing most of the memory
bandwidth it is still having an occupancy of 50%. A closer look at the occupancy for this
kernel shows that it has an execution configuration of

Grid Size 64 x 1 x 1 (28)
Block Size 64 x 1 x 1. (29)

We used the code for double precision gemv posted on the the M AGM A forums which
we change to single precision and verify that it is exactly similar.

By modifying the number of blocks in the code form 64 to 128 we get an occupancy
of 100%. However the bandwidth stays around 85Gb/s. This shows that the kernel is
bandwidth-bound. Since at maximum occupancy we see no change in the bandwidth.

All the other kernels are at 100% occupancy and are bandwidth bound since they have
simple arithmetic operations and do not show changes in bandwidth with further increasing
data sizes.

More elaborate analysis of Kernels and the cost of Inter-Warp Parallelism based on
Memory Accesses and Computational overlap is possible. In [Hong and Kim, 2009| a
detailed model for such analysis is discussed. However they do not address the issues with
Shared Memory Bank Conflicts.

& Conclusions

In this paper we investigate efficient implementations of the preconditioned Conjugate
Gradient method on a GPU for very large, sparse systems of linear equations. We con-
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sider linear systems which originate from a finite difference discretization of Poisson-like
problems on a structured grid. As a typical example we consider the pressure equation
which is used in simulations of multi-phase flows. Due to discontinuities in the density, the
resulting matrix is ill-conditioned which leads to slow convergence.

To have an efficient implemention of the preconditioned Conjugate Gradient method we
distinguish the following building blocks: vector update, inner product, sparse matrix vec-
tor product and the application of a preconditioner. For the first three operations efficient
implementations on the GPU are available. The main bottleneck is a fast GPU imple-
mentation of the preconditioner. For this operator (except a diagonal preconditioner) the
results are scarce in the literature. Our aim is to use a preconditioner, which is compet-
itive in convergence with the best known serial preconditioners based on the incomplete
Cholesky decomposition. In the implementation of the various preconditioners the follow-
ing guidelines are used: exploit synchronization-free parallelism, optimize thread mapping,
align global memory access, and reuse data as much as possible.

We start with a block-1C preconditioner, where the blocks are solved in parallel. To obtain
good convergence for many blocks and for large ratios of the densities we add a second level
preconditioner (deflation). It appears that the convergence is reasonable but the speedup is
small due to the low level of parallelism. After that we use a recently developed Incomplete
Poisson preconditioner, which has the same good parallelization properties as the matrix
vector product. Combination of this preconditioner with deflation, which is also fast on
the GPU, leads to a very efficient method.

We illustrate our work with some numerical experiments. From these experiments it ap-
pears that for large problems the GPU implementation of the Incomplete Poisson precon-
ditioner combined with deflation is 20 times faster than ICCG on one node of a CPU.
Finally, we observe that single precision arithmetic for multi-phase flow with large jumps
in the density does not lead to reliable results. This is a point of future research.
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