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GPU Implementation of De�ated Pre
onditionedConjugate GradientR. Gupta ∗, C. Vuik ∗ , C.W.J. Lemmens ∗O
tober 18, 2010Abstra
tA Linear System of the pressure equation resulting from the Finite Di�eren
eDis
retization of Two-Phase Flows has been implemented and solved on the GPU.Conjugate Gradient(CG) Method was used to solve the linear system with two levelsof pre
onditioning. After implementing Blo
k In
omplete Cholesky on CG, De�ationwas applied as a se
ond level pre
onditioner to improve the 
onvergen
e rate. TheGPU versions of the 
ode bene�t from the parallelism available in de�ation step. Forimproving the parallel properties of the pre
onditioning step we use the novel, In
om-plete Poisson Pre
onditioning. The �nal version with two levels of Pre
onditioningdemonstrated up to 20 times speedup in the 
omplete solution when 
ompared to asingle 
ore CPU for a system of 1 million unknowns. Analysis of the results and abrief report on our experiments is presented.Keyword: Conjugate Gradient, Pre
onditioning, De�ation, GPGPU, CUDA1 Introdu
tionLarge Sparse Linear Systems are mostly solved by Pre
onditioned Krylov Methods 
om-bined with some form of 
oarse grid a

eleration. Spe
i�
ally the 
onvergen
e of ConjugateGradient(CG) Method 
an be improved by Pre
onditioning. Many of the important build-ing blo
ks of these algorithms 
ould be optimized for exe
ution on parallel ar
hite
tures.Re
ently, with the advent of General Purpose Computing on the Graphi
al Pro
essingUnit (GPU) it is possible to a
hieve 10 − 100 times redu
tion in 
omputing times. How-ever, some of the methods involved in the Solution of the systems of interest do not runoptimally on the GPU. In this paper we show that it is possible to a
hieve 10 fold speedupfor a 
ombination of suitable building blo
ks.
∗Delft University of Te
hnology, Fa
ulty of Ele
tri
al Engineering, Mathemati
s and ComputerS
ien
e, Delft Institute of Applied Mathemati
s, P.O. Box 5031, 2600 GA Delft, The Netherlands,(r.gupta�student.tudelft.nl, 
.vuik�tudelft.nl, kees.lemmens�tudelft.nl)3



1 INTRODUCTION 4In this paper we use two levels of Pre
onditioning with the CG method to solve a linearsystem. This system arises from the dis
retization of the Pressure Corre
tion Equation.This equation is the most time-
onsuming step in the solution of the In
ompressible Navier-Stokes Equation using the Level Set Method. This method as suggested in [Pijl, Segal,Vuik, and Wesseling, 2005℄, is of interest to us in modeling Physi
al Systems, espe
iallyBubbly Flows. The Partial Di�erential Equations des
ribing the Pressure Corre
tion havebeen dis
retized through the use of �nite di�eren
es. The linear system is of the form
Ax = b, A ∈ R

n×n, (1)where n is the number of degrees of freedom. We assume that A is symmetri
 positivede�nite(SPD), i.e.,
A = AT , yTAy > 0 ∀ y ∈ R y 6= 0. (2)The linear system given by (1) is usually sparse and ill-
onditioned. This means thatthere are few non-zero elements per row of A and also that the 
ondition number κ(A) isusually large. Put in other words, the ratio of the largest eigenvalue to the smallest is largeand this leads to slow 
onvergen
e of the Conjugate Gradient Method.

κ(A) : =
λn

λ1
(3)where 0 < λ1 ≤ λ2 ≤ ... ≤ λn are eigenvalues of matrix A. See [Saad, 2003℄ for moredetails.In order to have a smaller number of iterations for 
onvergen
e, the matrix A is pre-
onditioned to bring down the 
ondition number from κ(A) to κ(M−1A). The 
oe�
ientmatrix A is multiplied by M−1, the pre
onditioner (dis
ussed in detail in [Meijerink andVorst, 1977℄). The original system (1) is then transformed into ,

M−1Ax = M−1b, (4)where M is SPD. M−1 is 
hosen in su
h a way that the 
ost of the operation M−1y with ave
tor y is 
omputationally 
heap. However, sometimes pre
onditioning might also not beenough. In that 
ase we use se
ond level of pre
onditioning or De�ation in order to redu
e
κ(A). Details about the method 
ould be found out in [Tang and Vuik, 2007℄.In this work some previous results [Tang and Vuik, 2008℄ are used for implementation.The fo
us is to implement these methods on the Graphi
al Pro
essing Unit (GPU). Re-
ently S
ienti�
 Computing has largely bene�ted from the data parallel ar
hite
ture ofgraphi
al pro
essors. Many interesting problems whi
h are 
omputationally intensive areideally suited to the GPU, espe
ially matrix 
al
ulations. It is only intuitive to use themfor solution of dis
retized partial equations. With the advent of the Component Uni�edDevi
e Ar
hite
ture (CUDA) paradigm of 
omputing available on NVIDIA GPU devi
es,it has be
ome easier to write su
h appli
ations. First we take up the work already doneon the GPU with respe
t to these iterative methods in the following se
tion. We alsobring out the 
ontribution this study makes that is di�erent from earlier results. Then we



2 RELATED WORK 5brie�y de�ne the problem of Bubbly �ows and a few words about the Two-Phase Matrixthat we are interested in solving in Se
tion 3. We take a short tour of the Iterative So-lution Methods in Se
tion 4 followed by some parallel implementations of pre
onditionersin Se
tion 5. Finally we dis
uss implementation of the Conjugate Gradient Method withPre
onditioning on the GPU in Se
tion 6 supported by Numeri
al Results in Se
tion 7. We end this paper with 
on
lusions in Se
tion 8. For more details we refer to [Gupta,2010℄.2 Related WorkA variety of studies have been done to study Iterative Solution Methods on the GPU. Someof them dis
uss optimizations of basi
 building blo
ks and optimization te
hniques whi
hwe found useful for our work.2.1 Sparse Matrix Ve
tor Produ
ts- SpMVsSparse Matrix Ve
tor(SpMV) Produ
ts take up the majority amount of exe
ution timeduring the iterations of the Conjugate Gradient Algorithm. NVIDIA re
ently releaseda study, [Bell and Garland, 2008℄ in whi
h they 
ompare di�erent sparse matrix storageformats and suggest some new methods and representative kernels for a
hieving upto 36GFlop/s in Single Pre
ision implementations of the SpMV kernel. They also 
ompare theperforman
e of the GPU with several ar
hite
tures like STI Cell, and CPUs like Xeon,Opteron et
.A re
ent study, [Monakov and Avetisyan, 2009℄ suggests to store a Sparse Matrix ina hybrid ELL-COO format to a
hieve maximum throughput in the SpMV kernel. Theirmethod relies on an initial sweep on the matrix to �nd out the number of non-zero elementsand the de
ision to divide the matrix into two di�erent formats(ELL and COO) for storage.The CUDA library 
an also be enri
hed with CUDPP [Harris, Sengupta, Owens, Tseng,Zhang, and Davidson, 2009℄ whi
h provides a routine 
udppSparseMatrix, for sparse matrixve
tor multiply whi
h 
omes in handy when applying iterative methods. To use a methodthe user �rst de
lares a P lan in whi
h the input output arrays, the number of elementset
. are spe
i�edIn [M. Baskaran and Bordawekar, 2008℄ improvements are demonstrated over the meth-ods dis
ussed above in [Bell and Garland, 2008℄ and [Harris, Sengupta, Owens, Tseng,Zhang, and Davidson, 2009℄ by exploiting some of the ar
hite
tural optimizations to theSparse Matrix-Ve
tor Multipli
ation 
ode. In parti
ular the optimization e�orts are 
en-tered on the following four guidelines:
• Exploiting Syn
hronization-Free Parallelism,
• Optimized Thread Mapping,
• Aligned Global Memory A

ess;



2 RELATED WORK 6
• Data-Reuse.We utilize the knowledge given in [Bell and Garland, 2008℄ to write our own version of theSparse Matrix Ve
tor Multipli
ation Kernel and a
hieve a mu
h higher memory through-put.2.2 Conjugate GradientAligning 
onjugate gradient method to the GPU has been dis
ussed in [Georges
u andOkuda, 2007℄. They also dis
uss the problems with pre
ision and implementing pre
on-ditioners to a

elerate 
onvergen
e. In parti
ular they state that for double pre
ision
al
ulations problems having 
ondition numbers less than 105 may 
onverge and give aspeed-up also. They however warn that above a threshold value of the 
ondition num-ber the Conjugate Gradient Method will not 
onverge. This observation relates to thelimited(double) pre
ision performan
e available on 
urrent GPUs.Implementing single pre
ision iterative solvers on the GPU is explored in [Buatois,Caumon, and Levy, 2009℄. They limit the pre
onditioning to Ja
obi-Type pre
onditioners.Further they report that for a limited number of iterations the GPU is able to providea solution of 
omparable a

ura
y but as the iterations in
rease the pre
ision drops in
omparison to the CPU. In our results the relative error norm of the solution and thenumber of iterations required for 
onvergen
e remain the same on the devi
e(GPU) andthe host(CPU).2.3 Pre
onditioningTe
hniques that are basi
ally dependent on the Sparse Matrix Ve
tor Multiply dis
ussedin previous se
tions have been suggested in literature for a

elerating Pre
onditioning ofIterative Solvers like GMRES and Conjugate Gradient. In [Wang, Klie, Parashar, andSudan, 2009℄ an ILU Blo
k Pre
onditioner is used, whi
h has poor 
onvergen
e qualities butis easier to parallelize, for solving a sparse linear system by the GMRES method. Coe�
ientmatrix A is divided into equal sized sub-matri
es whi
h are then lo
ally de
omposed usingILU, as shown in Figure 1. The blo
ks shown in Figure 1 do not 
ommuni
ate to ea
hother during the de
omposition and also in solving it, this s
heme �ts well in the dataparallel paradigm.In [Asgasri and Tate, 2009℄ it is shown how a Chebyshev polynomial based pre
ondi-tioner 
ould be utilized for a
hieving speedups in the Conjugate Gradient method. The saidpre
onditioner e�e
tively redu
es the 
ondition number of the 
oe�
ient matrix therebya
hieving 
onvergen
e qui
kly. It approximates the inverse of the 
oe�
ient matrix withlinear 
ombinations of matrix-valued Chebyshev polynomials.In [Ament, Knittel, Weiskopf, and Straβer, 2010℄ a new kind of pre
onditioning 
alledthe In
omplete Poisson Pre
onditioning is presented whi
h takes the approximation of thepre
onditioner as follows
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M−1 = KKT (5)where

K = I − LD−1. (6)In equation 6, L is the lower triangular part of A and D is the diagonal of A. This is
omparable to an SSOR type pre
onditioner.

Figure 1: Blo
k ILU pre
onditioner ���������	
�	���	��
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Figure 2: Two-Phase Flow ComputationalModelThis pre
onditioner introdu
es some �ll-in (other than the normal sparsity pattern ofA) in the multipli
ation of K with KT . Their experiments suggest that the �ll-in 
ouldbe dropped due to it's 
omparatively small e�e
t on the pre
onditioning pro
ess. The
onvergen
e might su�er however the method then maps well to the GPU. Hen
e theIn
omplete nature of the sten
il that emerges gives the method its name. We utilizea 
ombination of IP Pre
onditioning and De�ation whi
h shows signi�
ant performan
ebene�ts.2.4 Pre
ision ImprovementThe GPUs have a 
omparatively low performan
e to Double Pre
ision Computing. In[Baboulin, Buttari, Dongarra, Kurzak, Langou, Langou, Lusz
zek, and Tomov, 2008℄ dou-ble pre
ision 
al
ulations are used for some part of the iterative method and single pre
isionfor others. Thus, a
hieving a trade-o� that meets pre
ision 
riteria and 
onverges as goodas the double pre
ision 
ase. At the same time the rate of 
onvergen
e is also not af-fe
ted very mu
h. They have reported the results for a non-symmetri
 solver wherein theouter iteration is FMGRES and the inner one (for 
al
ulating M−1) is a GMRES 
y
le.The idea here is that a single pre
ision arithmeti
 matrix-ve
tor produ
t is used as a fastapproximation of the double pre
ision operator in the inner iterative solver.



3 PROBLEM DEFINITION 8All of our experiments have been in Single Pre
ision. We progressively in
rease theperforman
e gains by exposing higher levels of parallelism through the use of parallel Pre-
onditioning Methods (IP) in pla
e of Blo
k In
omplete Cholesky Pre
onditioning whi
hhas 
omparatively less degree of parallelism. We also show how using ar
hite
tural provi-sions within the GPU (e�
ient 
oales
ing, better data stru
tures, shared memory) one 
animprove the de�ation kernels. The end result being that we are able to produ
e speedupsof more than 20 times for a two level pre
onditioned Conjugate Gradient Solver. We havegot up to 5 times speedup for the Blo
k In
omplete Cholesky Pre
onditioned De�ated CGSolver. We are able to a
hieve up to 68 GFlops/s on NVIDIA Tesla Hardware. To ourknowledge this is the �rst study that utilizes two level pre
onditioning on the GPU.3 Problem De�nitionComputations of Two-Phase (Bubbly) �ows is the main appli
ation for this implementa-tion. Two phase �ows are 
ompli
ated to simulate, be
ause the geometry of the problemtypi
ally varies with time, and the �uids involved have very di�erent material proper-ties. This leads to large di�eren
es in the Matrix 
oe�
ients resulting from the dis
retizedPressure Corre
tion Equation. Mathemati
ally bubbly �ows are modeled using the NavierStokes equations in
luding boundary and interfa
e 
onditions, whi
h 
an be approximatednumeri
ally using operator splitting te
hniques. In these s
hemes, equations for the velo
ityand pressure are solved sequentially at ea
h time step. In many popular operator-splittingmethods, the pressure 
orre
tion is formulated impli
itly, requiring the solution of a lin-ear system (1) at ea
h time step. This system takes the form of a Poisson equation withdis
ontinuous 
oe�
ients and Neumann boundary 
onditions, i.e.,
−▽ .

(

1

ρ(x)
▽ p(x)

)

= f(x), x ∈ Ω, (7)
∂

∂n

p(x) = g(x), x ∈ ∂Ω, (8)where Ω, p, ρ, x and n denote the 
omputational domain, pressure, density, spatial 
o-ordinates, and the unit normal ve
tor to the boundary, ∂Ω, respe
tively. Right-hand sides
f and g follow expli
itly from the operator-splitting method, where g is su
h that massis 
onserved, leading to a singular but 
ompatible linear system (1). In an earlier work[Pijl, Segal, Vuik, and Wesseling, 2005℄ the subje
t has been dealt at length about how theNavier Stokes Equation is utilized to model su
h a �ow. In our experiments we are inter-ested in Solving the Linear System that results from dis
retization of equation 7. In Figure2 we present the simpli�ed Computational Domain that we work with in our experimentsfor generating a Two-Phase Matrix. We use a 5-point Sten
il for a 2-D grid(n × n) with
N = n × n unknowns.The square domain in the Figure 2 is divided into two parts and an interfa
e andsurrounded by Neumann Boundary 
onditions. Finite Di�eren
e Dis
retization translatesthe Grid (imposed over the domain) to a matrix whi
h has 
oe�
ients pla
ed on the 5



4 ITERATIVE SOLVERS 9diagonals with the jumps appearing at the interfa
e region. We follow a mass 
onservingapproa
h while 
al
ulating the 
oe�
ients on the interfa
e. There is some �ux that entershorizontally and verti
ally and some of it leaves a 
ell. By taking the 
ell-
entered approa
h(wherein the dis
retization point is at the 
enter of the 
ell) and taking into a

ount the
ontribution of all the �ows through that point, we arrive on sten
ils for individual pointson the grid. An example Sten
il 
an be like
[−1 0 (1

1

2
+ 1

1

2
ǫ) (−

1

2
−

1

2
ǫ) −ǫ]. (9)for a point on the interfa
e and also adjoining the boundary. Here ǫ is the ratio of thedensities of the two mediums.4 Iterative SolversWe 
hoose the Conjugate Gradient Method for solving the Linear System arising from thedis
retization of the Pressure Equation.4.1 Conjugate GradientThe algorithm for Conjugate Gradient is given by [Saad, 2003℄.Algorithm 1 Conjugate Gradient Algorithm1: Compute r0 := b − Ax0, p0 := r0.2: for j = 0, 1, ..., until 
onvergen
e do3: αj := (rj , rj)/(Apj, pj)4: xj+1 := xj + αjpj5: rj+1 := rj − αjApj6: βj := (rj+1, rj+1)/(rj, rj)7: pj+1 := rj+1 + βjpj8: end forTo improve the rate of 
onvergen
e of the CG method we apply subsequent levels ofpre
onditioning.4.2 Pre
onditioningAfter Pre
onditioning we apply Conjugate Gradient to the system

M−1Ax = M−1b (10)where M−1A 
omes 
loser to I so that the method 
onverges to the solution mu
h fasteras 
ompared to plain CG. A host of Pre
onditioning methods are known [Saad, 2003℄. ILUPre
onditioning and In
omplete Cholesky are the most popular.



4 ITERATIVE SOLVERS 104.2.1 Diagonal Pre
onditioningDiagonal or Ja
obi Pre
onditioning is the simplest (and also the least e�e
tive) of the pre-
onditioning methods that 
an be applied to the linear system Ax = b. The pre
onditionermatrix in this 
ase is the main diagonal of A.4.2.2 In
omplete Cholesky Pre
onditioningIn
omplete Cholesky Pre
onditioning involves a pre
onditioner of the form
M = LLT (11)where L is lower triangular. It is made 'in
omplete' by dropping o� some of the elements.From the Cholesky fa
tor we take the non-zeros that overlap with the sparsity pattern ofthe lower triangular part of A.4.2.3 Se
ond Level Pre
onditioningTo improve the 
onvergen
e of our method we also use a se
ond level of pre
onditioning.De�ation is an attempt to treat the remaining bad eigenvalues from the pre
onditionedmatrix, M−1A. This operation redu
es the 
onvergen
e iterations for the Pre
onditionedConjugate Gradient (PCG) method and makes it more robust.The linear system 
an be solved by employing the splitting

x = (I − P T )x + P Tx ⇔ x = Qb + P T x (12)
⇔ Ax = AQb + AP T x (13)
⇔ b = AQb + PAx (14)
⇔ Pb = PAx, (15)where

P = I − AQ, Q = ZE−1ZT , E = ZT AZ. (16)Here E ∈ R
k×k is the invertible Galerkin Matrix, Q ∈ R

n×n is the 
orre
tion Matrix, and
P ∈ R

n×n is the de�ation operator. Z is the so-
alled 'de�ation-subspa
e matrix' whose
k 
olumns are 
alled 'de�ation' ve
tors or 'proje
tion' ve
tors. The x at the end of theexpression is not ne
essarily a solution of the original linear system, sin
e it might 
ontain
omponents of the null spa
e of PA, N (PA). Therefor this 'de�ated' solution is denotedas x̂ rather than x. The de�ated system is now

PAx̂ = Pb. (17)The Pre
onditioned de�ated version of the Conjugate Gradient Method 
an now be pre-sented. The de�ated method (17) 
an be solved using a symmetri
 positive de�nite (SPD)pre
onditioner, M−1. We therefore now seek a solution to
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P̃ Ãˆ̃x = P̃ b̃, (18)where

Ã = M− 1

2 AM− 1

2 , ˆ̃x = M
1

2 x̂, b̃ := M− 1

2 b, (19)and
P̃ = I − ÃQ̃, Q̃ = Z̃ ˜E−1Z̃T , Ẽ = Z̃T ÃZ̃, (20)where Z̃ ∈ R

n∗k 
an be interpreted as a pre
onditioned de�ation-subspa
e matrix.The resulting method is 
alled the De�ated Pre
onditioned Conjugate Gradient (DPCG)method (details in [Vuik, Segal, and Meijerink, 1999℄).Algorithm 2 De�ated Pre
onditioned Conjugate Gradient Algorithm1: Sele
t x0. Compute r0 := b − Ax0 and r̂0 = Pr0, Solve My0 = r̂0 and set p0 := y0.2: for j:=0,..., until 
onvergen
e do3: ŵj := PApj4: αj :=
(r̂j ,yj)

(pj ,ŵj)5: x̂j+1 := x̂j + αjpj6: r̂j+1 := r̂j − αjŵj7: Solve Myj+1 = r̂j+18: βj :=
(r̂j+1,yj+1)

(r̂j ,yj)9: pj+1 := yj+1 + βjpj10: end for11: xit := Qb + P T xj+1Note that P̃ or M
1

2 are never 
al
ulated expli
itly. Hen
e the linear system is oftendenoted by
M−1PAx̂ = M−1Pb (21)Some Observations:All known properties of Pre
onditioned Conjugate Gradient (PCG) also hold for DPCG,where PA 
an be interpreted as the 
oe�
ient matrix A after pre
onditioning. Moreoverif P = I is taken the algorithm above redu
es to the Pre
onditioned Conjugate Gradi-ent(PCG) algorithm.Careful sele
tion of De�ation ve
tors is required for this method to prove useful. Twomethods, one based on eigenve
tor (of M−1A) based subspa
e for Z and the other basedon an arbitrary 
hoi
e of the de�ation subspa
e, are worth mentioning.However to 
al
ulate the eigenve
tors itself 
ould be 
omputationally intensive so anarbitrary 
hoi
e whi
h 
losely resembles part of the eigenspa
e is the way out. In short theideal de�ation method should satisfy the following 
riteria:
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• The de�ation-subspa
e matrix Z must be sparse;
• The de�ation ve
tors approximate the eigenspa
e 
orresponding to the unfavorableeigenvalues;
• The 
ost of 
onstru
ting de�ation ve
tors is relatively low;
• The method has favorable parallel properties.5 Parallel Pre
onditioningIn order to introdu
e parallelism in the 
ompletely sequential In
omplete Cholesky Pre
on-ditioner we use the Blo
k-IC version. In this 
ase we make blo
ks that grow in multiplesof the grid dimension n for a grid with n × n points. This is very important for our im-plementation sin
e we would like to expose (and utilize) parallelism in every step of theAlgorithm.5.1 Blo
k-In
omplete Cholesky Pre
onditioningShown in Figure 3 is an 8 × 8 grid and the resulting matrix whi
h has 64 rows. In ourimplementation the blo
ks have to be at least twi
e as big as grid dimension n or else amajor part of the outer diagonals with o�sets ±n is dis
arded and that leads to delayed
onvergen
e (and sometimes stagnation) of the iterative method.5.2 In
omplete Poisson Pre
onditioningAlthough Blo
k In
omplete Cholesky Pre
onditioning is very e�e
tive in a
hieving 
on-vergen
e for the Conjugate Gradient Method. It is highly sequential within the blo
k.Sin
e in this study we implement Pre
onditioned Conjugate Gradient on a Data ParallelAr
hite
ture we also 
onsider a re
ently suggested method of pre
onditioning 
alled theIn
omplete Poisson Pre
onditioning [Ament, Knittel, Weiskopf, and Straβer, 2010℄.There is a pri
e to pay for this 'parallelism' in terms of 
onvergen
e speed. However,our experiments show that it is still at least as fast or 
omparable to the Blo
k In
ompleteCholesky version (for a parti
ular grid size) when the number of blo
ks is the maximumpossible.5.3 Domain De
omposition for De�ationIn Sub-domain de�ation, the de�ation ve
tors are 
hosen in an algebrai
 way. The 
ompu-tational domain is divided into several sub-domains, where ea
h sub-domain 
orresponds toone or more de�ation ve
tors. In our experiments we use Stripe-Wise domains as depi
tedin Figure 4.
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Figure 3: Matrix for an 8 × 8 Grid. 64 Un-knowns. N=64, n=8 and Blo
kSize=2n
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 � � � �Figure 4: Stripe-Wise De�ation Domains. 4domains in an 8 × 8 grid.6 Implementation on the GPUWe have implemented our Iterative method on an NVIDIA GPU. We now give a primer ofthe various 
onstru
ts provided by the language extensions on the GPU that are needed towrite appli
ations for the GPU. GPUs are based on the idea of Single Instru
tion MultipleData (SIMD). This means that they 
an take a sequen
e of instru
tions and run them ona data set, dividing it amongst multiple pro
essors and 
omputing the result in parallel.Ea
h unit of exe
ution is 
alled a thread. The sequen
e of instru
tions exe
uted by everythread on a pro
essor (there are many of these pro
essors on the GPU) is 
alled a kernel.In order to utilize the GPU one has to identify these basi
 units of 
omputation (i.e.kernels) inside the appli
ation and then laun
h the kernels on the 100s of pro
essors si-multaneously in parallel. The exe
ution 
on�guration before the kernel laun
h takes 
areof informing the GPU how many threads to laun
h and how to organize them in a logi
alblo
k and further those blo
ks are organized in a logi
al grid.GPU has a huge memory bandwidth and one of the keys to extra
ting performan
eout of the GPU is to utilize the above 100 Gb/s memory bandwidth available on theGPU. GPU also has di�erent levels of memory like the CPU. However unlike the CPUthe appli
ation developer has to manage these memories expli
itly. Among these the mostimportant is the Shared Memory whi
h is as good as a small 
a
he in whi
h one 
an keepthe heavily a

essed data to minimize tra�
 to and fro between the 
hip and the globalmemory. Memory transfer between the CPU and the GPU should be kept to a minimumto maximize bene�ts from exe
uting appli
ation 
ode on the GPU.
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ription of Kernel DesignOur 
omplete iteration runs on the GPU with minimal transfers between the CPU andthe GPU. This is one of the most important reasons for the performan
e boost we getfrom our implementation. Starting with the plain Conjugate Gradient Method and addingstep-by-step the modules for pre
onditioning and De�ation we developed the 
ode side byside on the GPU and the CPU. For this the following points were kept in mind.1. Identifying Kernels of Computation.2. Organizing 
ode in form of kernels.3. Prioritized Optimization of Kernels after analyzing the pro�ler results (% Time taken,Bandwidth utilised, O

upan
y).On the CPU we have used the Mes
ha
h BLAS Library for Dot Produ
ts and Saxpys. Thekernels that were hand-
oded are1. Sparse Matrix Ve
tor Multiply Kernel2. Pre
onditioning Kernel(s)3. De�ation KernelsAfter testing with two levels of pre
onditioning on the CG method it was noti
ed thatwith in
reasing size of pre
onditioning blo
ks and in
reasing number of de�ation ve
torsthe number of iterations fall. On the GPU the CUBLAS library provided some usefulfun
tions for saxpy and dot produ
ts whi
h we have used. For other operations 
ustomkernels were written.6.2 Sparse Matrix Ve
tor Produ
t (SpMV) - KernelOur matrix has a regular pattern that of a 5 point Lapla
ean Matrix in two dimensions.So there are 5 diagonals whi
h 
ontain the 
omplete matrix. The storage format that we
hoose is 
alled the Diagonal Storage format. All the diagonals are stored in a 1-D array,starting from the lowest sub-diagonal(with o�set −n) followed by sub-diagonal with o�set(-1), then the main diagonal and then the two super-diagonals. Also an important featureis that they all have the same length. This kind of uniformity of size makes 
oales
eda

ess possible. So for example if say the sub-diagonal with o�set −1 has one element less,then at that position a zero �lls in to make it equal in size to the main diagonal.On
e stored in this way for ea
h row of the matrix we have 5 fet
hes from the arrayholding the 5 diagonals and 5 from the ve
tor. On the GPU we assign one thread to
ompute one element of the resulting Matrix-Ve
tor Produ
t. Additional optimizationsin
lude using shared memory and texture memory. The offsets array is a

essed by everythread and hen
e we store it on the shared memory to optimize the SpMV Kernel.
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onditioning KernelThe pre
onditioning kernel is the most sequential part of the entire algorithm. We ini-tially begin with the Blo
k In
omplete Cholesky Pre
onditioning. The Blo
k Variant ofIn
omplete Cholesky Pre
onditioning basi
ally exposes the parallelism at the blo
k level.However ea
h blo
k has 
onsiderable amount of serial work to be done. One te
hnique thatwe have employed is to break down the steps of pre
onditioning into three.1. Forward Substitution2. Diagonal S
aling.3. Ba
k SubstitutionThe diagonal s
aling step 
an be heavily optimized using shared memory. This is possiblesin
e it is inherently parallel with two reads every thread and one multipli
ation all the
al
ulations(N) are independent. For the �rst and the �nal step we 
an also use sharedmemory. The tri
k is to load the elements using a number of threads (number same as theblo
k size) in parallel and then work on them and store them ba
k in global memory. Laterin the development pro
ess we used In
omplete Poisson(IP) Pre
onditioning to maximizebene�ts of parallelism. It has been dis
ussed earlier in Se
tion 5.2.6.4 De�ation KernelsFor de�ation we sub-divide the tasks into a 
ouple of kernels at the outset. Namely,1. Cal
ulate b = ZTx2. Cal
ulate Matrix-Ve
tor Produ
t of E−1 with b.3. Cal
ulate Matrix-Ve
tor Produ
t of AZ with the result of the previous step andsubtra
t from x.For the �rst kernel b = ZTx we have used the parallel sum approa
h as suggestedin [SenGupta, Harris, Zhang, and Owens, 2007℄. We only use the �rst part of the twopart approa
h dis
ussed in the paper. Details 
an be found out in the GPU Gems arti
le[Harris, Sengupta, and Owens, 2007℄ for further optimizations to avoid divergen
e andwarp-serialization.For the other two kernels it is useful to tailor the matrix multipli
ationexample and use shared memory instead. This is better than the 
ublasSegmv (for somegrid sizes) sin
e we do not have an additional ve
tor s
aling and addition as required by
ublasSgemv.The de
ision to 
al
ulate E−1 expli
itly is instrumental sin
e it greatly redu
es thetime for the iterations. Though the setup time for the algorithm is a�e
ted but the overallgain in the running time of the method more than 
ompensate the 
ostly operation. Ifthe number of de�ation ve
tors be
ome very high then, sin
e E−1 is sparse, this approa
hmight not be very e�
ient.
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al
ulation of AZ times E−1×b we used the cublasSgemv 
all. The �nal 
al
u-lation xit = Qb+P T x 
an also utilize the kernels dis
ussed here and also the 
ublasSgemv.In the later stages of development we optimize the storage of AZ and re-write the kernelsfor 
al
ulations involving AZ.7 Results and Dis
ussionInitially we perform our experiments using 5 point Lapla
ean matrix resulting from a 2Dsquare grid. We talk about those experiments in the �rst subse
tion that follows and afterthat we report the results from a matrix that results from a Grid having two phases and aninterfa
e layer. For the two di�erent matri
es in question we performed several experimentson three grid sizes for three di�erent pre
onditioning blo
k sizes and three di�erent 
hoi
esof De�ation Ve
tors. All the experiments were done in single pre
ision on the GPU aswell as on the CPU. We use a Q9650 Intel Quad Core CPU however we only utilize asingle 
ore. We optimize it to use SSE instru
tions, unrolling loops and ve
torizing using
ompiler swit
hes. We also use the Mes
ha
h Blas Library for the Blas routines on theCPU. The GPU we use is a Tesla C1060 from NVIDIA. We use CUDA for writing our 
odeon the GPU. We use the CUBLAS and MAGMA libraries when using Blas fun
tions inthe GPU version.7.1 Numeri
al ExperimentsWe summarize our important �ndings in a speedup graph. It shows the speedups that wehave got with di�erent versions of the 
ode. These results are for a grid size of 512 × 512.In the versions where we use Blo
k In
omplete Cholesky pre
onditioning we use a blo
ksize of 1024. In the De�ated Pre
onditioned versions we use 4096 de�ation ve
tors. Thestopping 
riteria is ‖b−Axk‖2

‖b‖2
≤ 10−5. Note that in this version we have the maximum degreeof parallelism for our experiments. We have the largest grid size so more rows in parallelfor Sparse Matrix Ve
tor Multipli
ation. We have the largest number of Pre
onditioningBlo
ks and we take the highest number of de�ation ve
tors (8 × n). We now elaborate onthe versions used:1. (CGVV) Conjugate Gradient - Vanilla Version - The only kernel in this version of thesolution is the Sparse matrix ve
tor kernel. It takes the majority of the time in theexe
ution time pro�le. However the kernel utilizes around 85 Gb/s of the Memorybandwidth on the GPU.2. (CGBIC) Conjugate Gradient - Blo
k In
omplete Cholesky Pre
onditioning - Whenwe add pre
onditioning to the Conjugate Gradient version in the previous step the
onvergen
e is faster, however the speedup su�ers due to the inherent serial nature ofthe Blo
k In
omplete Cholesky Pre
onditioning within a blo
k. We tried using sharedmemory for 
o-operative loading and writing of elements however that approa
h
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Figure 5: SpeedUp Graph a
ross di�erent Code Versions. Grid Size (512 × 512)Exe
ution Times No. of IterationsCode Version CPU GPU CPU GPUCGVV 5.92 0.5004 652 649CGBIC 5.0723 5.594 327 327DPCG 110.45 4.45 42 42DPCG1 1.5944 1.0102 41 41DIPCG1 1.7285 0.2494 49 49DPCG2 1.5938 0.8866 41 41DIPCG2 1.7528 0.0975 49 49Table 1: Comparison GPU vs. CPU. Number of iterations required for 
onvergen
e andexe
ution times.su�ers at larger blo
k sizes (for e.g. 4096 elements mean 16384 bytes of sharedmemory).3. (DPCG) Conjugate Gradient - De�ation and Blo
k In
omplete Cholesky Pre
on-ditioning - Adding de�ation to the Pre
onditioned Conjugate Gradient introdu
es
onsiderable s
ope for parallelism. Also in order to leverage the 
omputing poweravailable of the GPU we use the expli
it inverse of the matrix E and do dense ma-trix ve
tor multipli
ation whi
h 
an be done in parallel on the GPU. One importantpoint that we found in our results is that the 
al
ulation involving the matrix AZwas taking most of the time so our fo
us be
ame to optimize AZ storage and 
al
u-lation. Table 1 shows that de�ation de
imates the number of iterations required for
onvergen
e.4. (DPCG1) Conjugate Gradient - De�ation(Optimized - Level 1) and Blo
k In
omplete



7 RESULTS AND DISCUSSION 18Cholesky Pre
onditioning - AZ is inherently a sparse matrix. Sin
e A is sparse and
Z has pie
e-wise 
onstant de�ation ve
tors. So we store AZ in a data stru
ture 5∗Nwide sin
e it is also symmetri
 just like A and has 5 diagonals. However some ofthe diagonals are d

n
wide where, d is the number of de�ation ve
tors and n is thedimension of the square grid (N = n× n). In this version we also optimize the CPUversion by use of some 
ompiler �ags to use SSE instru
tions, unrolling of loops et
.Result being that the CPU version gets very fast (up to 20 times) whereas the GPUversion be
omes 2 times as fast. The result is that speedup is de
imated with respe
tto DPCG. The pro�ler in this version points to the Pre
onditioning as the most time
onsuming task.5. (DIPCG1) Conjugate Gradient - De�ation(Optimized - Level 1) and In
omplete Pois-son Pre
onditioning - We use a novel pre
onditioning method re
ently published. Theparallel properties of this method are very well suited to the GPU. In e�e
t it is asparallel as the Ja
obi pre
onditioner, albeit mu
h better mathemati
ally and is asparallel as sparse matrix ve
tor multipli
ation we used for doing the operation Ax.Its 
onvergen
e rate is as good as the 
onvergen
e of blo
k-IC Pre
onditioner whenthe number of the blo
ks is maximum (n

2
, whereN = n × n) as shown in Table 1.This version gives us a speedup that is almost 4 times that of the Blo
k-IC versionin the previous step. The pro�ler results show that now most of the time is take upby the 
omputation step E−1b where E−1 is a dense d × d matrix and b is a d × 1ve
tor.6. (DPCG2) Conjugate Gradient - De�ation(Optimized - Level 2) and Blo
k In
ompleteCholesky Pre
onditioning - We optimize the Matrix ve
tor produ
t E−1b by using the

MAGMA Blas library developed for CUDA. In some 
ases MAGMA Blas delivers
3 times as mu
h memory throughput for matrix ve
tor multipli
ation 
ompared to
CUBLAS. Result being that we get almost double the speedup as we had for DPCG1version of the 
ode.7. (DIPCG2) Conjugate Gradient - De�ation(Optimized - Level 2) and In
omplete Pois-son Pre
onditioning - In this version we repla
e the Blo
k-IC Pre
onditioning used inthe previous step with In
omplete Poisson Pre
onditioning and we get mu
h betterspeedup for this parti
ular grid size (speedup grows a
ross all grid sizes, de�ationve
tors and pre
onditioning blo
ks).For all these versions we get the Relative error norm of the solution, ‖Xexact−Xk‖2

‖Xexact‖2
at 
on-vergen
e (the k-th iteration) in the range of 10−3.We repeat experiments 1, 2, 6 and 7 for the Two-Phase Matrix as well. We haveto set the stopping 
riterion at 10−2. The Relative Error Norm of the Solution is alsoheavily a�e
ted and it stays at 10−1. This is be
ause of the very high 
ondition numberof the matrix A sin
e the density 
ontrast between the two mediums is 1000 : 1. Alsothe de�ation matrix P has an even worse 
ondition number, so we see that as the numberof de�ation ve
tors in
rease the method misses 
onvergen
e. The speedups remain the
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e all that we 
hange is the matrix A and that does not 
hange the number of
omputations involved. Please note that in 
ase of missed 
onvergen
e our method runstill 1000 iterations and the speedup is de�ned asSpeedUp =
Time taken on the Host(CPU) to do 1000 iterationsTime taken on the Devi
e(GPU) to do 1000 iterations (22)Another interesting feature that we noti
ed in the results for Two-Phase Matri
es wasthat of False 
onvergen
e. This was noti
eable in versions 1 and 2. This means that therelative norm of the residual rea
hes below the required toleran
e

‖ rk ‖

‖ r0 ‖
< ǫ, ǫ = 10−2 (23)but it rises and falls above and below this level (if we 
ontinue the iterations after thatand re
ord the residual). At one point the norm falls below ma
hine pre
ision and thatdoes not make any sense. This behavior was 
onsistent in Conjugate Gradient Method andConjugate Gradient with Pre
onditioning for a two phase matrix.7.2 Dis
ussionIn this se
tion we look at the di�erent aspe
ts of our implementation. We try to �ndout how mu
h parallelism we exploit and how mu
h bandwidth we are able to utilize onthe GPU. We end this se
tion with a dis
ussion on what might be possibly limiting thea
hievable speedup and how far we are from that point. Throughout this se
tion we analyzethe results with a grid size of 512×512 and 4096 de�ation ve
tors and In
omplete PoissonPre
onditioning.7.2.1 Stati
 AnalysisIn this se
tion we 
al
ulate how many Floating Point Operations (FLOPs) ea
h kernel doesin ea
h run and how many memory a

esses happen both during loads and stores. We listthis both for all the Kernels. The following notations are used.

• N, Number of Unknowns
• d, Number of De�ation Ve
tors
• m, Number of IterationsFrom Table 2 one 
an �nd the number of FLOPs being performed in one 
omplete runof the methods we have implemented.We now elaborate some of the Kernel names:
ZT x, E−1b and AZ×E−1b form the steps of the de�ation operation. Forward Substitu-tion, Diagonal S
aling and Ba
k Substitution form the steps of Blo
k In
omplete CholeskyPre
onditioning. Sdot is the Dot produ
t fun
tion as named in BLAS libraries. We use



7 RESULTS AND DISCUSSION 20
cublasSdot. Saxpy is the Saxpy Kernel as available in BLAS libraries. We use cublasSaxpyand also write 
ustom kernels to 
lub saxpy with s
aling operations to minimize memorytransfers. Ss
al is the BLAS s
aling operation and Snrm is the 2-Norm operation availablein the BLAS libraries.Let us take the 
ase of the method DIPCG2 dis
ussed in Se
tion 7.1. It is the De�atedPre
onditioned (In
omplete Poisson) Conjugate Gradient method that uses optimized AZstorage and the gemv routine from MAGMA Blas library. It also has some optimizationsthat 
ombine 
ertain operations like s
aling and saxpy for 
al
ulation of β as given in thestep 9 of Algorithm 2.The kernels involved in this variant then are listed in Table 3.Summing up the FLOPs for m iterations we have
9N(m+1)+N(m+2)+d2(m+3)+9N(m+1)+9N(m+1)+8Nm+6Nm+Nm+2Nm. (24)or

45Nm + d2m + 29N + 3d2 (25)So the 
omputational intensity is governed by the �rst two fa
tors of the expressionin (25). Now let us take a spe
i�
 
ase of N = 262144, d = 4096 and m = 49. These
orrespond to the experiment DIPCG2 dis
ussed in 7.1 with grid size as 512×512 and theNumber of De�ation Ve
tors = 4096. It takes the 49 iterations to 
onverge both on thehost and the devi
e. The time on the devi
e is 0.0987 se
onds and on the host is 2.237se
onds. The speedup is 22.7 times.Now the GPU theoreti
ally(peak throughput) 
an deliver 933 GFlops/s. The CPUon the other hand, when talking about one 
ore (whi
h we use in our experiments), 
andeliver a peak throughput of 12 GFlops/s. The numbers for NVIDIA are available fromthe website whi
h talks about the Tesla C1060 spe
i�
ations [NVIDIA, 2010℄ . For IntelPro
essors also the numbers are provided on the website [Intel, 2010℄.The 
omputational load as 
al
ulated in (25) 
omes out to be 1.46 GFlops. Dividingthis by the time taken we get 0.65GFlops/s for the CPU and 14.79 GFlops/s for the GPU.These numbers 
an be further divided by the peak throughput to understand the Plat-form Utilization on the GPU as 1.585% and on the CPU as 5.41%.7.2.2 Kernels- Performan
eWe refer to some of the works that outline how to e�e
tively 
hara
terize a kernels' per-forman
e and its ability to s
ale a
ross new generations of hardware that will have morepro
essors to fa
ilitate parallel exe
ution. [Ni
kolls, Bu
k, Garland, and Skadron, 2008℄and [Ryoo, Rodrigues, Baghsorkhi, Stone, Kirk, and Hwu, 2008℄ and [Komatits
h, Mi
héa,and Erleba
her, 2009℄ bring about 
ertain methods by whi
h we 
an �nd1. How to �nd if a kernel is 
ompute bound or bandwidth bound?2. Expe
ted Speedup from an appli
ation.
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Kernel Data Computations Writes Degree of Number of CallsRead In Done Performed Parallelism in useSparse-Matrix 6N 9N N N m + 1Ve
tor Produ
tandIP Pre
onditioning
ZT x N N d d m + 2

E−1b d(d + 1) d × d d d m + 3(gemv)
AZ × E−1b 5N + d 9N N N m + 1Forward 4N 3N N

√
N
2 m + 1and Ba
kSubstitutionDiagonal 2N N N N m + 1S
aling

(AZ)T x 6N 5N d d 1Sdot N 2N N − 4mSaxpy 2N 2N N − 3mSs
al N N N − mSnrm N 2N N − mTable 2: Kernels - Computation and Parallelism

SpMV ZT x E−1b(gemv) AZ × E−1b SdotSaxpy IP Pre
onditioning Snrm (AZ)T xTable 3: Kernels in the DIPCG2 version of the 
ode in Se
tion 7.1
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teristi
sMethod Ca
hing Divergen
e Shared-Memory Warp(Shared Memory) Bank Con�i
ts Serialization
Magma_Sgemv Yes No No No

IPPreconditioning Minimal Yes Yes No
SpMV Minimal Yes Yes No

AZE−1b Minimal Yes Yes No
ZT x Yes Yes Yes Yes

saxpy_alpha Yes No No No
saxpy_beta No No No NoTable 4: Grid of 512×512 points. Number of De�ation Ve
tors = 4096. With optimizationsapplied to AZ storage and 
al
ulation, E−1b with Magma_Sgemv and other optimizations.3. Examination of PTX(CUDA assembly) 
ode for �nding per
entage of 
ode that ismemory or 
ompute intensive.Also these do
uments detail important things to keep in mind when designing a kernel oroptimizing it. These do
uments put to use, in their respe
tive 
ontexts, the Best Pra
ti
esguide provided by NVIDIA [NVIDIA, 2009℄.The most important fa
tor in a kernels' e�e
tiveness is its ability to do memory a

essesin the best possible way. To this end a 
ouple of important te
hniques are instrumental.This step 
omes obviously after the point of minimizing memory transfers as mu
h aspossible between the CPU and GPU.1. 
oales
ed memory a

ess2. 
a
hing3. minimize divergen
e among threads within the same blo
kIn Table 4 we list whi
h te
hniques are used by the (ex
ept CUBLAS) kernels in ourimplementations. Memory 
oales
ing has been used in all the kernels. We also list if thereare shared memory 
on�i
ts.7.2.3 Bandwidth UtilizationLet us take a look at the bandwidth utilization of the kernels in the most optimizedversion DIPCG2 (Se
tion 7.1) of the 
ode that we have. This is the De�ated In
ompletePoisson Pre
onditioned Conjugate Gradient Method with optimizations for AZ storageand 
al
ulation and also with the gemv operation from the MAGMA library.In this version we 
onsider the Grid Size 512×512 with 4096 de�ation ve
tors. In Table5 we list the Memory Throughput of Individual Kernels and the per
entage of time theytake of the total exe
ution on the devi
e. It also lists the o

upan
y of the kernels.
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sMethod %GPUTime Read Write Overall O

upan
yThroughput Throughput Throughput
MagmaSgemv 44 85.2 0.02 85.4 50%

IPPreconditioning 9.6 66.39 5.75 72.15 100%
SpMV 9.6 66.44 5.76 72.2 100%

AZE−1b 9.4 51.93 6.08 58.02 100%
ZT x 6.6 8.175 1.02 9.19 50%

saxpy_alpha 3.2 34.85 34.85 69.7 100%
saxpy_beta 2.5 42.64 21.3 63.67 100%
cublas_Sdot 8.6 53.88 0.197 54.08 100%

cublas_Saxpy 2.9 42.34 21.17 63.52 100%
cublas_2 − Norm 1.81 37.69 0.223 37.92 100%Table 5: Grid of 512×512 points. Number of De�ation Ve
tors =4096. CG with De�ationand In
omplete Poisson Pre
onditioning. With optimizations applied to AZ storage and
al
ulation, E−1b with MagmaSgemv and other optimizations.The CUBLAS Kernels are pre�xed with Cublas and other kernels have been hand-
oded with ex
eption of the Magma_Sgemv whi
h is from the MAGMA blas library. InTable 5 we show kernels that form more than 98% of the total exe
ution time. The last

2% or so is taken up by transfers from Devi
e to Host and a few 
alls to kernels used for
orre
ting x at the end of the iteration by doing x = Qb+P T x as the last step of Algorithm2. The Tesla system on whi
h we have run all of our tests o�ers a memory bandwidthof 101Gb/s. As 
an be seen the Gemv is utilizing a majority of the available bandwidth(85Gb/s). Followed 
losely by the IP Pre
onditioning and SpMV Kernels at 72 Gb/s.These three kernels form 60% of the total exe
ution time. Ex
ept for the CUBLAS 
allfor 
al
ulating the 2-Norm of the updated residual (stopping 
riterion - required to be
he
ked every iteration) and the 
all to 
al
ulate ZT x all the kernels utilise more than halfof the available bandwidth. The average Memory throughput of this exe
ution is 68 Gb/s.7.2.4 Dis
ussion on Possible Speedup LimitsGiven that two of the kernels seem to be operating at 50% o

upany we try to �nd out ifthey 
an deliver more performan
e and hen
e, a possibility of a higher speedup.The 
urrent kernel for ZT x is trying to utilize both shared memory and parallel redu
-tion in order to a
hieve its 
urrent bandwidth utilization. We have kept as many threadsin the blo
k as are the elements whose sum is required to make one element of the newve
tor y resulting from y = ZT x. Sin
e in this kernel N/d elements have to be summed in
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hunks to produ
e d elements where
N = Number of Unknowns, d = Number of De�ation Ve
tors. (26)
y = d × 1 ve
tor, x = n × 1 ve
tor. (27)The o

upan
y varies a

ording to the ratio of N/d but the bandwidth never 
rosses thatindi
ated in Table 5. The kernel's o

upan
y varies with the fa
tor N/d. For N/d aboveand equal to 128 (we have values like 16, 32, 64, 128, 256 and so on.) the o

upan
y is

100%. For the 
ase under 
onsideration the o

upan
y is 50% but for a lower numberof de�ation ve
tors (for e.g. 2048) it is 100% (sin
e N/d be
omes 128). Even then thebandwidth does not 
hange. This means that the kernel 
annot perform better than this.Trying to 
omment out the summing operations shows that the ZT x kernel 
an deliver amaximum of 28Gb/s and only takes 2% of the total exe
ution time. The speedup variesby only 5%.This kernel has a large amount of Shared Memory Bank 
on�i
ts. They 
an be over
omeby 
hanging the storage stru
ture of the ve
tor x however this is not useful sin
e this wouldrequire 
hanging many other kernels (whi
h are already performing at 100% o

upan
y andare bandwidth limited) and also be
ause this kernel is not the most time 
onsuming kernelin the whole operation.Other than this kernel (y = ZT x) the other pla
e where there is a possibility of im-provement is the Magma_Sgemv kernel. Although it is utilizing most of the memorybandwidth it is still having an o

upan
y of 50%. A 
loser look at the o

upan
y for thiskernel shows that it has an exe
ution 
on�guration ofGrid Size 64 × 1 × 1 (28)Blo
k Size 64 × 1 × 1. (29)We used the 
ode for double pre
ision gemv posted on the the MAGMA forums whi
hwe 
hange to single pre
ision and verify that it is exa
tly similar.By modifying the number of blo
ks in the 
ode form 64 to 128 we get an o

upan
yof 100%. However the bandwidth stays around 85Gb/s. This shows that the kernel isbandwidth-bound. Sin
e at maximum o

upan
y we see no 
hange in the bandwidth.All the other kernels are at 100% o

upan
y and are bandwidth bound sin
e they havesimple arithmeti
 operations and do not show 
hanges in bandwidth with further in
reasingdata sizes.More elaborate analysis of Kernels and the 
ost of Inter-Warp Parallelism based onMemory A

esses and Computational overlap is possible. In [Hong and Kim, 2009℄ adetailed model for su
h analysis is dis
ussed. However they do not address the issues withShared Memory Bank Con�i
ts.8 Con
lusionsIn this paper we investigate e�
ient implementations of the pre
onditioned ConjugateGradient method on a GPU for very large, sparse systems of linear equations. We 
on-



REFERENCES 25sider linear systems whi
h originate from a �nite di�eren
e dis
retization of Poisson-likeproblems on a stru
tured grid. As a typi
al example we 
onsider the pressure equationwhi
h is used in simulations of multi-phase �ows. Due to dis
ontinuities in the density, theresulting matrix is ill-
onditioned whi
h leads to slow 
onvergen
e.To have an e�
ient implemention of the pre
onditioned Conjugate Gradient method wedistinguish the following building blo
ks: ve
tor update, inner produ
t, sparse matrix ve
-tor produ
t and the appli
ation of a pre
onditioner. For the �rst three operations e�
ientimplementations on the GPU are available. The main bottlene
k is a fast GPU imple-mentation of the pre
onditioner. For this operator (ex
ept a diagonal pre
onditioner) theresults are s
ar
e in the literature. Our aim is to use a pre
onditioner, whi
h is 
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al experiments. From these experiments it ap-pears that for large problems the GPU implementation of the In
omplete Poisson pre
on-ditioner 
ombined with de�ation is 20 times faster than ICCG on one node of a CPU.Finally, we observe that single pre
ision arithmeti
 for multi-phase �ow with large jumpsin the density does not lead to reliable results. This is a point of future resear
h.Referen
esM. Ament, G. Knittel, D. Weiskopf, and W. Straβer. A parallel pre
onditioned 
onjugategradient solver for the poisson problem on a multi-GPU platform. http://www.vis.uni-stuttgart.de/ amentmo/do
s/ament-p
gip-PDP-2010.pdf, 2010.A. Asgasri and J. E. Tate. Implementing the Chebyshev Polynomial Pre
onditionerfor the iterative solution of linear systems on massively parallel graphi
s pro
essors.http://www.ele.utoronto.
a/ zeb/publi
ations/, 2009.M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Lusz
zek,and S. Tomov. A

elerating s
ienti�
 
omputations with mixed pre
ision algorithms.CoRR, abs/0808.2794, 2008. URL http://dblp.uni-trier.de/db/journals/
orr/
orr0808.html. informal publi
ation.



REFERENCES 26N. Bell and M. Garland. E�
ient sparse matrix-ve
tor multipli
ation on CUDA. Te
hni
alReport NVR-2008-04, NVIDIA Corporation, De
ember 2008.L. Buatois, G. Caumon, and B. Levy. Con
urrent number 
run
her: a GPU implementationof a general sparse linear solver. Int. J. Parallel Emerg. Distrib. Syst., 24(3):205�223,2009.S. Georges
u and H. Okuda. Gpgpu-enhan
ed 
onjugate gradient solver for �nite elementmatri
es. Pro
eedings of The Se
ond international Workshop on Automati
 Performan
eTuning, 2007.R. Gupta. Implementation of the De�ated Pre
onditioned Conju-gate Gradient Method for Bubbly Flow on the Graphi
al Pro
essingUnit(GPU) . Master's thesis, Delft University of Te
hnology, Delft, 2010.http://ta.twi.tudelft.nl/nw/users/vuik/numanal/gupta_afst.pdf.M. Harris, S. Sengupta, and J. D. Owens. Parallel Pre�x Sum (S
an) with CUDA, 2007.http://developer.nvidia.
om/GPUGems3/gpugems3_
h39.html.M. Harris, S. Sengupta, J. D. Owens, S. Tseng, Y. Zhang, and A. Davidson. Cudpp.http://gpgpu.org/developer/
udpp, 2009.S. Hong and H. Kim. An analyti
al model for a GPU ar
hite
ture with memory-level andthread-level parallelism awareness. SIGARCH Comput. Ar
hit. News, 37(3):152�163,2009. ISSN 0163-5964. doi: http://doi.a
m.org/10.1145/1555815.1555775.Intel. Pro
essor spe
i�
ations - by family. Website, 2010. http://www.intel.
om/support/pro
essors/sb/
s-023143.htm.D. Komatits
h, D. Mi
héa, and G. Erleba
her. Porting a high-order �nite-element earth-quake modeling appli
ation to NVIDIA graphi
s 
ards using CUDA. J. Parallel Distrib.Comput., 69(5):451�460, 2009. ISSN 0743-7315. doi: http://dx.doi.org/10.1016/j.jpd
.2009.01.006.M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-ve
tor multipli
ation on GPUs. Te
hni
al report, IBM Resear
h Di-vision, NY, USA, De
ember 2008. http://gpgpu.org/2009/04/13/optimizing-sparse-matrix-ve
tor-multipli
ation-on-gpus.J.A. Meijerink and H. A. Van der Vorst. An intera
tive solution method for linear systemsof whi
h the 
oe�
ient matrix is a symmetri
 M-matrix. Math. Comp., 31:148�162,1977.A. Monakov and A. Avetisyan. Implementing blo
ked sparse matrix-ve
tor multipli
ationon NVIDIA GPUs. In SAMOS '09: Pro
eedings of the 9th International Workshop onEmbedded Computer Systems: Ar
hite
tures, Modeling, and Simulation, pages 289�297,Berlin, 2009. Springer-Verlag.



REFERENCES 27J. Ni
kolls, I. Bu
k, M. Garland, and K. Skadron. S
alable parallel programming withCUDA. Queue, 6(2):40�53, 2008. ISSN 1542-7730.NVIDIA. NVIDIA CUDA C Programming Best Pra
ti
es Guide CUDA Toolkit v2.3.NVIDIA Corporattion, Santa Clara, 2009.NVIDIA. Tesla pro
essor spe
i�
ations. Website, 2010. http://www.nvidia.
om/obje
t/produ
t_tesla_
1060_us.html.S.P. Van der Pijl, A. Segal, C. Vuik, and P. Wesseling. A mass 
onserving level-set methodfor modelling of multi-phase �ows. International Journal for Numeri
al Methods inFluids, 47:339�361, 2005.S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W. Hwu.Optimization prin
iples and appli
ation performan
e evaluation of a multithreaded gpuusing CUDA. In PPoPP '08: Pro
eedings of the 13th ACM SIGPLAN Symposium onPrin
iples and pra
ti
e of parallel programming, pages 73�82, New York, NY, USA, 2008.ACM. ISBN 978-1-59593-795-7.Y. Saad. Iterative Methods for Sparse Linear Systems. So
iety for Industrial and AppliedMathemati
s; 2 edition, Philadelphia, 2003.S. SenGupta, M. Harris, Y. Zhang, and J.D. Owens. S
an primitives for GPU 
omputing.Graphi
s Hardware, 2007.J. M. Tang and C. Vuik. A

eleration of pre
onditioned krylov solvers for bubbly �ow prob-lems. Le
ture Notes in Computer S
ien
e, Parallel Pro
essing and Applied Mathemati
s,4967(1):1323�1332, 2008.J.M. Tang and C. Vuik. E�
ient de�ation methods applied to 3-D bubbly �ow problems.Ele
troni
 Transa
tions on Numeri
al Analysis, 26:330�349, 2007.C. Vuik, A. Segal, and J.A. Meijerink. An e�
ient pre
onditioned CG method for thesolution of a 
lass of layered problems with extreme 
ontrasts in the 
oe�
ients. J.Comp. Phys., 152:385�403, 1999.M. Wang, H. Klie, M. Parashar, and H. Sudan. Solving sparse linear systems on NVIDIATesla GPUs. In ICCS '09: Pro
eedings of the 9th International Conferen
e on Compu-tational S
ien
e, pages 864�873, Berlin, 2009. Springer-Verlag.


