
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 10-21

Interpreting IDR(s) as a Deflation Method

T. P. Collignon, G. L. G. Sleijpen, and M. B. van Gijzen

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2010

Copyright  2010 by Delft Institute of Applied Mathematics Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands.

Interpreting IDR(s) as a deflation method

T. P. Collignon∗, G. L. G. Sleijpen†, and M. B. van Gijzen ‡

October 2010

Abstract

In this paper the IDR(s) method is interpreted in the context of deflation meth-
ods. It is shown that IDR(s) can be seen as a Richardson iteration preconditioned
by a variable deflation–type preconditioner. The main result of this paper is the
IDR projection theorem, which relates the spectrum of the deflated system in each
IDR(s) cycle to all previous cycles. The theorem shows that this so–called active
spectrum becomes increasingly more clustered. This clustering property may serve
as an intuitive explanation for the excellent convergence properties of IDR(s). These
remarkable spectral properties exist whilst using a deflation subspace matrix of fixed
rank. Variants of explicitly deflated IDR(s) are compared to IDR(s) in which the
IDR deflation subspace matrix is augmented with “traditional” deflation vectors.
The theoretical results are illustrated by numerical experiments.

Key words. iterative methods, numerical linear algebra, nonsymmetric linear systems, IDR(s),
deflation.

∗Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Com-
puter Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, the Netherlands. e-mail:
t.p.collignon@tudelft.nl

†Mathematical Institute, Utrecht University, Budapestlaan 6, De Uithof, Utrecht, the Netherlands.
e-mail: g.l.g.sleijpen@uu.nl

‡Delft Institute of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Com-
puter Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, the Netherlands. e-mail:
m.b.vangijzen@tudelft.nl

1

1 Introduction

The recently proposed induced dimension reduction (IDR) method [21] and its variants
are short recurrence Krylov subspace methods for iteratively solving large nonsymmetric
linear systems

Ax = b, A ∈ Cn×n, x,b ∈ Cn. (1)

In [7, 16, 21] it is shown that for s = 1, IDR(s) is mathematically equivalent to the
ubiquitous Bi–CGSTAB [25] method. For important classes of problems and for relatively
small values of s > 1 (e.g., s = 4 or 6), the IDR(s) algorithms outperform Bi–CGSTAB,
see for example [21, §6] and [28].

The IDR(s) method has attracted considerable attention and we will give a short
overview of some IDR(s) related papers. The IDR approach to solving nonsymmetric
linear systems is quite nonstandard and in [7, 16] the connections between the IDR(s)
method and more traditional Krylov subspace methods are explained. Several algorithmic
variations are proposed and analysed in for example [12, 13, 27, 28], while [3, 26] aims to
optimise IDR(s) methods in a parallel and Grid computing context. In [18], the strengths
of BiCGstab(`) [19] and IDR(s) are combined, resulting in the superior IDRstab method.
A related approach is used in [24]. In [14] the IDR(s) method is interpreted as a Petrov–
Galerkin method and in [8] the IDR approach is used for eigenvalues computations. More
recently, an in–depth convergence analysis of IDR(s) using statistical arguments was per-
formed in [20]. Several highly interesting results related to the algebra of induced dimension
reduction are discussed in [17].

In this paper it is shown in Sect. 2 that the IDR(s) method can be viewed as a so–called
adapted deflation method [23, §2.3.3]. The method can be seen as a Richardson iteration
preconditioned by a variable deflation–type preconditioner, where the preconditioner is
updated in each cycle with new spectral information. This interpretation leads to more
insight into the structure and the convergence properties of IDR(s) methods. In particular,
it leads to the IDR projection theorem given in Sect. 3 (Theorem 3.3), which relates the
spectrum of the deflated system of a particular cycle to the spectra of the deflated systems
of all the previous cycles.

An IDR(s) cycle consists of s + 1 (preconditioned) matrix–vector multiplications and
in the kth cycle a new smoothing parameter ωk can be chosen. These parameters play
the same role as the ω’s in the Bi-CGSTAB method: to obtain smoother convergence
behaviour. Note that for Bi-CGSTAB we have s = 1 and for this method the ω is therefore
updated every other matrix–vector multiplication step.

Assume that ωk 6= 0 and put µk ≡ ω−1
k . The IDR projection theorem states that in the

kth cycle, s eigenvalues of A are shifted to µk. Moreover, each ν ∈ {µ0, µ1, . . . , µk−1} is an
eigenvalue of the deflated system in cycle k each with geometric multiplicity s. This implies
that the spectra of the deflated systems becomes increasingly clustered for increasing k.
Quite remarkably, this is accomplished using a deflation subspace matrix of fixed rank
equal to s. The deflation subspace built in cycle k retains spectral information from
all previous IDR(s) cycles. It is argued that the effectiveness of IDR(s) methods comes

2

from the clustering of the spectra of the deflated systems. Possible consequences of this
interpretation are discussed in this paper. With the exception of certain extreme cases,
these results also suggest that the value of µk itself plays a relatively small role in the
convergence process, especially for larger s.

It can be shown that in the generic case, IDR(s) methods compute the exact solution
in exact arithmetic within n/s cycles [21, §3]. In this case the spectrum of the deflated
system in the final cycle solely consists of n/s eigenvalues each with geometric multiplicity
s.

Deflation for iterative methods has been investigated by many authors, see for exam-
ple [5, 6, 10, 11, 22]. A typical deflation procedure consists of three steps: identifying some
particular subspace that hampers convergence, finding a suitable approximation to this
space, and removing the influence of this space on the iteration process. Usually, this sub-
space is the eigenspace corresponding to eigenvalues of A that are somehow “undesirable”.

In Sect. 4 two variants of explicitly deflated IDR(s) methods are compared to IDR(s) in
which the IDR deflation matrices are augmented with traditional deflation vectors. Spectral
comparisons between the deflated systems of these three approaches are performed.

The IDR(s) method adaptively constructs a deflation–type preconditioner. This is not
a new concept: for example, methods such as described in [2, 4, 1] explicitly construct
deflation vectors based on spectral information gathered by the Arnoldi process during
iterations of restarted GMRES(m). The goal there is to approximate invariant subspaces
associated with a specific set of eigenvalues (e.g., eigenvalues that are small in magnitude).
These methods differ in how the approximate invariant subspaces are constructed and how
they are incorporated in the iteration process. In general, the dimension of the invariant
subspace grows during the iterative process. In order to limit memory cost, the dimen-
sion of the invariant subspace has to be fixed, which can reduce the effectiveness of the
preconditioner.

In contrast, IDR(s) constructs the deflation preconditioner implicitly. Furthermore,
the deflation subspace in IDR(s) is unrelated to any specific spectral components of A.
Nevertheless, new spectral information seems to be continuously injected in the iteration
process, all the while keeping the dimension of the deflation subspace fixed. In this sense
IDR(s) can be seen as an efficient deflation–type method.

This paper shows that interpreting IDR(s) as a deflation method has resulted in new
insights into the structure of IDR(s) methods and Sect. 5 lists the main conclusions.

Preliminaries

The following notational conventions, terminology, and definitions will be used in this
paper.

Notation 1.1. Given A ∈ Cn×n, span(A) denotes the range of A, N (A) the nullspace
of A, σ(A) the set of eigenvalues of A, rankA the rank of A, and A∗ the adjoint of A.
The Krylov subspace of order k generated by a matrix A and a vector v is denoted by
Kk(A,v) ≡ span(v,Av, . . . ,Ak−1v).

3

Notation 1.2. If V is a linear subspace of Cn, then dimV is its dimension and an n-vector
v is orthogonal to V , v ⊥ V , if v is orthogonal to all w ∈ V . The space of all n-vectors v
that are orthogonal to V is denoted by V⊥.

If R̃,V1, . . . ,Vk are matrices with column vectors of size n, then span(V1, . . . ,Vk)

is the subspace of Cn spanned by all columns of all Vj. We put V1, . . . ,Vk ⊥ R̃ if

span(V1, . . . ,Vk) ⊂ span(R̃)⊥. Then we say that the V1, . . . ,Vk are orthogonal to R̃.
[V1, . . . ,Vk] is the matrix with column vectors the columns of the matrices Vj. We identify
n-vectors v and n× 1 matrices [v]. We call the columns of V a basis of span(V) ⊂ Cn.

Notation 1.3. If not specified otherwise, the norm || · || denotes the 2–norm. The notation
0n,s denotes the all–zero n× s matrix.

An MV is a matrix-vector multiplication Av, where v is an n-vector. The multiplication
AV with V ∈ Cn×s requires s MVs. The index k refers to the kth IDR(s) cycle. When
not specified otherwise, we assume that the coefficient matrix A is nonsingular.

2 Relation between IDR and deflation

In Sect. 2.1 IDR methods are discussed, while Sect. 2.2 presents the structure of adapted
deflation methods. Section 2.3 unites these two concepts by showing how the IDR method
can be interpreted as a deflation method. Lastly, Sect. 2.4 contains some remarks related
to IDR algorithms.

In the following, let R̃ be an n×s matrix; R̃ is the s-dimensional initial shadow residual
or IDR test matrix. It is assumed that the value of s is fixed during the iteration process.

2.1 IDR methods

Induced dimension reduction (IDR) methods iteratively construct residuals in a sequence
(Gk) of shrinking subspaces: in each cycle k, we start from a residual in Gk and construct
a residual in Gk+1. Ultimately, the residual is forced in the zero–dimensional subspace
Gk = {0} for some k ≤ n. These IDR subspaces are recursively defined as follows:

Definition 2.1. Let G0 be a linear subspace of Cn such that AG0 ⊂ G0 (for example,
the full Krylov subspace K(A,v) ≡ span{Akv | k = 0, 1, . . .} for some v ∈ Cn). For a
sequence (µk) in C, let the sequence (Gk) of IDR subspaces be defined by

Gk ≡ (A− µkI)(G ′k−1), where G ′k−1 ≡ Gk−1 ∩ R̃
⊥

(k ∈ N). (2)

The following result states that the sequence (Gk) of IDR subspaces forms a strict chain
of nested linear subspaces. For a proof, see [16, 21].

Theorem 2.2 (IDR). With Gk as in Def. 2.1, we have for k, ` ∈ N0

Gk ⊂ G` (` ≤ k).

If A has no eigenvector in R̃
⊥
, then Gk = G` (` < k) if and only if Gk = {0}.

4

The IDR subspaces Gk are a special case of a wider class of spaces called Sonneveld
subspaces defined below.

Definition 2.3 (cf. [18]). Let G0 be as in Def. 2.1. For a polynomial P of exact degree k,

the Sonneveld subspace S(P,A, R̃) is defined by

S(P,A, R̃) ≡ {P (A)v | v ∈ G0,v ⊥ Kk(A
∗, R̃)}, (3)

where

Kk(A
∗, R̃) ≡

{
k−1∑
j=0

(A∗)jR̃γj | γj ∈ Cs

}
(4)

is the (block) Krylov subspace of order k (generated by A∗ and R̃). Note that the dimension

of the Sonneveld subspace S(P,A, R̃) is in general (generic case) equal to n − ks. Also,
note that

v ⊥ Kk(A
∗, R̃) ⇔ R̃

∗
Ajv = 0 for all j < k. (5)

The following result explicitly relates the Sonneveld subspaces to the IDR subspaces.
For a proof and additional interesting results on Sonneveld subspaces, see [16].

Theorem 2.4. Let Pk(λ) ≡
∏k

j=1(λ− µj). With Gk as in Def. 2.1, we have

Gk = S(Pk,A, R̃). (6)

The first residual that arrives in an IDR subspace Gk is called a primary residual.
This terminology is consistent with the literature on IDR(s) methods. In addition, we
introduce here the term secondary residual, which is also always formed and which lives in

the subspace Gk ∩ R̃
⊥
. For observations on the uniqueness of these residuals, see [17, 21].

We call any other residuals that may be constructed during a cycle auxiliary residuals.
Iterative algorithms based on the IDR theorem (i.e., Theorem 2.2) essentially consist

of three key steps, which constitute the kth cycle of an IDR method (i.e., s + 1 MVs). Let
k ∈ N0. Given a full rank n × s matrix Vk with columns in Gk and a primary residual
rk ∈ Gk, we have:

(i) The projection step: the secondary residual r′k is formed in G ′k ≡ Gk ∩ R̃
⊥

using an
oblique projection involving Vk. This step consists of s MVs.

(ii) The dimension reduction step: given the secondary residual r′k ∈ G ′k and after select-
ing a scalar ωk+1 ≡ 1/µk+1, the next primary residual rk+1 in the lower dimensional
subspace Gk+1 ⊂ Gk is computed as rk+1 = (I − ωk+1A)r′k. This step consists of 1
MV.

(iii) The search matrix step: a full rank n × s matrix Vk+1 with columns in Gk+1 of the
form AUk+1 with the so–called search matrix Uk+1 explicitly available is constructed.
This matrix is used for the next projection step.

5

To summarise, one full cycle of IDR(s) consists of s + 1 MVs:

primary residual
s MVs−−−→ secondary residual

1 MV−−−→ next primary residual

rk ∈ Gk r′k ∈ Gk ∩ R̃
⊥

rk+1 ∈ Gk+1

. (7)

Following the discussion of [21, §4], three fundamental choices can be distinguished
when deriving practical IDR(s) algorithms. These choices are directly related to the three
steps given above. Not only do these choices influence the numerical stability and efficiency
of the resulting IDR(s) algorithm, they can also drastically affect parallel scalability. These
choices are:

(i) Choosing the IDR test matrix. In IDR(s) algorithms the computation of most of the

inner products pertains to the columns of R̃. To reduce the amount of computational
work (and communication) involving the IDR test matrix, sparse column vectors for

R̃ may be used. A possible disadvantage is that such an approach can have an adverse
effect on robustness. For a study on using sparse column vectors for R̃ and other
methods of minimising communication in parallel IDR(s) algorithms, see [3].

(ii) Selecting ωk+1 in the dimension reduction step. In the dimension reduction step
the value of ωk+1 can be chosen freely. Similar to other short–recurrence methods
such as Bi–CGSTAB, smoother convergence may be achieved by choosing ωk+1 in
such a way that the next residual is minimised in norm. For certain problems the
(standard) linear minimal residual step causes break–down of the iteration process
and sophisticated repair techniques such as used in Bi–CGSTAB(`) are required [15,
19]. In Bi–CGSTAB(`) stabilisation polynomials of degree ` are used and recently
this technique has been combined with IDR(s) [18].

(iii) Constructing vectors for the space Gk+1 in the search matrix step. Vectors for Gk+1

can be generated by a number of ways. For example, using GCR–type methods [27].
Also, vectors for Gk+1 can be made to satisfy (one–sided) bi–orthogonality relations

with the columns of R̃ [28]. Furthermore, one can either derive variants that only
compute primary and secondary residuals (e.g., [18]) or variants that also construct
auxiliary residuals (e.g., [27, 28]). For more details on this type of freedom, see [17].

Note that different strategies for the last choice result in mathematically equivalent IDR(s)
methods, while different strategies for the first and second choice result in fundamentally
different iterative processes.

2.2 Deflation methods

In this section the structure of a particular deflation–type method called adapted deflation
is presented. The discussion follows that of [23, §2]. We will first look at general deflation
methods.

6

2.2.1 General deflation

We start with some terminology (cf. Def. 2.5) and a related result (cf. Lemma 2.6).

Definition 2.5 (cf. [5, 10, 17, 23]). Let A ∈ Cn×n be nonsingular and let U, R̃ ∈ Cn×s be
suitable deflation subspace matrices of full rank. Then the oblique projections (or deflation

matrices) Π, Π̂ ∈ Cn×n, the correction matrix (or coarse grid correction) Q ∈ Cn×n, and
the invertible (Galerkin) matrix E ∈ Cs×s are defined as

Π ≡ I−AQ and Π̂ ≡ I−QA, where Q ≡ UE−1R̃
∗

and E ≡ R̃
∗
AU. (8)

In the next section we will sometimes relate an operator or matrix with a specific IDR
cycle k by adding a subscript k, e.g., Uk and Qk. Analogously, if a projection belongs to
an IDR cycle k, we write e.g., Πk.

Lemma 2.6 (cf. [5, 23]). Note that the following properties hold for arbitrary full–rank

matrices A,U, and R̃. In particular, we do not assume that the columns of U or R̃ are
(approximations of) eigenvectors. Let j, k ∈ N0. Then

(i) Π2 = Π, Π̂2 = Π̂, (AQ)2 = AQ, (QA)2 = QA

(ii) ΠA = AΠ̂ = ΠAΠ̂

(iii) Π̂U = ΠAU = 0n,s

(iv) R̃
∗
Π = R̃

∗
AΠ̂ = 0s,n

(v) AQ = I− Π,QA = I− Π̂

(vi) QAU = U,QAQ = Q

(vii) ΠQ = QΠ = ΠAQ = AQΠ = QAΠ̂ = QΠA = 0n,n

(viii) (I− Π̂)x = Qb

(ix) R̃
∗
AQ = R̃

∗

Proof. We only show property (iii). The other properties can be derived similarly.

For (iii), note that ΠAU = AU−AU(R̃
∗
AU)−1R̃

∗
AU = AU−AU = 0n,s.

Note 2.7. The following observations can be made.

• The operator Π is an oblique projection along span(AU) onto the orthogonal comple-

ment of R̃ (or onto span(R̃)⊥ = N (R̃
∗
)). The operator AQ is an oblique projection

along the orthogonal complement of R̃ onto span(AU).

7

• The operator Π̂ is an oblique projection along span(U) onto span(A∗R̃)⊥ = N (R̃
∗
A).

The operator QA is an oblique projection along span(A∗R̃)⊥ onto span(U).

• Πv ⊥ R̃ for all v, AΠ̂v ⊥ R̃ for all v, Πv ∈ N (R̃
∗
) for all v, U ∈ N (ΠA), U ∈ N (Π̂),

ΠA ∈ N (R̃
∗
).

• Both projections Π and Π̂ have s zero and n − s unit eigenvalues, since ΠAU = 0n,s

and Π2Y = ΠY for full rank Y ∈ Rn×(n−s) satisfying span(Y) = span(R̃)⊥. Vice versa,
both the projections AQ and QA have n− s zero eigenvalues and s unit eigenvalues.

• Note that dim span(Π) = dimN (AQ) = dim span(R̃)⊥ = dimN (R̃
∗
) = n− s.

• Note that dimN (Π) = dim span(AQ) = dim span(AU) = s.

• Note that dim span(Π) + dimN (Π) = (n− s) + s = n = rank Π.

2.2.2 Adapted deflation methods

In an adapted deflation method [23, §2.3.3], two different preconditioners C1,C2 ∈ Cn×n

are combined as follows. Let k ∈ N0. Given x0, consider the two–step stationary iterative
method (cf. predictor/corrector–type method){

x′k = xk + C1(b−Axk);
xk+1 = x′k + C2(b−Ax′k),

(9)

which can be combined to obtain

xk+1 = xk + P(b−Axk), (10)

where

P = C1 + C2 −C2AC1. (11)

Using Def. 2.5, let C1 ≡ Q and C2 ≡ B−1 where B is an arbitrary (but fixed) matrix.
Then P = B−1Π + Q and the deflated linear system can be written as

PAx = Pb, (12)

which can be solved using an iterative method. This particular deflation variant is called the
adapted deflation variant 1 (A–DEF1) and is described in [23, §2.3.3]. A common approach

is to take U equal to R̃, consisting of s eigenvectors belonging to the smallest eigenvalues
in norm. Additionally, B−1 is a traditional preconditioner such as an Incomplete LU
factorisation. As a result, these s eigenvalues of A are then shifted to one in PA, removing
their influence from the iteration process (assuming that an appropriate scaling has taken
place).

8

Note that premultiplying (9) with −A and adding b gives the corresponding recursions
for the residuals {

r′k = (I−AC1)rk;
rk+1 = (I−AC2)r

′
k.

(13)

In the following, we mainly focus on the recursions for the residual. The corresponding
recursions for the iterate can normally speaking be constructed easily.

2.3 Interpreting IDR(s) as a deflation method

In this section, the three steps of an IDR(s) method given in Sect. 2.1 will be discussed
in the context of the adapted deflation variant given in Sect. 2.2. For reference purposes,
Alg. 2.1 lists a complete IDR(s) algorithm for solving a system Ax = b by generating
primary and secondary residuals with corresponding iterates, illustrating the three distinct
phases of IDR(s). Note that this variant is purely intended for illustrative purposes and
that it should not be used to solve linear systems in practice. Also, this variant does not
produce auxiliary residuals. In the discussion below we sometimes specifically refer to line
numbers in Alg. 2.1. The projection step and the dimension reduction step are discussed
together. After that, the search matrix step is discussed separately.

2.3.1 Projection step and dimension reduction step

Prop. 2.8 below shows that the IDR(s) method can be seen as a combination of two very
specific operators C1 and C2. It explains how to move from a primary residual rk to the
next primary residual rk+1.

To form the secondary residual r′k in G ′k ≡ Gk∩ R̃
⊥

from the primary residual in Gk, we
need a full rank n × s matrix with columns also in Gk. In order to be able to update the
approximate solution associated with rk this n× s matrix has to be of the form AUk with
Uk explicitly available: the update for the approximate solution is a linear combination of
the columns of Uk. This is also expressed in Prop. 2.8 (cf. (15) and line 9 of Alg. 2.1). We
call an n× s matrix Uk a search matrix if it has full rank and span(AUk) ⊂ Gk.

Proposition 2.8. Consider a k ∈ N0. Assume rk ∈ Gk with rk a residual, rk = b−Axk,
with approximate solution xk, where xk is explicitly available. Also, assume span(AUk) ⊂
Gk, with Uk explicitly available. Select a scalar µk+1 6= 0 and put ωk+1 ≡ 1/µk+1. Let B ∈
Cn×n be a “traditional” preconditioning matrix. In the projections Π, Π̂ and in the operator
Qk of Def. 2.5, let R̃ be the IDR test matrix and let U = Uk. In (13), let C1 ≡ Qk (cf. a
correction matrix) and C2 ≡ ωk+1B

−1 (cf. modified preconditioned Richardson, smoothing
step). In particular, assume that span(AQk) ⊂ Gk. The recursions for computing the
primary and secondary residuals of a single IDR cycle are (cf. (13)){

r′k = (I−AQk)rk; (see line 10 of Alg. 2.1)
rk+1 = (I− ωk+1AB−1)r′k, (see line 30 of Alg. 2.1)

(14)

9

Algorithm 2.1 IDR(s) as a deflation method: generating a sequence of IDR subspaces,
span(rk,Vk) ⊂ Gk.

input: A ∈ Cn×n;x0,b ∈ Cn; R̃ ∈ Cn×s; preconditioner B ∈ Cn×n; tolerance tol
output: Approximate solution x such that ||b−Ax|| ≤ tol

1: // Initiation
2: Compute r0 = b−Ax0

3: Select an n× s matrix V0 ≡ AU0 with U0 explicitly available such that [r0,V0] spans
the Krylov subspace Ks+1(A, r0)

4: // Loop over nested Gk spaces
5: for k = 1, 2, . . . do
6: // (i) Projection step:
7: // Generate unique secondary residual r′k−1 ∈ G ′k−1 with corresponding iterate x′k−1

8: let Πk−1 ≡ I−AQk−1 and Π̂k−1 ≡ I−Qk−1A where Qk−1 ≡ Uk−1(R̃
∗
Vk−1)

−1R̃
∗

9: x′k−1 = xk−1 + Qk−1rk−1

10: r′k−1 = Πk−1rk−1

11: if ||r′k−1|| ≤ tol then break end if
12: // (ii) Search matrix step:

13: // generate a basis U′
k−1 of Ks(Π̂k−1B

−1A, Π̂k−1B
−1r′k−1)

14: // generate a basis V′
k−1 of Ks(Πk−1AB−1, Πk−1AB−1r′k−1)

15: // for example, a power basis:
16: let v′0 ≡ r′k−1

17: for i = 1 to s do
18: u′i = Π̂k−1B

−1v′i−1

19: v′i = Au′i = Πk−1AB−1v′i−1 ∈ G ′k−1 ≡ Gk−1 ∩ R̃
⊥

20: end for
21: let U′

k−1 ≡ [u′1, . . . ,u
′
s] and V′

k−1 ≡ [v′1, . . . ,v
′
s]

22: // Entering Gk

23: // (iii) Dimension reduction step:
24: Select a scalar ωk, e.g., ωk = arg minω ||(I− ωAB−1)r′k−1||
25: // Compute search matrix Uk for next IDR projection step with Vk ∈ Gk

26: Uk = U′
k−1 − ωkB

−1V′
k−1

27: Vk = (I− ωkAB−1)V′
k−1

28: // Compute next primary residual rk ∈ Gk and corresponding iterate xk

29: xk = x′k−1 + ωkB
−1r′k−1

30: rk = (I− ωkAB−1)r′k−1

31: end for

where the secondary residual r′k = Πkrk in G ′k ≡ Gk∩R̃
⊥

(i.e., step (i), the projection step,
cf. (8)) and the next primary residual rk+1 in Gk+1 (i.e., step (ii), the dimension reduction

10

step). The corresponding recursions for the iterates are{
x′k = xk + Qkrk; (see line 9 of Alg. 2.1)
xk+1 = x′k + ωk+1B

−1r′k. (see line 29 of Alg. 2.1)
(15)

Note that the update for x′k is a linear combination of the columns of Uk. The resulting
operator Pk is (cf. (11))

Pk = Qk + ωk+1B
−1 − ωk+1B

−1AQk = ωk+1B
−1Πk + Qk. (16)

The complete recursions for the residual and iterate are{
rk+1 = rk −APkrk;
xk+1 = xk + Pk(b−Axk).

(17)

Proof. Use Def. 2.1 and Def. 2.5.

This proposition also shows that the IDR(s) method can be seen as a Richardson
iteration with a varying deflation–type preconditioner. In particular, the operator Pk is
analogous to the A–DEF1 deflation method described above and in [23, §2.3.3]. Also, note
that P2

k 6= Pk and that PkA is non–symmetric even if A is symmetric. The matrix ΠkA is
singular, but the matrix PkA is not. It is shown in [21] that the primary residuals rk (and
therefore also r′k) are unique. If there is no risk of ambiguity (that is, if it is clear within
which IDR subspace k we are operating or if it is irrelevant), we will sometimes drop the
index k of for example Pk and Πk.

Note 2.9. The error–propagation operator (or iteration matrix) belonging to IDR(s) is

I−PkA = I− ωk+1B
−1ΠkA−QkA (18)

= Π̂k − ωk+1B
−1AΠ̂k (19)

= (I− ωk+1B
−1A)Π̂k, (20)

where (I− ωk+1B
−1A) can be seen as a (post–)smoother and Π̂k a coarse–grid correction

operation [23]. Note that the iteration matrix changes in each cycle k.

Note 2.10. In IDR(s), a single Richardson step is applied in each cycle k to the (deflated
and nonsingular) system (cf. (17))

PkAxk = Pkb. (21)

This step consists of s + 1 (preconditioned) MVs.

The role of the preconditioner B−1 in Alg. 2.1 may not be entirely apparent so we will
discuss this in some detail. In Fig. 1 the three steps of introducing a (right) preconditioner
B−1 into the IDR(s) method from Alg. 2.1 are shown. We only show a single IDR(s) cycle
and we drop the index k, starting with a primary residual r, generating the secondary
residual r′ and finally the next primary residual r′′.

11

y′ = y + Qr
r′ = Πr
for i = 1 to s do

u′ = Π̂v′

v′ = AB−1u′

end for
y′′ = y′ + ωr′

r′′ = (I− ωAB−1)r′

B−1y′ = B−1y + B−1Qr
r′ = Πr
for i = 1 to s do

B−1u′ = B−1Π̂v′

v′ = AB−1u′

end for
B−1y′′ = B−1y′ + ωB−1r′

r′′ = (I− ωAB−1)r′

x′ = x + Qr
r′ = Πr
for i = 1 to s do

u′ = Π̂B−1v′

v′ = Au′

end for
x′′ = x′ + ωB−1r′

r′′ = (I− ωAB−1)r′

Figure 1: Left: solve AB−1y = x. Middle: premultiply y and u by B−1. Right: substitute
x = B−1y.

In the left part of Fig. 1, the IDR(s) method from Alg. 2.1 is applied to the precondi-
tioned system AB−1y = b with x = B−1y as the final solution. In the middle part the
vectors y and u are premultiplied by B−1 and again we have the final solution x = B−1y.
Finally, in the right part we set u′ = B−1u′ and the transformed iterates y are scaled back

to the iterates x of the original system Ax = b. The notation Π̂ underlines the fact that
this projection uses the preconditioned search matrix U ≡ B−1U. The same holds for the
operator Q. In the listing of Alg. 2.1, this distinction in notation is not explicitly made.

Note that in the right part of Fig. 1, the projection Π̂ is operating within the original
solution space (x), while Π operates within the transformed solution space (y).

For ease of notation, we will often take B = I in the remainder of this paper.

2.3.2 Search matrices

In the search matrix step (i.e., step (iii)), we need to generate a full rank n × s matrix
with columns in Gk+1 of the form AUk+1 with Uk+1 explicitly available. We have to
construct this matrix from vectors in Gk. In this IDR subspace, we only have the subspace
span(rk,AUk) available with Uk an n×s matrix. The vector y for which Ay = rk will not
be available (because that would require to solve a linear system with A). Therefore, the
vector rk is not helpful. However, in the computation of rk+1 ∈ Gk+1, we also computed
Ar′k, which also belongs to Gk (use Theorem 2.2, now with µk = 0). Hence, we can use
vectors from span(Ar′k,AUk).

Using the projection Πk, Π̂k from Prop. 2.8 we have in particular: Πk(Av) is in G ′k if

Av ∈ Gk and Πk(Av) is of the form Au with u explicitly available: u = Π̂kv. Moreover,

Πk(Av) = Av−Auβ with β ≡ E−1R̃
∗
Av and for the same β we have that Π̂kv = v−Uβ:

the projection Π̂k requires vector updates, but no additional inner products.
With s ∈ Cn and Ũ a full rank n×s matrix such that [s, Ũ] spans an s+1 dimensional

subspace of span(r′k,Uk), we can use Ũ and AŨ in the projections Πk and Π̂k of (8) and
take s to start the construction of Uk+1. However, for ease of notation, we formulate
Prop. 2.12 for Ũ = Uk and we suggest to use s = r′k.

12

Lemma 2.11. If s ∈ G ′k, then ΠkAs = AΠ̂ks ∈ G ′k.

Proof. From Theorem 2.4 we learn that As ∈ A(G ′k) ⊂ Gk, whence ΠkAs ∈ G ′k.
ΠkAs = AΠ̂ks follows from Lemma 2.6:(ii).

Proposition 2.12. AΠ̂kr
′
k ∈ G ′k. Let u′1 ∈ Cn (for instance, u′1 = Π̂kr

′
k, see line 16 of

Alg. 2.1).

If Au′1 ∈ G ′k, and U′
k is a matrix with columns in Ks(Π̂kA,u′1), then

span(AU′
k) ⊂ Ks(ΠkA,Au′1) ⊂ G ′k and span(A(µk+1I−A)U′

k) ⊂ Gk+1.

Proof. The first claim follows by combining Prop. 2.8 and Lemma 2.11. The inclu-
sion Ks(ΠkA,Au′1) ⊂ G ′k follows from Lemma 2.11 and an induction argument. Further,

AKs(Π̂kA,u′1) = Ks(AΠ̂k,Au′1) = Ks(ΠkA,Au′1) (use Lemma 2.6:(ii)).

The proposition tells us that any set of s linearly independent vectors in Ks(Π̂kA,u′1)
forms a matrix U′

k for which the columns of A(I−ωA)U′
k are in Gk+1: Uk+1 ≡ (I−ωA)U′

k

forms an appropriate search matrix for the next IDR step (see line 26 of Alg. 2.1).
In Alg. 2.1, a power basis for the Krylov subspaces is generated. For larger values of

s (as s > 4) a more stable basis might be required. The choice of such a basis and its
efficient computation is considered in detail in [17].

2.4 IDR algorithms

In this section we will make some general remarks about IDR(s) algorithms. Algo-
rithm 2.1 describes a way to recursively generate s + 1 dimensional subspaces of Gk:

Proposition 2.13. If [rj,Vj] has rank s + 1 for j ≤ k, then span(rk,Vk) ⊂ Gk.

Proof. Clearly, span(r0,V0) ⊂ G0. Assume that span(rk−1,Vk−1) ⊂ Gk−1. Then
Πk−1rk−1 ∈ G ′k−1 and, by Lemma 2.11, Ks+1(Πk−1A, Πk−1rk−1) ⊂ G ′k−1. Hence, span(rk,Vk) ⊂
(A− µkI)G ′k−1 = Gk.

The listing of Alg. 2.1 is somewhat different from more “common” listings of IDR(s)
algorithms. To give a concrete example, Alg. 2.2 shows such a traditional listing of an
IDR(s) algorithm using the deflation language of this paper. For comparison purposes,
the preconditioner B is explicitly added. Like Alg. 2.1, this listing is one of the most basic
formulations of an IDR(s) algorithm and it is not intended for practical applications. It
was chosen to facilitate comparing with Alg. 2.1. For efficient and stable variants of IDR(s)
algorithms, see [3, 28]. We will now discuss the differences and similarities between Alg. 2.1
and Alg. 2.2.

In Alg. 2.2, the vectors gi are directly lifted to the (primary) IDR subspace Gk, while
Alg. 2.1 explicitly generates s (secondary) vectors v′i in the (secondary) IDR subspace

Gk−1∩R̃
⊥
. The main goal of traditional listings such as Alg. 2.2 is to generate linearly inde-

pendent vectors (often denoted by g as in Alg. 2.2) in the IDR subspace Gk of unknown (pos-
sibly large) dimension. These vectors do not form a basis of the subspace Gk. In contrast,

13

Algorithm 2.2 IDR(s) as a deflation method: a “traditional” listing.

input: A ∈ Cn×n;x0,b ∈ Cn; R̃ ∈ Cn×s; preconditioner B ∈ Cn×n; tolerance tol
output: Approximate solution x such that ||b−Ax|| ≤ tol

1: // Initiation
2: Π−1 = I;Q−1 = 0; ω0 = 1
3: Compute r0 = b−Ax0

4: // Loop over nested Gk spaces
5: for k = 0, 1, . . . do
6: // Compute s independent vectors g in Gk using vectors from Gk−1

7: let Πk−1 = I−AQk−1 where Qk−1 = Uk−1(R̃
∗
Gk−1)

−1R̃
∗

8: let Pk−1 = ωkB
−1Πk−1 + Qk−1

9: let g0 = rk // (cf. line 16 of Alg. 2.1)
10: for i = 1 to s do
11: ui = Pk−1gi−1 // (cf. eq. (16))
12: gi = Aui ∈ Gk // (cf. line 19 of Alg. 2.1)
13: end for
14: let Uk = [u1, . . . ,us] and Gk = [g1, . . . ,gs]

15: let Πk = I−AQk where Qk = Uk(R̃
∗
Gk)

−1R̃
∗

16: x′k = xk + Qkrk // (cf. line 9 of Alg. 2.1)
17: r′k = Πkrk // (cf. line 10 of Alg. 2.1)
18: // Entering Gk+1

19: ωk+1 = arg minω ||(I− ωAB−1)r′k|| // (cf. line 24 of Alg. 2.1)
20: // Compute next primary residual rk+1 ∈ Gk+1 and corresponding iterate xk+1

21: xk+1 = x′k + ωk+1B
−1r′k // (cf. line 29 of Alg. 2.1)

22: rk+1 = (I− ωk+1AB−1)r′k // (cf. line 30 of Alg. 2.1)
23: if ||rk+1|| ≤ tol then break end if // (cf. line 11 of Alg. 2.1)
24: end for

the vectors v′ are explicitly generated to form a basis of Ks(Πk−1AB−1, Πk−1AB−1r′k−1).
To underline these distinctions, we use different letters for these sets of vectors.

However, it can be shown that in both listings we are in fact generating vectors ui for
a basis of the same Krylov subspace. In particular, the columns of Ua ≡ Uk in line 26 of
Alg. 2.1 form a basis of the Krylov subspace (I−ωkB

−1A)Ks(Π̂k−1B
−1A, Π̂k−1B

−1Πk−1rk−1),
while the columns of Ub ≡ Uk in line 14 of Alg. 2.2 form a basis of the Krylov subspace
Ks(Pk−1A,Pk−1rk). The following proposition shows that these subspaces are identical.

Proposition 2.14. Let P, Π, and Π̂ be as in Prop 2.8 and let B = I. Then we have

Ks(Pk−1A,Pk−1rk) = (I− ωkA)Ks(Π̂k−1A, Π̂k−1Πk−1rk−1). (22)

14

Proof. Using Lemma 2.6 and Prop. 2.8, we have that

Pk−1rk = (ωkΠk−1 + Qk−1)(I− ωkA)Πk−1rk−1

= ωkΠ
2
k−1rk−1 − ω2

kΠk−1AΠk−1rk−1 + Qk−1Πk−1rk−1 − ωkQk−1AΠk−1rk−1

= ωk(I− ωkΠk−1A−Qk−1A)Πk−1rk−1

= ωk(Π̂k−1 − ωkAΠ̂k−1)Πk−1rk−1

= ωk(I− ωkA)Π̂k−1Πk−1rk−1.

Using these arguments, it can be shown that for Ub of Alg. 2.2 we have

span(Ub) = Ks(Pk−1A,Pk−1rk)

= Ks((ωkΠk−1 + Qk−1)A, ωk(I− ωkA)Π̂k−1Πk−1rk−1)

= (I− ωkA)Ks(Π̂k−1A, Π̂k−1Πk−1rk−1)

= span(Ua),

for Ua of Alg. 2.1. Therefore, both sets of vectors span the same Krylov subspace, which
proves the proposition.

Note that the secondary residual r′k is explicitly generated in both listings, since it is
needed to perform the dimension reduction step.

In practical applications, when the IDR(s) iterative process begins to exhibit its su-
perlinear convergence property, the largest drops in residual norms seem to occur for the
secondary residuals r′k, so we therefore propose to check convergence using these residuals
(see line 11 of Alg. 2.1).

For both completeness and illustrative purposes, we reproduce in Alg. 2.3 the IDR(s)-
biortho method from [28] using the deflation language of this paper. Note that this variant
computes auxiliary residuals.

3 The IDR projection theorem

In the previous section it has been shown that the IDR(s) method can be seen as a Richard-
son iteration preconditioned by a variable deflation–type preconditioner. Therefore, it
makes sense to investigate the spectra of the sequence of deflated systems, i.e.,

σ(PkA), k = 0, 1, (23)

The system PkA is called the kth active system of the iteration process.
In Sect. 3.1 the spectrum of the active system is investigated for a single IDR(s) cy-

cle. Section 3.2 contains the main result of this paper, which relates the spectra of the
active systems of multiple IDR(s) cycles. We will show that in IDR(s) the spectrum of
PkA become increasingly more clustered with increasing k. Also, the spectrum of PkA is
related to the active spectra of all the previous cycles 0, . . . , k − 1. Section. 3.3 contains
numerical examples to illustrate the IDR projection theorem. In Sect. 3.4 some possible
interpretations of the IDR projection theorem are discussed.

15

Algorithm 2.3 IDR(s) as a deflation method: the IDR(s)-biortho variant from [28].

input: A ∈ Cn×n;x,b ∈ Cn; R̃ ∈ Cn×s; preconditioner B ∈ Cn×n; tolerance tol
output: Approximate solution x such that ||b−Ax|| ≤ ε

1: Q−1 = 0 ∈ Cn×n; ω0 = 1
2: Compute r = b−Ax
3: for k = 0, 1, . . . do
4: // Compute s independent vectors g in Gk using vectors from Gk−1

5: for i = 1 to s do
6: let Πk−1 ≡ I−AQk−1 where Qk−1 ≡ Uk−1(R̃

∗
Gk−1)

−1R̃
∗
and R̃ ≡ [̃r1, . . . , r̃s]

7: let Pk−1 ≡ ωkB
−1Πk−1 + Qk−1

8: ûi = Pk−1r
9: ĝi = Aûi ∈ Gk

10: let G ≡ [g1, . . . ,gi−1], U ≡ [u1, . . . ,ui−1], and R̃ ≡ [̃r1, . . . , r̃i−1] for i > 1

11: let Π ≡ I−AQ and Π̂ ≡ I−QA where Q ≡ U(R̃
∗
G)−1R̃

∗

12: ui = Π̂ûi ⊥A R̃

13: gi = Πĝi ∈ Gk ∩ R̃
⊥

14: let G ≡ [g1, . . . ,gi], U ≡ [u1, . . . ,ui], and R̃ ≡ [̃r1, . . . , r̃i]

15: let Π ≡ I−AQ and Π̂ ≡ I−QA where Q ≡ U(R̃
∗
G)−1R̃

∗

16: x = x + Qr

17: r = Πr ∈ Gk ∩ R̃
⊥

18: end for
19: // Search matrix Uk for next IDR projection step and Gk with columns in Gk:
20: let Gk ≡ G and Uk ≡ U
21: // Entering Gk+1

22: ṽ = B−1r
23: t = Aṽ
24: ωk+1 = arg minω ||(I− ωAB−1)r||
25: // Compute next primary residual r ∈ Gk+1 and corresponding iterate x
26: x = x + ωk+1ṽ
27: r = r− ωk+1t
28: if ||r|| ≤ tol then break end if
29: end for

3.1 Single IDR(s) cycle

In the following, we partly follow [5] and [23]. We will first show some properties of the
active system of a single IDR(s) cycle k. Therefore, the index k is dropped in this section.

Lemma 3.1 (cf. Lemma 2.5 [5]). Let A and B be nonsingular. For all full ranked rectan-

gular matrices U and R̃, B−1ΠA and PA have s eigenvalues equal to 0 and 1, respectively.

16

Proof. From Lemma 2.6 it follows that B−1ΠAU = 0n,s and (B−1Π + Q)AU = U.
Additionally, U = [u1, . . . ,us] are the eigenvectors of B−1ΠA and (B−1Π+Q)A associated
with the eigenvalues 0 and 1, respectively.

Theorem 3.2 (cf. [23], cf. Theorem 2.8 [5]). For all cycles we have

σ(B−1ΠA) = {0} ∪ {λ′s+1, . . . , λ
′
n} (24)

⇔
σ((B−1Π + Q)A) = {1} ∪ {λ′s+1, . . . , λ

′
n}, (25)

where the eigenvalues 0 and 1 both have multiplicity s.

Proof. For the implication ⇐, see [5, Theorem 2.8]. For the implication ⇒, note
that for ui with i = 1, . . . , s where U = [u1, . . . ,us] we have (B−1Π + Q)AU = U
and B−1ΠAU = 0n,s, so the eigenvectors U of (B−1Π + Q)A corresponding to the unit
eigenvalues are the same as those corresponding to the zero eigenvalues of B−1ΠA.

For i = s + 1, . . . , n, suppose that the eigenvectors {vi} satisfy B−1ΠAΠ̂vi = λiΠ̂vi

with corresponding eigenvalues {λi}. Then (using (vii) from Lem. 2.6)

(B−1Π + Q)AΠ̂vi = B−1ΠAΠ̂vi + QAΠ̂vi (26)

= λiΠ̂vi. (27)

So the eigenvalues of (B−1Π + Q)A are the same as the eigenvalues of B−1ΠA, with
eigenvectors Πvi.

In other words, (B−1Π + Q)A has eigenvectors Π̂vi, with Π̂vi the eigenvectors of
B−1ΠA.

3.2 Main result: IDR projection theorem

Since the spectra of PkA and ΠkA merely differ in the sense that the zero eigenvalues of
ΠkA are shifted to one in PkA (cf. Theorem 3.2), we will mainly focus on the spectrum
of ΠkA from now on. We first state the main result of this paper: the IDR projection
theorem. It describes the complete spectrum of the active IDR(s) systems ΠkA, relating
the spectrum of the active system of cycle k to all the previous cycles.

Theorem 3.3 (IDR Projection Theorem). Let k ∈ N0 and let W be an n× s matrix such

that W ⊥ Kk(A
∗, R̃). The eigenvalues of ΠkA are in

σ(ΠkA) = {0} ∪ {λ | P (λ) = 0} ∪ {λ | det(R̃
∗
(A− λI)−1W) = 0}, (28)

where the polynomial P (λ) ≡
∏k

j=1(λ−µj) as defined in Theorem 2.4. The zero eigenvalue
and the zeros µj of the polynomial P are all eigenvalues of ΠkA that have geometric
multiplicity at least s.

17

Before we give the proof of the IDR projection theorem, we will give some preliminary
results.

Let V be an n× s matrix such that R̃
∗
V is non-singular. Define (cf. Def. 2.5)

Πk ≡ I−VE−1R̃
∗

where E ≡ R̃
∗
V. (29)

Note that
R̃
∗
Πk = 0. (30)

In particular, we have V ≡ AUk in IDR (cf. Alg. 2.1 and Prop 2.13).

Proposition 3.4. Assume span(V) ⊂ Gk. Then each ν ∈ {µ1, . . . , µk} is an eigenvalue of
ΠkA with geometric multiplicity at least s.

Proof. The equality in (6) tells us that V = (A− νI)W for some n× s matrix W ⊥ R̃.
Hence

(ΠkA− νI)W = (A− νI)W(I− E−1R̃
∗
AW).

Since E = R̃
∗
V = R̃

∗
(A− νI)W = R̃

∗
AW, we see that W is in the kernel of ΠkA− νI,

that is, span(W) consists of eigenvectors of ΠkA with eigenvalue ν.

Again using the equality in (6), we know that there exists a W ⊥ Kk(A
∗, R̃) such that

V = P (A)W for some polynomial P of exact degree k. In the following, let W be such a

matrix and assume E ≡ R̃
∗
V is non–singular.

Proposition 3.5. Assume λ ∈ C is not an eigenvalue of A and λP (λ) 6= 0. Then, a non-
trivial vector x is an eigenvector of ΠkA with eigenvalue λ if and only if x = (A−λI)−1Vα

for some α ∈ Cs, α 6= 0 such that R̃
∗
(A− λI)−1Wα = 0.

Proof. Assume ΠkAx = λx. Since ΠkAx = Ax−VE−1R̃
∗
Ax, we see that Ax−λx =

Vα for some α ∈ Cs (actually, α = E−1R̃
∗
Ax). The scalar λ is not an eigenvalue of A.

Therefore, x = (A− λI)−1Vα. Hence,

α = E−1R̃
∗
A(A− λI)−1Vα = E−1R̃

∗
Vα + E−1R̃

∗
λ(A− λI)−1Vα.

Since E = R̃
∗
V, this is equivalent to 0 = λE−1R̃

∗
(A− λI)−1Vα. Therefore,

0 = R̃
∗
(A− λI)−1Vα. (31)

Here, we used that, by assumption λ 6= 0. Conversely, if (31) holds, then it is easy to check
that x = (A− λI)−1Vα defines an eigenvector of ΠkA.

Note that (A− λI)−1(A− µI) = I + (λ− µ)(A− λI)−1. Since, P (ζ) = γΠk
j=1(ζ − µj)

(ζ ∈ C) for certain scalars µj ∈ C (the zeros of P) and a scalar γ ∈ C (a scaling factor),

and W ⊥ Kk(A
∗, R̃), we see that R̃

∗
(A− λI)−1P (A)W = P (λ)R̃

∗
(A− λI)−1W. Hence,

(31) holds if and only if P (λ) = 0 or R̃
∗
(A− λI)−1Wα = 0.

18

Note 3.6. Note that the above proof relies on the fact that W ⊥ Kk(A
∗, R̃).

Note 3.7. Note that the above arguments also prove Prop. 3.4: Because, if λ = µi for

some zero µi of P , then, for any α ∈ Cs, we have that P (λ)R̃
∗
(A−λI)−1Wα = 0 and any

x ≡ (A− λI)−1Vα is an eigenvector of ΠkA.

We can now give a proof of Theorem 3.3:
Proof. [Proof of IDR Projection Theorem] Use (iii) of Lemma 2.6 and use Proposi-

tion 3.5.

The proposition belows shows that in IDR the latter set of (28) is independent of P :

Proposition 3.8. In IDR, W depends on k but is independent of P , that is, independent
of µ1, . . . , µk.

Proof. The projection Πk applied to some vector forms vectors of the form Pk(A)s −
Pk(A)Wα = Pk(A)(s − Wα) ⊥ R̃. If s,W ⊥ Kk−1(A

∗, R̃), then the orthogonality

condition from Πk is equivalent to requiring s − Wα ⊥ Kk(A
∗, R̃). In particular, the

vector s−Wα is independent of P if s and W are independent of P .
Following the inductive construction of the V matrices in IDR (as we saw in Theo-

rem 2.2), the above argument proves the proposition.

3.3 Numerical examples

To illustrate the clustering effect of IDR(s) algorithms, we will inspect the spectra of A
and ΠkA of each cycle k while solving a small test problem using the IDR algorithm from
Alg. 2.1. In other words, we take V = AUk in the projection Π from (29). We will use
either a minimum residual strategy for computing ωk or set ωk = 1 in each cycle k > 0.

The test problem is a finite difference discretisation of 1D convection–diffusion problem
using central differences for the first derivative. The system has size n = 20 and the
mesh Péclet number ph is equal to 1/2. To more precise, the diagonal elements of the
coefficient matrix A are equal to 2, while on the subdiagonal and superdiagonal the values
are equal to −1 − ph and −1 + ph, respectively. The right–hand side vector is equal
to b = [1 + ph, 0, . . . , 0, 1 − ph]

>. Also, we put s = 5, so the iteration converges in
n/s = 20/5 = 4 cycles in exact arithmetic and we set x0 = 0.

Figure 2 shows the spectra of the active systems if a minimum residual strategy for
computing ωk for k > 0 is used. Put µ0 = 0. This gives µk ∈ {0} ∪ {2.9, 2.5, 2.2} for
k = 0, 1, 2, 3, resulting in the final clustered spectrum shown in Fig. 2(d), which solely
consists of four eigenvalues each with multiplicity s = 5.

Shown in Fig. 3 are the spectra of the active systems for all four cycles if µk = 1 for
k = 1, 2, 3. As a result, the active system has 10, 15, and 20 unit eigenvalues in cycle 1, 2,
and 3, respectively.

These results also indicate that the (total) spectrum seems to increasingly converge
towards the values of µk with each cycle.

Also, it can be observed from these experiments that the “non–clustered” part of the
spectrum is independent of the choices for µ1, . . . , µk, as indicated by Proposition 3.8.

19

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
ag

in
ar

y
pa

rt

σ(A)
σ(Π0A)

(a) Cycle 0, µk ∈ {0}.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
ag

in
ar

y
pa

rt

σ(A)
σ(Π1A)

(b) Cycle 1, µk ∈ {0} ∪ {2.9}.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
ag

in
ar

y
pa

rt

σ(A)
σ(Π2A)

(c) Cycle 2, µk ∈ {0} ∪ {2.9, 2.5}.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
ag

in
ar

y
pa

rt

σ(A)
σ(Π3A)

(d) Cycle 3 (converged), µk ∈ {0} ∪ {2.9, 2.5, 2.2}.

Figure 2: B = I, n = 20, s = 5, four cycles in total, µk ∈ {0} ∪ {2.9, 2.5, 2.2} for k =
0, 1, 2, 3.

3.4 Discussion

In each IDR(s) cycle k, s additional eigenvalues of PkA are shifted to µk and the matrix
PkA (and therefore ΠkA) has k + 1 eigenvalues of geometric multiplicity s. The IDR pro-
jection theorem holds independently of the way a basis for Ks(Πk−1AB−1, Πk−1AB−1r′k−1)
is computed.

In standard deflation methods, the deflation subspace matrices U and R̃ are often equal
to each other and consists of (approximate) eigenvectors belonging to eigenvalues of A that
are small in norm. Also, the matrix B is a traditional preconditioner that deals with the
extremes of the spectrum. In IDR(s), the space span(Uk) is not related to any specific
components of the spectrum of A. What is important is that s new eigenvalues of PkA

20

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
ag

in
ar

y
pa

rt

σ(A)
σ(Π0A)

(a) Cycle 0.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
ag

in
ar

y
pa

rt

σ(A)
σ(Π1A)

(b) Cycle 1.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
ag

in
ar

y
pa

rt

σ(A)
σ(Π2A)

(c) Cycle 2.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

real part

im
ag

in
ar

y
pa

rt

σ(A)
σ(Π3A)

(d) Cycle 3 (converged).

Figure 3: B = I, n = 20, s = 5, four cycles in total, µk ∈ {0} ∪ {1} for all k.

are deflated in each cycle. In this context, the ideal role of the preconditioner B is less
clear.

In the multigrid context (for elliptic problems), the matrix B−1 should act as a smooth-
ing (or relaxation) step that eliminates the high–frequency errors. Interestingly, in IDR(s)
the operator C2 = ωk+1B

−1 acts similarly, “smoothing” the new primary residual rk+1 in
norm.

During the IDR(s) iteration process, new spectral components of PkA are continuously
projected out of the residual, while retaining spectral information from all previous cycles.

Note that if we take s = n, then σ(Π0) = σ(Π0A) = {0} and σ(P0A) = {1}, which
means that the iteration terminates within a single cycle.

21

4 Explicitly deflated IDR(s)

Similar to other Krylov subspace methods, IDR(s) methods can be explicitly precondi-
tioned with deflation methods. In Sect. 4.1 a comparison is made between two variants
of explicitly deflated IDR(s) and IDR(s) where the IDR deflation matrics are augmented

with traditional deflation vectors. These results gives rise to possible good choices of R̃ and
ωk, which are discussed in Sect. 4.2. Numerical experiments that illustrate the theoretical
results are given in Sect. 4.3.

4.1 Deflation vs. augmentation

4.1.1 Deflation

In standard deflation methods, the deflation matrices are defined as follows (cf. Defini-
tion 2.5)

Πdef ≡ I−AQdef and Π̂def ≡ I−QdefA where Qdef ≡ Z(Z∗AZ)−1Z∗ (32)

where Z ∈ Cn×t is a deflation–subspace matrix of full rank and Edef ≡ Z∗AZ is assumed
to be invertible. Note that we have (cf. Lemma 2.6)

ΠdefAZ = 0n,t and QdefAZ = Z. (33)

To distinguish the standard deflation projection from the IDR projection, a superscript is
added. Using this notation, the IDR(s) operator is written as (cf. (16))

Pidr
k = ωk+1Π

idr
k + Qidr

k , (34)

where Πidr
k and Qidr

k are the same as Πk and Qk in Prop 2.8.
Two variants of so–called “explicitly deflated” IDR(s) will be considered. The first one

is based on the DEF1 variant [23, §2.3.2] where IDR(s) is used to solve the deflated system

ΠdefAx′ = Πdefb. (35)

The solution x′ to the system (35) is related to the solution x of the original system Ax = b
as follows:

x = Qdefr0 + Π̂defx′, (36)

where r0 = b − Ax0. Also, note that the system (35) is singular, since ΠdefAZ = 0n,t.
A singular system can still be solved as long as it is consistent, i.e., b ∈ span(A), see [9].
This is true for our case, since the same projection is applied to both sides of (35).

The second deflation method is based on the A–DEF1 variant [23, §2.3.3], where IDR(s)
is applied to the deflated system

Padef1Ax = Padef1b, (37)

22

where Padef1 = Πdef +Qdef (cf. Sect. 2.2). The only difference between A–DEF1 and DEF1
is that the zero eigenvalues of ΠdefA are shifted to one in Padef1A.

The main motivation behind using an adapted deflation method such as A–DEF1 in-
stead of DEF1 is as follows. It is known that perturbations (roundoff errors, perturbed
starting vectors, inaccurate preconditioning solves, inaccurate Galerkin solves) can trans-
form the zero eigenvalues of ΠdefA into near–zero eigenvalues, making them potentially
harmful to the convergence process. In an adapted deflation method, the corresponding
near–unit eigenvalues are harmless.

4.1.2 Augmentation

We have shown that IDR(s) itself can be seen as an adapted deflation method. Therefore,
a natural way to combine deflation–type preconditioners with IDR(s) is to augment the

deflation subspace matrices U and R̃ with the deflation subspace matrix Z as follows:

Uk ≡ [Uk Z] and R̃ ≡ [R̃ Z]. (38)

The IDR(s) deflation matrices are then

Πidr′

k ≡ I−AQidr′

k , where Qidr′

k ≡ UkE
−1
k R̃

∗
and Ek ≡ R̃

∗
AUk, (39)

with dimensions

|Uk| = |R̃| = n× (s + t) and |Ek| = (s + t)× (s + t). (40)

The corresponding augmented IDR(s) operator is

Pidr′

k = ωk+1Π
idr′

k + Qidr′

k . (41)

We call this approach “augmented IDR(s)”.

4.1.3 Comparisons

Since IDR(s) is analogous to the A–DEF1 method, we will compare augmented IDR(s)
to IDR(s) explicitly deflated with A–DEF1. For completeness, comparisons are also made
with the DEF1 method.

Unless stated otherwise, no assumptions are made on the columns of Z or R̃. However,
in some cases we make one of the following assumptions:

Assumption 1. The matrix R̃ is orthogonal to the matrix Z.

Assumption 2. The matrix R̃ is orthogonal to the matrix AZ.

In the following, let (cf. Theorem 3.3)

Λk ≡ {λ | Pk(λ) = 0} ∪ {λ | det(R̃
∗
(A− λI)−1W) = 0} (42)

23

Proposition 4.1. We distinguish between three deflation–type iterative processes of IDR(s):

(i) Augmented IDR(s): We have for arbitrary Z

σ
(
Πidr′A

)
= {0} ∪ Λk (43)

where the zero eigenvalue has geometric multiplicity s + t and

σ
([

Πidr′ + Qidr′
]
A

)
= {1} ∪ Λk (44)

where the unit eigenvalue also has geometric multiplicity s + t

(ii) IDR(s)-DEF1: Let A1 = ΠdefA. We have for arbitrary Z

σ
(
Π

idr
A1

)
≡ σ

(
(I−A1U(R̃

∗
A1U)−1R̃

∗
)A1

)
= {0} ∪ Λk (45)

where the zero eigenvalue has geometric multiplicity s + t and

σ
([

Π
idr

+ Q
idr

]
A1

)
= {0} ∪ {1} ∪ Λk (46)

where the zero eigenvalue has geometric multiplicity t and the unit eigenvalue has
geometric multiplicity s. The overlines of the operators signify the fact that they
employ vectors based on the projected system.

(iii) IDR(s)-ADEF1: Let A2 = (Πdef + Qdef)A. Given Assumption 1, we have

σ
(
Π

idr
A2

)
= {0} ∪ {1} ∪ Λk (47)

where the zero eigenvalue has geometric multiplicity s and the unit eigenvalue has
geometric multiplicity t. Also, we have

σ
([

Π
idr

+ Q
idr

]
A2

)
= {1} ∪ Λk (48)

where the unit eigenvalue has geometric multiplicity s + t.

Proof. We have using Theorem 3.2:

(i) Augmented IDR(s): For (43) we have

Πidr′AU = 0n,s+t (49)

and for (44) we have

Qidr′AU = Un,s+t (50)

24

(ii) IDR(s)-DEF1: For (45), we have

A1Z = 0n,t (51)

Π
idr

A1U = 0n,s (52)

and for (46) we have

Q
idr

A1U = U(R̃
∗
ΠdefAU)−1R̃

∗
)ΠdefAU (53)

= Un,s (54)

(iii) IDR(s)-ADEF1: Assumption 1 implies that R̃
∗
Z = 0s,t, so for (47) we have

Π
idr

A2U = 0n,s (55)

Π
idr

A2Z = Π
idr

(Πdef + Qdef)AZ (56)

= (I−A2U(R̃
∗
A2U)−1R̃

∗
)Z (57)

= Zn,t (58)

For (48) we have

Q
idr

A2U = U(R̃
∗
(Πdef + Qdef)AU)−1R̃

∗
)(Πdef + Qdef)AU (59)

= Un,s (60)

This concludes the proof.

Proposition 4.1 implies that in the generic case and in exact arithmetic all three variants
compute the exact solution in at most n−t

s
IDR cycles.

In iterative process (iii), IDR(s) is applied to a system with n−t+1 distinct eigenvalues.
If we do not make Assumption 1, the exact solution for this case is computed in at most
dn−t+1

s
e cycles. Another possibility is to use t + 1 deflation vectors for Z.

Ideally, the deflation vectors in Z approximate the eigenspace corresponding to the
unfavourable eigenvalues of A, e.g., eigenvalues small in magnitude. Depending on the
deflation technique, these eigenvalues will be shifted to zero or one, removing them from
the IDR(s) iteration process. In this way, techniques from domain decomposition and
deflation can be easily used in IDR.

Note that augmenting the matrices U and R̃ with deflation vectors is different from
increasing s in “standard” IDR(s). Also, if in IDR(s) we would set U = R̃ = Z, we obtain
a standard Richardson iteration deflated with A–DEF1.

For most applications we have t � s, which would make the augmented Galerkin
matrix too big to solve directly. To avoid this problem, note that in augmented IDR(s)
the augmented Galerkin matrix Ek has the following form:

Ek =

[
R̃
∗

Z∗

]
A

[
Uk Z

]
=

[
R̃
∗
AUk R̃

∗
AZ

Z∗AUk Z∗AZ

]
=

[
E11 E12

E21 E22

]
=

{
|s× s| |s× t|
|t× s| |t× t|

}
. (61)

25

If Z consists of subdomain deflation vectors, then Z∗AZ is a diagonal band matrix. To
compute x = E−1

k b for some b, one can make use of the Schur complement as follows

(E11 − E12E
−1
22 E21)x1 = b1 − E12E

−1
22 b2 |x1| = |b1| = s (62)

E22x2 = b2 − E21x1 |x2| = |b2| = t (63)

Note that there are three instances where we have to solve systems involving E22. Also,
we have

E11 − E12E
−1
22 E21 = R̃

∗
A(I− Z(Z∗AZ)−1Z∗A)Uk (64)

= R̃
∗
AΠ̂defUk (65)

= R̃
∗
ΠdefAUk (66)

which is exactly the (deflated) Galerkin system of IDR(s)-DEF1.

Let b1 = R̃
∗
A and b2 = Z∗A. Then we have (omitting the subscript k)

Πidr′A = (I−AU E−1R̃
∗
)A (67)

= A−A(Ux1 + Zx2) (68)

= (I− ΠdefAU(R̃
∗
ΠdefAU)−1R̃

∗
)(I−AZ(Z∗AZ)−1Z∗)A (69)

= Π
idr

A1 (70)

This implies that the spectrum of Πidr′A is the same as the spectrum of Π
idr

A1, which is in
accordance with Proposition 4.1, i.e., properties (43) and (45). However, it is expected that
in practical applications the IDR(s) processes will behave differently, since in augmented
IDR(s) s + t eigenvalues of the active systems are shifted to one, while in IDR(s)-DEF1 t
eigenvalues remain zero.

That is, perturbations (roundoff errors, perturbed starting vectors, inaccurate precon-
ditioning solves, inaccurate Galerkin solves) can transform the zero eigenvalues of the
active systems in IDR(s)-DEF1 into near–zero eigenvalues, which may result in numerical
instabilities. This suggests that augmented IDR(s) will be numerically more stable than
IDR(s)-DEF1. A similar argument can be used to show that IDR(s)-ADEF1 is numerically
more stable than IDR(s)-DEF1.

Some of the advantages of using augmented IDR(s) as opposed to IDR(s)-DEF1 or
IDR(s)-ADEF1 are:

• Possible increased numerical stability, since unfavourable eigenvalues are shifted to
one instead of zero.

• It is a natural way of introducing deflation–type preconditioner into IDR(s) algo-
rithms.

• Given a specific choice of R̃ (see Sect. 4.2), the two by two block augmented Galerkin
system (61) can be inverted efficiently.

26

Algorithm 4.1 Computation of Πidr′y

1: b1 = R̃
∗
y

2: b2 = Z∗y
3: Solve (Z∗AZ)b3 = b2

4: b4 = R̃
∗
(AZ)b3

5: b5 = b1 − b4

6: Solve (R̃
∗
AUk − R̃

∗
AZ(Z∗AZ)−1Z∗AUk)x1 = b5

7: b6 = Z∗(AUk)x1

8: b7 = b2 − b6

9: Solve (Z∗AZ)x2 = b7

10: y1 = AUkx1

11: y2 = AZx2

12: Πidr′y = y− y1 − y2

theory implementation
method Πdefy Qdefy IP/MV AXPY GSS
IDR(s)-DEF1 1 0 2 1 1
IDR(s)-ADEF1 1 1 3 1 1
augmented IDR(s) n/a n/a 3 1 1

Table 1: Extra computational cost per MV compared to “standard” IDR(s).

• Because IDR(s)-ADEF1 is applied to a system with n− t + 1 distinct eigenvalues, it
converges in more cycles than augmented IDR(s) in exact arithmetic (i.e., (n−t+1)/s
cycles instead of (n− t)/s) if no special assumptions are made.

To apply the operator Πidr′y to some vector y, we need to perform the steps shown
in Alg. 4.1. For efficiency, the following (small) matrices can be computed/factored and
stored beforehand:

(Z∗AZ)−1, AZ, and R̃
∗
AZ(Z∗AZ)−1. (71)

Note that the matrices Z∗AUk and R̃
∗
AUk have to be recomputed in each cycle k, but

they can be reused within a cycle. The matrix AUk is readily available and does not
require additional MVs.

In practical algorithms, the operation Qidr′y also has to be computed. This can be
done efficiently by reusing quantities from Πidr′y, similar to the A-DEF1 method.

4.2 Possible good choices for R̃ and ωk

4.2.1 Choice of R̃

Inspection of the Galerkin matrix Ek from (61) belonging to augmented IDR(s) shows

that the submatrices R̃
∗
AUk and Z∗AUk have to be recomputed each cycle. The non–

27

Algorithm 4.2 Computation of Πidr′y with special choice for R̃.

1: b1 = R̃
∗
y

2: b2 = Z∗y // IP/MV #1

3: Solve (R̃
∗
AUk)x1 = b1

4: b3 = (Z∗AUk)x1

5: b4 = b2 − b3

6: Solve (Z∗AZ)x2 = b4 // GSS #1
7: y1 = (AUk)x1

8: y2 = (AZ)x2 // IP/MV #2
9: Πidr′y = y− y1 − y2 // AXPY #1

zero matrix Z∗AZ is fixed. However, the matrix R̃ can be chosen such that R̃
∗
AZ = 0

using an orthogonal projection such as (cf. Assumption 2):

R̃
′
= (I−AZ((AZ)∗AZ)−1(AZ)∗)R̃ ⇔ R̃

′
⊥ AZ. (72)

The resulting Galerkin matrix is then lower block diagonal:

Ek =

[
E11 ∅
E21 E22

]
, (73)

which simplifies the computation of x = E−1
k b. Using forward substition, we can compute

E11x1 = b1 (74)

E22x2 = b2 − E21x1. (75)

Note that |x1| = s and that |x2| = t. The corresponding computation of Πidr′y using this

choice of R̃ is given in Alg. 4.2.
As before, for the computation of Qidr′y quantities from Πidr′y can be reused. Also,

the matrices (Z∗AZ)−1 and AZ can be computed and stored beforehand. The matrices

Z∗AUk and (R̃
∗
AUk)

−1 can be computed at the start of cycle k and reused during a cycle.
Also, the matrix AUk is readily available and does not require additional MVs.

Tab. 1 lists the additional computational cost of the three deflation approaches com-
pared to a non–deflated IDR(s) method. The term GSS denotes a “Galerkin System Solve”
such as computing the solution to (Z∗AZ)x = y for some y. Also, depending on the type
of deflation vectors, an operation involving Z either counts as a MV or as an inner product
(IP). Note that the third IP/MV for augmented IDR(s) is included in the application of
Qidr′ .

4.2.2 Choice of µk

Generally speaking, the goal of a preconditioner is to cluster the spectrum of the precondi-
tioned system around one (after an appropriate scaling). Choosing µk = 1 for all k would

28

be the most effective spectral choice, since in this case the spectrum of the active system
will become increasingly more clustered around one. That is, we have (in exact arithmetic)
for k ∈ N0:

σ(PkA) = {1} ∪ {λ | det(R̃
∗
(A− λI)−1W) = 0} (76)

where the eigenvalue 1 has geometric multiplicity (k + 1)s and

σ(PmA) = {1} (77)

where m = n/s − 1 and where the eigenvalue 1 has geometric multiplicity n. However,
if at the same time the remaining eigenvalues of an active system are located close to
zero, convergence of the iteration process within that cycle may be hampered. Numerical
experiments seem to indicate that even though this can happen in some particular cycle,
this will generally not be the case in the next cycle.

Continuing this line of reasoning, it can be argued that the value of µk does not signifi-
cantly affect the convergence process, in particular for large s. The key property of IDR(s)
methods is that the spectrum of the active system becomes increasingly more clustered.
The location of the clustered spectrum (i.e., the values of µk) is less important. Neverthe-
less, using a near–zero µk should be avoided, since it could result in a badly conditioned
active system.

For smaller s, the clustering property is much less pronounced and choosing an appro-
priate value of µk will be more important. This effect is observed in many experiments,
see for example [21, §6.4] and [20]. For a detailed mathematical analysis of the influence
of the factors µk on the IDR iteration process, see [20].

4.3 Numerical examples

In the following experiments, the matrix Z consists of random and orthogonalised vec-
tors. These experiments are for illustrative purposes only and the test problem is the 1D
convection–diffusion problem from Sect. 3.3 with n = 25 and s = 5. We use the IDR
method from Alg. 2.1 and set ωk = 1 for all k. The finite convergence behaviour of the
following five iteration processes will be compared:

(1) Non–deflated IDR(s) (i.e., t = 0).

(2) Augmented IDR(s) with Assumption 2 in order to efficiently invert the two by two
block system (73), see Sect. 4.2.

(3) IDR(s)-DEF1.

(4) IDR(s)-ADEF1 with an additional deflation vector for Z.

(5) IDR(s)-ADEF1 with Assumption 1.

29

0 1 2 3 4 5 6
10

−15

10
−10

10
−5

10
0

10
5

IDR cycle

no
rm

 o
f r

es
id

ua
l

(1) no deflation
(2) augmented
(3) DEF1
(4) A−DEF1
(5) A−DEF1

(a) Let ωk = 1 for all k and t = s.

0 1 2 3 4 5 6
10

−15

10
−10

10
−5

10
0

10
5

IDR cycle

no
rm

 o
f r

es
id

ua
l

(1) no deflation
(2) augmented
(3) DEF1
(4) A−DEF1
(5) A−DEF1

(b) Let ωk = 1 for all k and t = 2s.

Figure 4: Residual norms for IDR(s), n = 25, s = 5,B = I, showing primary “∗” and
secondary “◦” residuals.

Shown in Fig. 4(a) and Fig. 4(b) are the logarithms of the norms of the primary and
secondary residuals using t = s and t = 2s deflation vectors for Z, respectively. The ticks
on the horizontal axis represent the number of MVs. Note that one IDR cycle consists of
s+1 MVs: computing a secondary residual r′k−1 (“◦”) involves s MVs, while the computing
the next primary residual rk (“∗”) uses one MV (see also Sect. 2.1). For iteration process
(4), an additional deflation vector is used and the following observations can be made:

• Since the iteration matrices of the four iterative processes are different (and hence
the “initiation” matrix V0), the residual norms are different.

• When convergence occurs the drop in residual norm can be observed for the secondary
residuals.

• According to the theory, the four iteration processes (2)–(5) should converge within
(n − t)/s = (25 − t)/5 cycles, i.e., within four and three cycles for t = s and t =
2s, respectively. The non–deflated process converges within five cycles. This is in
accordance with the numerical results.

• If we do not make Assumption 1, then iteration process (5) converges in at most
(n− t + 1)/s IDR cycles.

5 Conclusions

By interpreting IDR(s) as a deflation method, interesting properties of the IDR(s) method
have been revealed. Firstly, this has lead to the IDR projection theorem, which shows that

30

the spectrum of the deflated systems in IDR(s) become increasingly more clustered. This
can be seen as an intuitive explanation for the excellent convergence properties of IDR(s).

Based on this interpretation, one cycle of IDR(s) can be seen as consisting of three key
steps: constructing a unique primary residual, constructing the unique secondary residual,
and constructing vectors for a basis of a very specific Krylov subspace.

It also shows that the IDR(s) method is an instantiation of a specific deflation method:
a so–called adapted deflation method. The deflation subspace matrix in IDR(s) is updated
in each cycle with new information while retaining information from all previous IDR(s)
cycles.

Lastly, this interpretation allows for the efficient inclusion of standard deflation–type
preconditioners into IDR(s) methods.

Acknowledgments

The work of the first author was financially supported by the Delft Centre for Computa-
tional Science and Engineering (DCSE) within the framework of the DCSE project entitled
“Development of an Immersed Boundary Method, Implemented on Cluster and Grid Com-
puters”. The authors wish to thank Jok Tang, Peter Sonneveld, and Kees Vuik for valuable
discussions and remarks.

References

[1] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel. Adaptively preconditioned
GMRES algorithms. SIAM Journal on Scientific Computing, 20(1):243–269, 1998.

[2] Kevin Burrage and Jocelyne Erhel. On the performance of various adaptive precondi-
tioned GMRES strategies. Numerical linear algebra with applications, 5(2):101–121,
March/April 1998.

[3] Tijmen P. Collignon and Martin B. van Gijzen. Minimising synchronisation in IDR(s).
Numerical Linear Algebra with Applications, 2010. (accepted for publication).

[4] Jocelyne Erhel, Kevin Burrage, and Bert Pohl. Restarted GMRES preconditioned by
deflation. Journal of Computational and Applied Mathematics, 69(2):303–318, 1996.

[5] Yogi A. Erlangga and Reinhard Nabben. Deflation and balancing preconditioners
for Krylov subspace methods applied to nonsymmetric matrices. SIAM Journal on
Matrix Analysis and Applications, 30(2):684–699, 2008.

[6] J. Frank and C. Vuik. On the construction of deflation–based preconditioners. SIAM
Journal on Scientific Computing, 23(2):442–462, 2001.

[7] Martin H. Gutknecht. IDR Explained. Electronic Transactions on Numerical Analysis,
36:126–148, 2010.

31

[8] Martin H. Gutknecht and Jens-Peter M. Zemke. Eigenvalue computations based on
IDR. Technical report, Seminar für Angewandte Mathematik, ETH Zürich, SAM,
ETH Zürich, Switzerland, 2010. Research Report No. 2010–13.

[9] Ilse C. F. Ipsen and Carl D. Meyer. The idea behind Krylov methods. American
Mathematical Monthly, 105:889–899, 1998.

[10] R. Nabben and C. Vuik. A comparison of deflation and coarse grid correction applied
to porous media flow. SIAM Journal on Numerical Analysis, 42(4):1631–1647, 2004.

[11] R. Nabben and C. Vuik. A comparison of deflation and the balancing preconditioner.
SIAM Journal on Scientific Computing, 27(5):1742–1759, 2006.

[12] Yusuke Onoue, Seiji Fujino, and Norimasa Nakashima. Improved IDR(s) method
for gaining very accurate solutions. World Academy of Science, Engineering and
Technology, 55:520–525, 2009.

[13] Yusuke Onoue, Seiji Fujino, and Norimasa Nakashima. An overview of a family of
new iterative methods based on IDR theorem and its estimation. In Proceedings of
the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong, pages 2129–2134, 2009.

[14] Valeria Simoncini and Daniel B. Szyld. Interpreting IDR as a Petrov–Galerkin method.
SIAM Journal on Scientific Computing, 32(4):1898–1912, 2010.

[15] G. L. G. Sleijpen and Henk A. van der Vorst. Maintaining convergence properties of
BiCGstab methods in finite precision arithmetic. Numerical Algorithms, 10(3–4):203–
223, 1995.

[16] Gerard L. G. Sleijpen, Peter Sonneveld, and Martin B. van Gijzen. Bi–CGSTAB as
an induced dimension reduction method. Applied Numerical Mathematics, In Press,
Corrected Proof, 2009.

[17] Gerard L. G. Sleijpen and Martin B. van Gijzen. The algebra for induced dimension
reduction. In The Proceedings of the 2nd Kyoto–Forum on Krylov Subspace Methods,
Kyoto University, Kyoto, Japan, March 2010.

[18] Gerard L. G. Sleijpen and Martin B. van Gijzen. Exploiting BiCGstab(`) strategies to
induce dimension reduction. SIAM Journal on Scientific Computing, 32(5):2687–2709,
2010.

[19] G.L.G. Sleijpen and D.R. Fokkema. BiCGstab(`) for linear equations involving un-
symmetric matrices with complex spectrum. Electronic Transactions on Numerical
Analysis, 1:11–32, 1993.

[20] Peter Sonneveld. On the convergence behaviour of IDR(s). Technical report, Delft
University of Technology, Delft, the Netherlands, 2010. DUT report 10–08.

32

[21] Peter Sonneveld and Martin B. van Gijzen. IDR(s): a family of simple and fast
algorithms for solving large nonsymmetric linear systems. SIAM Journal on Scientific
Computing, 31(2):1035–1062, 2008.

[22] J. M. Tang, S. P. MacLachlan, R. Nabben, and C. Vuik. A comparison of two–level
preconditioners based on multigrid and deflation. SIAM Journal on Matrix Analysis
and Applications, 31(4):1715–1739, 2010.

[23] J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Comparison of two-level
preconditioners derived from deflation, domain decomposition and multigrid methods.
Journal of Scientific Computing, 39(3):340–370, 2009.

[24] Masaaki Tanio and Masaaki Sugihara. GBi-CGSTAB(s, L): IDR(s) with higher-
order stabilization polynomials. Journal of Computational and Applied Mathematics,
235(3):765–784, 2010.

[25] H. A. van der Vorst. Bi–CGSTAB: A fast and smoothly converging variant of Bi–
CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 13(2):631–644, 1992.

[26] Martin B. van Gijzen and Tijmen P. Collignon. Exploiting the flexibility of IDR(s)
for Grid computing. In The Proceedings of the 2nd Kyoto–Forum on Krylov Subspace
Methods, Kyoto University, Kyoto, Japan, March 2010.

[27] Martin B. van Gijzen and Peter Sonneveld. An IDR(s) variant with minimal interme-
diate residual norms. In The Proceedings of the International Kyoto–Forum on Krylov
Subspace methods, Kyoto University, Kyoto, Japan, pages 85–92, 2008.

[28] Martin B. van Gijzen and Peter Sonneveld. An elegant IDR(s) variant that efficiently
exploits bi–orthogonality properties. Technical report, Delft University of Technology,
Delft, the Netherlands, 2010. DUT report 10–16 (revised version of DUT report 08–
21).

33

