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1. Introduction

Physical models for multi-phase fluid systems in porous media have applications
in industrial processes such as drying, steam production, oil recovery, and freezing.
One of the primary objectives of these models is to simulate the process to enhance
the quality of the product and improve the process itself in terms of efficiency,
cost etc. Food items, in general, can be considered as a porous medium (bread,
potato etc). In the context of the numerical density-enthalpy method (henceforth
called ρ-h method), Arendsen has presented many applications in his work [1, 3, 4]
(a boiler system, potato drying etc). Since several types of phases are present, the
interface between adjacent phases has to be tracked. The so called moving interface
problems or free boundary problems, are typically solved by methods such as the
level-set, moving-grid, and the phase-field model [8–10]. Level-set and moving-grid
models use a sharp interface between adjacent phases. In contrast, the phase-field
model allows a diffuse region where, for example, the mass density between the two
coexisting phases varies smoothly from one phase to the other [9]. On the other
hand, the numerical ρ-h method uses only one set of equations and it does not
require an explicit tracking of phase change boundaries. These two merits make
this method potentially faster and relatively stable. In [1, 3] a comparison is made
between the ρ-h method and standard approaches for modeling thermal processes
with a phase change. It is common practice to solve the energy or mass balance
equations alone or to assume constant boiling pressure and temperature. Arendsen
also explained that only taking the energy or mass balance is valid for a limited
range and that their physical basis is incomplete. Furthermore, the assumption of a
constant ambient pressure and a fixed phase-change temperature profile cannot al-
ways be justified [1,6]. The 1D and 2D models are presented and solved in [2,6,16].
However, the IMEX time integration method used in these paper to solve the non-
linear problem does not lead to a practically useful time step ∆t. Furthermore a
fully implicit time integration, with a certain choice of Picard Iteration to solve
the nonlinear problem also led to an unfeasibly small time step ∆t. Presently, we
consider a fully-implicit time integration combined with Newton-Raphson lineariza-
tion. For our test problems, where the initial value of XG (the gas mass fraction) is
continuous, we do not have any condition on ∆t for stability. The problem can be
solved in one time-step for our desired level of accuracy. Standard Galerkin finite
elements are considered for the spatial discretization.
The report is divided into five sections with the following outline. In the first section,
the (ρ, h)-model is introduced and briefly compared with other methods, which deal
with phase changing flow problems. In the second section, the mathematical model
of the problem is provided that we solve and discuss in this report. The section also
contains a discussion on the solution strategy that we use and the previously used
time-integration methods such as the IMEX method and Picard iteration. Further-
more, we have shown under which conditions the problem is well-posed with respect
to the boundary conditions. In the third section, we present the numerical solu-
tion algorithm in detail. The standard Galerkin algorithm, Euler Backward, and
Newton-Raphson time integration methods are the main ingredients of the solution
strategy. Simulation results are provided in Section four, whereas the last section
contains the important conclusions and future work.

1The author is indebted to HEC, Pakistan and NUFFIC, The Netherlands for their financial

and logistic support.
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2. The problem definition

We start this section with the 2D mathematical model. It consists of mass and
energy conservation laws, Darcy’s law, and other thermodynamical relations. The
1D model is analogous to it and given in [2, 16].

2.1. The mathematical model. We consider the flow of propane (C3H8) in a unit
square (porous medium) where the interior is represented by Ω and the boundary is
designated by Γ. The mathematical model for the two-dimensional system is given
by the following equations.

∂ρ

∂t
+ ∇ · (ρv) = 0, x ∈ Ω, t > 0, (mass conservation),

(1)

∂s

∂t
+ ∇ · (sv)−∇ · (λ∇T ) = q, x ∈ Ω, t > 0, (energy conservation),

(2)

v +
K

µ
∇P = 0, x ∈ Ω, t > 0, (Darcy’s law). (3)

T = T (ρ, h), x ∈ Ω, t > 0, (thermodynamical relation),
(4)

P = P (ρ, h), x ∈ Ω, t > 0, (thermodynamical relation),
(5)

s = ρh, x ∈ Ω, t > 0, (total enthalpy), (6)

XG = XG(ρ, h), x ∈ Ω, t > 0, (thermodynamical relation),
(7)

where the permeability K, dynamic viscosity µ, and heat diffusivity λ are assumed
to be constants and q is a heat source. The velocity v consists of two components vx
and vy (i.e., v =< vx, vy >) whereas ∇ =< ∂

∂x ,
∂
∂y >. We neglected gravitational

effects because gravity does not play a role in our test cases. The density (ρ) and
enthalpy (h) are taken as state variables. Other variables such as temperature (T ),
pressure (P ), and gas mass fraction (XG) are computed by using ρ-h diagrams as
explained in the next subsection. The computation of XG is a postprocessing step.
From a practical point of view, it is more convenient to set initial values in terms of
T and XG. Initial values for other solution variables can be computed from them
through phase diagrams. In [2], we used Robin boundary conditions but here we
restrict our numerical experiments to an adiabatic and mass isolated system. The
initial and boundary conditions are given as follows

T (x, 0) = T0(x) x ∈ Ω,

XG(x, 0) = XG,0(x) x ∈ Ω,

ρv · n = 0 x ∈ Γ, t > 0 (zero mass flux) , (8)

−λ∂T
∂n

+ sv · n = 0 x ∈ Γ, t > 0 (zero energy flux) , (9)

where n is a unit normal to the boundary. Further remarks on density-enthalpy
diagrams, linearization schemes, and the use of Robin boundary conditions for this
model are made in the following subsections.

2.2. Density-enthalpy phase diagrams. In this report we use the mass and
energy balances together and use density ρ and enthalpy h as our state variables.
These coupled partial differential equations together with other relations are solved
by using finite elements (the standard Galerkin algorithm). A set of ρ-h diagrams
is used to determine temperature T , pressure P , and mass fractions [1]. In Figure
1, three such diagrams are shown for Propane (C3H8). Each curve is obtained
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Figure 1. ρ-h diagrams for C3H8, (a) Plots of isotherms, (b) iso-
bars, and (c) constant gas mass fraction curves.

through constrained minimization of the total Gibbs free energy as a function of T ,
P , and mass distribution at given ρ and h [1]. For a given substance (e.g., C3H8)
we have a unique set of ρ-h diagrams. These diagrams work in a similar way as
lookup tables (in the solution algorithm), where ρ and h act as row and column,
respectively, whereas the curve color serves as the table entry for the corresponding
variable (i.e., P , T , or XG). In Figure 1(c), liquid and gas phases are labeled as
’L’ and ’G’ respectively. The transitional zone is marked with ’L + G’ which is
noticeably larger than the ’L’ and ’G’ zones. Other sets of phase diagrams are also
available, which provide, for example, a transformation from (T , XG) to (ρ, h, and
P ). These transformations are also used when initial conditions are specified in T
and XG.

2.3. The solution strategy. The 2D model is numerically solved over a unit
square (and 1D model is solved over a unit line segment) with uniform spatial steps.
The standard Galerkin algorithm is used for the spatial discretization. The Newton-
Raphson method is used to linearize the system as follows. Let the nonlinearly
coupled system of equations be arranged in the homogeneous form

f(x) = 0,

where f and x are vectors of the same dimension. The vector x is the required
solution set and f represents a set of relations between them including nonlinear
partial differential equations. The Taylor expansion of f(x) about xk (for some k)
is expressed as

f(xk) +
∂f

∂x

∣∣∣∣
x=xk

δx+
1

2
δxT

∂2f

∂x2

∣∣∣∣
x=xk

δx+ ... = 0,

where δx = xk+1 −xk, J = ∂f
∂x

∣∣∣
x=xk

is the Jacobian matrix, and ∂2f
∂x2

∣∣∣
x=xk

is the

Hessian matrix. Assuming that f(x) is sufficiently smooth in the neighborhood of
xk, we approximate f(x) by first two terms of its Taylor’s expansion. This leads to

f(xk) + J (xk+1 − xk) = 0,

or

xk+1 = xk − J−1f(xk).

Hence, the linearization actually leads to a Newton-Raphson iteration making k as
index of the Newton loop. For a programming point of view we execute the Newton
loop for each time iteration τ . Depending on the running error εr and the error
tolerance εmin, we examine whether convergence has been reached or whether the
loop should be continued or stopped if the solution diverges.
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2.4. Time integration schemes. For the given system of nonlinear equations, we
applied a number of linearization schemes such as the IMEX [16] method, the Picard
iteration [2] (for fully implicit time itegration), and presently we use a Newton-
Raphson iteration. Furthermore we proposed Robin boundary conditions in [2, 16]
. A short description of these issues is as follows.

2.4.1. IMplicit-EXplicit (IMEX) method. Let uτ denote the approximation of the
variable u(x, t) at t = τ ∆t. In this case the mass and energy equations are inte-
grated in time in the following manner.

1

∆t
(ρτ − ρτ−1) + ∇ · (ρτvτ−1) = 0 (mass equation) , (10)

1

∆t
(sτ − sτ−1) + ∇ · (sτvτ−1)− λ∇ ·∇T τ−1 = 0 (energy equation) . (11)

With this linearization scheme, these equations are quasi-hyperbolic PDEs in the
sense that the second order spatial derivatives only mimic a source term. Hence,
the boundary conditions apply only when the mass flows into the system, i.e., when
v · n < 0, where n is the unit normal at the boundary. Boundary conditions as
provided in [16] are the following

ρτvτ−1 · n =

{
km(ρτ−1 − ρa), if vτ−1 · n < 0,

ρτvτ−1 · n, if vτ−1 · n > 0,

−λ∂T
∂n

τ−1

+ sτvτ−1 · n =

{
kh(T τ−1 − Ta) + ha km(ρτ−1 − ρa), if vτ−1 · n < 0,

kh(T τ−1 − Ta) + sτvτ−1 · n, if vτ−1 · n > 0.

Since the diffusion term is treated explicitly therefore the time step ∆t is bounded
by some δb i.e.,

∆t ≤ δb.

For a linear diffusion PDE
∂ρ

∂t
− λ∇ ·∇ρ = 0,

a necessary condition for the solution convergence is

δb =
(∆x)2 (∆y)2

2λ(∆x)2 + (∆y)2)
,

on a rectangular mesh with finite differences, where ∆x and ∆y are spatial step
sizes in respective directions. A similar relation can be derived for finite-element
discretization. The upper bound for ∆t as determined for a convection-diffusion
equation serves as an estimate for the kind of solution scheme we consider in [16].
This relation shows that a high resolution mesh would result in a small time step
which leads to an excessive computation. In order to overcome this difficulty with
the choice of ∆t, we tried the following time integration scheme.

2.4.2. Picard iteration. In [2], the time integration of the energy equation is given
by

1

∆t
(sτ,p − sτ−1) + ∇ · (sτ,p vτ,p−1)− λ∇ ·∇T τ,p−1 = 0,

where τ is the current value of the time loop index and p is the Picard loop index.
Note that the diffusion term is taken at the previous Picard iteration. For the weak
formulation and standard Galerkin algorithm for this equation, see [2]. At the start
of a Picard iteration, an initial guess for the solution variables is required. In [2],
the initial guess is the solution variables at τ − 1 (e.g., T τ,p−1 is assigned T τ−1).
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Therefore the energy equation has actually the following form at the start of each
Picard loop, when p = 1

1

∆t
(sτ,1 − sτ−1) + ∇ · (sτ,1 vτ−1)− λ∇ ·∇T τ−1 = 0.

Again, the diffusion term is explicit in τ and therefore the upper bound for ∆t as
discussed in IMEX case applies here as well. Hence, the Picard iteration in this
case does not offer any advantage over IMEX with respect to choosing a larger ∆t.
In this report, the Newton-Raphson method is applied for the system linearization
as discussed in Subsection 2.3. However, first we show that certain thermodynami-
cal relations among the solution variables, with nonhomogeneous Robin boundary
conditions, make the problem ill-posed.

2.5. The use of Robin boundary conditions in the ρ-h model. In [2], we
proposed the following boundary conditions

ρv · n = km(ρ− ρa), (for mass equation) , (12)

−λ∂T
∂n

+ sv · n = kh(T − Ta) + hΓkm(ρ− ρa), (for energy equation) . (13)

where km and kh are transfer coefficients for the transport of mass and heat. Other
parameters are the ambient density ρa, ambient temperature Ta, and enthalpy at
the boundary hΓ. We no longer restrict the boundary conditions to inflow only
because the mass and energy equations do not have a quasi-hyperbolic structure in
the continuous problem. Hence, it is necessary to use boundary conditions on each
point of the boundary. To make this point clear, consider the mass equation.

∂ρ

∂t
+ ∇ · (ρv) = 0.

Using v = −Kµ∇P in this equation. We get

∂ρ

∂t
− K

µ
∇ · (ρ ∇P ) = 0. (14)

Using the differential of P (ρ, h)

∇P =
∂P

∂ρ
∇ρ+

∂P

∂h
∇h,

into equation (14). This yields

∂ρ

∂t
− K

µ
∇ ·

[
ρ

(
∂P

∂ρ
∇ρ+

∂P

∂h
∇h

)]
= 0.

Hence we have shown that the mass equation indirectly contains a diffusion term in
ρ and therefore it can not be considered as a hyperbolic partial differential equation.
The same holds for a purely implicit time integration. An analogous derivation can
be carried out for the energy equation.
The use of these boundary conditions on our specific thermodynamic system leads
to solutions near boundaries (abrupt changes or steep gradients) which could not
entirely be justified. To prove that these boundary conditions are ill-conditioned
for our specific thermodynamic system, we proceed with the following arguments.
In the ρ-h model, the pair (T,XG) is sufficient to determine the rest of the system
variables like ρ, h, P , v, etc. The total differential of P (T,XG), in this case, is
defined as

∇P =
∂P

∂T
∇T +

∂P

∂XG
∇XG, (15)

Now we found that certain substances exhibit the property ∂P
∂XG

= 0. In [2] the

substance under discussion is Propane (C3H8). In Figure 2(a), the relation between
P and T is shown for 0 < XG < 1, which is a unique curve. Figure 2(b) shows plots
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of P against XG for three temperature values. Clearly ∂P
∂XG

= 0 for 250 ≤ T ≤ 350.

Therefore, equation (15) reduces to

∇P =
∂P

∂T
∇T, (16)

where ∂P
∂T is nonzero (refer to Figure 2(a)).

Next, we multiply equation (12) by hΓ and subtract it from equation (13), then we
obtain

−λ∇T · n = kh(T − Ta), (at boundary, s = ρhΓ),

−λ 1(
∂P
∂T

)∇P · n = kh(T − Ta), (follows from eq. (16)),

λµ

K

1(
∂P
∂T

)v · n = kh(T − Ta), (follows from Darcy’s Law).

Combination with equation (12), gives

kh = km
λµ

k ∂P∂T

(ρ− ρa)

ρ(T − Ta)
,

which shows that km and kh in this case cannot be chosen independently. Fur-
thermore the relation is time-dependent and nonlinear except for km = kh = 0.
Therefore the proposed Robin boundary conditions are ill-conditioned if ∂P

∂XG
= 0.

Hence, for this case, we proved the following porposition.

Proposition 1. If ∂P
∂XG

= 0, then the problem stated by equations (1-7) supplied

with initial conditions and boundary conditions as in equations (12) and (13) is
ill-posed if either kh or km (or both) is nonzero.

Presently, we consider an isolated system, i.e., km = kh = 0, so the problem is
well-posed.

2.6. Simulation results validation. As far as we know, the analytical solution
of the system of PDEs that we solve in this report is unknown. We solve the system
numerically over Ω and validate the results on the basis of physical laws such as
Fourier’s Law of thermal conduction and mass and energy conservation etc. The
steady-state values of T , P , and v are used to compare the results as obtained by
solving the nonlinear problem. Furthermore, we have compared solution variables
by using 1D and 2D models by setting similar 1D conditions.
We also observe the system response to an initial step function in the gas mass
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fraction XG, i.e., we set a sharp interface between two different gas-liquid composi-
tions. This helps to determine the robustness of the numerical method and to link
the present model to sharp interface models.

3. Method description

To solve the fluid system with finite elements (with quadrilateral elements and
bilinear basis functions), we start with the Euler backward time discretization of the
partial differential equations followed by obtaining the weak formulations, Newton-
Raphson linearization and finally a spatial discretization by using standard Galerkin
algorithm. The weak formulation also incorporates the homogeneous boundary
conditions as given by equations (8) and (9).

3.1. Numerical treatment of the mass equation. In order to get the weak
formulation, we discretize equation (1) in time using the Euler backward scheme,
multiply it by a test function φ(x), and integrate over Ω

1

∆t

∫
Ω

(ρτ − ρτ−1)φ(x)dx+

∫
Ω

∇ · (ρτvτ )φ(x) dx = 0, 1 ≤ τ ≤ τmax, (17)

where τ is a time index. In order to determine the solution at a defined time, the
number of time iterations τmax depends on the value of the time step (∆t) between
successive iterations. Now using the vector product rule

∇ · (ρvφ) = φ∇ · (ρv) + ρv ·∇φ,

and the divergence theorem ∫
Ω

∇ · F dx =

∫
Γ

F · ndΓ,

in equation (17) we have

1

∆t

∫
Ω

(ρτ − ρτ−1)φdx+

∫
Γ

ρτvτφ · ndΓ−
∫

Ω

ρτvτ ·∇φdx = 0.

We apply the boundary condition, which makes the second integral vanish, and then
linearize this equation about ρk and vk. The resulting nonlinear partial differential
equation is solved by a Newton method based on successive linearization of the
PDE. This gives

1

∆t

∫
Ω

δρ φ(x) dx+
1

∆t

∫
Ω

(ρk − ρτ−1)φ(x) dx−
∫

Ω

(ρkvkx + vkxδρ+ ρkδvx)
∂φ

∂x
dx

−
∫

Ω

(ρkvky + vkyδρ+ ρkδvy)
∂φ

∂y
dx = 0,

where δρ = ρk+1 − ρk, δvx = vk+1
x − vkx, and δvy = vk+1

y − vky . For a better read-
ability, we omit the index τ but it is understood to be there. We choose a set
of basis functions {φi(x)}1≤i≤N , where N is the number of mesh nodes for un-

knowns. Furthermore, we apply the approximation δρ(x, τ) ≈
∑N
j=1 δρj(τ) φj(x),

δvx(x, τ) ≈
∑N
j=1 δvx,j(τ) φj(x), and δvy(x, τ) ≈

∑N
j=1 δvy,j(τ) φj(x). Where

φj(x) are the bilinear basis functions [16]. After substitution in the weak form and
7



choosing φ(x) = φi, for i = 1, ..., N , we obtain

1

∆t

N∑
j=1

δρj

∫
Ω

φi(x)φj(x) dx+
1

∆t

∫
Ω

(ρk − ρτ−1)φi(x) dx

−
∫

Ω

ρkvkx
∂φi
∂x

dx−
N∑
j=1

δρj

∫
Ω

vkxφj
∂φi
∂x

dx−
N∑
j=1

δvx,j

∫
Ω

ρkφj
∂φi
∂x

dx

−
∫

Ω

ρkvky
∂φi
∂y

dx−
N∑
j=1

δρj

∫
Ω

vkyφj
∂φi
∂y

dx−
N∑
j=1

δvy,j

∫
Ω

ρkφj
∂φi
∂y

dx = 0. (18)

The equivalent matrix form of the above equation is given by

1

∆t
M δρ+

1

∆t
f11 + f12 + S11 δρ+ S12 δvx + S13 δvy = 0.

The vector f11 and f12 are given by

f11 = M
(
ρk − ρτ−1

)
,

f12 = S11ρ
k.

The matrix equation is simplified further by the following substitutions

Sρ = M + ∆t S11,

fρ = f11 + ∆t f12.

Hence the equivalent matrix equation can be written as

Sρ δρ+ ∆t S12 δvx + ∆t S13 δvy + fρ = 0. (19)

By using equation (18), we determine the element mass matrix for the κth element
eκ, κ = 1, 2, .., Ne (Ne= number of elements)

M ij
e = δij

Aκ
4

, i, j = 1, 2, 3, 4, (20)

where δij represents the Kronecker delta and Aκ is the area of the κth element. In
this report, we use the following Newton-Cotes quadrature rule (for a rectangle)∫

ek

I(x, y)dxdy ≈ 1

4

4∑
i=1

I(xi, yi). (21)

where {(xi, yi), i = 1, 2, 3, 4} are the vertices of an individual element eκ. Other
element matrices and vectors for global matrices and vectors are determined as
follows

Sij11e = −
∫
exy

vkxφj
∂φi
∂x

dx−
∫
eκ

vkyφj
∂φi
∂y

dx

= −Aκ
4

(
vkx,j

∂φi
∂xj

+ vky,j
∂φi
∂yj

)
, where

∂φi
∂xj

=
∂φj
∂x
|x=xj ,

Sij12e = −
∫
eκ

ρkφj
∂φi
∂x

dx = −Aκ
4
ρkj
∂φi
∂xj

,

Sij13e = −
∫
eκ

ρkφj
∂φi
∂y

dx = −Aκ
4
ρkj
∂φi
∂yj

.

For the assembly procedure of global matrices from their corresponding element
matrices, we refer to [13]. We also note that an extension of generic convex quadri-
lateral elements is straightforward by the use of an isoparametric transformation.
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3.2. Integration of the energy equation. We denote s = ρh and proceed analo-
gously, as mentioned for the mass equation, in order to obtain the weak formulation
for the 2D energy equation. We start with the time integration (Euler Backward
method),

sτ − sτ−1

∆t
+ ∇ · (sτvτ )−∇ · (λ∇T τ ) = 0. (22)

No heat source is considered, i.e. q = 0. The weak form is given by∫
Ω

sτ − sτ−1

∆t
φdx+

∫
Ω

∇ · (sτvτ )φdx−
∫

Ω

∇ · (λ∇T τ )φdx = 0. (23)

By substituting ∫
Ω

∇ · (sv)φdx = −
∫

Γ

sφv · ndΓ +

∫
Ω

sv ·∇φdx, (24)

and using ∫
Ω

∇ · (λ∇T )φdx =

∫
Γ

λ
∂T

∂n
φdΓ−

∫
Ω

λ∇T ·∇φdx, (25)

into equation (23), we get∫
Ω

sτ − sτ−1

∆t
φdx+

∫
Γ

sτηvτ · ndΓ−
∫

Ω

sτvτ−1 ·∇φdx

−
∫

Γ

λ
∂T τ

∂n
φdΓ +

∫
Ω

λ∇T τ ·∇φdx = 0. (26)

We apply boundary conditions which eliminate integrals containing boundary terms.∫
Ω

sτ − sτ−1

∆t
φdx−

∫
Ω

sτvτx
∂φ

∂x
dx−

∫
Ω

sτvτy
∂φ

∂y
dx+ λ

∫
Ω

(
∂T

∂x

∂φ

∂x
+
∂T

∂y

∂φ

∂y

)
dx = 0.

We linearize these terms about sk, T k, vkx and vky to get

1

∆t

∫
Ω

δs φ(x) dx+
1

∆t

∫
Ω

(sk − sτ−1)φ(x) dx−
∫

Ω

(skvkx + vkxδs+ skδvx)
∂φ

∂x
dx

−
∫

Ω

(skvky + vkyδs+ skδvy)
∂φ

∂y
dx+ λ

∫
Ω

[
∂

∂x

(
δT + T k

) ∂φ
∂x

+
∂

∂y

(
δT + T k

) ∂φ
∂y

]
dx = 0,

where δvx and δvy were defined previously whereas δs = sk+1−sk and δT = T k+1−
T k. We apply the approximation δs(x, τ) ≈

∑N
j=1 δsj(τ)φj(x) and δT (x, τ) ≈∑N

j=1 δT j(τ)φj(x) to the weak form and hence we obtain

1

∆t

N∑
j=1

δsj

∫
Ω

φiφj dx+
1

∆t

∫
Ω

(sk − sτ−1)φi dx

−
∫

Ω

skvkx
∂φi
∂x

dx−
N∑
j=1

δsj

∫
Ω

vkxφj
∂φi
∂x

dx−
N∑
j=1

δvx,j

∫
Ω

skφj
∂φi
∂x

dx

−
∫

Ω

skvky
∂φi
∂y

dx−
N∑
j=1

δsj

∫
Ω

vkysj
∂φi
∂y

dx−
N∑
j=1

δvy,j

∫
Ω

skφj
∂φi
∂y

dx

+λ

N∑
j=1

δTj

∫
Ω

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dx+λ

∫
Ω

(
∂T k

∂x

∂φi
∂x

+
∂T k

∂y

∂φi
∂y

)
dx = 0.

The equivalent matrix form of the above equation is given by

1

∆t
M δs+

1

∆t
f21 + f22 + S11 δs+ S22 δvx + S23 δvy + f22 + +S22 δvx + S24δT + f23 = 0.
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Note that M and S11 have already been computed. For the κth element eκ, the
element matrices and vectors for other global matrices and vectors are determined
in the following way

Sij22e = −
∫
eκ

skφj
∂φi
∂x

dx = −Aκ
4
skj
∂φi
∂xj

,

Sij23e = −
∫
eκ

skφj
∂φi
∂y

dx = −Aκ
4
skj
∂φi
∂yj

,

Sij24e = λ

∫
eκ

(
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dx

= λ
Aκ
4

4∑
l=1

(
∂φi
∂xl

∂φj
∂xl

+
∂φi
∂yl

∂φj
∂yl

)
.

Again, we make further substitutions to simplify the matrix form of the energy
equations, i.e.,

f22 = S11s
k,

f23 = S24T
k,

Ss = M + ∆t S11,

fs = f21 + ∆t f22 + ∆t f23.

Hence the equivalent matrix equation can be written as

Ss δs+ ∆t S22 δvx + ∆t S23 δvy + fs + ∆t S24 δT = 0. (27)

3.3. Dealing with Darcy’s Law. The horizontal component of Darcy’s Law is
given by

vx +
K

µ

∂P

∂x
= 0.

At time step τ , the weak formulation is given by∫
Ω

vτxφdx+
K

µ

∫
Ω

∂P τ

∂x
φdx = 0.

The linearization of this equation gives∫
Ω

(
δvx + vkx

)
φdx+

K

µ

∫
Ω

∂

∂x
(δP + P k)φdx = 0.

The spatial discretization applied to the above equation yields

N∑
j=1

δvx,j

∫
Ω

φiφjdx+

∫
Ω

vkxφidx

+
K

µ

N∑
j=1

δPj

∫
Ω

∂φj
∂x

φidx+
K

µ

∫
Ω

∂P k

∂x
φidx = 0,

with the following matrix form

Mδvx +Mvkx + S31 δP + f31 = 0.

Hence the element matrix and vector are given by

Sij31e =
K

µ

∫
eκ

∂φj
∂x

φidx = Aκ
K

4µ

∂φj
∂xi

.

f31 = S31P
k.

For a later use we define

fx = f31 +Mvkx.
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The treatment of the vertical component of Darcy’s Law is analogous, and gives the
matrix form

Mδvy +Mvky + S41 δP + f41 = 0,

where

Sij41e
= Aκ

K

4µ

∂φj
∂yi

.

f i41e = S41P
k,

and

fy = f41 +Mvky .

3.4. Thermodynamical relations for the temperature and pressure. We
obtain the temperature (and pressure) vector by using the density and enthalpy
values through available phase diagrams, i.e.,

T = T (ρ, h).

In this case, linearization results into

T k − T (ρk, hk) + δT − ∂T

∂ρ
δρ− ∂T

∂h
δh = 0,

where ∂T
∂ρ is approximated by

∂T

∂ρ
≈ T (ρk + ε, hk)− T (ρk, hk)

ε
.

Here ε is a suitable small number (we use ε = .001). The approximation for ∂T
∂h is

analogous. Now, the spatial discretization takes the following form

I δT + S51 δρ+ S52 δh+ fT = 0. (28)

Here I is an identity matrix whereas S51 and S52 are diagonal matrices

Sij51 = −∂T
∂ρ

= −T (ρki + ε, hki )− T (ρki , h
k
i )

ε
δij ,

Sij52 = −∂T
∂h

= −T (ρki , h
k
i + ε)− T (ρki , h

k
i )

ε
δij ,

f iT = T ki − T (ρki , h
k
i ),

where δij represents the Kronecker Delta. For the pressure variable we have,

P = P (ρ, h).

The linearization procedure is similar to the temperature case, i.e.,

P k − P (ρk, hk) + δP − ∂P

∂ρ
δρ− ∂P

∂h
δh = 0,

The matrix form is

I δP + S61 δρ+ S62 δh+ fP = 0. (29)

Again, S61 and S62 are diagonal matrices

Sij61 = −∂P
∂ρ

= −P (ρki + ε, hki )− P (ρki , h
k
i )

ε
δij ,

Sij62 = −∂P
∂h

= −P (ρki , h
k
i + ε)− P (ρki , h

k
i )

ε
δij ,

f iP = P ki − P (ρki , h
k
i ).
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3.5. The density, enthalpy and total enthalpy relation. The relation between
the density, enthalpy, and total enthalpy is given by

s = ρh. (30)

Linearization of this equation is given as

sk − ρkhk + δs− ρkδh− hkδρ = 0. (31)

The matrix form is

I δs+ S71 δρ+ S72 δh+ fh = 0, (32)

where

Sij71 = −hki δij ,

Sij72 = −ρki δij ,

f ih = ski − ρki hki .
To summarize, we solve the following set of equations

Sρ δρ+ ∆t S12 δvx + ∆t S13 δvy + fρ = 0, (mass equation),

Ss δs+ ∆t S22 δvx + S23 δvy + ∆t S24 δT + fs = 0, (energy equation),

M δv + S31 δP + fx = 0, (Darcy’s law, x-axis),

M δv + S41 δP + fy = 0, (Darcy’s law, y-axis),

I δT + S51 δρ+ S52 δh+ fT = 0, (T = T (ρ, h)),

I δP + S61 δρ+ S62 δh+ fP = 0, (P = P (ρ, h)),

I δs+ S71 δρ+ S72 δh+ fh = 0, (s = ρh).

For a Newton Raphson loop, the Jacobian is expressed in the following block matrix
form

J =



Sρ 0 ∆t S12 ∆t S13 0 0 0
0 Ss ∆t S22 ∆t S23 ∆t S24 0 0
0 0 M 0 0 S31 0
0 0 0 M 0 S41 0
S51 0 0 0 I 0 S52

S61 0 0 0 0 I S62

S71 I 0 0 0 0 S72


7N×7N

,

F =



fρ
fs
fx
fy
fT
fP
fh


7N×1

, Gk =



ρk

sk

vkx
vky
T k

P k

hk


7N×1

.

Finally, the Newton Raphson loop is given by,

Gk+1 = Gk − J−1F . (33)

where J−1 is computed by Gaussian elimination.

4. Numerical Experiments

A number of study cases are provided and discussed in this section. We assume
no heat source (q = 0) for the given examples. It is important to mention that ,
for our test problems, the method is unconditionally stable for continuous initial
values. The value of ∆t can be chosen equal to the process time (tmax) and hence
the system can be solved in one time step (with few Newton-Raphson iterations). So
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the reasons to choose a relatively small ∆t are only given by accuracy and desire to
follow the kinetics of the process. Therefore, we select a suitably small ∆t to observe
variables profile in the transitional stage. In case of the Picard iteration, used in [2],
we needed ∆t = 1/(10×∆x2) ≈ 1/105 which requires 4×105 iterations for a process
time of 4 seconds. This gave excessive computation times regardless of the applied
boundary conditions which made the method not feasible for applications in higher
dimensions.

4.1. Case Study 1. Piecewise linear 1D conditions with 1D model. In this
case study we use the following conditions

T (x, 0) =


290 for x ∈ [0, 0.05],

290 + 10
9 x−

1
18 for x ∈]0.05, 0.95],

291 for x ∈]0.95, 1],

∆t = 1/10 [s] (time step),

∆x = 1/99 (spatial step),

εr = 10−6 (error tolerance on ρ and h),

K = 5× 10−11 [m2],

µ = 5× 10−5 [Pa s],

λ = 0.05 [W/m/K],

tmax = 4.0 [s] (process time).

We used homogeneous natural boundary conditions. The solution plots are shown
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Figure 3. Case Study 1. Solution plots of the 1D fluid system
with piecewise linear initial conditions and ∆t = 1/10 [s], ∆x =
1/99 [m], and εr = 10−6. The plots are (a) the density, (b) total
enthalpy, (c) temperature, (d) pressure, (e) gas mass-fraction, and
(f) velocity.

in Figure 3 and we explain their validity in the following paragraphs.

4.1.1. The temperature and pressure plots. The initial value of T is a piecewise linear
function. Fourier’s Law of heat conduction dictates that the heat flows from a higher
temperature point to a lower temperature point. Following this law, the steady-state
value of T is a constant. Hence the temperature profiles at t = 0, 0.2, 4.0 [s] agree
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qualitatively to Fourier’s Law although we solve a different nonlinear problem here.
The pressure P is a monotonically increasing function of T within our operating
conditions (refer to Figure 2). Therefore, the P plots should have a spatial profile
similar to T for a small variation in T and this actually is the case.

4.1.2. The velocity and density plots. Once we have P values, it is relatively simple
to verify v values through Darcy’s Law. The plots of v, as given in Figure 3(e) are
consistent with the plots given for P . For a negative velocity (right to left) the fluid
mass increases in the left part of the domain (for an insulated system). Hence the
density increases in the left part and decreases in the right part of the domain.

4.1.3. The gas mass fraction plots. At constant temperature, the region with a
lower density contains more gas mass fraction as compared to the region where the
density has a higher value. With this argument we actually justify the steady-state
XG plot. The XG plot at t = 0 represents the initial condition and the XG plot at
t = 0.2 shows an intermediate stage.

4.1.4. The total enthalpy plots. The mass and heat energy flows from right to left
and therefore the total enthalpy s increases in the left part of the domain until the
system attains its steady-state value.
To this point we have justified qualitatively all simulation results given in Figure 3.
Furthermore, we checked for mass and energy conservation by computing the total
mass (

∫
Ω
ρdx) and the total energy (

∫
Ω
sdx) at each time iteration and found that

these quantities are indeed conserved in our numerical solutions.

4.2. Case Study 2. Piecewise linear 1D conditions with 2D model. In this
case study we use the following conditions

T (x, 0) =


290 for x ∈ [0, 0.05], y ∈ [0, 1],

290 + 10
9 x−

1
18 for x ∈]0.05, 0.95], y ∈ [0, 1],

291 for x ∈]0.95, 1], y ∈ [0, 1],

∆t = 1/10,

∆x = 1/99,

∆y = 1/99,

εr = 10−6,

with homogeneous natural boundaries everywhere on the boundary. These are
precisely the same conditions as we use for Case Study 1, except that here we solve
a 2D model over a unit square. With these conditions the density plots are given in
Figure 4(a) to (c). A comparison of the cross-section of density plots is made with
the solution obtained from the Case Study 1 and it is given in Figure 4(d) to (f).
The relative difference is negligible. The temperature and gas mass fraction plots
are shown in Figure 5(a)-(c) and in Figure 5(d)-(f), respectively. The temperature
and gas mass fraction plots are also compared with the plots obtained from Case
Study 1 (not shown here), the relative difference is again less than 10−10.
Furthermore, we apply similar conditions in y-direction i.e.,

T (x, 0) =


290 for y ∈ [0, 0.05], x ∈ [0, 1],

290 + 10
9 y −

1
18 for y ∈]0.05, 0.95], x ∈ [0, 1],

291 for y ∈]0.95, 1], x ∈ [0, 1],

and compared the solution results with the case when conditions are in the x-
direction. The relative difference is negligible. All these comparisons, at least,
indicate that the solution algorithm is consistent regardless of dimensionality and
initial conditions (or flow direction).
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Figure 4. Case Study 2. Solution plots of the 2D fluid system
with piecewise linear initial conditions in T along x-axis, (see initial
conditions), with ∆t = 1/10, ∆x = 1/99, and εr = 10−6. The
solution plots are (a) the density (ρj), j = 1, 2, ..., N , at t = 0 [s],

(b) ρj at t = 0.2 [s], (c) ρj at t = 4 [s], (d)
ρ2Dj −ρ

1D
j

ρ1Dj
, at t = 0, (e)

ρ2Dj −ρ
1D
j

ρ1Dj
at t = 0.2, and (f)

ρ2Dj −ρ
1D
j

ρ1Dj
at t = 4 [s].
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Figure 5. Case Study 2. Piecewise linear initial conditions in
T along x-axis, with ∆t = 1/10, ∆x = 1/99, and εr = 10−6. The
solution plots are (a) the temperature T at t = 0 [s], (b) T at
t = 0.2 [s], (c) T at t = 4 [s], (d) gas mass fraction XG at t = 0,
(e) XG at t = 0.2, and (f) XG at t = 4 [s].

4.3. Case Study 3. The solution of of 2D model with 2D conditions. In
this case we set the following conditions

T (x, 0) = 290 + Ip,

Ip =



− 20
9 x+ 10

9 for x ∈ [0.05, 0.5], y ∈ [0.5, 1− x] ∪ [x, 0.5],
20
9 x−

10
9 for x ∈ [0.5, 0.95], y ∈ [1− x, 0.5] ∪ [0.5, x],

− 20
9 y + 10

9 for y ∈ [0.05, 0.5], x ∈ [0.5, 1− y] ∪ [y, 0.5],
20
9 y −

10
9 for y ∈ [0.5, 0.95], x ∈ [1− y, 0.5] ∪ [0.5, y],

1 for other (x, y) ∈ Ω.

∆t = 1/20,

∆x = ∆y = 1/99,

K = 5× 10−11,
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with homogeneous natural boundaries everywhere on the boundary. Here Ip is a
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Figure 6. Case Study 3. Solution plots for 2D model with 2D
conditions, (a) T at t = 0 [s], (b) T at t = 0.1 [s], (c) T at t = 1 [s],
(d) P at t = 0 [s], (e) P at t = 0.1 [s], and (f) P at t = 1 [s].
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Figure 7. Case Study 3. Solution plots for 2D model with 2D
conditions, (a) vx at t = 0 [s], (b) vx at t = 0.1 [s], (c) vx at
t = 1 [s], (d) vy at t = 0, (e) vy at t = 0.1, and (f) vy at t = 1.

squeezed inverted pyramid function with a unit height. The boundary is located at
a height z = 1 and center point is at (x = 0.5, y = 0.5, z = 0). The pyramid fits
within the domain x ∈ [0.05, 0.95], y ∈ [0.05, 0.95]. The remaining 0.05 wide strip
is a constant height function z = 1. This ensures an initially zero velocity normal
to the boundary. Although this example is solved over a mesh with 100×100 nodes
but we give their plots with slightly reduced mesh density (60 × 60 nodes) for the
sake of faster printing. The explanation for the solution variable plots as given for
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Case Study 1 applies to these plots as well. For example, the solution variable T
evolves to a constant steady-state profile (as shown in Figure 6), P follows a pattern
similar to T 6) since ∂P

∂XG
= 0, v follows from P through Darcy’s law to show an

inward direction from each side (Figure 7), and ρ increases in the central portion
of the domain in response to an inward velocity (Figure 8), etc. The XG is plotted
in Figure 10 for the initial, transient, and steady-state values. This example shows
that the model and the solution algorithm is robust to handle discontinuous initial
conditions (e.g., an initial discontinuous velocity). Next two examples also support
this argument.
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Figure 8. Case Study 3. Solution plots for 2D model with 2D
conditions. ∆t = 1/20, ∆x = ∆y = 1/99, εr = 10−6. The plots
are (a) ρ at t = 0 [s], (b) ρ at t = 0.1 [s], and (c) ρ at t = 1 [s].
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Figure 9. Case Study 3. Solution plots for 2D model with 2D
conditions, (a) s at t = 0 [s], (b) s at t = 0.1 [s], and (c) s at
t = 1 [s].
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at t = 1 [s].
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4.4. Case Study 4. Tracking of a sharp phase interface. In this 1D example,
we set XG initially equal to a step function and T is set piecewise linear so that
we obtain a nonzero velocity for the phase interface. Let Γ(t) be a function which
represents the position of the phase front at time t i.e.,

Γ(t) :=
{
x ∈ Ω, t ≥ 0|XG(x, t) = X̂G

}
We use the following initial conditions.

XG(x, 0) =

{
0.1 for x ∈ [0, 0.5],

0.2 for x ∈]0.5, 1],

T (x, 0) =


285 for x ∈ [0, 0.05],

285 + 200
9 x− 20

18 for x ∈]0.05, 0.95],

305 for x ∈]0.95, 1].

For this example, ∆x = 1/999 and ∆t = 1/50 is used. For a discontinuous initial
XG, the problem can not be solved in one time step but ∆t = 1/50 [s] is still
a large number as compared to the value of ∆t used for Picard iteration and the
IMEX method. After a few time iterations (e.g., 3), the XG profile becomes smooth
and ∆t can be adapted to a larger value. In Figure 11, we provide, (a) the initial
value for T , (b) the initial and steady-state values for XG, and (c) a comparison
between Γ(t) and g(t) = α+β

√
t for empirically chosen α = 0.5515 and β = −0.37.

The phase tracking as part of the solution in moving boundary problems, such as
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Figure 11. Case Study 4. Solution plots for (a) the initial T ,
(b) the initial and steady-state XG, and (c) a comparison between
Γ(x, t) and g(t) = α− β

√
t with α = 0.5515 and β = 0.37.

Stefan problem, gives a function of the form g(t) = α+ β
√
t. Since we consider an

insulated system, with no heat source in it, it attains a steady-state asymptotically.
This means that there is a Γ∞ such that Γ(t) → Γ∞ as t → ∞ . Hence, we do
not expect Γ(t) to follow g(t) for a longer time interval. The function Γ(t) however
approximately matches with g(t) at early stages only. Although, near t = 0 (at
the very early stage), there seems to be a different behavior. This deviation is
acceptable at the first iteration because some of the variables are discontinuous
at t = 0. Hence, even the first weak derivative of ρ, for instance, does not exist.
Therefore the approximation made from the Taylor series in Section 2.3, which was
used to derive the Newton method, can not give an accurate solution at t = 0. This
fact is shown in Figure 11(c). We conclude that the ρ-h model can be used to solve
sharp interface problems with diffusion-like mechanisms.

4.5. Case Study 5. Semicircular phase front. In this example, we use ∆x =
1/199, ∆y = 1/199, ∆t = 1/50, and the process time tmax = 1.0 [s] and set the
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following initial conditions

XG(x, 0) =

{
0.1 for x2 + y2 ≤ 0.5, x, y ≥ 0,

0.2 for x2 + y2 > 0.5, 0 ≤ x, y ≤ 1,

T (x, 0) =
1

2
(T1 + T2),

T1 =


305 for x ∈ [0, 0.05], y ∈ [0, 1],

305− 200
9 x+ 20

18 for x ∈]0.05, 0.95], y ∈ [0, 1],

285 for x ∈]0.95, 1], y ∈ [0, 1], .

T2 =


305 for y ∈ [0, 0.05], x ∈ [0, 1],

305− 200
9 y + 20

18 for y ∈]0.05, 0.95], x ∈ [0, 1],

285 for y ∈]0.95, 1], x ∈ [0, 1],

By setting T in this way, we ensure a 2D initial flow in general but a zero normal
velocity at every boundary point. Figure 12 shows the initial values of T and
XG whereas the contour plot in Figure 13 contains the initial and steady-state
position of the phase front. It can be seen that the displacement of the edge is most
pronounced along the line y = x. This is a consequence of the fact that the distance
to the boundaries is maximal at y = x, by which the fluids can be transported more
rapidly by the nonlinear (cross) diffusion mechanism. In this example we show that
the model works well for 2D conditions for the tracking of sharp interfaces.
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Figure 12. Case Study 5. Solution plots for (a) T at t = 0 [s]
and (b) XG at t = 0.
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5. Conclusions and further work

We developed a successful strategy to solve the PDE’s in the (ρ, h)-formulation
of multi-phase flow. To wrap up, the most important conclusions are

• Newton-Raphson linearization together with the standard Galerkin algo-
rithm enables to choose a large ∆t with respect to stability and to solve the
system efficiently.

• Picard iteration combined with the initial guess equal to the solution vari-
ables from the previous time step leads to excessively small time-step ∆t.
The same is concluded for the IMEX time integration method.

• Certain thermodynamical relations, such as ∂P
∂XG

= 0, between solution vari-
ables make the problem, with nonhomogeneous Robin boundary conditions,
ill-posed.

• For a problem where the initial XG is discontinuous, the selection of a time-
step for a stable solution is affected by the choice of certain parameters
(e.g., K) and also by the initial temperature gradient. We found that an
adaptive time-step will enable us for choosing eventually larger time-steps,
for discontinuous problems.

The model, which currently consists of seven equations to be solved by Newton-
Raphson method, can be reduced to a two equation system. It is expected that the
two equation system will enable an analytic treatment of this system with respect
to convergence behavior, to analyze the numerical methods in more mathematical
rigor, and to analyze the model equations qualitatively. This will be done in future
studies.
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[6] A. Abouhafç. Finite Element Modeling Of Thermal Processes With Phase Transitions. Master
Thesis, 2007, Delft University of Technology.

[7] Ibrahim, C. Vuik, F.J. Vermolen, D. Hegen. Numerical Methods for Industrial Flow Problems.

Delft University of Technology, Report 08-13, 2008.
[8] E. Javierre, C. Vuik, F. J. Vermolen, S. van der Zwaag. A comparison of numerical models

for one-dimensional Stefan problems. J. Comp. Appl. Math., 2006, 192, 445-459.

[9] H. Emmerich. The Diffuse Interface Approach in Materials Science, Thermodynamic Concepts
and Applications of Phase-Field Models. Springer, Berlin, 2003.

[10] J.H. Brusche, A. Segal, and C. Vuik. An efficient numerical method for solid-liquid transitions

in optical rewritable recording. International Journal for Numerical Methods in Engineering,
77, pp. 702-718, 2009.

[11] O.C. Zienkiewicz, R.L. Taylor, & J.Z. Zhu. The Finite Element Method, Its Basis & Funda-

mentals. 6e, Butterworth-Heinemann, 2005.
[12] K. A. Hoffmann. Computational Fluid Dynamics, Vol I. 4e, EES, Wichita, USA, 2000.

[13] J. van Kan, A Segal, F. Vermolen. Numerical Methods in Scientific Computing. VSSD, 2004.
[14] R. J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press,

USA, 2002.

[15] J.N. Reddy. An Introduction to the Finite Element Method. 2e, McGraw-Hill, 1993.

20



[16] Ibrahim, C. Vuik, F.J. Vermolen, D. Hegen. Numerical Methods for Industrial Flow Problems.
Delft University of Technology, Report 09-10, 2009.

[17] H. S. Udaykumar, R. Mittal, and W. Shyy. Computation of SolidLiquid Phase Fronts in the

Sharp Interface Limit on Fixed Grids. Journal of Computational Physics 153, 1999, 535-574.
[18] S. Chen , B. Merriman , S. Osher , P. Smereka. A simple level set method for solving Stefan

problems. Journal of Computational Physics, v.135 n.1, p.8-29, July 15, 1997.

[19] S. Osher , J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations. Journal of Computational Physics, v.79, pp.12-49,

Nov. 1988.
[20] A. Faghri, Y. Zhang, J. Howell. Advanced Heat and Mass Transfer. Global Digital Press,

2010.

[21] B. Nedjar. An enthalpy-based finite element method for nonlinear heat problems involving
phase change. Comput. Struct. 80 (2002) 9-21.

[22] G. Comini, S. DelGiudice, B. W. Lewis, O. C. Zienkiewicz. Finite element solution of non-

linear heat conduction problems with special reference to phase change. Int. J. Numer. Meth.
Engng., 8, pp. 613624, 1974.

[23] G. Segal, C. Vuik and F. J. Vermolen. A conserving discretization for the free boundary in a

two-dimensional Stefan problem. J. Comp. Phys., 141, pp. 1-21, 1998.

21


