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Abstract

We propose an efficient pricing method for arithmetic, and geometric,
Asian options under Lévy processes, based on Fourier cosine expansions
and Clenshaw–Curtis quadrature. The pricing method is developed for
both European–style and American–style Asian options, and for discretely
and continuously monitored versions. In the present paper we focus on
European–style Asian options; American-style options are treated in an
accompanying part II of this paper. The exponential convergence rate
of Fourier cosine expansions and Clenshaw–Curtis quadrature reduces the
CPU time of the method to milli-seconds for geometric Asian options and
a few seconds for arithmetic Asian options. The method’s accuracy is il-
lustrated by a detailed error analysis, and by various numerical examples.
Keywords: Arithmetic Asian options, Lévy processes, Fourier cosine ex-
pansions, Clenshaw–Curtis quadrature, exponential convergence.
AMS MSC: 65C30, 60H35, 65T50

1 Introduction

Asian options, introduced in 1987, belong to the class of path–dependent op-
tions. Their payoff is typically based on a geometric or arithmetic average of
underlying asset prices at monitoring dates before maturity. The number of
monitoring dates can be finite (discretely–monitored) or infinite (continuously–
monitored). Volatility inherent in an asset is reduced due to the averaging
feature, leading to cheaper options compared to plain vanilla option equiva-
lents.

For geometric Asian options a closed–form solution under the Black–Scholes
model has been presented in [15]. Other Lévy asset models have been studied
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in [12], resulting in an efficient valuation method based on the Fast Fourier
Transform.

For arithmetic Asian options the prices have to be approximated numeri-
cally. Monte Carlo methods have been applied for this task, for example in [15].
An efficient PDE method for arithmetic Asian options which works particularly
well for short maturities has been presented in [18].

Advanced pricing methods for options on the arithmetic average are based
on a recursive integration procedure, in which the probability density function
of the log-return of the sum of asset prices is approximated, see [6, 2, 16, 12].
In [6, 2] an FFT and inverse FFT have been incorporated in the procedure
to approximate the governing densities. The study in [6] was focused on log–
normally distributed underlying processes and required a fine grid to approxi-
mate the probability density function. This method is extended to more general
densities in [2], where the size of the grid was reduced by re–centering the prob-
ability densities at each monitoring step, resulting in reduced CPU time. In [12]
the FFT was used to approximate the density of the increment between con-
secutive monitoring dates, in combination with a series of recursive quadrature
rules. The total computational complexity in [12] was O(Mn2), where M is
the number of monitoring dates and n the number of points used in the quadra-
ture. A recent contribution was presented in [7], where discretely sampled Asian
options were priced via backward price convolutions.

Another pricing approach can be found in [14], where the governing densi-
ties were computed by a special Laplace inversion, for guaranteed return rate
products, that can be seen as generalized discretely sampled Asian options.
Alternatively, upper and lower bounds of the Asian option prices have been
determined, for example in [16], for Lévy asset processes.

In this paper, Asian options are priced with the help Fourier cosine ex-
pansions. We name the resulting method, the ASCOS method (Asian cosine
method), as it is related to the COS method from [10, 11]. The COS method
recovers the transitional density function in the risk–neutral formula in terms
of the conditional characteristic function, by a Fourier cosine expansion. The
characteristic function of a Lévy process is typically available in closed form.
In our pricing method, the Fourier cosine expansions are not only used in the
risk–neutral pricing formula, but also to recursively recover the characteristic
function of the log-return of the sum of asset prices. Moreover, the Clenshaw–
Curtis quadrature rule is used in the pricing procedure.

Exponential convergence has been proved and observed for plain vanilla
European and Bermudan options in [10, 11]. We will perform an extensive
error analysis here to confirm exponential convergence also for Asian options.

We present, in section 2, a technique to price geometric Asian options
under Lévy processes (discretely and continuously monitored), which is highly
efficient. The pricing algorithm for arithmetic Asian options is presented in
section 3. A detailed error analysis is given in section 4 and numerical results
are presented in section 5. We compare our results to those presented in [12].

The ASCOS pricing method can be seen as an efficient alternative to the
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FFT and convolution methods in [6, 12, 2, 16]. The method remains robust
as the number of monitoring dates, M , increases for arithmetic Asian options.
The ASCOS method is extended to pricing American–style Asian options, in
an accompanying Part II of the present paper. Key is here that instead of
recovering the density function (like in [6, 12, 2, 16]), the characteristic function
is recovered, which enables us to also price American–style Asian options.

In our paper, we focus on a fixed–strike Asian options. The extension
to floating–strike Asian options follows directly from the symmetry between
floating–strike and fixed–strike Asian options, as explained in [13] and [9].

2 ASCOS method for European-style geometric Asian
options

The ASCOS pricing technique for geometric and arithmetic Asian options is
described in sections 2 and 3, respectively. In our method, the characteristic
function of the geometric or arithmetic mean value of the underlying is recov-
ered, which is then used to calculate the Asian option value by Fourier cosine
expansions. For geometric Asian options, the characteristic function of the
geometric mean can be calculated directly, as we will see below.

2.1 Introduction to the COS method

We depart from the risk-neutral option valuation formula (discounted expected
payoff approach) for plain vanilla European options:

v(x, t0) = e−r∆t

∫ ∞

−∞
v(y, T )f(y|x)dy, (1)

where v(x, t0) is the present option value, r the interest rate, ∆t = T − t0
and x, y can be any monotone functions of the underlying asset at initial time
t0 and the expiration date T , respectively. Payoff function v(y, T ) is known,
but the transitional density function, f(y|x), typically is not. Based on (1),
we approximate the transitional density function on a truncated domain [a, b],
by a truncated Fourier cosine series expansion, with N terms, based on its
conditional characteristic function (see [10]), as follows:

f(y|x) ≈ 2
b− a

N−1∑′

k=0

Re

(
φ(

kπ

b− a
;x) exp (−i akπ

b− a
)
)

cos (kπ
y − a

b− a
), (2)

with φ(u;x) the conditional characteristic function of f(y|x), a, b determine
the integration interval and Re means taking the real part of the argument.
The prime at the sum symbol indicates that the first term in the expansion is
multiplied by one-half. The appropriate size of the integration interval can be
determined with the help of the cumulants [10] 1.

1So that |
R

R f(y|x)dy −
R b

a
f(y|x)dy| < TOL.
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Replacing f(y|x) by its approximation (2) in (1) and interchanging integra-
tion and summation gives the COS formula for the computation of plain vanilla
European options:

v̂(x, t0) = e−r∆t

N−1∑′

k=0

Re

(
φ

(
kπ

b− a
;x

)
e−ikπ a

b−a

)
Vk, (3)

where v̂(x, t0) indicates the approximate option value, and

Vk =
2

b− a

∫ b

a
v(y, T ) cos

(
kπ
y − a

b− a

)
dy,

are the Fourier cosine coefficients of v(y, T ), available in closed form for several
payoff functions.

With integration interval [a, b] chosen sufficiently wide, it was found that
the series truncation error dominates the overall error. For transitional den-
sity functions f(y|x) ∈ C∞([a, b] ⊂ R), the method converges exponentially;
otherwise convergence is algebraically [10, 11].

2.2 European-style geometric Asian options

The payoff function of a geometric Asian options with M monitoring dates and
a fixed strike reads:

v(S, T ) ≡ g(S) =


max((

M∏
j=0

Sj)
1

M+1 −K, 0), for a call,

max(K − (
M∏

j=0

Sj)
1

M+1 , 0). for a put.

Here S, K, g(S) denote the stock price, the strike price and the payoff function,
respectively; M = 1, 2, · · · .

For geometric Asian options, the characteristic function of the geometric
mean can be calculated directly. The underlying process is transformed to the
logarithm domain and we use the notation:

y := log((
M∏

j=0

Sj)
1

M+1 ) =
1

M + 1

M∑
j=0

log(Sj) =:
1

M + 1

M∑
j=0

xj . (4)

In order to use the Fourier cosine expansion, we need to determine the condi-
tional characteristic function of y given x0. From the definition of characteristic
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function we have:

φ(u;x0) = E[exp (iuy)|F0] = E[exp (iu
1

M + 1

M∑
j=0

xj)|F0]

= E[exp (iu(x0 +
1

M + 1
(M(x1 − x0) + (M − 1)(x2 − x1)

+ (M − 2)(x3 − x2) + . . .+ 2(xM−1 − xM−2) + (xM − xM−1))|F0))]

= eiux0E
[
exp

(
i(u

M

M + 1
)(x1 − x0)

)
|F0

]
·E

[
exp

(
i(u

M − 1
M + 1

)(x2 − x1)
)
|F0

]
·

· · · ·E
[
exp

(
i(u

1
M + 1

)(xM − xM−1)
)
|F0

]
. (5)

The last step is due to the fact that Lévy processes have independent incre-
ments. A Lévy process also has stationary increments, which implies that the
increments x1 − x0, x2 − x1, · · · , xM − xM−1 are identically distributed, and
they are all independent of x0. Denoting the (identical) characteristic functions
of these increments by ϕ(u, t), and substitution of ϕ(u, t) into (5) gives the
characteristic function of y given x0:

φ(u;x0) = eiux0 ·
M∏

j=1

ϕ

(
u
M + 1− j

M + 1
,
T − t0
M

)
. (6)

Substitution of characteristic function (6) into (3) results in the ASCOS
pricing formula for European-style geometric Asian options, with the underlying
asset modeled by a Lévy process:

v(x0, t0) = e−r∆t

N−1∑′

k=0

Re

(
φ(

kπ

b− a
;x0)e

−ikπ a
b−a

)
Vk, (7)

where

Vk =


2

b− a
(χk(log(K), b)−Kψk(log(K), b)), for a call,

2
b− a

(Kψk(a, log(K))− χk(a, log(K))), for a put,

with

χk(x1, x2) :=
∫ x2

x1

ey cos
(
kπ
y − a

b− a

)
dy,

ψk(x1, x2) :=
∫ x2

x1

cos
(
kπ
y − a

b− a

)
dy, (8)

which are known analytically.
The computational complexity to get the characteristic function for each

u = kπ/b− a, k = 0, · · · , N − 1 is linear in M , so that O(MN) computations
are required. The complexity of the work in (7) is linear in N , so that the total
computational complexity of the method is O(MN).
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For geometric Asian options there is no error in deriving the characteris-
tic function by (5) and (6). The only errors made are due to the COS for-
mula (7). Detailed error analysis of the COS method for European options
can be found in [10]. The ASCOS pricing method for geometric Asian op-
tions under Lévy processes is thus expected to have an exponential conver-
gence rate in the number of cosine terms, for all density functions that satisfy
f(y|x) ∈ C∞([a, b] ⊂ R).

Remark 2.1 (Black–Scholes Model). Under the Black-Scholes model, we have
that

y :=
1

M + 1

M∑
j=0

xj = x0+
1

M + 1
(M(x1 − x0) + (M − 1)(x2 − x1) + · · ·+ (xM − xM−1))

is normally distributed:

y ∼ N
(
M

2
(µ− 0.5σ2)∆t,

M(2M + 1)
6(M + 1)

σ2∆t
)
. (9)

The characteristic function can be derived directly and the resulting compu-
tational complexity is therefore only O(N). Note however that a closed form
solution is available in this case.

3 ASCOS method for arithmetic Asian options

For arithmetic Asian options, the characteristic function of the arithmetic mean
will be derived recursively by Fourier cosine expansions and Clenshaw–Curtis
quadrature. The Fourier cosine expansion is used each time step (i.e. at each
monitoring date), whereas the Clenshaw–Curtis quadrature rule is used once at
the beginning of the computation. In subsection 2.2 the characteristic function
of the geometric average was recovered, which was explicitly a function of x0 =
log(S0), as x0 + ...+ xT is a function of x0, so that the characteristic function
took the form φ(u;x0). In the present section, we recover the characteristic
function of the sum of Lévy asset price increments which is independent of x0.
Therefore we write the characteristic function here in the form φ(u), rather
than φ(u;x0).

The payoff function of an arithmetic Asian options reads:

v(S, T ) ≡ g(S) =


max( 1

M + 1

M∑
j=0

Sj −K, 0), for a call,

max(K − 1
M + 1

M∑
j=0

Sj , 0), for a put.

(10)

In this section we denote by nq the number of terms in the Clenshaw–Curtis
quadrature (q stands for quadrature).
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We first explain the recursion procedure to recover the characteristic func-
tion of the arithmetic mean value of the underlying. We denote by:

Rj := log
(

Sj

Sj−1

)
, j = 1, · · · ,M. (11)

For Lévy processes, the increments Rj , j = 1, · · · ,M are identically and inde-
pendently distributed, so that Rj

d
=R. Then ∀u, j, we can write φRj (u) = φR(u).

Characteristic function φR(u) is known in closed form for different Lévy pro-
cesses.

We introduce a stochastic process, Yj , where Y1 = RM and for j = 2, · · · ,M ,
we have

Yj := RM+1−j + log(1 + exp(Yj−1)). (12)

We denote by Zj := log(1 + exp(Yj)),∀j, so that (12) is rewritten as

Yj := RM+1−j + Zj−1. (13)

In this setting Yj admits the form

Yj = log
(
SM−j+1

SM−j
+
SM−j+2

SM−j
+ · · ·+ SM

SM−j

)
,

and we have that
1

M + 1

M∑
j=0

Sj =
(1 + exp(YM ))S0

M + 1
. (14)

Convolution scheme (13) has already been used in [6, 2, 16], for example, in
combination with other numerical methods, to recover the probability density
function of YM . Here, however, we will recover the characteristic function of
YM instead, by a forward recursion procedure, which is then used in turn to
recover the density of the European-style arithmetic mean of the underlying
process in the risk–neutral formula (15). The arithmetic Asian option value is
now defined as:

v(x0, t0) = e−r∆t

∫ ∞

−∞
v(y, T )fYM

(y)dy. (15)

By (14), v(y, T ) in (15) is of the following form:

v(y, T ) =


(
S0(1 + exp (y))

M + 1 −K

)+

, for a call,(
K − S0(1 + exp (y))

M + 1

)+

, for a put.

3.1 Recovery of characteristic function

To recover the characteristic function of YM , i.e. φYM
(u), we start with Y1, for

which the characteristic function reads:

φY1(u) = φR(u). (16)
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Then, at time step tj , j = 2, · · · ,M , φYj (u) can be recovered in terms of
φYj−1(u). This is done by application of (13) and the fact that Lévy processes
have independent increments. This implies that ∀j, RM+1−j and Zj−1 are
independent, which gives us:

φYj (u) = φRM+1−j
(u)φZj−1(u) = φR(u)φZj−1(u). (17)

From the definition of characteristic function, we have

φZj−1(u) = E[eiu log(1+exp(Yj−1))] =
∫ ∞

−∞
(ex + 1)iufYj−1(x)dx. (18)

To apply the Fourier cosine series expansion to approximate the characteristic
function, we first truncate the integration range

φ̂Zj−1(u) =
∫ b

a
(ex + 1)iufYj−1(x)dx. (19)

If we define the following error

εT (X) :=
∫
R\[a,b]

fX(x)dx,

then, as ∀j, u ∈ R,

|(ex + 1)iu| = | cos(u log(1 + ex) + i sin(u log(1 + ex)))| = 1, (20)

the error in (19) can be bounded by:

|
∫
R\[a,b]

(ex + 1)iufYj−1(x)dx| ≤
∫
R\[a,b]

fYj−1(x)dx = εT (Yj−1). (21)

We apply the Fourier cosine expansion to approximate fYj−1(x), giving:

φ̂Zj−1(u) =
2

b− a

N−1∑′

l=0

Re

(
φ̂Yj−1(

lπ

b− a
) exp(−ia lπ

b− a
)
)

·
∫ b

a
(ex + 1)iu cos

(
(x− a)

lπ

b− a

)
dx, (22)

where φ̂Yj−1 is an approximation of φYj−1 .

In this way, φ̂Zj−1 is recovered in terms of φ̂Yj−1 . Application of (17) gives
us an approximation φ̂Yj (u) for any u. Equation (22) can be written in matrix–
vector form:

Φj−1 = MAj−1, (23)

using:

Φj−1 = (Φj−1(k))N−1
k=0 , Φj−1(k) = φ̂Zj−1(uk),

uk =
kπ

b− a
, k = 0, · · · , N − 1,

M = (M(k, l))N−1
k,l=0, M(k, l) =

∫ b

a
(ex + 1)iuk cos((x− a)ul)dx,

Aj =
2

b− a
(Aj(l))N−1

l=0 , Aj(l) = Re(φ̂Yj−1(ul) exp (−iaul)).

8



By the recursion procedure in (17) and (23), the characteristic function,
φYM

(u), can be approximated by φ̂YM
(u) efficiently. Application of (3) in (15)

finally gives us the European-style arithmetic Asian option value:

v̂(x, t0) = e−r∆t

N−1∑′

k=0

Re

(
φ̂YM

(
kπ

b− a
)e−ikπ a

b−a

)
Vk, (24)

in which

Vk =


2

b− a

(
S0

M + 1χk(x∗, b) + ( S0
M + 1 −K)ψk(x∗, b)

)
, for a call,

2
b− a

(
(K − S0

M + 1)ψ(a, x∗)− S0
M + 1χ(a, x∗)

)
, for a put.

(25)

Functions χk(x1, x2) and ψk(x1, x2) are as in (8), and x∗ = log(K(M+1)
S0

− 1).

3.2 Clenshaw–Curtis quadrature

We discuss the efficient computation of matrixM in (23). An important feature
is that matrix M remains constant for all time steps tj , j = 1, · · · ,M − 1, so
that we need to calculate it only once. Its elements are given by:

M(k, l) =
∫ b

a
(ex + 1)iuk cos((x− a)ul)dx, k, l = 0, · · ·N − 1, (26)

which can be rewritten in terms of incomplete Beta functions (see appendix A).
Here, (26) is approximated numerically by the Clenshaw–Curtis quadrature
rule, which is based on an expansion of the integrand in terms of Chebyshev
polynomials (as proposed in [8]; more information can be found in [4]).

To use the Clenshaw–Curtis rule for (26), we first change the integration
interval from [a, b] to [−1, 1]∫ b

a
(ex + 1)iuk cos ((x− a)ul)dx =∫ 1

−1

b− a

2

(
exp (

b− a

2
x+

a+ b

2
) + 1

)iuk

cos ((
b− a

2
x+

a+ b

2
− a)ul)dx.

The integral can then be approximated as follows∫ b

a
(ex + 1)iuk cos((x− a)ul)dx ≈ (DTd)T y =: wT y, (27)

where D is an (nq/2 + 1)× (nq/2 + 1) matrix, whose elements read

D(k, n) =
2
nq

cos
(

(n− 1)(k − 1)π
nq/2

)
·

{
1/2, if n = {1, nq/2 + 1},

1, otherwise.
(28)
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The vector d and the elements yn in y = {yn}
nq/2
n=0 are defined as:

d :=
(

1,
2

(1− 4)
,

2
(1− 16)

, · · · , 2
(1− (nq − 2)2)

,
1

(1− n2
q)

)T

,

yn := f(cos (
nπ

nq
)) + f(− cos (

nπ

nq
)), (29)

where in our case

f(x) =
b− a

2
(exp (

b− a

2
x+

a+ b

2
) + 1)iuk cos((

b− a

2
x+

a+ b

2
− a)ul).

For all (k, l), the vector w = DTd remains the same, so that it needs to
be computed only once, for all (k, l). Because DTd is a type I discrete cosine
transform, the computational complexity is O(nq log2 nq). Elements yn must
be calculated for each pair (k, l), with complexity O(nq) and the computational
complexity, for all (k, l), is therefore O(nqN

2). When using the Clenshaw–
Curtis quadrature rule to compute matrix M (only once, used for all time
steps), the total computational complexity is thus O(nq log2 nq) +O(nqN

2).

Furthermore, at each time step tj , we need O(N2) computations for the
matrix–vector multiplication (23) and O(N) computations to obtain φ̂Yj by
equation (16) or (17). The computational complexity for this task is thus
O(MN2).

The overall computational complexity of our method for arithmetic Asian
option is then O(nq log2 nq) + O(nqN

2) + O(MN2). The number N2 is in
practice much larger than log2 nq. The overall complexity is then of order
O((nq +M)N2).

We will show in the section on error analysis for arithmetic Asian options
that for most of the Lévy processes, the Fourier cosine expansion exhibits an
exponential convergence rate with respect to N . For the integrand in (26)
the Clenshaw–Curtis quadrature converges exponentially with respect to nq.
Therefore, the ASCOS pricing method is an efficient alternative to the method
proposed in [12], which requires O(MN̄2) computations (N̄ being the number
of points used in the quadrature in [12]), with N̄ > nq, and N̄ > N , for the
same level of accuracy. Our pricing method is especially advantageous when the
number of monitoring dates, M , increases. The method is summarized below.

ASCOS Algorithm: Pricing European-style arithmetic Asian options.
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Initialization

� Use Clenshaw–Curtis quadrature (27) to compute
M = (M(k, l)), k, l = 0, · · · , N − 1, with M in (23), (26).

� Compute φR(uk), k = 0, · · · , N − 1.

� Set φY1(uk) = φR(uk).

Main Loop to Recover φ̂YM
: For j = 2 to M ,

� Compute the vector Φj−1 with elements φ̂Zj−1(uk), k = 0, · · · , N−
1 using (23).

� Recover φ̂Yj (uk), k = 0, · · · , N − 1 using (17).

Final step:

� Compute v̂(x0, t0) by inserting φ̂YM
(uk), k = 0, · · · , N−1 into (24).

3.3 Extensions

In a series of remarks, we now discuss some other generalizations of the ASCOS
method. The American-style Asian options generalization will be discussed in
a separate part II of this paper.

Remark 3.1 (Continuously–monitored Asian options). The option values of
continuously–monitored arithmetic Asian options, with payoff

v(S, T ) = g(S) =


( 1
T

∫ T

0
S(t)dt−K)+, for a call,

(K − 1
T

∫ T

0
S(t)dt)+, for a put,

can be obtained from discretely–monitored arithmetic Asian option prices by a
four-point Richardson extrapolation.

Let v̂(M) denote the computed value of a discretely–monitored Asian option
with M monitoring dates. The continuously–monitored Asian option value, de-
noted by v̂∞, is approximated by a four-point Richardson extrapolation scheme,
as follows:

v̂∞(d) =
1
21

(64v̂(2d+3)− 56v̂(2d+2) + 14v̂(2d+1)− v̂(2d)). (30)

The same technique can be applied for continuously monitored geometric
Asian options.

Remark 3.2 (Asian options on the harmonic average). Asian options with a
payoff based on the harmonic average, i.e. on M/(

∑M
j=1 1/Sj), can be priced in

a similar fashion as explained above by the ASCOS method. First, we recover
the characteristic function of a variable y = log(

∑m
j=1 S0/Sj) recursively; then

11



we insert the approximation into the COS pricing formula. We define R̄j =
log(Sj−1/Sj). Starting with Y1 = log(R̄M ), we find, ∀j, u:

φR̄j
(u) = E[e

iu log(
Sj−1

Sj
)
] = E[e

i(−u) log(
Sj

Sj−1
)
] = φRj (−u), (31)

with φRj available in closed form for Lévy processes. For this reason, φY1(u) is
also known analytically.

For j = 2, · · · ,M we then define Yj := R̄M+1−j + Zj−1, where Zj :=
log(1 + exp (Yj)). In this setting we have YM ≡ log(

∑m
j=1 S0/Sj).

Again, R̄M+1−j and Zj−1 are independent at each time step, due to the
properties of Lévy processes. Therefore

φYj (u) = φR̄M+1−j
(u)φZj−1(u), ∀u,

where φR̄M+1−j
(u) is known analytically from (31) and φZj−1(u) can be recov-

ered, as φ̂Zj−1(u) from φ̂Yj−1(u) by Fourier cosine expansions and Clenshaw–
Curtis quadrature, as in (22). We thus approximate the characteristic function
of YM and the fixed strike Asian option value is then given by:

v̂(x, t0) = e−r∆t

N−1∑′

k=0

Re

(
φ̂YM

(
kπ

b− a
)e−ikπ a

b−a

)
Vk,

in which

Vk =


2

b− a
(MS0χ̄k(x∗, b)−Kψk(x∗, b)), for a call,

2
b− a

(Kψ(a, x∗)−MS0χ̄(a, x∗)), for a put,

where x∗ = log(MS0/K), χ̄(x1, x2) :=
∫ x2

x1
e−y cos(kπ y−a

b−a )dy, and ψk(x1, x2)
is defined in (8).

Finally, the symmetry between floating and fixed–strike Asian options also
holds for Asian options on the harmonic average, so that floating strike options
can be valued as well.

Remark 3.3 (A special case: the forward contract). A forward contract, as
often encountered in commodity markets, may be defined by the payoff:

g(S) =
1

M + 1

M∑
j=0

Sj −K. (32)

The contract value then reads

v(x0, t0) = e−r∆tE

 1
M + 1

M∑
j=0

Sj −K


= e−r∆t

(
S0

M + 1
E[eYM ] + (

S0

M + 1
−K)

)
, (33)
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where the last step follows from (14). The expected value of exp (YM ) can be
obtained by a forward recursion procedure. At each monitoring date, tj, we have
from (13) that

E[eYj ] = E[eRM+1−j (1 + eYj−1)]. (34)

For Lévy processes RM+1−j and (1 + exp(Yj−1)) are independent and Rj
d
=R,

∀j, so that equation (34) reads:

E[eYj ] = E[eR](1 + E[eYj−1)], ∀j, (35)

with E[eY1 ] ≡ E[eR]. The value of E[eR] reads

E[eR] =
∫ ∞

−∞
eyfR(y)dy =

N−1∑′

k=0

Re

(
φR(

kπ

b− a
)e−ikπ a

b−a

)
χk(a, b), (36)

where function χk(x1, x2) is defined in (8) and φR is the characteristic function
of R, which is available for various Lévy processes.

The E[eR]-term needs to be calculated only once, with O(N) complexity.
In the recursion procedure to get the forward value, we use (35) M − 1 times
and (33) once. Therefore, the total computational complexity is O(N)+O(M),
and exponential convergence is expected for probability density functions belong-
ing to C∞[a, b].

4 Error analysis for arithmetic Asian options

Here we give an error analysis of the ASCOS method for arithmetic Asian
options. We first discuss, in general terms, three types of error occurring, i.e.,
the truncation error, εT , the error of the Fourier cosine expansion, εF , and the
error from the use of the Clenshaw–Curtis quadrature, εQ.

The truncation error was defined as

εT (Yj) :=
∫
R\[a,b]

fYj (y)dy, j = 1, · · · ,M, (37)

and it decreases as interval [a, b] increases. In other words, for a sufficiently
large integration range [a, b], this part of the error won’t dominate the overall
error of the arithmetic Asian option price.

Regarding the error of the Fourier cosine expansions, we know from [10]
that for f(y|x) ∈ C∞[a, b], it can be bounded by

|εF (N, [a, b])| ≤ P ∗(N) exp(−(N − 1)ν),

with ν > 0 a constant and a term P ∗(N) which varies less than exponentially
with respect to N .

When the probability density function has a discontinuous derivative, the
error can be bounded by

|εF (N, [a, b])| ≤ P̄ ∗(N)
(N − 1)β−1

,

13



where P̄ ∗(N) is a constant and β ≥ 1.

Error εF decays thus either exponentially with respect to N , if the density
function f(y|x) ∈ C∞[a, b], or algebraically.

Let us now have a look at the error from the Clenshaw–Curtis quadrature,
which we use to approximate

I :=
∫ b

a
(ex + 1)iuk cos((x− a)ul)dx, (38)

by Î := wT y in (27). In other words, εq = I − Î.

According to [17, 19], the Clenshaw–Curtis quadrature rule exhibits an
error which can be bounded by O((2nq)−k/k), for a k–times differentiable inte-
grand. When k is bounded, we have algebraic convergence; otherwise the error
converges exponentially with respect to nq, see also [3]. The integrand in (38)
belongs to C∞[a, b], as all derivatives are continuous on any interval [a, b], con-
firming that, for the integrand in (38), we will have exponential convergence
with respect to nq.

4.1 Error propagation in the characteristic functions

The following lemma is used in the error analysis.

Lemma 4.1. For any random variable, X, and any u ∈ R, the characteristic
function can be bounded by |φX(u)| ≤ 1.

Proof. For any X and u, the characteristic function φX(u) is defined by:

φX(u) = E[eiuX ] =
∫ ∞

−∞
eiuxf(x)dx.

We have

|φX(u)| ≤
∫ ∞

−∞
|eiux|f(x)dx,

and thus:

|φX(u)| ≤
∫ ∞

−∞
f(x)dx = 1.

Now we start with the error analysis, and denote by ε(φ̂Ym(u)) and ε(φ̂Zm(u)),
m = 1, · · · ,M , the errors in φ̂Ym(u) and φ̂Zm(u), respectively. From (24) the

14



error in the arithmetic Asian option price, denoted by ε, is given by

ε = e−r∆t

∫ ∞

−∞
v(y, T )fYM

(y)dy − e−r∆t

N−1∑′

k=0

Re

(
φ̂YM

(
kπ

b− a
)e−ikπ a

b−a

)
Vk

= e−r∆t

∫ ∞

−∞
v(y, T )fYM

(y)dy − e−r∆t

N−1∑′

k=0

Re

(
φYM

(
kπ

b− a
)e−ikπ a

b−a

)
Vk

+ e−r∆t

N−1∑′

k=0

Re

(
(φYM

(
kπ

b− a
)− φ̂YM

(
kπ

b− a
))e−ikπ a

b−a

)
Vk

= εcos + e−r∆t

N−1∑′

k=0

Re

(
ε(φ̂YM

(
kπ

b− a
))e−ikπ a

b−a

)
Vk,

where Vk is known analytically and εcos is the error resulting from the use of the
COS pricing method. From [10] we know that for a sufficiently large truncation
range [a, b], we have εcos = O(εF ) and thus

ε = O(εF ) + e−r∆t

N−1∑′

k=0

Re

(
ε(φ̂YM

(
kπ

b− a
))e−ikπ a

b−a

)
Vk. (39)

The remaining part of the error (39) which we need to estimate is ε(φ̂YM
(u)).

This is done by mathematical induction. We first estimate the error in φ̂Y1(u)
and φ̂Y2(u) and then use an induction step to bound the error in φ̂YM

(u).

Characteristic function φY1(u) is known analytically from (16), so that
ε(φ̂Y1(u)) = 0, ∀u.

The error in φ̂Z1(u) consists of three parts. The first part is the error due
to the truncation of the integration range as in (19). The second part is due to
the approximation of fY1(x) by the Fourier cosine expansion in (22). The third
part is due to the use of the Clenshaw–Curtis quadrature rule to approximate
the integral in (22). Summing up, we have:

ε(φ̂Z1(u)) =
∫ ∞

−∞
(ex + 1)iufY1(x)dx−

∫ b

a
(ex + 1)iufY1(x)dx

+
∫ b

a
(ex + 1)iufY1(x)dx−

2
b− a

N−1∑′

l=0

Re

(
φY1(

lπ

b− a
) exp(−ia lπ

b− a
)
)
I

+
2

b− a

N−1∑′

l=0

Re

(
φY1(

lπ

b− a
) exp(−ia lπ

b− a
)
)

(I − Î) (40)

=
∫
R\[a,b]

(ex + 1)iufY1(x)dx+ εF +
2

b− a

N−1∑′

l=0

Re

(
φY1(

lπ

b− a
) exp(−ia lπ

b− a
)
)
εq.

The lemma below gives an upper bound for the local error.
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Lemma 4.2. We define by

ej : =
∫
R\[a,b]

(ex + 1)iufYj (x)dx+ εF

+
2

b− a

N−1∑′

l=0

Re

(
φYj (

lπ

b− a
) exp(−ia lπ

b− a
)
)
εq, (41)

then, with integration range [a, b] sufficiently wide, we have

|ej | ≤ P̄ (N,nq)(|εF |+
2

b− a
N |εq|), ∀j,

where P̄ (N,nq) > 0 varies less than εF and εq, with respect to N,nq.

Proof. Application of (21) gives us that, ∀j, u ∈ R,

|
∫
R\[a,b]

(ex + 1)iufYj (x)dx| ≤ εT (Yj), (42)

with εT (Yj) defined in (37). Substitution into (41), results in

|ej | ≤ |εT (Yj)|+ |εF |+
2

b− a

N−1∑′

l=0

|Re
(
φYj (

lπ

b− a
) exp(−ia lπ

b− a
)
)
||εq|.

From Lemma 4.1, it follows that, ∀j, l, |φYj (lπ/b− a)| ≤ 1, and

| exp(−ia lπ

b− a
)| = | cos

(
−a lπ

b− a

)
+ i sin

(
−a lπ

b− a

)
| = 1, ∀l,

so that |Re
(
φYj (lπ/(b− a)) exp (−ialπ/(b− a))

)
| ≤ 1, ∀j, l.

For [a, b] sufficiently wide, εF dominates the expression εF + εT , so that we
find, ∀j:

|ej | ≤ P̄ (N,nq)

|εF |+ 2
b− a

N−1∑′

l=0

|εq|

 = P̄ (N,nq)
(
|εF |+

2
b− a

N |εq|
)
,

(43)

where P̄ (N,nq) > 0 varies less than εF and εq with respect to N,nq.

Using the notation:

εL := |εF |+
2

b− a
N |εq|, (44)

we can write |ej | ≤ P̄ (N,nq)εL, ∀j. Application of Lemma 4.2 and (44) to (40)
gives

|ε(φ̂Z1(u))| = |e1| ≤ P̄ (N,nq)εL.
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We continue with the error in φ̂Y2(u). From (17) we have that

ε(φ̂Y2(u)) = ε(φ̂Z1(u))φR(u) = e1φR(u) = e1φY1(u), ∀u. (45)

Applying Lemma 4.1 and Lemma 4.2 to (45) results in

|ε(φ̂Y2(u))| = |e1||φY1(u)| ≤ |e1| ≤ P̄ (N,nq)εL. (46)

Next, we arrive at the induction step, described in the lemma below.

We use the common notation ε = O(g(a1, · · · , an)) to indicate that a Q > 0
exists, so that |ε| = Q|g(a1, · · · , aN )| with Q constant or varying less than
function g(·) with respect to parameters a1, · · · , aN .

Lemma 4.3. For m = 3, · · · ,M , assuming that

ε(φ̂Ym−1(u)) = P̄ (N,nq)
(m−1)−1∑

j=1

φYj (u)e(m−1)−j , ∀u, (47)

where P̄ (N,nq) is a term which varies less than exponentially with respect to
N and nq, then

ε(φ̂Ym(u)) = O(
m−1∑
j=1

φYj (u)em−j), ∀u, (48)

and thus

|ε(φ̂Ym(u))| = O(m− 1)εL. (49)
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Proof. We find that for m = 3, · · · ,M , and ∀u:

ε(φ̂Zm−1(u))

=
∫ ∞

−∞
(ex + 1)iufYm−1(x)dx−

2
b− a

N−1∑′

l=0

Re

(
φ̂Ym−1(

lπ

b− a
) exp(−ia lπ

b− a
)
)
Î

=
∫ ∞

−∞
(ex + 1)iufYm−1(x)dx−

∫ b

a
(ex + 1)iufYm−1(x)dx

+
∫ b

a
(ex + 1)iufYm−1(x)dx−

2
b− a

N−1∑′

l=0

Re

(
φYm−1(

lπ

b− a
) exp(−ia lπ

b− a
)
)
I

+
2

b− a

N−1∑′

l=0

Re

(
φYm−1(

lπ

b− a
) exp(−ia lπ

b− a
)
)

(I − Î)

+
2

b− a

N−1∑′

l=0

Re

(
(φYm−1(

lπ

b− a
)− φ̂Ym−1(

lπ

b− a
)) exp(−ia lπ

b− a
)
)
Î

=
∫
R\[a,b]

(ex + 1)iufYm−1(x)dx+ εF +
2

b− a

N−1∑′

l=0

Re

(
φYm−1(

lπ

b− a
) exp(−ia lπ

b− a
)
)
εq

+
2

b− a

N−1∑′

l=0

Re

(
ε(φYm−1(

lπ

b− a
)) exp(−ia lπ

b− a
)
)
Î

= em−1 +
2

b− a

N−1∑′

l=0

Re

(
ε(φYm−1(

lπ

b− a
)) exp(−ia lπ

b− a
)
)
Î . (50)

Substitution of (47) into (50) gives

ε(φ̂Zm−1(u))

= em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

2
b− a

N−1∑′

l=0

Re

(
φYj (

lπ

b− a
)e(m−1)−j exp(−ia lπ

b− a
)
)
Î

= em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

e(m−1)−j(
2

b− a

N−1∑′

l=0

Re

(
φYj (

lπ

b− a
) exp(−ia lπ

b− a
)
)
Î)

= em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

e(m−1)−jφ̂Zj (u).
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The error in φ̂Ym(u), ∀u, is found as

ε(φ̂Ym(u)) = φR(u)ε(φ̂Zm−1(u))

= φR(u)em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

e(m−1)−jφR(u)φ̂Zj (u)

= φR(u)em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

e(m−1)−jφ̂Yj+1(u)

= φY1(u)em−1 + P̄ (N,nq)
m−1∑
j=2

em−jφ̂Yj (u)

= O(
m−1∑
j=1

φYj (u)em−j) +O(ekel), k, l ∈ 1, · · · ,m− 1.

From Lemma 4.2 we see that |ej | = O(|εF |+ |εq|), ∀j, if N and nq increase
simultaneously. Error εF decays exponentially with respect to N and εq de-
cays exponentially with respect to nq, so that ej decays exponentially and the
quadratic term, ekel, converges to zero faster than ej . We thus have that

ε(φ̂Ym(u)) = O(
m−1∑
j=1

φYj (u)em−j),

and application of Lemmas 4.1 and 4.2 gives, ∀u ∈ R,

|
m−1∑
j=1

φYj (u)em−j | ≤
m−1∑
j=1

|φYj (u)||em−j | ≤ P̄ (N,nq)(m− 1)εL,

where P̄ (N,nq) varies less than εF and εq with respect to N,nq, respectively.
So

|ε(φ̂Ym(u))| = O((m− 1)εL), (51)

which concludes the proof.

As a result of the lemma above, we have, ∀u,

ε(φ̂YM
(u)) = O(

M−1∑
j=1

φYj (u)em−j), (52)

and
|ε(φ̂YM

(u))| = O((M − 1)εL). (53)

Remark 4.1 (Error of φ̂YM
). Application of (53) and (44) results in

|ε(φ̂YM
(u))| = O((M − 1)(|εF |+

2
b− a

N |εq|)), ∀u.
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When the number of monitoring dates, M , increases, larger values of N and
nq are necessary to reach a specified level of accuracy.

Moreover, when a large value of N is necessary for accuracy, we should also
increase nq to control the error. When N and nq both increase, the expression
|Nεq| converges exponentially to zero2 and we have that

|ε(φ̂YM
(u))| = O((M − 1)(|εF |+ |εq|)), ∀u.

4.2 Error in the option price

We now focus on the error in the arithmetic Asian option price. After applica-
tion of (52) in (39) the error reads

ε = O(εF ) +O(
M−1∑
j=1

em−j exp(−r∆t)
N−1∑′

k=0

Re(φYj (
kπ

b− a
)e−ikπ a

b−a )Vk). (54)

When replacing e−r∆tVk (Vk defined in (25)) by the following term:

e−r∆tjW j
k := e−r∆tj


2

b− a
( S0
j + 1χk(x∗, b) + (

S0

j + 1
−K)ψk(x∗, b)), for a call,

2
b− a

((K − S0
j + 1)ψ(a, x∗)− S0

j + 1
χ(a, x∗)), for a put,

(55)
with ∆tj := j∆t/M , the expression

M−1∑
j=1

em−j exp(−r∆t)
N−1∑′

k=0

Re(φYj (
kπ

b− a
)e−ikπ a

b−a )Vk, ∀j, k,

remains of the same order, regarding N and nq.
The error in (54) therefore satisfies

ε = O(εF ) +O(
M−1∑
j=1

em−je
−r∆tj

N−1∑′

k=0

Re(φYj (
kπ

b− a
)e−ikπ a

b−a )W j
k ).

We now can write for the overall error:

ε = O(εF ) +O(
M−1∑
j=1

em−jA(S0,∆tj)),

where A(S0, τ) stands for the Asian option value with initial underlying price
S0 and time to maturity τ . Then

|ε| = O(|εF |) +O(
M−1∑
j=1

|em−j |A(S0,∆tj)).

2Note that N varies linearly but εq decays exponentially, so that N |εq| also decays expo-
nentially.
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By Lemma 4.2 we find

|ε| = O(|εF |) +O((|εF |+
2

b− a
N |εq|)

M−1∑
j=1

A(S0,∆tj)). (56)

Volatility inherent in an Asian option is smaller than that of an equiva-
lent vanilla European option, due to the averaging feature. This makes Asian
options cheaper than their plain vanilla equivalents. In other words, with the
same maturity, the value of an Asian option, A(S0, τ), is less or equal to that
of the corresponding vanilla European option, denoted by E(S0, τ), written on
the same underlying asset. The European option value will be used as upper
bound for the corresponding arithmetic Asian option value in (56) and we have:

|ε| = O(|εF |) +O((|εF |+
2

b− a
N |εq|)

M−1∑
j=1

E(S0,∆tj)). (57)

We assume that

max
j=1,··· ,M−1

E(S0, j∆tj) = E(S0,∆tj∗),

so that the error in the Asian option price satisfies

|ε| = O(|εF |) +O((|εF |+
2

b− a
N |εq|)(M − 1)E(S0,∆tj∗)). (58)

What remains is an upper bound for the plain vanilla European option
value, E(S0, (M − 1)∆tj∗), which is given as follows.

Result 4.1. The value of a plain vanilla European call option can be bounded
by

vC(S0, τ) ≤ S0e
−qτ ,

with S0, τ, q the initial underlying price, the time to maturity and the dividend
rate, respectively.

The value of a vanilla European put option can be bounded by

vP (S0, τ) ≤ Ke−rτ ,

with K, r the strike price and the interest rate, respectively.

Summarizing, the error in the arithmetic Asian option with M monitoring
dates can be approximated by:

|ε| ∼

 O((|εF |+ 2
b− a

N |εq|)(M − 1)S0e
−q∆tj∗ ), for a call,

O((|εF |+ 2
b− a

N |εq|)(M − 1)Ke−r∆tj∗ ), for a put.
(59)

For f(y|x) ∈ C∞[a, b], εF and εq converge exponentially with respect to N
and nq, respectively. Therefore, as N and nq increase, the error in the Asian
option price decreases exponentially:

|ε| ≤ P̄ (N,nq)(exp(−(N − 1)νF ) + exp(−(nq − 1)νq)),
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where P̄ (N,nq) is a term which varies less than exponentially with respect to
N and nq, and νF > 0, νq > 0.

When the probability density function has a discontinuous derivative, the
error in the Asian option price converges algebraically.

5 Numerical results

In this section numerical results for Asian options under the Black-Scholes (BS),
CGMY [5] and Normal Inverse Gaussian (NIG) [1] models are presented. We
use the same parameter sets as in [12], based on three test cases:

� BS case: r = 0.0367, σ = 0.17801.

� CGMY case: r = 0.0367, C = 0.0244, G = 0.0765,M = 7.5515,
Y = 1.2945.

� NIG case: r = 0.0367, α = 6.1882, β = −3.8941, δ = 0.1622.

These parameters have been obtained by calibration (see [12]). The character-
istic functions for these processes are presented in appendix B. In all numerical
examples we set time to maturity T − t0 = 1, and S0 = 100. Strike price, K,
and the number of monitoring dates, M , vary among the different experiments.

MATLAB 7.7.0 is used and the CPU is an Intel(R) Core(TM)2 Duo CPU
E6550 (@ 2.33GHz Cache size 4MB). CPU time is recorded in seconds.

The absolute error that we report below is defined as the absolute value of
the difference between the approximate solution at t0 and S0, and a reference
value which is computed by the ASCOS method with a large number of terms in
the Fourier cosine expansions. The values have also been compared to reference
values in the literature. With our own reference values however we can compare
up to a higher accuracy.

5.1 Geometric Asian options

First of all, we confirm the exponential convergence of the ASCOS method for
geometric Asian options under the Black–Scholes model, for which an analytic
result is available, in Figure 1. For increasing N -values the error decreases
exponentially.

The performance of the ASCOS pricing method for the NIG and CGMY
test cases is presented in Table 1. Geometric Asian call option prices with 12, 50
and 250 monitoring dates are shown. Reference values are taken from ASCOS
computations with N = 4096. In all examples our method also gives the same
option prices, up to a basis point, as those presented in [12].

From Table 1 we see that the option prices have converged up to basis point
precision with N = 128 and N = 512, respectively, for the NIG and CGMY
test cases. Exponential convergence is observed for these Lévy processes and,
as a result, geometric Asian options can be priced within milli-seconds by the
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Figure 1: Convergence of geometric Asian options under the BS model with
M = 250, S0 = 100,K = 90.

NIG model
M N = 64 N = 128 N = 192

12
abs.error 1.42e-04 2.81e-05 1.33e-08
CPU time 4.9e-04 7.7e-04 8.3e-04

50
abs.error 1.23e-04 3.07e-05 1.24e-08
CPU time 9.3e-04 1.4e-03 2.1e-03

250
abs.error 1.13e-04 3.13e-05 2.11e-08
CPU time 3.1e-03 5.8e-03 8.2e-03

CGMY model

M N = 256 N = 512 N = 1024

12
abs.error 2.1e-03 9.87e-06 6.27e-11
CPU time 2.7e-03 4.1e-03 9.9e-03

50
abs.error 1.20e-02 1.24e-05 6.71e-11
CPU time 1.2e-02 1.7e-02 4.3e-02

250
abs.error 1.16e-02 3.65e-05 3.84e-11
CPU time 0.050 0.10 0.22

Table 1: Convergence of geometric Asian options for the NIG and CGMY test
cases with S0 = 100,K = 110.

ASCOS method. In a comparison with the results in [12], we found that our
timing results are approximately 100 times faster for the NIG test case and 20
times for the CGMY case.

Table 2 presents the convergence behavior when we approximate continuously–
monitored geometric Asian options (M = ∞) by discretely–monitored geomet-
ric Asian options combined with the 4–point Richardson extrapolation (30).
Here d is as defined in (30), that is, discretely–monitored Asian options with
2d, 2d+1, 2d+2, 2d+3 monitoring dates are used to approximate the continuously–
monitored Asian options. The reference values have been obtained by employing
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the ASCOS method with N = 4096,M = 512.

NIG CGMY
d abs.error CPU time abs.error CPU time
1 3.78e-04 0.0018 2.06e-04 0.0120
2 5.92e-05 0.0023 1.21e-04 0.0247
3 3.31e-05 0.0052 5.71e-05 0.0499

Table 2: Convergence of geometric Asian options for the NIG and CGMY cases
with S0 = 100,K = 110. For the NIG model we use N = 128, for the CGMY
model N = 512.

The discretely–monitored Asian prices with 4, 8, 16 and 32 monitoring
dates, i.e., d = 2 have converged to the continuously–monitored Asian price in
Table 2. We need approximately 2 and 25 milliseconds to get the continuously–
monitored Asian option prices for the NIG and CGMY test cases, respectively.
As compared to [12], we achieve a speedup of 20 for the NIG test and the CPU
time for the CGMY case is approximately one–third of that in [12].

5.2 Arithmetic Asian options

First, the error in an arithmetic Asian option under the Black–Scholes model
with 50 monitoring dates is presented in Figure 1, where at the y–axis we have
the logarithm (basis 10) of the absolute error in the Asian option price and at
the x–axis the value of index d, where N = 64d and nq = 100d. The reference
value is obtained by the ASCOS method with N = 4096 (the resulting values
are as in [12]). Exponential convergence in the arithmetic Asian price with
respect to N and nq, increasing simultaneously, is observed in Figure 2.

Figure 2: Convergence of arithmetic Asian options for the BS test case with
M = 50, S0 = 100,K = 90.

Table 3 then presents the convergence and the CPU time of an arithmetic
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Asian option for the NIG test case with M = 12 and M = 50 (monthly and
weekly-monitored, respectively). Reference values are again obtained by setting
N = 4096. Exponential convergence can be seen in Table 3, as the error
decreases exponentially, when nq and N increase linearly. The Asian options
for M = 50 converge up to basis point precision with N = 128 and nq = 200,
where the CPU time is approximately 2.5 seconds. Higher order accuracy can
be achieved as N and nq increase, but the CPU time grows with respect to
nqN

2.

The speed of convergence is not influenced significantly by an increase in
the number of monitoring dates, M , neither is the CPU time.

M time and error
N = 128 N = 256 N = 384
nq = 200 nq = 400 nq = 600

12
abs.error 2.0e-3 1.71e-4 5.16e-6
CPU time 2.41 15.13 46.09

50
abs.error 2.26e-4 6.94e-5 2.17e-6
CPU time 2.43 15.16 46.22

Table 3: Convergence of arithmetic Asian options for the NIG test case with
S0 = 100,K = 110.

Furthermore, the convergence remains robust when the number of monitor-
ing dates increases, which gave rise to convergence difficulties for other pricing
methods. A larger number of Fourier cosine terms is required (thus resulting
in a larger CPU time) as compared to monthly or weekly-monitored examples.
This can be seen in Table 4, where arithmetic Asian options for the NIG and
CGMY test cases, with 250 monitoring dates (daily-monitored), are presented.
With N = 256, nq = 400 and N = 320, nq = 500, we find converged option
prices (up to basis point precision) for the NIG and CGMY cases, respectively.

Due to the exponential convergence rate of the Clenshaw–Curtis quadra-
ture and the Fourier cosine expansion, the number of terms needed remains lim-
ited, which influences the CPU time positively. In [12] an accuracy of O(10−3)
was reached in approximately 210 seconds for the same CGMY test case with
M = 250. The ASCOS method reaches O(10−4) accuracy in approximately 27
seconds.

A comparison of the CPU times in Tables 3 and 4 shows that the ASCOS
CPU time does not increase from M = 12 to M = 250, because the quadrature
rule, which dominates the CPU time, is used only once. This is especially
beneficial for pricing continuously-monitored Asian options.

In Table 5 we finally compute continuously–monitored arithmetic Asian
call options under the NIG model with S0 = 100 and different strikes, by the
repeated Richardson extrapolation based on discretely–monitored arithmetic
Asian call options (30). The option prices converge somewhat slower with
respect to parameter d, as compared to the geometric Asian case. However, the
CPU time of the ASCOS method does not increase when d increases, so that
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NIG
time and error

N = 128 N = 256 N = 512
nq = 200 nq = 400 nq = 800

abs.error 7.8e-3 9.33e-5 6.94e-7
CPU time 2.42 15.23 104.28

CGMY
time and error

N = 256 N = 320 N = 384
nq = 400 nq = 500 nq = 600

abs.error 1.6e-3 4.69e-4 8.96e-5
CPU time 14.92 26.61 44.41

Table 4: Convergence of arithmetic Asian options for the NIG and CGMY test
cases with S0 = 100,K = 110,M = 250.

we can use a larger value for d, for instance d = 6 (M = 64, 128, 256, 512) and
obtain accurate results.

d
K = 90 K = 100

Option value CPU time Option value CPU time
4 12.6748 60.05 5.1191 60.01
5 12.6744 60.13 5.1186 59.94
6 12.6743 60.35 5.1185 60.17

Table 5: Convergence of arithmetic Asian options under the NIG model with
S0 = 100, N = 256, nq = 400.

6 Conclusions

In this article, we proposed an efficient pricing method for European-style Asian
options, the ASCOS method, based on Fourier cosine expansions and Clenshaw–
Curtis quadrature. The method performs well for different Lévy processes,
different parameter values and different numbers of Asian option monitoring
dates. The method is accompanied by a detailed error analysis, giving evidence
for an exponential convergence rate for geometric and arithmetic Asian options.
Due to the exponential convergence, our pricing method is highly efficient and
significant speedup has been achieved compared to competitor pricing methods.

The ASCOS method performs in a robust manner when the number of mon-
itoring dates increases, and, interestingly, the CPU time does not increase sig-
nificantly. This makes the pricing method especially advantageous for weekly-
and even daily-monitored arithmetic Asian options, as well as for continuously–
monitored Asian options whose value is approximated by discretely–monitored
Asian options in combination with Richardson extrapolation.
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A Beta function formation

After some manipulations with symbolic software, we find that integral (26)
can be written in a form with incomplete Beta functions, as follows∫ b

a
(ex + 1)i kπ

b−a cos((x− a)
lπ

b− a
)dx
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1
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d
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ik

d
))), (60)

where i =
√
−1, d = b−a

π and β(x, y, z) is the incomplete Beta function

β(x, y, z) =
∫ x

0
ty−1(1− t)z−1dt.

The computation of the incomplete Beta functions in (60) is involved with these
complex-valued arguments.

B Lévy processes and characteristic functions

One problem with the GBM model is that it is not able to reproduce the
volatility skew or smile present in most financial markets. Over the past few
years it has been shown that several exponential Lévy models are, at least to
some extent, able to reproduce the skew or smile. One particular model we will
consider is the CGMY model [5]. The underlying Lévy process is characterized
by the triple (µ, σ, νCGMY), where the Lévy density is specified as:

νCGMY(x) =


C

exp (−G|x|)
|x|1+Y

if x < 0

C
exp (−M |x|)
|x|1+Y

if x > 0.
(61)
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with parameters C,G,M and Y . Conveniently, the characteristic function of
the log-asset price can be found in closed-form as:

φ(u;x0) = exp
(
iu(x0 + µt)− 1

2
u2σ2t

)
ϕCGMY(u, t), (62)

with x0 = log(S0) and

ϕCGMY(u, t) = exp
(
tCΓ(−Y )

(
(M − iu)Y −MY + (G+ iu)Y −GY

))
,

where Γ(x) is the gamma function.
When C = 0 the model reduces to the GBM model.
The Normal Inverse Gaussian (NIG) process [1] is a variance-mean mixture

of a Gaussian distribution with an inverse Gaussian. The pure jump character-
istic function of the NIG model reads

ϕNIG(u, t) = exp
(
tδ

(√
α2 − β2 −

√
α2 − (β + iu)2

))
,

with α, δ > 0 and β ∈ (−α, α − 1). The α-parameter controls the steepness
of the density; β is a skewness parameter: β > 0 implies a density skew to
the right, β < 0 a density skew to the left, and β = 0 implies the density
is symmetric around 0. δ is a scale parameter in the sense that the rescaled
parameters α→ αδ and β → βδ are invariant under location-scale changes of x.
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