
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 11-05

Comparison of the Deflated Preconditioned Conjugate
Gradient method and parallel direct solver for

composite materials.

T.B. Jönsthövel, M.B. van Gijzen, S. MacLachlan, C.
Vuik, A. Scarpas

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2011

Copyright 2011 by Department of Applied Mathematical Analysis, Delft,
The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission from
Department of Applied Mathematical Analysis, Delft University of Technol-
ogy, The Netherlands.

COMPARISON OF THE DEFLATED PRECONDITIONED CONJUGATE

GRADIENT METHOD AND PARALLEL DIRECT SOLVER FOR COMPOSITE

MATERIALS

T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

Abstract. The demand for large FE meshes increases as parallel computing becomes the stan-
dard in FE simulations. Direct and iterative solution methods are used to solve the resulting
linear systems. Many applications concern composite materials, which are characterized by large
discontinuities in the material properties. An example of such a material is asphalt concrete,
which is a mixture of components with large differences in material stiffness. Such discontinuities
give rise to small eigenvalues that negatively affect the convergence of iterative solution methods
such as the Preconditioned Conjugate Gradient (PCG) method. This paper considers the Deflated
Preconditioned Conjugate Gradient (DPCG) method for solving such systems within reasonable
time using the rigid body modes of sets of elements with homogeneous material properties. We
compare the performance of the parallel direct solver MUMPS, the PCG method and the DPCG
method for the FE mesh of a real asphalt core sample. The mesh is obtained using a CT scan.
We show that the DPCG method is the method of choice for large linear systems with respect to
the wall clock time, storage and accuracy of the solution.

1. Introduction

Finite element computations are indispensable for the simulation of material behavior. Recent
developments in visualization and meshing software give rise to high-quality but very large meshes.
As a result, large systems with millions of degrees of freedom need to be solved. When choosing a
solver we distinguish between direct solution methods and iterative methods. In recent years parallel
computing has become the standard in FE software packages, therefore only parallel algorithms are
considered. In our application, the finite element stiffness matrix is symmetric, positive definite and
therefore the Preconditioned Conjugate Gradient (PCG) method is the iterative method of choice.
Furthermore the PCG method is well suited for parallel computing.

Many finite element computations involve simulations of inhomogenous materials. The difference
in properties of materials lead to large differences in the entries of the stiffness matrix. We have
shown in [10] that these jumps slow down the convergence of the PCG method. By decoupling re-
gions with homogeneous material properties with a deflation technique a more robust PCG method
has been constructed: the Deflated Preconditioned Conjugate Gradient (DPCG) method. The

2000 Mathematics Subject Classification. 65F10, 65F08, 65Z05.
Key words and phrases. deflation, preconditioners, conjugate gradients, rigid body modes, CT scan, structural

mechanics.
†Delft University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics, 2628CN Delft,

the Netherlands (t.b.jonsthovel@tudelft.nl, a.scarpas@tudelft.nl).
‡Delft University of Technology, Faculty Electrical Engineering, Mathematics and Computer Science, Department

of Applied Mathematical Analysis, 2628CN Delft, the Netherlands (m.b.vangijzen@tudelft.nl, c.vuik@tudelft.nl).
�Tufts University, Department of Mathematics, Bromfield-Pearson Building, 503 Boston Avenue, Medford, MA

02155, USA (scott.macLachlan@tufts.edu).

1

2 T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

DPCG method proposed in [10] is an extension of the technique of subdomain deflation, introduced
in [13]. There is a correlation between the number of rigid body modes of sub-bodies of materials
contained within the FE mesh and the number of small eigenvalues of the scaled stiffness matrix.
We used rigid body modes combined with existing deflation techniques to remove those small eigen-
values from the spectrum of the scaled stiffness matrix yielding a stable and robust adaptation of
the PCG method. Like the PCG method, the DPCG method is well suited for parallel computing.

The alternative for iterative methods are direct methods. An important advantage of direct
solution methods is their robustness: they can to a large extend be used as a black box for solving a
wide range of problems. For this reason they are still popular for use in general finite element codes.
Several high quality, well parallelisable public domain direct solvers exist. Of these we mention for
example SuperLU [12], SPIKE [14], PARDISO [16], ILUPACK [3], MUMPS [1] and those solvers
contained in PETSc. For our comparisons we have selected MUMPS as direct solver because it has
support for element-based data structures which coincides with the assembly of the stiffness matrix
in our FE code. Moreover it is easy to embed into existing software due to its interface and it is
known for good performance on parallel, distributed memory hardware.

In this paper we will compare the performance of MUMPS, PCG and DPCG within a parallel
environment on the solution of the large systems that come from FE meshes. We will provide an
overview of the DPCG method proposed in [10] discuss the parallel implementation of the DPCG
method into an existing FE software package. Finally, we present numerical experiments on FE
meshes from real life cores of asphalt c oncrete as case studies for this comparison.

2. Problem definition: composite materials

Until recently, because of the extremely long execution time, memory and storage space demands,
the majority of FE simulations of composite materials were performed by means of homogenization
techniques [6]. Unfortunately these techniques do not provide an understanding of the actual
interaction between the components of the material. Nevertheless, it is known that component
interaction is the most critical factor in determining the overall mechanical response of the composite
material.

In this paper, we consider asphalt concrete as an example of a composite material. It consists
of a mixture of bitumen, aggregates and air voids. Obviously the difference between the stiffness
of bitumen and the aggregates is significant, especially at high temperatures. The surge in re-
cent studies on wheel-pavement interaction show the importance of understanding the component
interaction within asphalt concrete, demanding high quality FE meshes.

We obtain accurate finite element meshes of the asphalt concrete materials by means of Computed
Tomography (CT) X-ray scans and additional, specialized software tools like Simpleware ScanFE
[17].

We use the computational framework described in [6] to simulate the response of a composite
material that is subjected to external forces by means of small load steps. By using the FE method
we obtain the corresponding stiffness matrix. Solving linear system (1),

(1) Ku = f

is the most time consuming computation of the FE simulation. In this equation u represents the
change of displacement of the nodes in the FE meshes and f the force unbalance in the system,
which is determined by the difference of the internal forces within the system and the external
forces exerted on the system. The internal forces are computed by solving non-linear equations for
each finite element. The computing time and costs are negligible compared to solving linear system

COMPARISON OF DPCG AND PARALLEL DIRECT SOLVER FOR LARGE COMPOSITE MATERIALS 3

(1). The stiffness matrix K is symmetric positive definite for elastic, constrained systems, hence
∀u �= 0 : uTKu > 0 and all eigenvalues of K are positive. Within the context of mechanics, 1

2u
TKu

is the strain energy stored within the system for displacement vector u, [2]. Energy is defined as a
non-negative entity, hence the strain energy must be non-negative also.

3. Solvers

3.1. Direct solution method. Solving system (1) can be done by computing the LU -decomposition,
or more specific in the case of a symmetric system, the K = RTR decomposition of the stiffness
matrix. The well known algorithm for finding RTR is the Cholesky algorithm, a modified version
of the Gaussian elimination. For singular matrices the Cholesky decomposition cannot be deter-
mined due to zero pivots. Many adaptions of the Cholesky algorithm and new methods have been
developed to obtain more robust and faster algorithms for the determination of the decomposition.
In general the conditioning as well as the bandwidth of the matrix are the most important factors
with respect to work and stability for any direct solution method. We refer to [8] for an extensive
overview of direct solution methods.

We consider direct solution methods as black-box solution methods. Direct solution methods are
guaranteed to find the decomposition for well-conditioned, non-singular matrices without requiring
any prior knowledge of the linear system. For this reason direct solution methods are widely used
within the field of engineering. Moreover, when the decomposition of the stiffness matrix has been
computed, solving system (1) for multiple right sides is cheap in terms of work and fast in time.
Hence, many different linear systems can be solved within a small amount of time if the stiffness
matrix remains unchanged and its decomposition has been computed. An obvious application is
the use of direct solution methods where the tangent stiffness matrix is kept constant during the
non-linear solution process. The main disadvantage of direct solution methods is the high demand
of storage, potentially the full bandwidth of the matrix. Therefore direct solution methods are less
favorable when solving large systems of equations resulting from 3D FE meshes containing high
connectivity of the elements.

3.2. Preconditioned Conjugate Gradient method. Another class of solvers are the Krylov
methods. Those methods find a solution for system (1) within a given accuracy.

Because K is SPD, CG [9] will be used to solve (1) iteratively. The CG method is based on
minimizing the energy error of the i− th solution over the Krylov subspace,

(2) Ki−1(K; r0) = span{r0,Kr0, ...,K
i−1r0}.

The energy norm is defined as �u�K =
�
uTKu

� 1
2 . We note that minimizing the error in the

K-norm is in fact minimizing the strain energy over the Krylov subspace Ki−1(K; r0). This implies
that for a given distributed static load we construct a displacement vector that has an optimal
distribution of the force over the material.

Theorem 10.2.6 in [8] provides a bound on the error of CG. Let us denote the ith eigenvalue of
K in nondecreasing order by λi(K) or simply by λi. After k iterations of the CG method, the error
is bounded by,

(3) �u− uk�K ≤ 2�u− u0�K
�√

κ− 1√
κ+ 1

�k

4 T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

where κ = κ(K) =
λn

λ1
is the spectral condition number of K, and the K-norm of u is given by

�u�K =
√
uTKu. The error reduction capability of CG is limited when the condition number is

large. The condition number of K will increase when the number of elements increases or when
the stiffness of the materials changes. For plastic and viscous behavior this can result in a series
of increasing number of iterations as the stiffness changes every load or time step. However, this
is out of the scope of this paper but will need future research as plasticity and viscosity are key to
realistic simulations.

The convergence of CG is not only affected by the condition number but also by the number and
distribution of very small eigenvalues, which has been shown in [19]. The eigenvectors corresponding
to the smallest eigenvalues do have a significant contribution to the global solution but may need a
significant number of iterations to convergence locally. Hence, very small eigenvalues can increase
the number of iterations. We will see that the number of aggregates has a direct correlation with
the number of smallest eigenvalues of K. Increasing the number of aggregates may therefore result
in more very small eigenvalues and deterioration of the convergence rates.

To improve the performance of CG we change the linear system resulting in a problem with
more favorable extreme eigenvalues and/or clustering. The most efficient way to do this is by
preconditioning of the linear system. Preconditioners are essential for the performance of iterative
solvers and no Krylov iterative solver can perform well without one [15].

The preconditioned stiffness matrix reads

(4) M−1Ku = M−1f,

where matrix M is the left preconditioner which is assumed to be symmetric, positive definite
too. The CG iteration bound of equation (3) also applies to the preconditioned matrix. The pre-
conditioning matrix must satisfy the requirements that it is cheap to construct and it is inexpensive
to solve the linear system Mv = w. This is because preconditioned algorithms need to solve the
linear system Mv = w every iteration step. A rule of thumb is that M must resemble the original
matrix K to obtain eigenvalues that cluster around 1. Obviously M = K would be the best but
most expensive choice and is equivalent to solving the original system. Common choices of M are
the diagonal of K, which is known as diagonal scaling, and the Incomplete Cholesky factorization
using a drop tolerance for the fill-in.

We consider the PCG method method of choice when solving a large linear system which is well-
conditioned. PCG iterations are cheap, and the storage demands are modest and fixed. However,
the condition number of the matrix, and therefore the eigenvalues, determine the performance of the
PCG method. The amount of iterations needed for convergence depends on the condition number.
Moreover, the residual can be small, but the corresponding approximate solution may be far from
the true solution. Hence, stability and robustness are important aspects of the PCG method that
need extra attention. Those can be improved by using the right preconditioners, but those may be
expensive in terms of work and storage. Within the field of engineering the PCG method remains
widely used for it is easy to implement. The PCG method uses the right hand side for determining
the solution of (1), hence it is less favorable compared to direct solution methods when using the
Modified Newton Method with initial stiffness. However, for highly non-linear materials it may be
advantage to use the PCG method as the stiffness matrix may be changed within every iteration
step of the full Newton Method, yielding less iterations and thus evaluation of the internal forces.

COMPARISON OF DPCG AND PARALLEL DIRECT SOLVER FOR LARGE COMPOSITE MATERIALS 5

This reduces computation time as it is not always required to find an accurate solution, for example
when solving the tangent for the non-linear solution process.

3.3. Deflated Preconditioned Conjugate Gradient method. We have shown in [10] that the
number of iterations to convergence for preconditioned CG is highly dependent on the number of
aggregates in a mixture as well as the ratio of the E moduli. Increasing the number of aggregates
introduces correspondingly more (clustered) small eigenvalues in stiffness matrix K. The jumps in
the E moduli are related to the size of the small eigenvalues. We know from [19] that the smallest
eigenvalues correspond to the slow converging components of the solution.

When a matrix Kunc represents a rigid body, i.e. an unconstrained mechanical problem (with
no essential boundary conditions) the strain energy equals zero for the rigid body displacements
as the system remains undeformed and the matrix is positive semi-definite, ∀u : uTKuncu ≥ 0.
More specifically, the number of rigid body modes of any unconstrained volume equals the number
of zero-valued eigenvalues of its corresponding stiffness matrix. When a matrix has zero-valued
eigenvalues the kernel N (A) is non-trivial. Moreover the basis vectors of the kernel of a stiffness
matrix represent the principal directions of the rigid body modes. In general, two types of rigid
body modes exist: translations and rotations. In three dimensions this implies six possible rigid
body modes and hence six kernel vectors can be associated with the rigid body modes.

For any finite element computation we consider subsets of unconstrained elements as rigid bodies.
Their corresponding (sub) stiffness matrices are assemblies of the element stiffness matrices. In the
context of asphalt concrete the aggregates are sub-sets of elements, with their E modulus as a
shared property, as well as the bitumen and the air voids.

In [10] we conclude that the number of aggregates times the number of rigid body modes per
aggregate (6 in three dimensions) is equal to the number of small eigenvalues of stiffness matrix
K. By using the deflation technique we augment the Krylov subspace with pre-computed rigid
body modes of the aggregates and remove all corresponding small eigenvalues from the system. As
a result the number of iterations of the Deflated Preconditioned Conjugated Gradient method is
nearly not affected by jumps in material stiffness or by the number of aggregates.

For the description of deflation we split the solution of (1) into two parts [7]

(5) u =
�
I − PT

�
u+ PTu,

where P is a projection matrix that is defined by,

(6) P = I −KZ(ZTKZ)−1ZT , Z ∈ Rn×m

where Z is the deflation subspace, i.e., the space to be projected out of the system, and I is
the identity matrix of appropriate size. We assume that m � n and Z has rank m. Under this
assumption Kc ≡ ZTKZ is symmetric positive definite and may be easily computed and factored.
Hence,

(7)
�
I − PT

�
u = ZK−1

c ZTKu = ZK−1
c ZT f

can be computed immediately. We only need to compute PTu. Because KPT is symmetric,

(8) KPT = PK,

we solve the deflated system,

(9) PKû = Pf

for û using the CG method and multiply the result by PT . We should note that (9) is singular.
However, the projected solution PT û is unique, it has no components in the null space, N (PK) =

6 T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

span{Z}. Moreover, from [11], [19] we learn that the null space of PK never enters the iteration
process and the corresponding zero-eigenvalues do not influence the solution.

To obtain a useful bound for the error of CG for positive semi-definite matrices we define the
effective condition number of a semi-definite matrix D ∈ Rn×n with corank m to be the ratio of
the largest and smallest positive eigenvalue analogue to equation (3),

(10) κeff(D) =
λn

λm+1
.

Theorem 2.2 from [7] here repeated as Theorem 3.1 implies that a bound on the condition number
of PK can be obtained.

Theorem 3.1. Let P as defined in (6) and suppose there exists a splitting K = C+R such that C
and R are symmetric positive semi-definite with N (C) = span{Zk} the null space of C. Then for
ordered eigenvalues λi,

(11) λi(C) ≤ λi(PK) ≤ λi(C) + λmax(PR).

Moverover, the effective condition number of PK is bounded by,

(12) κeff(PK) ≤ λn(K)

λm+1(C)
.

Proof. See [7] (p445). �
The large discontinuities in matrix entries due to strongly varying material properties in the

FE discretization induce unfavorable eigenvalues (either large or small) in the spectrum of stiffness
matrix K. The effective condition number of PK is bounded by the smallest eigenvalue of C and
the largest eigenvalue of K. To remove the discontinuities and thus eliminating those unfavorable
eigenvalues we decouple the sub-matrices of stiffness matrixK that correspond to different materials
by finding the correct splitting. The eigenvalues of the decoupled sub-matrices determine the
spectrum of PK. However, due to the large differences in stiffness the value of the eigenvalues for
different sub-matrices can vary over several order of magnitudes. We use a preconditioner to map
the spectra of the sub-matrices onto the same region, around 1. The deflation technique can be
used in conjunction with ordinary preconditioning techniques such as diagonal scaling or Incomplete
Cholesky factorization. This is a two-level approach, treating the smallest eigenvalues and largest
eigenvalues by deflation and preconditioning respectively. By choosing a smart combination of
deflation and preconditioning a more favorable spectrum is obtained, yielding a smaller condition
number and less iterations. For a symmetric preconditioner M = LLT , e.g. diagonal scaling, we
extend the result of Theorem 3.1 to

(13) κeff(L
−1PKL−T) ≤ λn(L−1KL−T)

λm+1(L−1CL−T)
.

We introduce a strategy to construct the deflation space Z to obtain decoupled problems using
Theorem 3.1. We observe that null spaces of sets of elements are represented by the rigid body
modes of those sets of elements. By choosing sets of elements we define C and the null space of
C is our deflation space, which is by definition spanned by the rigid body modes. In Appendix A
an algorithm is given for computing rigid body modes of sets of elements. The matrix C consists
of the assembly of all finite elements that belong to a body of material. The matrix R consists
of the assembly of all finite elements that share nodes with the elements on the boundary of a

COMPARISON OF DPCG AND PARALLEL DIRECT SOLVER FOR LARGE COMPOSITE MATERIALS 7

body of material but that are not contained within the sub-mesh. We note that if some elements
of a less stiff material are assigned to the element set of a stiffer material, the material stiffness
matrices are not decoupled. So for instance, when a node belongs to two elements and two different
materials and is assigned to the wrong (least stiff) element with respect to the splitting of K, then
the preconditioning step will reintroduce the coupling.

The DPCG method [18] is given as Algorithm 1.

Algorithm 1 Deflated preconditioned CG solving Ku = f
Select u0. Compute r0 = (f − Ku0), set r̂0 = Pr0 and p0 = r̂0
Solve My0 = r̂0 and set p0 = y0
for j = 0, 1, ... until convergence do

ŵj = PKpj

αj =

�
r̂j ,yj

�

�
ŵj ,pj

�

ûj+1 = ûj + αjpj
r̂j+1 = r̂j − αjŵj
Solve Myj+1 = r̂j+1

βj =

�
r̂j+1,yj+1

�

�
r̂j ,yj

�

pj+1 = yj+1 + βjpj
end for
u = ZK−1

c ZT f + PT ûj+1

We consider the DPCG method as an extension to the PCG enhancing stability and robustness
when solving for a symmetric, positive definite matrix. The DPCG method yields extra storage for
the deflation matrix Z. Moreover PKu in Algorithm 1 needs to be computed in every iteration.
However, the unfavorable eigenvalues due to the discontinuities in the stiffness matrix are treated
by the deflation method. Therefore the convergence of the DPCG method is assured for even highly
ill-conditioned problems. Moreover, the accuracy of the acquired solution is better compared to the
PCG method.

4. Parallel computing

4.1. Parallel paradigm: domain decomposition. We have implemented the computational
framework described in [6] in the FE software package CAPA-3D [4]. In the scope of this research
we have parallelized CAPA-3D on basis of domain decomposition. This section describes the basic
principles behind parallelism applied to FE meshes based on domain decomposition. We disregard
all issues related to implementation. Introduce domain Ω which is divided into D subdomains
yielding Ω =

�D
d=1 Ωd. Domain Ω holds E elements, each subdomain holds Ed elements, hence

E =
�D

d=1 Ed. Elements can share nodes - degrees of freedom - that lie in multiple subdomains,
but no element is contained in more than one subdomain. Element wise operations can be done
independently for each subdomain as long as the values of any quantity at shared nodes are updated
after finishing the operation. Examples of elementwise operations are numerical integration, matrix-
vector multiplications, dot products etc. The iterative solution methods PCG and DPCG consist of
matrix-vector multiplications, dot products and the preconditioning operator. The direct solution
method is provided as a black box and hence we do not have to define any special parallel operations
for implementation.

4.1.1. Subdomain mapping operators. We define two operators for mapping vectors and matrices on
subdomains onto the global domain and scaling of vectors for shared nodes in multiple subdomains.
The mapping operator Md is essentially identical to the finite element connectivity matrix Ne for

8 T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

assembling stiffness matrix Ke into K. The operator Md has dimension Nd × N and consists of
one and zero entries. We can map vector ud from subdomain Ωd onto domain Ω by u = MT

d ud.
The averaging operator Wd is diagonal and has dimension Nd ×Nd. It contains ones on the main
diagonal when the corresponding degree of freedom lies only in the subdomain Ωd. It contains 1
over the number of subdomains it is contained in when multiple subdomains are involved.

4.1.2. Parallel matrix-vector product. We define the global matrix-vector product as Ku = v where
K and u have dimensionN×N andN×1 respectively. The parallel matrix-vector product yields the
same result v but is computed on the subdomains separately by computing {KΩ1uΩ1 , ...,KΩDuΩD}
and combining {vΩ1 , ..., vΩD} where KΩi and uΩi have dimension Nd×Nd and Nd×1 at subdomain

Ωd respectively. We have v =
�D

d=1 M
T
d vd. We emphasize that in this formulation the entries of

the shared degrees of freedom in the vectors ud should be identical for each domain it is defined on.

4.1.3. Parallel dot product. We compute the global dot product as λ = uTu. The parallel dot
product yields the same result λ but is computed on the subdomains separately by computing
λd = uT

d Wdud where Wd and ud and have dimension Nd × Nd and Nd × 1 at subdomain Ωd

respectively. We have λ =
�D

d=1 λd. We emphasize that in this formulation the entries of the
shared degrees of freedom in the vectors ud should be identical for each domain it is defined on.

4.2. MUMPS: parallel direct solver. The parallel direct solution method of choice is MUMPS,
a parallel sparse direct solver [5]. The solver is based on a multifrontal approach and we refer to
[1] for any details on the theoretical background. The solver is implemented and available as a
open source code and can be easily embedded within existing FE codes based on parallelization by
subdomains. The solver can be used within a shared memory as well as distributed memory cluster
architecture.

4.3. Parallel implementation PCG. The algorithm of PCG can be found in [8]. We observe
that the method is constructed from basic linear algebraic operations. As described in previous
Section only the matrix-vector operation and inner product require communication. All other linear
algebraic operations can be done locally, i.e. there is no communication with other subdomains.
This makes the PCG method easy to parallelize. The other operation that needs to be taken care
of explicitly is the preconditioner. In this research we consider diagonal scaling and Incomplete
Cholesky decomposition. We note that diagonal scaling is in fact a matrix vector operation. The
Incomplete Cholesky decomposition of the stiffness matrix is only computed locally on each sub-
domain, although losing global accuracy but avoiding communication with other subdomains. We
note that the stiffness matrix on a subdomain can be singular, this can be avoided when the values
of the main diagonals of the local stiffness matrices equal the values of the global stiffness matrix.
This will ensure non-singularity and robustness of the Incomplete Choleskey decomposition. In our
implementation we have used ILUPACK [3] for computing the Incomplete Cholesky decomposition
on each subdomain.

4.4. Parallel implementation DPCG. The DPCG method given by Algorithm 1 is almost simi-
lar to the standard PCG algorithm, but the parallelization of the DPCG method involves two steps.
First the construction of the deflation matrix Z on each subdomain and second the evaluation of
PKx for each iteration of DPCG.

By using domain decomposition we do not store any vector or matrix globally, hence, we do not
assemble the global deflation matrix Z. However, because materials may lie in multiple subdomains
all the local deflation matrices Z must have the same number of columns, i.e. deflation vectors.

COMPARISON OF DPCG AND PARALLEL DIRECT SOLVER FOR LARGE COMPOSITE MATERIALS 9

For each domain the values of entries of the deflation vectors that belong to subdomain boundary
nodes are communicated to neighboring subdomains. We only store the non-zero elements of local
Z, hence this approach will have a small memory overhead.

The evaluation of PKx can be optimized. Consider,

PKx = Kx− ZKE−1ZTKx

where K ∈ Rn×n, Z ∈ Rn×k. Here Kx = y is computed as usual ZK = Z̃ ∈ Rn×k and E−1 =
(ZTKZ)−1 are computed only once, before entering the Krylov process (iteration loop). Hence, for
each iteration of DPCG we have three extra operations compared to PCG,

ZT y = ỹ, ỹ ∈ Rk×1

E−1ỹ = ŷ, ŷ ∈ Rk×1

Z̃ŷ = ȳ, ȳ ∈ Rn×1.

Communication between subdomains is needed for the computation of KZ, E and ZT . The coarse
matrix E is equal on each subdomain with dimension k × k and its inverse is determined on each
subdomain simultaneously. On iteration level only ZT involves a parallel communication at the cost
of k parallel inner products of k×1 sized vectors. The weakness of the (parallel) DPCG method lies
within the evaluation of KZ which is in fact k parallel matrix vector multiplications. Considering
that matrix vector multiplications are the most time consuming part of the PCG algorithm we
prefer to have k relatively small.

5. Numerical experiments

The case given in Figure 1 is a FE mesh of a real life sample of asphaltic material obtained from
CT scan. Both experiments in this section concern the analysis of the same sample of material
but different mesh sizes; 2,9 and 4,9 million degrees of freedom respectively. We compare MUMPS,
DPCG and PCG in combination with Incomplete Cholesky with drop tolerance 10−2 and diagonal
scaling. The case involves a mixture of materials that is subjected to an external force applied to
the upper boundary of the volume. Zero displacement boundary conditions are imposed on three
sides of the volume, this is homogenous Dirichlet boundary conditions to all degrees of freedom
in the x, z-, x, y- and y, z- planes for y = 0, z = 0 and x = 0 respectively. These materials give
rise to coupled partial differential equations [6]. The experiments make use of the same set of
material parameters. We distinguish between three materials: aggregates, bitumen, and air voids.
The corresponding stiffness coefficients (E modulus) are given in Table 1 and are the dominating
contributions to the entries of the stiffness matrix. We have implemented MUMPS, PCG and
DPCG into the existing parallel FE software package CAPA-3D [4]. All experiments were done
on a cluster of Dell workstations containing 8 CPUs Intel Xeon E5450, running at 3.00GHz and
connected by Infiniband.

Table 1. E modulus for different materials

aggregate bitumen air voids
69000 5000 100

10 T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

Figure 1. FE mesh that consists of 7,977,448 elements representing cube of as-
phaltic material containing aggregates (light green), bitumen (dark green) and air
voids (blue).

5.1. Experiment 1. The results of the computation of the solution for equation (1) are given in
Table 2. The deflation space of the DPCG method consists of the rigid body modes of the bodies
corresponding to the three different materials. Moreover, we have also appended the deflation space
with the rigid body modes of the subdomains to increase stability for the Incomplete Cholesky
preconditioning. Therefore we have 438 and 342 deflation vectors for the DPCG method with and
without the subdomain rigid body modes respectively. We consider two tolerances TOL=10−2,
10−6 due to utilization of the iterative solver. In many engineering applications the solution to
equation (1) does not need to be accurate because it is computed when using the Newton Method
for solving non-linear equations.

The wall clock time for MUMPS has been highlighted as it is the fastest solution method for
solving with higher accuracy. Comparing the iterative solution methods in terms of wall clock
time, DPCG in combination with the Incomplete Choleskey preconditioning without subdomain
deflation is the fastest solution method for tolerance TOL=10−2. and therefore printed in italics.
We also observe from the table what can be expected of the preconditioners and the deflation in
terms of number of iterations. This is also illustrated by the plots of the convergence of PCG
in Figure 3 and DPCG for diagonal scaling and Incomplete Cholesky preconditioning in Figures
4(a) and 4(b) respectively. The convergence curve of the PCG method shows clear plateaus due
to the unfavorable eigenvalues of the stiffness matrix related to the discontinuous coefficients for
both preconditioners. The convergence curve of the DPCG method contains no plateaus as the
unfavorable eigenvalues have been removed from the spectrum of the projected stiffness matrix.
The difference in effectiveness of the preconditioners is clearly visible as the reduction of iterations
using Incomplete Cholesky preconditioning instead of diagonal scaling is roughly a factor of 3 for
both the PCG and the DPCG method. The addition of the subdomain deflation vectors has no
real (positive) influence on the convergence of DPCG.

In Figure 2 we have provided the wall clock time for the different operations of the PCG and
DPCG method. Also the wall clock time of MUMPS is plotted by the dashed line. We compare the
operations for each of the solution methods. What stands out is the trade-off between the quality of
the preconditioner and its wall clock time. The work for the diagonal scaling is negligible compared
to the other operations, but yields much more iterations. The Incomplete Cholesky preconditioning

COMPARISON OF DPCG AND PARALLEL DIRECT SOLVER FOR LARGE COMPOSITE MATERIALS 11

Table 2. Experiment 1: 2,976,627 DOF, wall clock time MUMPS, PCG and
DPCG for different preconditioners and TOL=10−2,10−6 and 10−13

PCG DPCG (342) DPCG (438)
MUMPS diag ilu diag ilu diag ilu

TOL=10−2

iterations - 4105 1481 1431 424 1214 383
cpu(s) - 130 173 104 86 112 93

TOL=10−6

iterations - 7855 2283 4106 1283 3428 1160
cpu(s) - 253 263 253 203 257 207

TOL=10−13

cpu(s) 182 - - - - - -

tends to be roughly 3 times as expensive as the evaluation of the matrix-vector products but reduces
the number of iterations with the same factor. The deflation operation Px is as expensive as the
matrix-vector operation. However for higher accuracy, hence yielding more iterations, the deflation
method needs as much time for the computation of the invariant matrices KZ and E as for the
computation of Px. From Figure 2 it is difficult to judge the effect of adding extra deflation vectors
but we know from the convergence curve that the influence on the performance of DPCG in terms
of iterations is negligible.

0! 50! 100! 150! 200! 250! 300!

PCG DIAG!

PCG ILU!

DPCG DIAG (342)!

DPCG DIAG (438)!

DPCG ILU (342)!

DPCG ILU (438)!

MATRIX-VECTOR!
DOT PRODUCT!
PRECONDITIONING!
COMPUTE AZ!
COMPUTE E!
COMPUTE PX!
OTHER!

!"!#$%
&'&()*%+%

Figure 2. Experiment 1: Wall clock time for different stages of PCG and DPCG
for TOL=10−2,10−6.

5.2. Experiment 2. The results of the computation of the solution for equation (1) are given in
Table 3. The deflation space of the DPCG method consists of the rigid body modes of the bodies
corresponding to the three different materials. Moreover, we have also appended the deflation space
with the rigid body modes of the subdomains to increase stability for the Incomplete Cholesky
preconditioning. Therefore we have 1168 and 1068 deflation vectors for the DPCG method with
and without the subdomain rigid body modes respectively. We again consider two tolerances
TOL=10−2, 10−6.

The wall clock time for the PCG method in combination with diagonal scaling has been high-
lighted as it is the fastest solution method for both tolerances. The MUMPS solver is significantly

12 T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

||
r i||

/|
|r

0
||

PCG DIAG
PCG ILU

Figure 3. Experiment 1: convergence curve of the PCG method for diagonal
scaling and Incomplete Cholesky preconditioners

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

||
r i||

/|
|r

0
||

PCG DIAG
PCG ILU
DPCG DIAG (342 dv)
DPCG DIAG (438 dv)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

||
r i||

/|
|r

0
||

PCG DIAG

DPCG ILU (342 dv)

DPCG ILU (438 dv)

PCG ILU

(b)

Figure 4. Experiment 1: convergence curve of the DPCG method for diagonal
scaling (a) and Incomplete Cholesky (b) preconditioners compared to the PCG
method (diagonal scaling and IC)

slower. Comparing the iterative solution methods in terms of wall clock time, DPCG in combina-
tion with the Incomplete Choleskey preconditioning without subdomain deflation is almost as fast
as the PCG method with diagonal scaling and therefore the preferable solution methods due to the
accuracy of the PCG method in general. Again we observe from the table what can be expected of
the preconditioners and the deflation in terms of number of iterations. This is also illustrated by
the plots of the convergence of PCG in Figure 7 and DPCG for diagonal scaling and Incomplete
Cholesky preconditioning in Figures 8(a) and 8(b) respectively. In this case the addition of the
subdomain deflation vectors has also no real (positive) influence on the convergence of DPCG.

In Figure 5 and 6 we have provided the wall clock time and memory occupation for the different
operations of MUMPS and the PCG and DPCG method. The wall clock time of MUMPS is plotted
by the dashed line. We can validate our conclusions made in the previous experiment regarding the
performance PCG and the DPCG method. However, although the number of dof of experiment 2
is almost 1,5 times bigger than experiment 1 and the number of deflation vectors has increased by a

COMPARISON OF DPCG AND PARALLEL DIRECT SOLVER FOR LARGE COMPOSITE MATERIALS 13

Table 3. Experiment 2: 4,991,679 DOF, wall clock time MUMPS, PCG and
DPCG for different preconditioners and TOL=10−2,10−6 and 10−13

PCG DPCG (1068) DPCG (1164)
MUMPS diag ilu diag ilu diag ilu

TOL=10−2

iterations - 4033 1512 1286 467 1182 444
cpu(s) - 259 352 267 262 300 287

TOL=10−6

iterations - 8070 2951 3910 1438 3516 1372
cpu(s) - 513 660 547 527 598 556

TOL=10−13

cpu(s) 589 - - - - - -

factor of 3 the ratios between the deflation operations and the standard PCG operations are almost
equal for both experiments. This means that the deflation method scales well under increasing
mesh size and the number of deflation vectors. Clearly MUMPS utilizes significantly more memory
for the computation of the decomposition of the stiffness matrix when compared to amount of
memory needed for the storage of Z, E and AZ. In this case the ratio is 1 : 11 in favor of the
DPCG method. We observe a difference in memory occupation for DPCG (1068) and DPCG(1164)
which use 1068 and 1164 deflation vectors respectively. Clearly, adding more deflation vectors to
the deflation subspace does increase the occupation of memory and more than one would expect by
the increase of the number of deflation vectors. However, the added deflation vectors are related
to sub domain deflation and hence densely populated deflation vectors which require significantly
more memory than the sparse aggregate deflation vectors.

0! 100! 200! 300! 400! 500! 600! 700!

PCG DIAG!

PCG ILU!

DPCG DIAG (1068)!

DPCG DIAG (1164)!

DPCG ILU (1068)!

DPCG ILU (1164)!

MATRIX-VECTOR!
DOT PRODUCT!
PRECONDITIONING!

COMPUTE AZ!
COMPUTE E!
COMPUTE PX!
OTHER!

!"!#$%
&'()*+%,%

Figure 5. Experiment 2: Wall time for different stages of PCG and DPCG for TOL=10−2,10−6

6. Conclusion

We compared a parallel direct solver, the Preconditioned Conjugate Gradient method and the
Deflated Preconditioned Conjugate Gradient method for the solution of large linear systems from
mechanical problems with strongly varying stiffness of materials. The DPCG method is favorable
for large systems as it outperforms the direct solver for larger tolerances in time. Also the DPCG

14 T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

0! 10! 20! 30! 40! 50!

MUMPS!

DPCG DIAG
(1068)!

DPCG DIAG
(1068)!

DPCG ILU
(1068)!

DPCG ILU
(1164)!

ASSEMBLY STIFFNESS MATRIX!
LOADING ELEMENTS/CONSTRUCTION RHS!
COMPUTATION (LU OR E, Z, AZ)!
PRECONDITIONING!

Figure 6. Experiment 2: memory occupation in GigaBytes for different stages of
MUMPS, PCG and DPCG.

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

||
r i||

/|
|r

0
||

PCG DIAG
PCG ILU

Figure 7. Experiment 2: convergence curve of the PCG method for diagonal
scaling and Incomplete Cholesky preconditioners

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

||
r i||

/|
|r

0
||

PCG DIAG
PCG ILU
DPCG DIAG (1164 dv)
DPCG DIAG (1068 dv)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

||
r i||

/|
|r

0
||

PCG DIAG
PCG ILU
DPCG ILU (1164 dv)
DPCG ILU (1068 dv)

(b)

Figure 8. Experiment 2: convergence curve of the DPCG method for diagonal
scaling (a) and Incomplete Cholesky (b) preconditioners compared to the PCG
method (diagonal scaling and IC)

COMPARISON OF DPCG AND PARALLEL DIRECT SOLVER FOR LARGE COMPOSITE MATERIALS 15

method has a relatively low and predictable occupation of memory compared to the direct solver.
Moreover, the DPCG method is well suited for parallel computing and can be implemented into
any existing FE software package by using basic parallel linear algebraic operations.

Appendix A. Computing rigid body modes of a finite element

We know from [2] that the rigid body modes of a finite element are spanned by the kernel base
vectors of the corresponding element stiffness matrix. We will show a fast and cheap solution for
the computation of the rigid body modes. The same principle can be easily extended to sets of
finite elements of arbitrary shape and order. We note that the rigid body modes are only defined
by the geometric properties of the element.

In three dimensions a finite element has 6 rigid body motions; three translations and three
rotations. For simplicity we consider a 4 noded tetrahedral element, however all derivations can be
extended to N noded elements without loss of generality. The coordinate vector of the element is
given by,

{ x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 }T

A translation can be considered as a uniform displacement of every node in a given direction.
To obtain three orthogonal translations we choose the x,y and z direction respectively. The three
translation vectors are given by,

{ 1 0 0 1 0 0 1 0 0 1 0 0 }T

{ 0 1 0 0 1 0 0 1 0 0 1 0 }T

{ 0 0 1 0 0 1 0 0 1 0 0 1 }T

The rotations can be easily described using the spherical coordinate system,

x = r cos(θ) sin(φ), y = r sin(θ) sin(φ), z = r cos(φ)

where

r =
�
x2 + y2 + z2, θ = tan−1

�y
x

�
, φ = cos−1

�x
r

�

and θ and φ as in Figure 9(a).
We derive a rotation dθ in the x, y-plane, hence dφ = 0 and dr = 0. The x-y, x-z and y-z

planes contain unique rotations. The corresponding vectors can be found by swapping axis. For
an arbitrary point in space which has spherical coordinates (r, θ,φ) a change dθ in the x, y-plane
yields a displacement in cartesian coordinates of,

dx = −r sin(θ) sin(φ)dθ, dy = r cos(θ) sin(φ)dθ, dz = 0.

Figure 9(b) shows the rotation for one element with respect to the origin over angle dθ. By using
above expressions we obtain all three rotation vectors,

rotation x-y plane,

θj = tan−1

�
yj
xj

�
, φj = cos−1

�
zj
rj

�
,

−r1 sin(θ1) sin(φ1)
r1 cos(θ1) sin(φ1)

0
−r2 sin(θ2) sin(φ2)
r2 cos(θ2) sin(φ2)

0
−r3 sin(θ3) sin(φ3)
r3 cos(θ3) sin(φ3)

0
−r4 sin(θ4) sin(φ4)
r4 cos(θ4) sin(φ4)

0

16 T.B. JÖNSTHÖVEL†, M.B. VAN GIJZEN‡, S. MACLACHLAN�, C. VUIK‡, AND A. SCARPAS†

(a)

! p1 = (px1 , p
y
1, p

z
1)

dθ1

dθ2
dx1

dx2

p2 = (px2 , p
y
2, p

z
2)

r1

r2

(b)

Figure 9. (a) spherical coordinates, (b) rotation around origin of tetrahedral
element in x, y-plane

rotation y-z plane,

θj = tan−1

�
zj
xj

�
, φj = cos−1

�
yj
rj

�
,

−r1 sin(θ1) sin(φ1)
0

r1 cos(θ1) sin(φ1)
−r2 sin(θ2) sin(φ2)

0
r2 cos(θ2) sin(φ2)
−r3 sin(θ3) sin(φ3)

0
r3 cos(θ3) sin(φ3)
−r4 sin(θ4) sin(φ4)

0
r4 cos(θ4) sin(φ4)

rotation x-z plane,

θj = tan−1

�
zj
yj

�
, φj = cos−1

�
xj

rj

�
,

0
r1 cos(θ1) sin(φ1)
−r1 sin(θ1) sin(φ1)

0
r2 cos(θ2) sin(φ2)
−r2 sin(θ2) sin(φ2)

0
r3 cos(θ3) sin(φ3)
−r3 sin(θ3) sin(φ3)

0
r4 cos(θ4) sin(φ4)
−r4 sin(θ4) sin(φ4)

We compute the null space of each element matrix. Sets of elements make up the bodies of
materials, as a collection of elements share a certain property and are neighbors. The rigid body
modes of a collection of elements is equal to the assembly of the rigid body modes of the individual
elements taking into account the multiplicity of those degrees of freedom that lie in multiple neigh-
boring elements. In the case of asphaltic materials we choose the element stiffness as the property
for discrimination between elements. We can think of stones, bitumen and air voids. We should
note that we compute the rigid body modes of each independent body of material. Hence, two bod-
ies of the same material imply 12 deflation vectors. This has a physical meaning also, two bodies
will not rotate and translate at the same time and at the same rate. Therefore these movements
need to be taken care of independently.

References

[1] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and unsymmetric
solvers, 1998.

[2] K. J. Bathe. Finite Element Procedures. Prentice Hall, 2 revised edition, June 1995.

COMPARISON OF DPCG AND PARALLEL DIRECT SOLVER FOR LARGE COMPOSITE MATERIALS 17

[3] Matthias Bollhöfer and Yousef Saad. Multilevel preconditioners constructed from inverse-based ilus. SIAM J.

Sci. Comput., 27(5):1627–1650, 2006.
[4] CAPA3D. Capa-3d computer aided pavement analysis. http://www.capa-3d.org, 2009.
[5] CERFACS. Mumps: a parallel sparse direct solver. http://graal.ens-lyon.fr/mumps/, 2010.
[6] Andrew Drescher, Niki Kringos, and Tom Scarpas. On the behavior of a parallel elasto-visco-plastic model for

asphaltic materials. Mechanics of Materials, October 2009.
[7] J. Frank and C. Vuik. On the construction of deflation-based preconditioners. SIAM J. Sci. Comput., 23(2):442–

462, 2001.
[8] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins Studies in Mathematical Sciences).

The Johns Hopkins University Press, Baltimore, October 1996.
[9] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research

of the National Bureau of Standards, 49:409–436, Dec 1952.
[10] T.B. Jönsthövel, M.B. van Gijzen, C.Vuik, C. Kasbergen, and A. Scarpas. Preconditioned conjugate gradient

method enhanced by deflation of rigid body modes applied to composite materials. Computer Modeling in

Engineering and Sciences, 47:97–118, 2009.
[11] E. F. Kaasschieter. Preconditioned conjugate gradients for solving singular systems. J. Comput. Appl. Math.,

24(1-2):265–275, 1988.
[12] Xiaoyes. Li and James W. Demmel. Superlu dist: A scalable distributed-memory sparse direct solver for un-

symmetric linear systems. ACM Trans. Mathematical Software, 29:110–140, 2003.
[13] R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems. SIAM J.

Numer. Anal., 24(2):355–365, 1987.
[14] Eric Polizzi and Ahmed H. Sameh. A parallel hybrid banded system solver: the spike algorithm abstract, 2005.
[15] Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. Society for Industrial and Applied

Mathematics, Philadelphia, April 2003.
[16] Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas Stricker. Pardiso: a high-performance serial and

parallel sparse linear solver in semiconductor device simulation. Future Generation Computer Systems, 18(1):69–
78, 2001.

[17] Simpleware. http://www.simpleware.com, 2009.
[18] J.M. Tang, R. Nabben, C. Vuik, and Y.A. Erlangga. Comparison of two-level preconditioners derived from

deflation, domain decomposition and multigrid methods. Journal of Scientific Computing, 39:340–370, 2009.
[19] A. Van der Sluis and H.A. Van der Vorst. The rate of convergence of conjugate gradients. Numer. Math.,

48(5):543–560, 1986.

