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Abstract — This paper deals with the Space Mapping optiminagilgorithms in general and with the Manifold
Mapping technique in particular. The idea of suigodthms is to optimize a model with a minimum rivgn of
each objective function evaluations using a lessiiate but faster model. In this optimization phae, fine
and coarse models interact at each iteration iardaladjust themselves in order to converge toehe
optimum. The Manifold Mapping technique guarant@ashematically this convergence but requires gradie
of both fine and coarse model. Approximated gradiean be used for some cases but are subjectamdice.
True gradients can be obtained for many numericalehusing adjoint techniques, symbolic or automati
differentiation. In this context, we have testedesal Manifold Mapping variants and compared their
convergence in the case of real magnetic deviden@attion.

Keywords — Space Mapping, Manifold Mapping, Optimizationyi®gate model, Gradients,
Symbolic derivation, Automatic differentiation.

1. Introduction

The space-mapping technique [1] allows computalipexpensive simulation based optimization proceduo
be speeded up through the use of approximate mddetse space mapping literature the so-callee &ind
coarse models are conceived as mappings from gigrdspace to the space of model responses. The key
element is the space mapping function. It reparasestthe coarse model domain in such a way tonnizei the
discrepancy between the fine and coarse model mssgoThe composition of the space-mapping funetiwh
the coarse model response defines a surrogateedine model. Instead of solving the fine modallpem
directly, space-mapping solves the surrogate opétitn problem through a sequence of approximatidise
space-mapping function. This in turn defines a saqa of coarse model optimization problems whohdisa
by definition converges to the space-mapping sautfhe computational efficiency of this procedsiems
from the fact that it takes less fine model evabret to converge than it takes to solve the fineleho
optimization problem. The drawback is that the spa@apping solution does not necessarily coincidb thie
fine model optimum.

In the manifold-mapping technique [6], the surregaibdel is constructed in such a way that in ahimigrhood
of the fine model optimum, the surrogate model oesp closely ressembles its fine model counterphis.
guarantees that the solutions of the surrogatdiaeanodel optimization problem do coincide. Thasp
mapping function is replaced by the so-called nwdifmapping function. The latter is an affine trfnmation
between the tangent manifolds of the fine and eparsdel image spaces. Manifold-mapping is computatiy
as efficient as space-mapping.

Space mapping techniques have been used in elexjratic device optimization for several years now
[3][71[8][12][14]. Different techniques can be usdalit manifold mapping, which is the only one prbte
converge to the fine model optimum is always usipgroximated gradients of the fine model since true
gradients are not always available.

This paper details the manifold mapping technicquet @gues that exact gradients can be available ordess
easily nowadays. The computational cost of theadignts is generally small compared with that effthe
model, and the convergence of the manifold mapg@hgprithm is improved. This property will be rerpd in
the future when optimization specifications becomese and more constrained.



2. Manifold mapping algorithm

2.1.Mathematical background

Let us consider an optimization problem with desigriablesX in the design spac&[1 X [0 0" and
specificationsy [1[1™ which can be approximated by minimizing a costfional F(X) ([ (e.g. equation 4).

The manifold-mapping functios: ¢(X) — f(X) is a mapping between the coarse magigK ) 0 (1™ and
fine modelf (X) 0 O™ image spaces. This function maps the p@iX; ) to f (X;) and the coarse model

tangent space a(X; ) to the fine model tangent spacefdtx; ) . It allows to define the surrogate model

S(¢(Xx)) and to write the manifold-mapping solution asdualb:

find x .. 0X suchthat

* . 1
Kinm = argm|n|| 3((2)) - y” o
zZ0X

The manifold-mapping functiois(X) is approximated by a sequen{i@(x)}kzl yielding a sequence of

iterands{ka}k>1 converging tox:nm. The individual iterands are defined by coarse ehogtimization:

find X\, 0 X suchthat

. . &)
X knm = af%fXT"nHSK(O(Z)) -y

At each iteration k, the construction & is based on tangent planes of coarse and finelmode
ie,S =J.(%)-J;(X) where the matriced (X,) and J; (X, ) of sizemxn are the Jacobian of

c(X, ), and pseudo inverse of the Jacobianfdfx, ) , respectively. The pseudo inverse can be compated
simple QR decomposition or using the singular valeeomposition.

If the Jacobians are not availab, can be approximated usif§C and AF of sizemx min(k,n) defined
as follow:

AC = [C(Xk) - C(Xk—l)l C(Xk) - C(Xk—z)"’ ] C(Xk) - C(Xmax(k—n,O))]
AF =[ (%) = F(X), T(x) = F(X2)im o F(%) = F (Xnpaeeen 0]

During the firstn iterations, these matrices are not fully descghilre tangent planes but are enough to define a
search direction untik becomes greater tham.

In order to improve robustness of the approximatinis defined with a complementary term
S, = AC(%).-AF (%) + (I =U, Uy ,) whereU, . is provided by the singular value decomposition of
AC=U_3_V, ateachk iteration.

Using S, mapping function, an update objectie = c(X,) = S, (f (X )= y) can be introduced leading to
an asymptotically equivalent problem:
find X,,,.,(JX suchthat

e €)
Xignm = rgMIN|o(2) = y, |
41X



In other words, the mapping is transferred fromabarse model to the optimization objectives whézds to an
easier algorithm implementation. And by construa:tbq:mm = X*f corresponding to the fine model optimum.

A trust region strategy has to be implemented fitaah to this algorithm in order to prevent arbily large step
size X, — X,_; . To prevent manifold mapping from taking such steptrust-region stabilization was presented
in [10].

3. Validation on a simple test case

A first test case has been computed in order tavghat algorithm proposed can find good resulte Pproblem
is defined by 3 degrees of freedoX (x4, X;, X3]) and an objective function f=||f||

F (X1_1+§(11)2+(X2_2+£12)2+(X3+1+£13)2_2
= (X1_2+£21)2+(X2_3+£22)2+(X3+0+£23)2_2 (4)
(Xl_%+<(31)2+(xz_1+532)2 +(X3_1+§(33)2_2

where g(ij are equal to zero for the fine model, and gendnatadomly between [-0.1, 0.1] to produce the aars
model.

The objective function has been plotted accordirgdptimization iterations for several space magpin
strategies:

- OM : Output Mapping, which is a manifold mappingwihe identity matrix for the mapping function S.
The objective update is theyi, =y + (X, ) — f(X,) .

- MM Approx: Manifold mapping using a tangent plamppeoximation foAC and AF .

- MM Approx without SVD: Manifold mapping using a gant plane approximation without correction :
S, =AC(x).AF " (x,).

- MM Approx trust: Trust Region manifold mapping irder to ensure convergence.

- MM Exact: Manifold mapping using true gradients.

- MM Exact Trust: Trust Region manifold mapping irer to ensure convergence.

Fig. 1 shows that MM with true gradient convergé&r@xely fast to a good solution, while OM and MMiwi

approximated gradients converge slower with sortimatons. Trust region leads to slower convergdngsan
the case of MM with approximated gradient the sapiation is reached with only one iteration morethe

case of approximated gradient correction tdrmU KCU I’C in the mapping function, is important.
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Fig. 1. Optimization algorithms convergence onrapdé test case.

4. Manifold mapping on a real test case
4.1.Device description

Our functional design goal is to produce MEMS basadslation to rotation contactless transduceth wilinear
law. It can be used for sensors in order to have sensitive position measurements.
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Fig. 2. Magnetic MEMS topology

A MEMS magnetic actuator topology has been defioeach these requirements in Fig. 2. It consit®s
parts:

- mobile magnet with x-axis translation degree oéétem,

- aniron plate with y-axis rotation degree of freedo

4.2.Optimization specifications

The objective is to find mobile magnet dimensiansiider to obtain a torque as linear as possildeddthis, a
least squares objective functional is defined ind&ipn 5 and Fig. 3:

F(x)= Z(I‘(t)g)— rm%J 5)
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Fig. 3. Design specification: torque has to bede

3 torque computations, equally distributed alomgsfation position, have been chosen in order tiheldeast
square minimization.

Table I. Design variables and constants

Parameter Values
Magnet width [1;25] mm
Magnet high [1;25] mm
Magnet length [1;30] mm
Iron plate width 600 pm
Iron plate high 8 um

Iron plate length 600 pm
Magnet Polarization 1T

Gap between magnet and iron 1 mm

4.3.Fine modeling

For the mobile magnet, a Coulombian equivalentgdapproach is used in order to compute magnetit fi
applied on the ferromagnetic plate. A steady-ditgthod of Moments (MoM) is applied for the modedjirit
consists in the meshed of ferromagnetic bodiesgabe X, Y and Z axes, with uniform induced magredi
elementary blocks [2]. This method does not requinmesh the air and is particularly efficient foadiating"”
systems. The issues with such an integral meth®fuirmatrices and computation memory limitation.
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Fig. 4. Surface charge method to compute torquenwmggnetization of each block is known.

Fig. 4 shows the magnetization of each block whdepends on the external field £Hproduced by field
sources such as magnets or conductors) as well teedield produced by other blocks dependingheirtown
magnetization.



H=H,,+Q[M (6)

Block interaction is defined by the interaction mafQ in equation 6) : Q is a square matrix oes{2m)x(3m)
(m = number of blocks), composed of 3x3 squareigewhich represent the magnetic excitation ctebyea
block to an other.

The ferromagnetic material behavior law is defibgdhonlinear law, parameterized by the saturatimiuction
and initial permeability of the material. The unknmoferromagnetic magnetizations can then be foyndsing
a Newton-Raphson solver with a relaxation methogngure convergence.

When magnetizations are known, each block can ée a& a set of parallelepiped magnets (Fig. 4tder to
compute the magnetic field or force and torque étiqu 7).

N 6
r:yOZZJ OP, x

i=1 Ay

O, Hea (P, )1ds @)

where O is the pivot point where the torque is coteg, R are barycenter of each block amdthere equivalent
surface charge derived from their magnetization.

Computation time of this model depends on the nurabblocks (see Fig. 5). Computation is fast, adjo
accuracy is reached in less than one minute, butave always to think about increasing model coatjrt
and optimization time if our objective is systemslation and design.
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Fig. 5. Fine model computation time and its derixett, depending on the discretizing.

4.4.Coarse modeling

The iron plate is not discretized and global denagigation coefficients in 3D space are computedytinally
using classical rectangular shapes formulas. Utieassumption that the plate is saturated alomg-tis, the
magnetization along z-axis continues to vary lihedt is then possible to solve explicitly the Zagnetizations
My and M in order to compute torqug, by equation 8 using the volume of the platg£Y and the external
field (Ho).

ry = HO'VpIate'(_ MX‘HO + MZ'HO) (8)

This model is fully analytical and an optimizatiosing its gradients requires less than one seddreh, the
number of evaluations of the coarse model will besignificant compared with the fine model evaluag,
which is the general assumption for multi-levelioyitation approaches.

4.5.Modeling comparison

A FEM simulation has been done but can not be densd as a reference (just a good approximatioa}althe
mesh issues for such thin geometries.
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Fig. 6. Complex mesh in 3D FEM software Flux3aD™

The fine model was tuned using a variation of tiserétization parameter in order to appreciateatt®iracy
convergence (see Fig. 7). This tuning could be tisgaoduce both fine and coarse modelling butsis Wecided
in this work to compare manifold mapping techniguth two different kinds of model, one analyticaldathe
other numerical.
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Fig. 7. Modeling comparison on torque regarding iteofmagnet position for both Fine and Coarse moldets
also with FEM

5. Model derivation

Nowadays, many techniques and tools are availabdeder to compute model Jacobian of analytical ehadd
numerical models. Two kind of derivation technigegsst, the symbolic one which examines computation
model in order to simplify as far as possible theihtives expressions; and the automatic one wikiatore
systematic but less efficient.

5.1.Symbolic derivation

First is the symbolic derivation based on matherahtheorems which tries to express derivatives wiodel for
each kind of modeling methods. For example, if aknown ‘I’ is expressed by numerical integratioguyation
9) partial derivatives of functiohregarding parametepscan be given by (equation 10).

up(p)
1(p) = j f (p, x).dx ©)

lo(p)
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Wellknown applications of such kind of derivatiore a

- implicit theorem [11]: which allows symbolic derii@n of unknowns computed using implicit solversisu
as Newton-Raphson procedure.

- Adjoint method [13]: which allows the efficient cgutation of multiple calls to gradients using aldiade
which depends on the numerical problem solved lisgstem, ...) .

5.2. Automatic derivation

Defining derivative of each basic mathematical apmrcan lead to automatic differentiation (AD) I®[9].
Typically, AD can be implemented using either tipem@tor overloading (ADOL-C, CppAD, etc) or the smm
transformation technique (ADIFOR, ADiJaC, etc)ofperator overloading one overloads the operatorshwh
are applied on new variable types, with the routiakk performing the actual derivative computatidhe source
transformation approach examines the source cotteeadriginal function and generates new code that
computes the desired derivative together with tigiral function value.

5.3. Software implementation

CADES framework [4] implements symbolic and automatic differentiattechniques. So it is easy for several
kind of models to add Jacobian computation in otdgrerform optimization.

This software will be used in this work in ordemimduce Jacobians of both the coarse and therfodel.

CaDES
nherat or ' sl

& CADES Ge

- .
Fie 8 .,
Physical =
model E
&l Model + Jacobian
Algebraic Equations (Formal calculus,
and/or algorithms Automatic differentiation)

Fig. 8. CADES Generator: an automated tool perfogndymbolic and automatic differentiation compasiti
and produce software component.

! CADES framework : Component Architecture for thesin of Engineering Systems (availablettp://forge-mage.g2elab.grenoble-
inp.fr/project/cadesframewonk
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5.4.Model derivation

As defined in the previous section, several teamggare available in order to compute gradients.tti fine
modeling, derivatives have been computed usingigibpheorem and an adjoint code [13] leading 1owa cost
compared to the computation of the magnetizatiartoretself. This is also due to the fact that ran4tinear
solving procedure is required, since unknowns ef itodel are already solved for. Indeed, Fig 5. shthat
Jacobian computation is faster than model compmurtatiith at least one order of magnitude, and netavly
order for high blocks number. One of the key pomit®ur paper is then to highlight the fact thaingsexact
Jacobian of numerical model is realistic.

Approximating the Jacobian sequentially during dpéimization process is a free operation, but atghice of a
higher fine model evaluation number. Giving the meatatical proof of that is not within the scopeto$ paper
which only gives evidence of the fact that for alistic problem, the use of true gradients is bieredf

For the coarse model which is essentially baseginaifytical equations, a simple derivation has lukere
automatically using CADES framework. The torquedigat with respect to the magnet position is pbbite
Fig. 9.
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Fig. 9. Fine and coarse torques and their formavalves, versus the magnet translation.
5.5.Optimization results

Each model optimization is performed by IPopan Interior Point algorithm using true gradiemisd a
successive approximation of the Hessian.

2 IPOpt :Interior Point OPTimizer (vww.coin-or.org/lpopt)
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Fig. 10. Optimization algorithms convergence ondleetromagnetic device optimization.

A direct optimization has been performed usingfite model and its gradients in order to get armfee
solution. The initial solution is provided by thearse model optimal solution. A good solution hesrbfound
after 20 iterations, which means 20 fine model cotations and 20 Jacobian computations which reptese
high cost.

Simple output mapping convergence is good andlt@ithm is stopped after 8 iterations. But it midgil to
converge to the fine model optimal solution. Indesdy interaction between variables in this mapjsng
missing.

Regarding Manifold Mapping, both true gradients apgroximated ones need a trust region adaptdtideed
the problem is very sensible and original algorghfailed. Default trust region parameters givefbirhave
been used.

MM using true gradients converges with the higlspsted. The consequence is a bouncing effect beitause
overcomes the target and has to return slower.ddnisbe improved by trust region parameters matito
(default values are used).

MM using approximated gradients failed to convesgen with a trust region strategy. The examinatibid,
during a convergence process shows Bat J (X, )-J7 (X, ) , created with Jacobian matrices, 28d

created from approximated gradiei§s = AC(x,).AF *(x) + (1 U, U, ) are different, but in the same

level of value and generally with the same elemsigps. Our approximation is based on the previéessbut if
steps are in the same direction, the gradientaatresally well identified. This approximation hiasbe
improved in order to have a robust algorithm.

6. Conclusions

In this work, several variants of the manifold miaygptechnique have been compared. Results oniatiedédst
case show that the use of exact gradients allowsriwergence to more accurate solutions than redmhe
gradient approximations. These accurate solutiomsemched three times faster than an interiomigo
iterating solely on the fine model.

This kind of multi-level optimization requires bdihe and coarse model to be available. Many moaleds
created by designers from the early design statfeetéine specification of the product. They carchpitalized
and reused more optimally, using such optimizatémhniques. There is also another way, which twitd the
coarse model from the fine one. It can be donegusirmerical precision tuning, like the number afdis in our
modelling method. Or, it can be built automaticalging design of experiments and response surface
methodologies.
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The manifold mapping algorithm with exact gradiethisrefore opens interesting perspectives on splviare
complex optimization problems in the future.
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