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Abstract – This paper deals with the Space Mapping optimization algorithms in general and with the Manifold 
Mapping technique in particular. The idea of such algorithms is to optimize a model with a minimum number of 
each objective function evaluations using a less accurate but faster model. In this optimization procedure, fine 
and coarse models interact at each iteration in order to adjust themselves in order to converge to the real 
optimum. The Manifold Mapping technique guarantees mathematically this convergence but requires gradients 
of both fine and coarse model. Approximated gradients can be used for some cases but are subject to divergence. 
True gradients can be obtained for many numerical model using adjoint techniques, symbolic or automatic 
differentiation. In this context, we have tested several Manifold Mapping variants and compared their 
convergence in the case of real magnetic device optimization. 

Keywords – Space Mapping, Manifold Mapping, Optimization, Surrogate model, Gradients, 
Symbolic derivation, Automatic differentiation. 

1. Introduction 

The space-mapping technique [1] allows computationally expensive simulation based optimization procedures to 
be speeded up through the use of approximate models. In the space mapping literature the so-called fine and 
coarse models are conceived as mappings from the design space to the space of model responses. The key 
element is the space mapping function. It reparametrises the coarse model domain in such a way to minimize the 
discrepancy between the fine and coarse model responses. The composition of the space-mapping function and 
the coarse model response defines a surrogate for the fine model. Instead of solving the fine model problem 
directly, space-mapping solves the surrogate optimization problem through a sequence of approximations of the 
space-mapping function. This in turn defines a sequence of coarse model optimization problems whose solution 
by definition converges to the space-mapping solution. The computational efficiency of this procedure stems 
from the fact that it takes less fine model evaluations to converge than it takes to solve the fine model 
optimization problem. The drawback is that the space-mapping solution does not necessarily coincide with the 
fine model optimum. 

In the manifold-mapping technique [6], the surrogate model is constructed in such a way that in a neighbourhood 
of the fine model optimum, the surrogate model response closely ressembles its fine model counterpart. This 
guarantees that the solutions of the surrogate and fine model optimization problem do coincide. The space-
mapping function is replaced by the so-called manifold-mapping function. The latter is an affine transformation 
between the tangent manifolds of the fine and coarse model image spaces. Manifold-mapping is computationally 
as efficient as space-mapping. 

Space mapping techniques have been used in electromagnetic device optimization for several  years now 
[3][7][8][12][14]. Different techniques can be used, but manifold mapping, which is the only one proved to 
converge to the fine model optimum is always using approximated gradients of the fine model since true 
gradients are not always available. 

This paper details the manifold mapping technique and argues that exact gradients can be available more or less 
easily nowadays. The computational cost of these gradients is generally small compared with that of the fine 
model, and the convergence of the manifold mapping  algorithm is improved. This property will be required in 
the future when optimization specifications becomes more and more constrained. 
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2. Manifold mapping algorithm 

2.1. Mathematical background 

Let us consider an optimization problem with design variables x  in the design space nXx ℜ⊂∈  and 

specifications my ℜ∈  which can be approximated by minimizing a cost functional ℜ∈)(xF (e.g. equation 4). 

The manifold-mapping function )()(: XfXcS �  is a mapping between the coarse model mXc ℜ⊂)( and 

fine model mXf ℜ⊂)(  image spaces. This function maps the point )( *
fxc  to )( *

fxf  and the coarse model 

tangent space at )( *
fxc  to the fine model tangent space at )( *

fxf . It allows to define the surrogate model 

))(( xcS  and to write the manifold-mapping solution as follows: 
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The manifold-mapping function )(xS  is approximated by a sequence { } 1)( ≥kk xS  yielding a sequence of 

iterands { }
1, ≥kmmkx  converging to *

mmx . The individual iterands are defined by coarse model optimization: 
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At each iteration k, the construction of kS  is based on tangent planes of coarse and fine model, 

i.e., )().( **
kfkck xJxJS +=  where the matrices )( *

kc xJ  and )x(J *
kf

+  of size nm×  are the Jacobian of 

)( kxc , and pseudo inverse of the Jacobian of )( kxf , respectively. The pseudo inverse can be computed by a 

simple QR decomposition or using the singular value decomposition. 

If the Jacobians are not available, kS  can be approximated using C∆  and F∆  of size ),min( nkm×  defined 

as follow: 

)]()(,),()(),()([ )0,max(21 nkkkkkk xcxcxcxcxcxcC −−− −−−=∆ �

)]()(,),()(),()([ )0,max(21 nkkkkkk xfxfxfxfxfxfF −−− −−−=∆ �  

During the first n  iterations, these matrices are not fully describing the tangent planes but are enough to define a 

search direction until k  becomes greater than n . 

In order to improve robustness of the approximation kS  is defined with a complementary term 

)()().( ,,
** T

ckckkkk UUIxFxCS −+∆∆= +  where ckU ,  is provided by the singular value decomposition of 

T
ccc VUC ..Σ=∆  at each k  iteration. 

Using kS  mapping function, an update objective ( ) )()( yxfSxcy kkkk −−=  can be introduced leading to 

an asymptotically equivalent problem: 
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In other words, the mapping is transferred from the coarse model to the optimization objectives which leads to an 

easier algorithm implementation. And by construction **
, fmmk xx =  corresponding to the fine model optimum. 

A trust region strategy has to be implemented in addition to this algorithm in order to prevent arbitrary large step 

size 1−− kk xx . To prevent manifold mapping from taking such steps, a trust-region stabilization was presented 

in [10]. 

3. Validation on a simple test case 

A first test case has been computed in order to show that algorithm proposed can find good results. The problem 
is defined by 3 degrees of freedom (X=[x1, x2, x3]) and an objective function f=||F||2.  
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where ijξ  are equal to zero for the fine model, and generated randomly between [-0.1, 0.1] to produce the coarse 

model. 

The objective function has been plotted according the optimization iterations for several space mapping 
strategies: 

- OM : Output Mapping, which is a manifold mapping with the identity matrix for the mapping function S. 

The objective update is then )()( kkk xfxcyy −+= . 

- MM Approx: Manifold mapping using a tangent plane approximation for C∆  and F∆ . 

- MM Approx without SVD: Manifold mapping using a tangent plane approximation without correction : 

)().( **
kkk xFxCS +∆∆= . 

- MM Approx trust: Trust Region manifold mapping in order to ensure convergence. 

- MM Exact: Manifold mapping using true gradients. 

- MM Exact Trust: Trust Region manifold mapping in order to ensure convergence. 

Fig. 1 shows that MM with true gradient converge extremely fast to a good solution, while OM and MM with 
approximated gradients converge slower with some estimations. Trust region leads to slower convergence but in 
the case of MM with approximated gradient the same solution is reached with only one iteration more. In the 

case of approximated gradient correction term T
ckck UUI ,,−  in the mapping function, is important. 
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Fig. 1. Optimization algorithms convergence on a simple test case. 

4. Manifold mapping on a real test case 

4.1. Device description 

Our functional design goal is to produce MEMS based translation to rotation contactless transducer, with a linear 
law. It can be used for sensors in order to have very sensitive position measurements. 

 

Fig. 2. Magnetic MEMS topology 

A MEMS magnetic actuator topology has been defined to reach these requirements in Fig. 2. It consists of 2 
parts: 

- mobile magnet with x-axis translation degree of freedom,  
- an iron plate with y-axis rotation degree of freedom. 

4.2. Optımızatıon specıfıcatıons 

The objective is to find mobile magnet dimensions in order to obtain a torque as linear as possible. To do this, a 
least squares objective functional is defined in Equation 5 and Fig. 3: 
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Fig. 3. Design specification: torque has to be linear 

3 torque computations, equally distributed along translation position, have been chosen in order to do the least 
square minimization. 

Table I. Design variables and constants 

Parameter Values 
Magnet width [1;25] mm 
Magnet high [1;25] mm 
Magnet length [1;30] mm 
Iron plate width 600 µm 
Iron plate high 8 µm 
Iron plate length 600 µm 
Magnet Polarization 1 T 
Gap between magnet and iron  1 mm 

4.3. Fine modeling 

For the mobile magnet, a Coulombian equivalent charge approach is used in order to compute magnetic field 
applied on the ferromagnetic plate. A steady-state Method of Moments (MoM) is applied for the modelling. It 
consists in the meshed of ferromagnetic bodies along the X, Y and Z axes, with uniform induced magnetized 
elementary blocks [2]. This method does not require to mesh the air and is particularly efficient for "radiating" 
systems. The issues with such an integral method are full matrices and computation memory limitation. 

 

Fig. 4. Surface charge method to compute torque when magnetization of each block is known. 

Fig. 4 shows the magnetization of each block which depends on the external field (Hext produced by field 
sources such as magnets or conductors) as well as on the field produced by other blocks depending on their own 
magnetization. 
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MQHH ext ⋅+=           (6) 

Block interaction is defined by the interaction matrix (Q in equation 6) : Q is a square matrix of size (3m)x(3m) 
(m = number of blocks), composed of 3x3 square matrices which represent the magnetic excitation created by a 
block to an other. 

The ferromagnetic material behavior law is defined by nonlinear law, parameterized by the saturation induction 
and initial permeability of the material. The unknown ferromagnetic magnetizations can then be found by using 
a Newton-Raphson solver with a relaxation method to ensure convergence. 

When magnetizations are known, each block can be seen as a set of parallelepiped magnets (Fig. 4), in order to 
compute the magnetic field or force and torque (equation 7). 

[ ]��EE
= =

×=
N

i j s

sss ds

ij

ijijij
1

6

1
0 .)(. PHOP� extσµ        (7) 

where O is the pivot point where the torque is computed, Pij are barycenter of each block and σij there equivalent 
surface charge derived from their magnetization. 

Computation time of this model depends on the number of blocks (see Fig. 5). Computation is fast, a good 
accuracy is reached in less than one minute, but we have always to think about increasing model computation 
and optimization time if our objective is system simulation and design. 

 
Fig. 5. Fine model computation time and its derivatives, depending on the discretizing.  

4.4. Coarse modeling 

The iron plate is not discretized and global demagnetisation coefficients in 3D space are computed analytically 
using classical rectangular shapes formulas. Under the assumption that the plate is saturated along the x-axis, the 
magnetization along z-axis continues to vary linearly. It is then possible to solve explicitly the 2 magnetizations 
Mx and Mz in order to compute torque Γy by equation 8 using the volume of the plate (Vplate) and the external 
field (H0).  

( )000 .... HMzHMxVµ platey +−=Γ        (8) 

This model is fully analytical and an optimization using its gradients requires less than one second. Then, the 
number of evaluations of the coarse model will be not significant compared with the fine model evaluations, 
which is the general assumption for multi-level optimization approaches. 

4.5. Modeling comparison 

A FEM simulation has been done but can not be considered as a reference (just a good approximation) due to the 
mesh issues for such thin geometries. 
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Fig. 6. Complex mesh in 3D FEM software Flux3D™ 

The fine model was tuned using a variation of the discretization parameter in order to appreciate the accuracy 
convergence (see Fig. 7). This tuning could be used to produce both fine and coarse modelling but it was decided 
in this work to compare manifold mapping technique with two different kinds of model, one analytical and the 
other numerical. 

 

Fig. 7. Modeling comparison on torque regarding mobile magnet position for both Fine and Coarse models but 
also with FEM 

5. Model derivation 

Nowadays, many techniques and tools are available in order to compute model Jacobian of analytical model and 
numerical models. Two kind of derivation techniques exist, the symbolic one which examines computation 
model in order to simplify as far as possible the derivatives expressions; and the automatic one which is more 
systematic but less efficient.  

5.1. Symbolic derivation 

First is the symbolic derivation based on mathematical theorems which tries to express derivatives of a model for 
each kind of modeling methods. For example, if an unknown ‘I’ is expressed by numerical integration (equation 
9) partial derivatives of function I regarding parameters p can be given by (equation 10). 

E=
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Wellknown applications of such kind of derivation are : 

- implicit theorem [11]: which allows symbolic derivation of unknowns computed using implicit solvers such 
as Newton-Raphson procedure. 

- Adjoint method [13]: which allows the efficient computation of multiple calls to gradients using a dual code 
which depends on the numerical problem solved (linear system, ...) . 

5.2. Automatic derivation 

Defining derivative of each basic mathematical operator can lead to automatic differentiation (AD) tools [9]. 
Typically, AD can be implemented using either the operator overloading (ADOL-C, CppAD, etc) or the source 
transformation technique (ADIFOR, ADiJaC, etc). In operator overloading one overloads the operators which 
are applied on new variable types, with the routine call performing the actual derivative computation. The source 
transformation approach examines the source code of the original function and generates new code that 
computes the desired derivative together with the original function value. 

5.3. Software implementation 

CADES framework1 [4] implements symbolic and automatic differentiation techniques. So it is easy for several 
kind of models to add Jacobian computation in order to perform optimization. 

This software will be used in this work in order to produce Jacobians of both the coarse and the fine model. 

 

Fig. 8. CADES Generator: an automated tool performing symbolic and automatic differentiation composition 
and produce software component. 

                                                           

1 CADES framework : Component Architecture for the Design of Engineering Systems (available : http://forge-mage.g2elab.grenoble-
inp.fr/project/cadesframework ) 
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5.4. Model derivation 

As defined in the previous section, several techniques are available in order to compute gradients. For the fine 
modeling, derivatives have been computed using implicit theorem and an adjoint code [13] leading to a low cost 
compared to the computation of the magnetization vector itself. This is also due to the fact that no non-linear 
solving procedure is required, since unknowns of the model are already solved for. Indeed, Fig 5. shows that 
Jacobian computation is faster than model computation with at least one order of magnitude, and nearly two 
order for high blocks number. One of the key points of our paper is then to highlight the fact that using exact 
Jacobian of numerical model is realistic.  
Approximating the Jacobian sequentially during the optimization process is a free operation, but at the price of a 
higher fine model evaluation number. Giving the mathematical proof of that is not within the scope of this paper 
which only gives evidence of the fact that for a realistic problem, the use of true gradients is beneficial. 
For the coarse model which is essentially based on analytical equations, a simple derivation has been done 
automatically using CADES framework. The torque gradient with respect to the magnet position is plotted in 
Fig. 9. 

 

 

Fig. 9. Fine and coarse torques and their formal derivatives, versus the magnet translation. 

5.5. Optimization results 

Each model optimization is performed by IPopt2, an Interior Point algorithm using true gradients and a 
successive approximation of the Hessian. 

                                                           

2 IPOpt : Interior Point OPTimizer (www.coin-or.org/Ipopt) 
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Fig. 10. Optimization algorithms convergence on the electromagnetic device optimization. 

A direct optimization has been performed using the fine model and its gradients in order to get a reference 
solution. The initial solution is provided by the coarse model optimal solution. A good solution has been found 
after 20 iterations, which means 20 fine model computations and 20 Jacobian computations which represent a 
high cost. 

Simple output mapping convergence is good and the algorithm is stopped after 8 iterations. But it might fail to 
converge to the fine model optimal solution. Indeed, any interaction between variables in this mapping is 
missing.  

Regarding Manifold Mapping, both true gradients and approximated ones need a trust region adaptation. Indeed 
the problem is very sensible and original algorithms failed. Default trust region parameters given in [5] have 
been used. 

MM using true gradients converges with the highest speed. The consequence is a bouncing effect because it 
overcomes the target and has to return slower. This can be improved by trust region parameters modification 
(default values are used). 

MM using approximated gradients failed to converge even with a trust region strategy. The examination of kS  

during a convergence process shows that )().( **
kfkck xJxJS += , created with Jacobian matrices, and kS  

created from approximated gradients )()().( ,,
** T

ckckkkk UUIxFxCS −+∆∆= +  are different, but in the same 

level of value and generally with the same elements sign. Our approximation is based on the previous steps but if 
steps are in the same direction, the gradients are not really well identified. This approximation has to be 
improved in order to have a robust algorithm. 

6. Conclusions 

In this work, several variants of the manifold mapping technique have been compared. Results on a realistic test 
case show that the use of exact gradients allows to convergence to more accurate solutions than reached by 
gradient approximations. These accurate solutions are reached three times faster than an interior algorithm 
iterating solely on the fine model.  

This kind of multi-level optimization requires both fine and coarse model to be available. Many models are 
created by designers from the early design stage to the fine specification of the product. They can be capitalized 
and reused more optimally, using such optimization techniques. There is also another way, which is to build the 
coarse model from the fine one. It can be done using numerical precision tuning, like the number of blocks in our 
modelling method. Or, it can be built automatically using design of experiments and response surface 
methodologies. 
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The manifold mapping algorithm with exact gradients therefore opens interesting perspectives on solving more 
complex optimization problems in the future.  
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