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Abstract

This report is focused on the preconditioned Conjugate Gradient (CG) method for linear sys-
tems resulting from Symmetric Interior Penalty (discontinuous) Galerkin (SIPG) discretiza-
tions for stationary diffusion problems. In particular, it concerns two-level preconditioning
strategies where the coarse space is based on piecewise constant DG basis functions. In this pa-
per, we show that both the two-level preconditioner and the corresponding BNN (or ADEF2)
deflation variant yield fast scalable convergence of the CG method (independent of the mesh
element diameter). These theoretical results are illustrated by numerical experiments.

1 Introduction

The discontinuous Galerkin method can be interpreted as a finite volume method that uses piece-
wise polynomials of degree p rather than piecewise constant functions. As such, it combines the
best of both classical finite element methods and finite volume methods, making it particularly
suitable for handling non-matching grids and designing hp-refinement strategies. However, the
resulting linear systems are usually larger than those for the aforementioned classical discretiza-
tion schemes. This is due to the larger number of unknowns per mesh element. At the same
time, the condition number typically increases with the number of mesh elements, the polynomial
degree, and the stabilization factor [4, 18]. Problems with strong variations in the coefficients pose
an extra challenge. Altogether, standard linear solvers often result in long computational times
and/or low accuracy.

In search of efficient and scalable algorithms (for which the number of iterations does not in-
crease with e.g. the number of mesh elements), much attention has been paid to subspace correc-
tion methods [23]. Examples include classical geometric (h-)multigrid [3, 10], spectral (p-)multigrid
[9, 13], algebraic multigrid [14, 17], Schwarz domain decomposition [1, 8], and mixtures of these
[2]. Usually, these methods can either be used as a standalone solver, or as a preconditioner in
an iterative Krylov method. The latter tends to be more robust for problems with a few isolated
‘bad’ eigenvalues, as is typically the case for problems with large contrasts in the coefficients.

This research is focused on the preconditioned Conjugate Gradient (CG) method for linear
systems resulting from Symmetric Interior Penalty (discontinuous) Galerkin (SIPG) discretizations
for stationary diffusion problems. In particular, it concerns two-level preconditioning strategies
where the coarse space is based on the piecewise constant DG basis functions.

The latter strategy has been introduced by Dobrev et al. [6]. In [19], their method has been
carried over to deflation with the help of the analysis in [21]: it has been demonstrated numerically
that both two-level variants yield fast and scalable CG convergence using (damped) block Jacobi
smoothing.

To provide theoretical support for the latter, in this paper, we bound the condition number
of the preconditioned/deflated system independently of the mesh element diameter. Such bounds
are already available for the preconditioning variant with p = 1, as derived in [6] using the
work of Falgout et al. [7]. Here, we extend these results by allowing p ≥ 1. Furthermore, we
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include BNN/ADEF2 deflation in the analysis. Additionally, we demonstrate that the required
restrictions on the smoother are satisfied for (damped) block Jacobi smoothing. Finally, we extend
the numerical support in [19] for these results by studying two test problems with strong variations
in the coefficients.

The outline of this paper is as follows. Section 2 specifies both two-level methods for the linear
SIPG systems under consideration. Section 3 derives an auxiliary regularity result, which is used
to derive the main scalability result in Section 4. Numerical experiments are discussed in Section
5. Finally, we summarize the main conclusions in Section 6.

2 Methods & Assumptions

This section specifies the methods and assumptions that we consider in this paper. Section 2.1
specifies the diffusion model under consideration and discretizes it by means of the SIPG method.
Section 2.2 discusses two two-level preconditioning strategies for solving the resulting linear system
by means of the preconditioned CG method.

2.1 SIPG discretization for diffusion problems

Model problem We study the following diffusion problem on the d-dimensional domain Ω with
source term f , scalar diffusion coefficient K (bounded below and above by positive constants),
and a combination of Dirichlet and Neumann boundary conditions (specified by gD on ∂ΩD and
gN on ∂ΩN with outward normal n respectively):

−∇ · (K∇u) = f, in Ω,

u = gD, on ∂ΩD,

K∇u · n = gN , on ∂ΩN . (1)

We assume that the model parameters are chosen such that a weak solution of this model problem
exists (cf. [15] for specific sufficient conditions). Furthermore, we assume that Ω is either an
interval (d = 1), polygon (d = 2) or polyhedra (d = 3).

Mesh To discretize the model problem (1), we subdivide Ω into mesh elements E1, ..., EN with
maximum element diameter h.

We assume that each mesh element Ei is affine-equivalent with a certain reference ele-
ment E0 that is an interval/polygon/polyhedra (independent of h) with mutually affine-
equivalent edges.

(2)

Note that all meshes consisting entirely of either intervals, triangles, tetrahedrons, parallelograms,
or parallelepipeds satisfy this property.

Furthermore, we assume that the mesh is regular in the sense of [5, p. 124]. To specify this
property, for all i = 0, ..., N , let hi and ρi denote the diameter of Ei, and the diameter of the
largest ball contained in Ei respectively. We can now define regularity as1:

hi

ρi

. 1, ∀i = 1, ..., N. (3)

SIPG method Now that we have specified the mesh, we can construct an SIPG approximation
for our model problem (1). To this end, define the test space V that contains each function that
is a polynomial of degree p or lower within each mesh element, and that may be discontinuous at

1Throughout this paper, we use the symbol . in expressions of the form “F (x) . G(x) for all x ∈ X” to indicate
that there exists a constant C > 0, independent of the variable x and the maximum mesh element diameter h (or
the number of mesh elements), such that F (x) ≤ CG(x) for all x ∈ X. The symbol & is defined similarly.
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the element boundaries. The SIPG approximation uh is now defined as the unique element in this
test space that satisfies the relation

B(uh, v) = L(v), for all test functions v ∈ V, (4)

where B and L are certain (bi)linear forms that are specified hereafter.

Details To specify these forms, we use the following notation: let Γh denote the collection of all edges e =
∂Ei∩∂Ej in the interior. Similarly, let ΓD and ΓN denote the collection of all edges (points/lines/polygons) at
the Dirichlet and Neumann boundary respectively. Additionally, for all edges e, let he denote the length of the
largest mesh element adjacent to e for one-dimensional problems, the length of e for two-dimensional problems,
and the square root of the surface area of e for three-dimensional problems. Finally, we introduce the usual
trace operators for jumps and averages at the mesh element boundaries: in the interior, we define at ∂Ei ∩∂Ej :

[v] = vi ·ni +vj ·nj , and {v} = 1
2
(vi +vj), where vi denotes the trace of the (scalar or vector-valued) function

v along the side of Ei with outward normal ni. Similarly, at the domain boundary, we define at ∂Ei ∩ ∂Ω:
[v] = vi · ni, and {v} = vi. Using this notation, the forms B and L in (4) can be defined as follows (for
one-dimensional problems, the boundary integrals below should be interpreted as function evaluations of the
integrand):

BΩ(uh, v) =
N

X

i=1

Z

Ei

K∇uh · ∇v,

Bσ(uh, v) =
X

e∈Γh∪ΓD

Z

e

σ

he

[uh] · [v] ,

Br(uh, v) = −
X

e∈Γh∪ΓD

Z

e

“

{K∇uh} · [v] + [uh] · {K∇v}
”

,

B(uh, v) = BΩ(uh, v) + Bσ(uh, v) + Br(uh, v),

L(v) =

Z

Ω
fv −

X

e∈ΓD

Z

e

„

[K∇v] +
σ

he
v

«

gD +
X

e∈ΓN

Z

e

vgN , (5)

where σ is the so-called penalty parameter (discussed hereafter).

The SIPG method involves a penalty parameter σ, which penalizes the inter-element jumps to
enforce weak continuity required for convergence. Its value may vary throughout the domain, and
we assume that it is bounded below and above by positive constants (independent of the maximum
element diameter h). Furthermore, we assume that the penalty parameter is sufficiently large so
that the scheme is coercive [15, p. 38–40], i.e.:

BΩ(v, v) + Bσ(v, v) . B(v, v), ∀v ∈ V. (6)

Linear system In order to compute the SIPG approximation defined by (4), it needs to be
rewritten as a linear system. To this end, we choose a basis for the test space V : for each mesh

element Ei, we set the basis function φ
(i)
1 equal to zero in the entire domain, except in Ei, where it

is equal to one. Similarly, we define higher-order basis functions φ
(i)
2 , ..., φ

(i)
m , which are a higher-

order polynomial in Ei and zero elsewhere. Note that, e.g., for one-dimensional problems, we have
m = p + 1.

Details More specifically, the basis functions are constructed as follows. For all i = 1, ...,N , let Fi : Ei → E0

denote an invertible affine mapping (which exists by assumption (2)). Furthermore, let the functions φ
(0)
k

:
E0 → R (with k = 1, ...,m) form a basis for the space of all polynomials of degree p and lower on the reference

element (setting φ
(0)
1 = 1). Using this basis on the reference element, the basis function φ

(i)
k

is zero in the entire

domain, except in the mesh element Ei, where it reads φ
(i)
k

= φ
(0)
k

◦ Fi.

Now that we have defined the basis functions, we can express uh as a linear combination of these
functions:

uh =

N∑

i=1

m∑

k=1

u
(i)
k φ

(i)
k . (7)
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The new unknowns u
(i)
k in (7) can be determined by solving a linear system Au = b of following

form:



A11 A12 . . . A1N

A21 A22

...
...

. . .

AN1 . . . ANN







u1

u2

...
uN


 =




b1

b2

...
bN


 , (8)

where the blocks all have dimension m, and where, for all i, j = 1, ..., N :

Aji =




B(φ
(i)
1 , φ

(j)
1 ) B(φ

(i)
2 , φ

(j)
1 ) . . . B(φ

(i)
m , φ

(j)
1 )

B(φ
(i)
1 , φ

(j)
2 ) B(φ

(i)
2 , φ

(j)
2 )

...
...

. . .

B(φ
(i)
1 , φ

(j)
m ) . . . B(φ

(i)
m , φ

(j)
m )




, ui =




u
(i)
1

u
(i)
2
...

u
(i)
m




, bj =




L(φ
(j)
1 )

L(φ
(j)
2 )
...

L(φ
(j)
m )




. (9)

This system is obtained by substituting the expression (7) for uh and the basis functions φ
(j)
ℓ for v

into (4). Note that A is Symmetric and Positive-Definite (SPD), as the bilinear form B is SPD (cf.

(5) and (6)). Once the unknowns u
(i)
k are solved from the system, the final SIPG approximation

uh can be obtained from (7).

2.2 Two-level preconditioning and deflation

In the previous section, we obtained a linear SIPG system of the form Ax = b, where A is SPD.
To solve this system, we consider the preconditioned CG method. In particular, we focus on a
two-level preconditioner introduced by Dobrev et al. [6], and the corresponding BNN-deflation
variant. In this section, both variants are discussed.

Preconditioning variant The two-level preconditioner is defined in terms of a coarse correction
operator Q ≈ A−1 that switches from the original DG test space to a coarse subspace, then
performs a correction that is now simple in this coarse space, and finally switches back to the
original DG test space. In this paper, we study the coarse subspace that consists of all piecewise
constant functions.

More specifically, the coarse correction operator Q is defined as follows. Let R denote the
so-called restriction operator such that A0 := RART is the SIPG matrix for polynomial degree
p = 0. In other words, R is the following matrix with blocks of size 1 × m:

R =




R11 R12 . . . R1N

R21 R22

...
...

. . .

RN1 . . . RNN




, Rii =
[
1 0 . . . 0

]
, Rij =

[
0 . . . 0

]
,

for all i, j = 1, ..., N and i 6= j. Using this notation, the coarse correction operator is defined as
Q := RT A−1

0 R.
The two-level preconditioner combines this operator with a nonsingular smoother M−1

prec ≈ A−1

with the property

Mprec + MT
prec − A is SPD. (10)

It can be seen that this requirement is satisfied for (block) Gauss-Seidel smoothing (in that case,
Mprec + MT

prec−A is the (block) diagonal of A). Furthermore, it will be shown in Section 4.4 that
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this requirement is satisfied for block Jacobi smoothing. The result y = P−1
precr of applying the

two-level preconditioner to a vector r can now be computed in three steps:

y(1) = M−1
precr (pre-smoothing),

y(2) = y(1) + Q(r− Ay(1)) (coarse correction),

y = y(2) + M−T
prec(r − Ay(2)) (post-smoothing). (11)

The operator Pprec is SPD assuming that (10) is satisfied [22, p. 66].

BNN Deflation variant Basically, the BNN deflation variant is obtained by turning (11) inside
out, and using an SPD smoother M−1

defl ≈ A−1 (such as block Jacobi). We do not impose a condition
of the form (10) at this point. The result y = P−1

deflr of applying the BNN deflation technique to
a vector r can now be computed as:

y(1) := Qr (pre-coarse correction).

y(2) := y(1) + M−1
defl(r − Ay(1)) (smoothing),

y := y(2) + Q(r − Ay(2)) (post-coarse correction). (12)

The operator Pdefl is SPD for any SPD smoother M−1
defl, as can be shown using the more abstract

analysis in [22, p. 66].
Finally, we stress that the BNN deflation variant can be implemented more efficiently in a

CG algorithm by using the so-called ADEF2 deflation variant. The latter is obtained by skipping
the pre-coarse correction step in (12). ADEF2 yields the same iterates as BNN, as long as the
starting vector x0 is pre-processed according to: x0 7→ Qb + (I − AQ)Tx0 [21]. Furthermore,
ADEF2 requires only 2 mat-vecs and 1 smoothing step per iteration, whereas the preconditioning
variant (11) requires 3 mat-vecs and 2 smoothing steps. In Section 5, we will compare the overall
numerical efficiency of these two methods. However, for the theoretical purposes in this paper, it
is more convenient to study BNN than ADEF2.

Additional smoother requirements To derive the theoretical results in this paper, we require
additional assumptions on the smoothers. To specify these, for any SPD matrix M , let πM :=
RT (RMRT )−1RM denote the projection onto the coarse space Range(RT ) that yields the best
approximation in the M -norm (cf. [7]). Additionally, for any nonsingular matrix M such that

M + MT − A is SPD, define the symmetrization M̃ := MT (M + MT − A)−1M .
Using this notation, we can now specify the additional smoother requirements:

2Mdefl − A is SPD, (13)

h2−dvT M̃precv . vT v, ∀v ∈ Range(I − πI), (14)

h2−dvT Mdeflv . vT v, ∀v ∈ Range(I − πI). (15)

It will be shown in Section 4.4 that these requirements are satisfied for (damped) block Jacobi
smoothing (a similar strategy can be used to show (14) for block Gauss-Seidel smoothing with
blocks of size m × m).

The conditions (10) and (13) imply that “the smoother iteration is a contraction in the A-
norm” [7, p. 473]. The main idea behind the conditions (14) and (15) is that the smoother should

scale with h2−d in the same way that A does, and that M̃ is an efficient preconditioner for A in
the space orthogonal to the coarse space Range(RT ) [22, p. 78]. A slightly stronger version of
(14) is also used in [6] to establish scalable convergence.

3 Auxiliary result: regularity on the diagonal of A

We want to show that the linear solvers discussed in the previous section are scalable (independent
of h). To this end, we require an auxiliary result that roughly states that the diagonal blocks of
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A all behave in a similar manner in the space orthogonal to the coarse space. This section derives
this result using the mesh assumptions (2) and (3). In Section 4, we will apply this result to
obtain the desired scalability of both two-level methods. The final result of this section is given
in Theorem 3.3 in Section 3.3. To show this result, we require two intermediate results, which are
discussed in Section 3.1 and Section 3.2 respectively.

3.1 Intermediate result I: using regularity

The first intermediate result is a rather abstract property of the mesh. To state this result, recall
the mapping Fi : Ei → E0 (cf. Section 2). Because this mapping is invertible and affine by
assumption (2), there exists an invertible matrix Gi ∈ R

d×d and a vector gi ∈ R
d such that

Fi(x) = Gix + gi for all x ∈ Ei. Next, let |G−1
i | denote the determinant of G−1

i , and define
Zi := |G−1

i |GT
i Gi. We now have the following result2:

Lemma 3.1 The matrix Zi above satisfies the following relation:

1 . λmin(h2−dZi) ≤ λmax(h
2−dZi) . 1, ∀i = 1, ..., N. (16)

To show this result, we use the regularity of the mesh (3). Furthermore, we use the following
relations [5, p. 120–122]3:

|G−1
i | =

meas(Ei)

meas(E0)
, ‖Gi‖2 ≤

h0

ρi

, ‖G−1
i ‖2 ≤

hi

ρ0
. (17)

We can now show Lemma 3.1:

Proof (of Lemma 3.1) Because Zi := |G−1
i

|GT
i Gi, and Gi is invertible, we have (cf. [16, p. 26]):

λmax(h2−dZi) = h2−d|G−1
i |λmax(GT

i Gi) = h2−d|G−1
i |‖Gi‖

2
2,

λmin(h2−dZi) = h2−d|G−1
i |

1

λmax
`

(GT
i Gi)−1

´ = h2−d|G−1
i |

1

‖G−1
i ‖2

2

.

Applying the relations in (17), using that meas(E0), h0 and ρ0 do not depend on h, and observing that
ρd

i . meas(Ei) . hd
i (for all i = 1, ...,N), we may write:

λmax(h2−dZi) ≤ h2−d meas(Ei)

meas(E0)

„

h0

ρi

«2

.
meas(Ei)

hd

„

h

ρi

«2

.

„

hi

h

«d „

h

ρi

«2

,

λmin(h2−dZi) ≥ h2−d meas(Ei)

meas(E0)

„

ρ0

hi

«2

&
meas(Ei)

hd

„

h

hi

«2

&
“ ρi

h

”d
„

h

hi

«2

.

Hence, the proof is completed if we can show that

1 ≤
h

hi

≤
h

ρi

. 1, ∀i = 1, ...,N.

The first two inequalities follow from the fact that ρi ≤ hi ≤ h. The last inequality follows as a special case
from (3). Hence, we obtain (16), which completes the proof. �

3.2 Intermediate result II: the desired result in terms of ‘small’ bilinear

forms

The second intermediate result concerns the individual diagonal blocks of A in terms of ‘small’
bilinear forms. To state this result, we require the following notation: let V0 denote the space of all
polynomials of degree p and lower defined on the reference element E0. Additionally, let Γi denote
the set of all edges of Ei that are either in the interior or at the Dirichlet boundary. Furthermore,

2Throughout this paper, λmin and λmax denote the smallest and largest eigenvalue of a matrix with real eigen-
values respectively.

3Throughout this paper, meas(.) denotes the Lesbesque measure.
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let Γ0 denote the set of all edges of the reference element E0. Next, define the following bilinear
forms4:

B
(i)
Ω (v, w) =

∫

Ei

K∇ (v ◦ Fi) · ∇ (w ◦ Fi) , B
(0)
Ω (v, w) =

∫

E0

∇v · ∇w,

B(i)
σ (v, w) =

∑

e∈Γi

∫

e

σ

he

[v ◦ Fi] · [w ◦ Fi] , B(0)
σ (v, w) =

∑

e∈Γ0

∫

e

[v] · [w] ,

for all v, w ∈ V0 and i = 1, ..., N . Using this notation, we now have the following result:

Lemma 3.2 The bilinear forms above satisfy the following relations:

B
(0)
Ω (w, w) . h2−dB

(i)
Ω (w, w) . B

(0)
Ω (w, w), ∀w ∈ V0, ∀i = 1, ..., N. (18)

0 ≤ h2−dB(i)
σ (w, w) . B(0)

σ (w, w), ∀w ∈ V0, ∀i = 1, ..., N. (19)

To show this result, we use the mesh properties (2) and (3), and the assumption that the dif-
fusion coefficient and the penalty parameter are bounded above and below by positive constants
(independent of h). We discuss the proof in four parts hereafter.

Proof (of (18) in Lemma 3.2) Because the diffusion coefficient K is bounded below and above by positive
constants (independent of h), we may write (all displayed relations below are for all w ∈ V0 and for all
i = 1, ...,N):

Z

Ei

∇ (w ◦ Fi) · ∇ (w ◦ Fi) . B
(i)
Ω (w, w) .

Z

Ei

∇ (w ◦ Fi) · ∇ (w ◦ Fi) . (20)

Next, we apply the chain rule, using that the Jacobian of Fi is equal to Gi:
Z

Ei

∇ (w ◦ Fi) · ∇ (w ◦ Fi) =

Z

Ei

“

`

Gi∇w
´

◦ Fi

”

·
“

`

Gi∇w
´

◦ Fi

”

.

A change of variables (from x ∈ Ei to Fi(x) ∈ E0) introduces a factor |G−1
i |:

Z

Ei

∇ (w ◦ Fi) · ∇ (w ◦ Fi) =

Z

E0

|G−1
i |

`

Gi∇w
´

·
`

Gi∇w
´

=

Z

E0

(∇w)T |G−1
i |GT

i Gi
| {z }

=Zi

∇w.

Substitution of this expression into (20) and multiplication with h2−d yields:
Z

E0

(∇w)T (h2−dZi)(∇w) . h2−dB
(i)
Ω (w, w) .

Z

E0

(∇w)T (h2−dZi)(∇w).

Application of Lemma 3.1 gives:
Z

E0

∇w · ∇w

| {z }

=B
(0)
Ω

(w,w)

. h2−dB
(i)
Ω (w, w) .

Z

E0

∇w · ∇w

| {z }

=B
(0)
Ω

(w,w)

,

which completes the proof of (18). �

Proof (of (19) in Lemma 3.2 for 1D problems) Because the penalty parameter σ is bounded below and

above by positive constants (independent of h), and because B
(i)
σ is SPSD, it follows that (all displayed relations

below are for all w ∈ V0 and for all i = 1, ...,N):

0 ≤ h2−dB
(i)
σ (w, w) .

X

e∈Γi

Z

e

h2−d

he

[w ◦ Fi] · [w ◦ Fi] . (21)

For one-dimensional problems, the integral over an edge e should be interpreted as the evaluation of the
integrand. Furthermore, he denotes the size of the largest mesh element adjacent to e, so regularity (3) implies
that h

he
. 1 for all e. Hence, we may write (for d = 1):

0 ≤ hB
(i)
σ (w, w) .

X

e∈Γi

[w ◦ Fi(e)] · [w ◦ Fi(e)] .

4Here, the trace operators are defined as before by extending the function to be zero outside E0 and Ei.
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Finally, observe that, for all e ∈ Γi, the transformed edge value Fi(e) =: e0 ∈ Γ0. Different e ∈ Γi yield different
e0 ∈ Γ0, although not all e0 ∈ Γ0 are reached in the presence of Neumann boundary conditions. Nevertheless,
we may write:

0 ≤ hB
(i)
σ (w, w) .

X

e0∈Γ0

[w(e0)] · [w(e0)]

| {z }

=B
(0)
σ (w,w)

.

This completes the proof of (19) for one-dimensional problems. �

Proof (of (19) in Lemma 3.2 for 2D problems) Similar to the one-dimensional case, we have (21). For two-
dimensional problems, the edges e are line segments and he = meas(e), i.e. the length of e. Hence, for all e

there exists an invertible affine mapping re : [0, 1] → e. By definition of the line integral over e, we may now
rewrite (21) as (using d = 2):

0 ≤ B
(i)
σ (w, w) .

X

e∈Γi

1

he

Z 1

0
[w ◦ Fi ◦ re(t)] · [w ◦ Fi ◦ re(t)] |r

′
e|dt

Because re(t) is affine, its derivative r′e is a constant and:

|r′e| =

Z 1

0
|r′e|dt =

Z

e

1 de = meas(e) = he.

Hence:

0 ≤ B
(i)
σ (w, w) .

X

e∈Γi

Z 1

0
[w ◦ Fi ◦ re(t)] · [w ◦ Fi ◦ re(t)] dt.

Next, consider a single e ∈ Γi: note that Fi ◦ re([0, 1]) = Fi(e) =: e0 ⊂ ∂E0, and define the invertible affine
mapping re0 := Fi ◦ re. As above, we have that |r′e0

| = meas(e0). By definition of the line integral over e0, we
may now write (using that meas(e0) does not depend on h):

Z 1

0
[w ◦ Fi ◦ re(t)] · [w ◦ Fi ◦ re(t)] dt =

1

meas(e0)

Z

e0

[w] · [w] .

Z

e0

[w] · [w] .

Next, we apply this strategy for all e ∈ Γi, which yield different (disjunct) e0 ⊂ ∂E0, although the entire
boundary of E0 is not reached in the presence of Neumann boundary conditions. Combining the results, we
may write (after possible repartitioning of the edges e0):

0 ≤ B
(i)
σ (w, w) .

X

e0∈Γ0

Z

e0

[w] · [w]

| {z }

=B
(0)
σ (w,w)

.

This completes the proof of (19) for two-dimensional problems (d = 2). �

Proof (of (19) in Lemma 3.2 for 3D problems) The proof is similar to the two-dimensional case, except
that we are now dealing with surface integrals rather than line integrals. Similar the one-dimensional case, we
have (21). For three-dimensional problems, the faces e are polygons and he =

p

meas(e), i.e. the square root
of the surface area of e. Because all faces are mutually affine-equivalent (2), for all e, there exists an invertible
affine mapping re : D → e for some polygon D ⊂ R

2 (independent of h). By definition of the surface integral
over e, we may rewrite (21) as (using d = 3):

0 ≤ h−1B
(i)
σ (w, w) .

X

e∈Γi

1

h he

Z

D

[w ◦ Fi ◦ re(u, v)] · [w ◦ Fi ◦ re(u, v)]

˛

˛

˛

˛

∂re

∂u
×

∂re

∂v

˛

˛

˛

˛

du dv.

Because re(u, v) is affine, it follows that its derivatives ∂r
∂u

and ∂r
∂v

are constant, and:
˛

˛

˛

˛

∂r

∂u
×

∂r

∂v

˛

˛

˛

˛

=
1

meas(D)

Z

D

˛

˛

˛

˛

∂r

∂u
×

∂r

∂v

˛

˛

˛

˛

du dv =
1

meas(D)

Z

e

1 de =
meas(e)

meas(D)
=

h2
e

meas(D)
,

Hence:

0 ≤ h−1B
(i)
σ (w, w) .

X

e∈Γi

he

hmeas(D)

Z

D

[w ◦ Fi ◦ re(u, v)] · [w ◦ Fi ◦ re(u, v)] du dv

Because e can be contained in a circle with diameter h, it follows that meas(e) . h2, hence he

h
. 1:

0 ≤ h−1B
(i)
σ (w, w) .

X

e∈Γi

1

meas(D)

Z

D

[w ◦ Fi ◦ re(u, v)] · [w ◦ Fi ◦ re(u, v)] du dv

8



Next, consider a single e ∈ Γi: note that Fi ◦ re(D) = Fi(e) =: e0 ⊂ ∂E0, and define the invertible affine

mapping re0 := Fi ◦ re. As above, we have that
˛

˛

˛

∂re0
∂u

×
∂re0
∂v

˛

˛

˛ =
meas(e0)
meas(D)

. By definition of the surface integral

over e0, we may now write (using that meas(e0) does not depend on h):

1

meas(D)

Z

D

[w ◦ Fi ◦ re(u, v)] · [w ◦ Fi ◦ re(u, v)] du dv =
1

meas(e0)

Z

e0

[w] · [w] .

Z

e0

[w] · [w] .

Next, we apply this strategy for all e ∈ Γi, which yield different (disjunct) e0 ⊂ ∂E0, although the entire
boundary of E0 is not reached in the presence of Neumann boundary conditions. Combining the results, we
may write (after possible repartitioning of the edges e0):

0 ≤ h−1B
(i)
σ (w, w) .

X

e0∈Γ0

Z

e0

[w] · [w]

| {z }

=B
(0)
σ (w,w)

.

This completes the proof of (19) for three-dimensional problems (d = 3). �

3.3 Final auxiliary result: regularity on the diagonal of A

Using the intermediate results in the previous sections, we can now show the final result of this
section, which roughly states that the diagonal blocks of A all behave in a similar manner in
the space orthogonal to the coarse space. To state this result, we require the following notation:
suppose that AΩ results from the bilinear form h2−dBΩ in the same way that A results from the
bilinear form B: this is established by substituting AΩ for A and h2−dBΩ for B in (8) and (9).
Similarly, suppose that the matrices Aσ and Ar result from the bilinear forms h2−dBσ and h2−dBr

respectively. Altogether, we may write: A = hd−2(AΩ + Aσ + Ar). Finally, let Dσ be the result
of extracting the diagonal blocks of size m × m from Aσ. Using this notation, we now have the
following result:

Theorem 3.3 The matrices AΩ and Dσ above satisfy the following relations:

vT v . vT AΩv, ∀v ∈ Range(I − πI), (22)

vT AΩv . vT v, ∀v ∈ R
mN , (23)

0 ≤ vT Dσv . vT v, ∀v ∈ R
mN . (24)

To show this result, we use the mesh properties (2) and (3), and the assumption that the dif-
fusion coefficient and the penalty parameter are bounded above and below by positive constants
(independent of h).

The main idea is to observe that AΩ is an N × N block diagonal matrix with blocks of size
m × m, where the first row and column in every diagonal block is zero: this follows from the fact

that BΩ(φi
k, φ

(j)
ℓ ) = 0 for i 6= j, and that the gradient of a piecewise constant basis function is

zero. Altogether, AΩ is of the following form:

AΩ =




0 0

0 A
(1)
Ω

. . .

0 0

0 A
(i)
Ω

. . .

0 0

0 A
(N)
Ω




. (25)

As a consequence, we can treat the diagonal blocks individually using Lemma 3.2, and then
combine the results (a similar strategy is used for the block diagonal Dσ).
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To show (22), we also use the nature of πI = RT R, which is the projection operator onto the
coarse space Range(RT ) that yields the best approximation in the 2-norm. As a result, the space
Range(I −πI) is orthogonal to Range(RT ), where the latter corresponds to the piecewise constant
basis functions. In particular, any v ∈ Range(I − πI) is of the form:

v =




0
v1

...
0
vi

...
0

vN




. (26)

Using these ideas, we can now show Theorem 3.3:

Proof (of Theorem 3.3) Let A
(i)
Ω denote the result of deleting the first row and column in the ith diagonal

block in AΩ, as indicated in (25). In other words:
“

A
(i)
Ω

”

ℓ−1,k−1
= h2−dB

(i)
Ω (φ

(0)
k

, φ
(0)
ℓ

),

for all k, ℓ = 2, ...,m. Next, observe that B
(0)
Ω is independent of h and symmetric. Furthermore, for all higher-

order polynomials v ∈ span{φ
(0)
2 , ..., φ

(0)
m } \ {0}, the gradient of v is nonzero, which implies that B

(0)
Ω (v, v) > 0.

In other words, B
(0)
Ω is even positive-definite for the subspace under consideration. As a consequence, applying

Lemma 3.2, we obtain a result similar to (22), but then for the individual diagonal blocks:

w
T
w . w

T A
(i)
Ω w, ∀w ∈ R

m−1, ∀i = 1, ...,N.

Using the notation in (26), this relations hold in particular for w = vi, for all i = 1, ...,N . Summing over all i

then yields:

N
X

i=1

v
T
i vi .

N
X

i=1

v
T
i A

(i)
Ω vi, ∀v ∈ Range(I − πI),

Using the notation in (26), this can be rewritten as (22), which then completes its proof. The relations (23) and
(24) follow in a similar manner from Lemma 3.2 (without deleting the first row and column in each diagonal
block). �

4 Main result: scalability of both two-level methods

Using the auxiliary result obtained in the previous section, we can now show the main result of
this paper: both two-level methods yield scalable convergence of the preconditioned CG method
(independent of the mesh element diameter). This result is stated in Theorem 4.3 in Section 4.3.
To show this result, we require two intermediate results, which are discussed in Section 4.1 and
Section 4.2 respectively. Finally, Section 4.4 considers the special case of block Jacobi smoothing.

4.1 Intermediate result I: using the error iteration matrix

The first intermediate result bounds the condition number of the preconditioned system in terms
of the eigenvalues of the so-called error iteration matrix. The following result holds for arbitrary
SPD matrices A and P :

Lemma 4.1 Suppose that A and P are SPD, and define E = I −P−1A. Then, the condition
number κ2 (in the 2-norm) of P−1A can be bounded as follows (with λmin(E) ≤ λmax(E) < 1):

κ2(P
−1A) ≤

1 − λmin(E)

1 − λmax(E)
. (27)
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To show this result, we make use of the following implication for positive constants c1 and c2 [22,
p. 50]5:

c1A ≤ P ≤ c2A ⇒ κ2(P
−1A) ≤

c2

c1
. (28)

Proof (of Lemma 4.1) First, observe that E has the same spectrum as A
1
2 EA− 1

2 = I−A
1
2 P−1A

1
2 , and that

the latter is symmetric. Hence (cf. [16, p. 25]):

λmax(E) = max
x6=0

x
T A

1
2 EA− 1

2 x

xT x

y:=A
−

1
2 x

= max
y 6=0

(A
1
2 y)T A

1
2 Ey

(A
1
2 y)T (A

1
2 y)

= max
y 6=0

y
T AEy

yT Ay
.

λmin(E) = ... = min
y 6=0

y
T AEy

yT Ay
.

As a consequence, we may write:

λmin(E)yT Ay ≤ y
T AEy ≤ λmax(E)yT Ay, ∀y 6= 0

E:=I−P−1A
⇒ λmin(E)yT Ay ≤ y

T (A − AP−1A)y ≤ λmax(E)yT Ay, ∀y 6= 0

subtract y
T Ay

⇒ (λmin(E) − 1)yT Ay ≤ −y
T AP−1Ay ≤ (λmax(E) − 1)yT Ay, ∀y 6= 0

times −1
⇒ (1 − λmin(E))yT Ay ≥ y

T AP−1Ay ≥ (1 − λmax(E))yT Ay, ∀y 6= 0

w:=Ay

⇒ (1 − λmin(E))wT A−1
w ≥ w

T P−1
w ≥ (1 − λmax(E))wT A−1

w, ∀w 6= 0

[11, p. 398, 471]
⇒

1

1 − λmin(E)
v

T Av ≤ v
T Pv ≤

1

1 − λmax(E)
v

T Av, ∀v 6= 0.

Implication (28) now yields (27), which completes the proof. �

4.2 Intermediate result II: spectral bounds for the error iteration ma-

trix

The second intermediate result concerns bounds for the eigenvalues of both two-level error iteration
matrices. These bounds are obtained for any SPD matrix A, so the results below are not restricted
to SIPG matrices. To specify the bounds, for any SPD matrix M , define

KM := sup
v 6=0

‖(I − πM )v‖2
M

‖v‖2
A

.

Using this notation, the spectrum of the error iteration matrix Eprec = I−P−1
precA can be bounded

as follows (with KfMprec
≥ 1):

0 ≤ λmin(Eprec) ≤ λmax(Eprec) ≤ 1 −
1

KfMprec

. (29)

This result for the two-level preconditioner follows as a special case from [7] (also cf. [22, p.
70-73]), and relies on the fact that Mprec is nonsingular, and that Mprec + MT

prec − A is SPD. In
this section, we use a modified strategy to obtain similar spectral bounds for the deflation variant
Edefl = I − P−1

deflA:

Lemma 4.2 The spectrum of the error iteration matrix Edefl above can be bounded as follows
(with K2Mdefl

≥ 1):

−1 ≤ λmin(Edefl) ≤ λmax(Edefl) ≤ 1 −
1

K2Mdefl

. (30)

5Throughout this paper, for symmetrical matrices M1, M2 ∈ R
n×n, we write M1 ≤ M2 to indicate that

v
T M1v ≤ v

T M2v for all vectors v ∈ R
n; the notation ≥, <, and > is used similarly.
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To show this result, we use that Mdefl and 2Mdefl−A are SPD. Furthermore, we apply the following
ideas: define π̄A := A

1
2 QA

1
2 , and, for any SPD matrix M , set ΘM := (I− π̄A)(I−A

1
2 M−1A

1
2 )(I−

π̄A). Because QAQ = Q [20, p. 1730], it can be verified that π̄A = π̄2
A is a symmetric projection.

Furthermore, Edefl has the same spectrum as ΘMdefl
[20, p. 1730], so we can analyze ΘMdefl

instead.
At the same time, for any SPD matrix M :

M ≥ A ⇒ λmax(ΘM ) ≤ 1 −
1

KM

, KM ≥ 1. (31)

This follows from [7] (also cf. [22, p. 71–73]). Altogether, Lemma 4.2 can now be shown as follows:

Proof Because π̄A is a symmetric projection, for any SPD matrices M1 and M2, it can be shown that

M1 ≤ M2 ⇒ ΘM1
≤ ΘM2

. (32)

This can be seen as follows:

M1 ≤ M2,

M−1
1

[11, p. 398, 471]

≥ M−1
2 ,

A
1
2 M−1

1 A
1
2 ≥ A

1
2 M−1

2 A
1
2 ,

I − A
1
2 M−1

1 A
1
2 ≤ I − A

1
2 M−1

2 A
1
2 ,

ΘM1
≤ ΘM2

.

Next, note that the assumption 2Mdefl − A > 0 implies that Mdefl ≥ 1
2
A. Using (32), we then obtain

ΘMdefl
≥ Θ 1

2
A

= −(I − π̄A)2. Since π̄A is a projection, all eigenvalues of (I − π̄A)2 = I − π̄A are in {0, 1}.

Hence, λmin(ΘMdefl
) ≥ −1. At the same time, it follows from (32) that ΘMdefl

≤ Θ2Mdefl
. Applying (31) (using

the assumption 2Mdefl − A > 0 once more) then implies that λmax(ΘMdefl
) ≤ λmax(Θ2Mdefl

) ≤ 1 − 1
K2Mdefl

.

Combining these two spectral bounds for ΘMdefl
, and recalling that Edefl has the same spectrum as ΘMdefl

,
we arrive at (30), which then completes the proof. �

4.3 Final main result: scalability of both two-level methods

Using the intermediate results in the previous sections, we can now show the main result of this
paper: that both two-level methods yield scalable convergence of the CG method (independent
of the mesh element diameter). This result has been shown by Dobrev et al. [6] for the precon-
ditioning variant for p = 1. In this section, we use a similar strategy to extend these results for
p ≥ 1 and for the deflation variant.

Theorem 4.3 (Main result) Both two-level methods yield scalable CG convergence in the
sense that the condition number κ2 (in the 2-norm) of the preconditioned system can be bounded
independently of the maximum mesh element diameter h:

κ2(P
−1
precA) . 1, κ2(P

−1
deflA) . 1. (33)

To show this result, we use coercivity (6), the mesh properties (2) and (3), and the assumption
that the diffusion coefficient and the penalty parameter are bounded above and below by positive
constants (independent of h). Regarding the smoothers, we use that Mprec is nonsingular, and that
Mdefl, 2Mdefl −A, and Mprec + MT

prec −A are SPD. Furthermore, we use the additional smoother
requirements (14) and (15). It will be demonstrated in the next section that all of these smoother
requirements are satisfied for (damped) block Jacobi smoothing.

The main idea is to combine Lemma 4.1, (29) and Lemma 4.2 to obtain:

κ2(P
−1
precA) ≤ KfMprec

, κ2(P
−1
deflA) ≤ 2K2Mdefl

. (34)
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The proof is then completed by showing that KfMprec
, K2Mdefl

. 1, for any smoother that satisfies

the criteria above. This is established using the auxiliary result Theorem 3.3, and coercivity (6)
in matrix form:

hd−2vT (AΩ + Aσ)v . vT Av, ∀v ∈ R
Nm. (35)

Altogether, Theorem 4.3 can now be shown as follows.

Proof (of Theorem 4.3) First, we will show that KfMprec
. 1 (the proof that K2Mdefl

. 1 is similar). For

ease of notation, we will write fM for fMprec. The main idea is to show that ‖(I − πfM
)v‖fM

. ‖v‖A for all

v: because πfM
is a projection onto the coarse space Range(RT ) that yields the best approximation in the

fM-norm, we can replace πfM
by the suboptimal projection πI :

‖(I − πfM
)v‖2

fM
≤ ‖(I − πI)v‖2

fM
= hd−2‖(I − πI)v‖2

h2−d fM
, ∀v ∈ R

Nm.

Next, we apply the assumption on the smoother in (14):

‖(I − πfM
)v‖2

fM
.hd−2‖(I − πI)v‖2

2, ∀v ∈ R
Nm.

Theorem 3.3 now gives (using (22)):

‖(I − πfM
)v‖2

fM
.hd−2‖(I − πI)v‖2

AΩ
, ∀v ∈ R

Nm.

Because Bσ is SPSD, it follows that Aσ is SPSD. Hence:

‖(I − πfM
)v‖2

fM
.hd−2‖(I − πI)v‖2

AΩ+Aσ
, ∀v ∈ R

Nm.

Next, we use coercivity (35):

‖(I − πfM
)v‖2

fM
.‖(I − πI)v‖2

A, ∀v ∈ R
Nm.

Finally, because πI is a projection:

‖(I − πfM
)v‖2

fM
. ‖v‖2

A, ∀v ∈ R
Nm.

Substitution of this relation into the definition of KfM
yields:

KfM
= sup

v 6=0

‖(I − πfM
)v‖2

fM

‖v‖2
A

. 1,

A similar strategy, using (15) instead of (14), yields K2Mdefl
. 1. Substitution of KfMprec

, K2Mdefl
. 1 into

(34) now yields (33), which completes the proof of Theorem 4.3. �

4.4 Special case: block Jacobi smoothing

This section demonstrates that Theorem 4.3 is valid for (damped) block Jacobi smoothing. To
specify this result, suppose that MBJ is the block Jacobi smoother with blocks of size m×m. Next,
consider the specific choices Mprec, Mdefl = ω−1MBJ with damping parameter ω > 0 (independent
of h). We assume that ω ≤ 1, with ω < 1 strictly for the preconditioning variant. Furthermore,
we assume that the mesh can be colored by two colors, i.e. that the mesh can be represented by
a graph whose vertices can be colored such that connected vertices do not have the same color.
This is the case e.g. for structured rectangular meshes. Alternatively, we could assume that
the damping parameter ω is sufficiently small. We do not discuss this latter alternative strategy
further. Altogether, all smoother requirements for Theorem 4.3 are satisfied for (damped) block
Jacobi smoothing:

Corollary 4.4 Suppose that the mesh can be colored by two colors. Then, Theorem 4.3 applies
for the damped block Jacobi smoothers Mprec and Mdefl above, i.e. both two-level methods yield
scalable CG convergence in the sense that the condition number κ2 (in the 2-norm) of the
preconditioned system can be bounded independently of the maximum mesh element diameter
h:

κ2(P
−1
precA) . 1, κ2(P

−1
deflA) . 1.
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This result follows immediately from Theorem 4.3 once we have verified that the conditions (10),
(13), (14), and (15) are satisfied for the (SPD) damped block Jacobi smoothers under consideration.
In other words, writing M := ω−1MBJ, we need to show:

2M − A > 0, (36)

h2−dvT Mv . vT v, ∀v ∈ Range(I − πI), (37)

h2−dvT M̃v . vT v, ∀v ∈ Range(I − πI), (38)

for all ω ≤ 1, with ω < 1 strictly for (38). We treat each relation separately.
To show (36), the main idea is to observe that 2MBJ −A is the same as A, except that the off-

diagonal blocks have an additional minus sign. Using this property, the proof of (36) is completed
using that the mesh can be colored by two colors:

Proof (of (36)) Choose arbitrary v ∈ R
Nm, and write

v =

0

B

B

B

@

v1

v2

...
vN

1

C

C

C

A

, with v1, ...,vN ∈ R
m.

Without loss of generality, we may assume that ω = 1. In that case, 2M − A is the same as A, except that the
off-diagonal blocks have an additional minus sign. Hence, we may write:

v
T (2M − A)v =

N
X

i=1

v
T
i Aiivi −

N
X

i=1

X

j 6=i

v
T
i Aijvj .

Next, suppose that W ⊂ {1, 2, ...,N} is the collection of indices corresponding to one of the two colors with
which the mesh can be colored. Define the complement W C = {1, 2, ...,N} \ W , i.e. the collection of indices
corresponding to the second color. Because W ∪ W C = {1, 2, ...,N}, we may write:

v
T (2M − A)v =

N
X

i=1

v
T
i Aiivi −

X

i∈W

X

j 6=i

v
T
i Aijvj −

X

i∈W C

X

j 6=i

v
T
i Aijvj .

Because Aij = 0 if i 6= j are either both in W or both in W C , it follows that:

v
T (2M − A)v =

N
X

i=1

v
T
i Aiivi −

X

i∈W

X

j∈W C\{i}

v
T
i Aijvj −

X

i∈W C

X

j∈W\{i}

v
T
i Aijvj .

Next, define:

w =

0

B

B

B

@

w1

w2

...
wN

1

C

C

C

A

∈ R
Nm, wj =

(

−vj , for j ∈ W,

vj , for j ∈ W C .

Substitution yields:

v
T (2M − A)v =

N
X

i=1

w
T
i Aiiwi +

X

i∈W

X

j∈W C\{i}

w
T
i Aijwj +

X

i∈W C

X

j∈W\{i}

w
T
i Aijwj .

As before, we can use that W ∪ W C = {1, 2, ...,N}, and that Aij = 0 if i 6= j are either both in W or both in
W C :

v
T (2M − A)v =

N
X

i=1

w
T
i Aiiwi +

N
X

i=1

X

j 6=i

w
T
i Aijwj = w

T Aw.

And because A is SPD, it now follows that 2M − A is SPD. This completes the proof of (36). �

To show (37), the main idea is to use Theorem 3.3 and the following property (cf. [6, p. 760] and
[12, p. 4]):

0 < B(v, v) . BΩ(v, v) + Bσ(v, v), ∀v ∈ R
Nm. (39)
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Proof (of (37)) Without loss of generality, we may assume that ω = 1. Next, recall the notation introduced
in the beginning of Section 3.3. Additionally, similar to Dσ, let Dr be the result of extracting the diagonal
blocks of size m×m from Ar . Using this notation, and the fact that AΩ is a block diagonal matrix with blocks
of size m × m, we may write:

h2−dM = AΩ + Dσ + Dr .

Next, we write (39) in matrix form:

0 < v
T Av . v

T
“

hd−2AΩ + hd−2Aσ

”

v, ∀v ∈ R
Nm.

Because this relation is also true when considering the diagonal blocks only, we may write:

h2−d
v

T Mv . v(AΩ + Dσ)v, ∀v ∈ R
Nm.

Application of Theorem 3.3 now yields (37), which completes the proof. �

To show (38), we combine the previous results (36) and (37):

Proof (of (38)) Using (36), and the fact that ω < 1 strictly, it can be shown that

fM ≤
1

2(1 − ω)
M. (40)

This can be seen as follows:

2ωM − A ≥ 0,

2M − A = (2 − 2ω)M + 2ωM − A
| {z }

≥0

≥ (2 − 2ω)M,

(2M − A)−1
[11, p. 398, 471]

≤
1

2(1 − ω)
M−1,

M(2M − A)−1M
| {z }

=: fM

≤
1

2(1 − ω)
M.

Combining this relation with (37), it now follows that

h2−d
v

T
fMv

(40)

≤
1

2(1 − ω)
h2−d

v
T Mv

(37)

. v
T
v, ∀v ∈ Range(I − πI).

This completes the proof of (38). �

5 Numerical results

The previous section demonstrated theoretically that both two-level methods yield scalable con-
vergence of the CG method. In this section, we extend the numerical support in [19] for this result
by studying two test problems with strong variations in the coefficients.

Test cases We consider two diffusion problems of the form (1) on the domain [0, 1]2, as illus-
trated in Figure 1 (if we subdivide the domain into 10 × 10 equally sized squares, the diffusion
coefficient is constant within each square). The first problem is a bubbly flow problem with large
jumps in the coefficients, inspired by [20]. The second problem involves homogeneous Neumann
boundary conditions (indicated by the black lines in Figure 1). For both problems, the Dirich-
let boundary conditions and the source term f are chosen such that the exact solution reads
u(x, y) = cos(10πx) cos(10πy). We stress that this choice does not impact the matrix or the
performance of the linear solver, as we use random start vectors (see below).

Experimental setup All model problems are discretized by means of the SIPG method as
discussed in Section 2.1. The penalty parameter is chosen diffusion-dependent, σ = 20K (using
the largest trace value of K at the discontinuities), as motivated by [19]. The difference with a
constant penalty parameter is discussed at the end of this section. Furthermore, we use a uniform
Cartesian mesh with N = n× n elements with n = 40, 80, 160, 320, and monomial basis functions
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Figure 1: Illustration of the test cases

with polynomial degree p = 2, 3 (results for p = 1 are similar though). As a result, the largest
problems have over 106 degrees of freedom.

The resulting linear systems are solved by means of the preconditioned CG method, combined
with either the two-level preconditioner or the corresponding ADEF2 deflation variant, as discussed
in Section 2.2. Furthermore, we use (damped) block Jacobi smoothing (cf. Section 4.4). For the
damping parameter we consider ω = 1 for the deflation variant, and both ω = 1 and ω = 0.7
for the preconditioner, as motivated by [19]. Diagonal scaling is applied as a pre-processing step
in all cases, and the same random start vector x0 is used for all problems of the same size. For

the stopping criterion we use: ‖rk‖2

‖b‖2
≤ 10−6, where rk is the residual after the kth iteration.

Coarse systems, involving the SIPG matrix A0 with polynomial degree p = 0, are solved directly.
However, a more efficient strategy has been studied in [19]. In any case, the coarse matrix A0 is
quite similar to a central difference matrix, for which very efficient solvers are readily available.

Results Table 1 and Table 3 display the results in terms of the number of CG iterations required
for convergence. The corresponding computational times are provided in Table 2 and Table 4. It
can be seen that both two-level methods yield fast and scalable convergence. Without damping,
deflation is the most efficient. When a suitable damping value is known, the preconditioning
variant performs comparable to deflation.

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2x BJ 41 42 43 44 55 56 57 58
Prec., 2x BJ (ω = 0.7) 31 31 32 32 33 34 35 35

Defl., 1x BJ 41 39 40 41 45 45 45 46

Table 1: Bubbly flow: # CG Iterations

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2x BJ 0.09 0.60 3.07 15.42 0.38 1.75 7.95 36.74
Prec., 2x BJ (ω = 0.7) 0.07 0.45 2.30 11.35 0.23 1.07 4.89 22.69

Defl., 1x BJ 0.07 0.45 2.38 12.47 0.21 1.01 4.77 22.39

Table 2: Bubbly flow: CPU time in seconds

Influence of the penalty parameter The results in this section have been established using
a diffusion-dependent penalty parameter σ = 20K. A common alternative value is to choose
the penalty parameter constant, e.g. σ = 20. Both options have been compared numerically in
[19] for a diffusion problem with five layers where either K = 1 or K = 10−3 in each layer. In
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degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2x BJ 45 45 45 45 59 59 60 60
Prec., 2x BJ (ω = 0.7) 34 35 36 36 36 37 37 38

Defl., 1x BJ 47 47 47 47 49 49 50 50

Table 3: Neumann BCs: # CG Iterations

degree p=2 p=3
mesh N=402 N=802 N=1602 N=3202 N=402 N=802 N=1602 N=3202

Prec., 2x BJ 0.10 0.65 3.31 16.01 0.40 1.86 8.53 37.77
Prec., 2x BJ (ω = 0.7) 0.08 0.51 2.67 12.97 0.24 1.18 5.33 24.33

Defl., 1x BJ 0.07 0.53 2.82 14.37 0.23 1.09 5.23 24.52

Table 4: Neumann BCs: CPU time in seconds

that reference, it has been found that both two-level methods perform significantly worse for the
constant penalty parameter: up to 150 times more iterations were required for the preconditioning
variant, and up to 18 times more iterations for the deflation variant. Furthermore, the convergence
did not seem scalable for the meshes under consideration (i.e. more iterations for finer meshes for
σ = 20).

This does not contradict the theoretical scalability result in this paper: this result implies that
the number of iterations can be bounded independently of the mesh element diameter, not that
the number of iterations is the same for each mesh. In other words, for sufficiently fine meshes, the
scalable convergence should become apparent for the problem above. This hypothesis has been
verified by studying a similar problem with smaller jumps in the coefficients (either K = 1 or
K = 0.5 in each of the five layers). For this ‘reduced’ problem, we observe only a slight increase
in the number of iterations, and the magnitude of this increase reduces with the mesh element
diameter.

Altogether, scalable convergence is obtained for both a constant and a diffusion-dependent
penalty parameter. However, a diffusion-dependent penalty parameter yields significantly faster
results for problems with strong variations in the coefficients.

6 Conclusion

This paper is focused on a two-level preconditioner proposed in [6] and the corresponding BNN
(ADEF2) deflation variant for linear SIPG systems. For both two-level methods, we have found
that the condition number of the preconditioned system can be bounded independently of the
mesh element diameter, implying scalable CG convergence. This result is valid for polynomial
degree p ≥ 1. We have verified that the restrictions on the smoother are satisfied for block Jacobi
smoothing. Numerical experiments with strong variations in the coefficients further support our
main result. Future research could focus on a theoretical comparison of both two-level methods
and on more advanced, larger scale numerical test cases.
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