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Abstract

Purpose: The waste recycling industry increasingly relies on magnetic density sepa-
rators. These devices generate an upward magnetic force in ferro-fluids allowing
to separate the immersed particles according to their mass density. Recently a
new separator design that significantly reduces the required amount of permanent
magnet material has been proposed. The purpose of this paper is to alleviate the
undesired end-effects in this design by altering the shape of the ferromagnetic covers
of the individual poles.

Design/methodology/approach: We represent the shape of the ferromagnetic pole
covers with B-splines and define a cost functional that measures the non-uniformity
of the magnetic field in an area above the poles. We apply an isogeometric shape op-
timization procedure, which allows us to accurately represent, analyse and optimize
the geometry using only a few design variables. The design problem is regularized
by imposing constraints that enforce the convexity of the pole cover shapes and
is solved by a non-linear optimization procedure. We validate the implementation
of our algorithm using a simplified variant of our design problem with a known
analytical solution. The algorithm is subsequently applied to the problem posed.

Research limitations/implications: The shape optimization attains its target and
yields pole cover shapes that give raise to a magnetic field that is uniform over a
larger domain. This increased uniformity is obtained at the cost of a pole cover
shape that differs per pole. This limitation has negligable impact on the manu-
facturing of the separator. The new pole cover shapes therefore lead to improved
performance of the density separation.

Originality/value: This paper treats the shapes optimization of magnetic density sep-
arators systematically and presents new shapes for the ferromagnetic poles covers.
Due to the larger uniformity the generated field, these shapes should enable larger
amounts of waste to be processed than the previous design.

Keywords: Magnetic density separation, shape optimization, isogeometric analysis
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1. Introduction

Magnetic density separators are increasingly being used by the waste recycling in-
dustry. The development and usage of these devices is extensively described in e.g. the
monograph [1]. The separators considered here exert an upward magnetic force on waste
particles immersed in a container with ferrofluid. As the magnitude of the resultant of
the hydrostatic and magnetic buoyancy force is proportional to the mass density of the
waste particles, these particles will float at mass density specific heights. If this height
is constant across lateral directions in the container, particles of the same mass density
can easily be removed from the container.

The requirements imposed on the magnetic field led to the development of permanent
magnet arrays specifically for magnetic density separators [2, 3]. Very recently, a design
that significantly reduces the amount of costly permanent magnet material was proposed
[4]. Given its importance in this paper, this design is shown in Figure 1.

Figure 1(a) shows a front view of the Hallbach-type magnet array considered. Only
the part to the configuration to the right of the vertical symmetry axis is depicted. The
configuration consists of three permanent magnet poles interleaved by ferromagnetic
poles mounted on an iron back plate. All magnets are magnetized upward as indicated
by the arrows in the figure. Both the magnet and iron poles are covered by iron caps such
that the magnet field above the array is suitably shaped. Assuming that the structure is
continued periodically, an analytical expression for the pole cover shape has been derived
in [4]. This expression will be reviewed in Subsection 5.1 of this paper. In case that the
array is truncated to finite length however, end effects in the magnetic field do appear as
shown in Figure 1(b). This figure shows the magnitude of the simulated magnetic field
as a function of the lateral coordinate x at three values of the height coordinate y. For
the simulation we employ two-dimensional finite element simulations. The occurrence of
the end effects shown perturbs the uniformly of the magnetic field above the array and
severely limits the deployment of the magnet array for density separation.

Figure 5(a)-(b) in Subsection 5.2 shows that the end effects can already be signifi-
cantly reduced by permuting the role of magnet and iron poles. To goal of this paper
is to apply shape optimization of the pole coverings in the configurations shown in Fig-
ure 5(a)-(b) in order to further reduce the end-effects. Various approaches to shape
optimization of stationary magnetic fields has been proposed by various authors. With-
out the intention of giving an overview, we here list some references [5–9]. In this paper
we propose to use iso-geometric analysis.

Isogeometric analysis is a modern numerical method for solving partial differential
equations [10, 11]. Its name stems from the fact that the same class of functions is used
to parametrize the geometry and to solve the differential equation. The computational
domain is subdivided into a number of patches such that each patch is the image of the
reference element under a parametrization. This parametrization is defined as a linear
combination of the tensor products of B-splines. The use of splines in the geometry
modeling allows to represent complex computational domains with a limited number of
design variables. On each patch the basis functions are as the composition of the pull-
back operator and the tensor product of spline basis function on the reference elements.

Email addresses: manhiga@gmail.com (Nguyen Dang Manh), aaev@dtu.dk (Anton Evgrafov),
jgra@dtu.dk (Jens Gravesen), d.j.p.lahaye@tudelft.nl (Domenico Lahaye)

2



0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

D1 D2

x [m]

y
[m

]

0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

x [m]
y
[m

]

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

‖
B
‖
[T
] iron

magnet

air

(a) (b)

Figure 1: Front view of the magnet array proposed in [4] with the objective domains D1 and D2 (left).
Computed magnetic flux at a height equal to 6, 7 and 8.5 cm above the back plate (right).

This choice allows to continuously vary the basis functions with the underlying shape
and avoids the introduction of numerical noise associated with mesh updating procedures
associated with traditional FEM procedures. The advantages of isogeometric analysis for
shape optimization are described in e.g. [12–14].

In this paper we apply iso-geometric shape optimization to the magnetic density
separators shown in Figure 5(a)-(b). Our goal is to shape the covers of the individual poles
in such a way to minimize the non-uniformity of the field above the poles. We introduce a
functional that measures the field non-uniformity and minimize this functional over two
objective domains to investigate the influence of the end-effects. Our algorithm produces
new shapes that significantly improve the field uniformity and that therefore renders the
device much more useful in industrial applications.

This paper is structured as follows: in Section 2 we describe the shape optimization
problem we set out to solve. In Section 3 we briefly review the iso-geometric analysis
and shape optimization technique that we intend to employ. In Section 4 we give more
details on the shape representation using B-splines as it is an essential ingredient in the
approach that we adopt. In Section 5 the methodology we advocate is tested on a design
problem with a known analytical solution and on two versions of the shape optimization
problem of the magnetic density separator. In Section 6 finally conclusions are drawn.

2. Formulation of the Shape Optimization Problem

In this section we formulate the shape optimization problem of the magnet array
shown in Figure 5(a)-(b) by giving details of the magnetic field equation, the cost func-
tional, the design variables and the regularization technique.

The objective of the shape optimization is to find shapes of the covers of the magnet
and ferromagnetic poles that yield a magnetic field distribution that is better suited for
the density separation on waste particles immersed in the ferro-fluid in the container
placed in the magnetic field. Such particles experiences the downward gravitational pull,
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the upward hydrostatic buoyancy force and the upward magnetic force from the ferro-
fluid. If the latter is made independent of the lateral (x-) coordinate, the resultant force
is laterally invariant as well, and waste particles with the same mass density will float at
an laterally invariant height. This facilitates the removal of the different particles from
the fluid and renders the device attractive from an industrial point of view.

A ferro-fluid with mass density ρf and saturation magnetization Mf will react to
being placed in a spatially varying magnetic field B(x, y) by a change in its density to
its so-called apparent density ρapp. The latter is proportional to the gradient of the
magnitude magnetic field in the y-direction ∂‖B‖/∂y. More precisely, we have that
[1, 15]

ρapp = ρf +
Mf

g

∂‖B‖
∂y

, (1)

where g is the gravitational constant. The upward force by the ferro-fluid is proportional
its apparent density ρapp. The condition of the lateral invariance of the force by the
ferro-fluid can therefore be expressed as

∂2‖B‖
∂x ∂y

= 0 . (2)

Our objective is therefore to enforce this condition, at least approximately, over a rect-
angular region Ω0 located above the magnet array.

We will compute the magnetic field generated by the magnet array using a vector
potential formulation [16]. In two-dimensional perpendicular plane configurations and in
the presence of vertically (y-) magnetized permanent magnets with remanent flux density
Br = (0, Br, 0), the double curl equation for the vector potential A = (0, 0, Az(x, y))
reduces to

− ∂

∂x

(
1

µ

∂Az

∂x

)
− ∂

∂y

(
1

µ

∂Az

∂y

)
=

1

µ

∂Br

∂x
, (3)

where the relative magnetic permeability µr is set to 1000 and to 1 in the iron and
permanent magnet domain, respectively. The magnets in our simulations have a strength
of Br = 1.235T. The field equation is supplied with an insulation boundary condition.

In order to avoid the introduction of third order derivatives of Az in the objective
function, we replace Condition (2) by the minimization of the dispersion of ∂‖B‖/∂y
in x-direction, i.e., we aim at reducing the difference between ∂‖B‖/∂y and its average
value along horizontal lines in Ω0. This motivates to define, for a given value of y, the
dispersion D(y) as

D(y) =

∫ x2

x1

(
∂‖B‖
∂y

dx− 1

x2 − x1

∫ x2

x1

∂‖B‖
∂y

dx

)2

dx

=

∫ x2

x1

(
∂‖B‖
∂y

)2

dx− 1

x2 − x1

(∫ x2

x1

∂‖B‖
∂y

dx

)2

. (4)

In this study we will minimize the average dispersion over objective domains of the form
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Ω0 = [x1, x2]× [y1, y2], resulting in the following form of the cost functional

I0[Az; Ω0] =

∫ y2

y1

D(y) dy

=

∫ y2

y1

[∫ x2

x1

(
∂‖B‖
∂y

)2

dx− 1

x2 − x1

(∫ x2

x1

∂‖B‖
∂y

dx

)2
]
dy . (5)

In this functional only derivatives of Az up to order two appear. Numerical experiments
in Section 5, in which we will seek to minimize log10[I0/area(Ω0)], will give evidence that
the cost functional (5) is indeed appropriately chosen.

We will conduct numerical studies on the configuration shown in Figure 5(a)-(b) for
two choices for the objective domain Ω0. We define the subdomains D1 and D2 shown
in Figure 1 by

D1 = [0, 0.175]× [0.06, 0.11] [m×m]

D2 = [0.175, 0.225]× [0.06, 0.11] [m×m] ,
(6)

respectively. We set Ω0 equal to the domain D1 ∪ D2 in the first study. In the second
we restrict the objective domain to the interior by setting Ω0 = D1.

We will represent the shape of the ferromagnetic pole covers using B-splines and use
the y-coordinates of the control points shown in Figure 2 as design variables. Convexity
constraints are imposed to regularize the design problem by avoiding shapes with strong
oscillations or sharp corners as shown in [13].

3. Isogeometric shape optimization

In this section we briefly describe the iso-geometric analysis (IGA) method for solving
the magnetic field equation (3) and for the shape optimization of the magnetic density
separator shown in Figure 5(a)-(b). We refer to [10–14] for more details.

3.1. Isogeometric Analysis

The IGA method employs the same basis functions to represent both the geometry
and the discrete solution of the field equation. In this way the method is similar to
the iso-parametric finite element method. The IGA method however uses a more global
parametrization of the geometry than classical finite element methods by decomposing
the computation domain into a set of patches Ω = ∪αΩα. Such a decomposition for the
magnetic density separator shown in Figure 5(a)-(b) into a set of 30 patches is shown
in Figure 2. In this figure, the ferromagnetic poles with patch number 2 and 17 are
parametrized as a single patch while the magnetic poles with patch number 10, 11, 24
and 25 are parametrized using two patches to allow the ferromagnetic caps to cover
the magnets. Patches number 3, 6, 12, 15, 18, 21 and 26 and the remaining patches
correspond to the ferromagnetic back plate and the air region, respectively. The top
boundary of the ferromagnetic and magnetic poles will be allowed to change during the
shape optimization process. The global handling of the geometry by patches will facilitate
adopting the discretization to changes in the geometry in the next section.

Given the well-documented versatility of splines to represent complex shapes, the
IGA method use these functions as basis functions. In this work we adopt B-splines.
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Let u and v denotes the coordinates in the parameter space [0, 1]2. Let h denote the
mesh width of an equidistant mesh on [0, 1]. We will parametrize the patch Ωα using
B-splines of order p and q with knot vectors Ξα

u and Ξα
v denoted by Mα,p

i (u) and Nα,q
j (v),

respectively. Given the knot vector

Ξα
u = { 0, . . . , 0︸ ︷︷ ︸

p + 1 times

, h, 2h, . . . , 1− 2h, 1− h, 1, . . . , 1︸ ︷︷ ︸
p + 1 times

}, (7)

the set of splines Mα,p
i (u) is constructed as a linear combination of products of lower

order splines. A similar argument holds for the construction Nα,q
j (v) given Ξα

v . We will
expand the discrete solution on a patch using the same B-splines. We will denote the
tensor product of splines by Rα,pq

ij (u, v) = Mα,p
i (u)Nα,q

j (v).
Each patch Ωα is parametrized by a linear combination of tensor products of the

geometry splines, i.e., Fα : [0, 1]2 → Ωα where

Fα(u, v) =
(
xα(u, v), yα(u, v)

)
=

m∑

i=1

n∑

j=1

dij R
α,pq
ij (u, v) , (8)

where dij are the control points. To highlight the dependence of Fα(u, v) on the control
points, we will use the notation Fα(u, v;d). We use spline degree p = 3 = q on all
patches. We will distinguish between patches whose shape is fixed and variable during
the design process. On the latter patches, we will treat the boundary and interior control
points separately. To control the shape of the boundary of a design-variable patch, we
perform a uniform h → H coarsening of the corresponding knot vector (7) to obtain

Ξ̂α
u = { 0, . . . , 0︸ ︷︷ ︸

p + 1 times

, H, 2H, . . . , 1− 2H, 1−H, 1, . . . , 1︸ ︷︷ ︸
p + 1 times

}, (9)

and designate the x and y-coordinates of the corresponding control points as design
variables. In this construction knot vectors required for the boundary parametrization of
Fα are obtained by inserting points uniformly in the knot vector used to describe shape
variations. Consequently, the boundary control points are linear combinations of the
design control points. This allows to update of the parametrization of an entire patch
to shape variations of its boundary and is the distinct feature of the shape optimization
using IGA method. This procedure will be outlined in more details in the next section.
Figure 2 illustrates this division in control points for the patches corresponding to the
magnet (α = 10, 11, 24, 25) and ferromagnetic (α = 2, 17) poles. The y-coordinate of the
variable boundary control points of patch number 2, 7, 10 and 24 add up to a total of 22
design variables.

On each patch the basis functions are defined by composing the inverse of the parametriza-
tion Fα (also referred to as the pull-back operator) with the tensor of two analysis splines
to obtain Rα,pq

ij (u, v)◦F−1
α (x, y). The discrete approximation u(x, y) to the magnetic vec-

tor potential over Ωα can be expanded in this basis as

u(x, y) =

m∑

i

n∑

j

hα
ijR

α,pq
ij (u, v) ◦ F−1

α . (10)
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To determine the expansion coefficients hα
ij , we proceed as in any classical finite element

method and cast the magnetic field equation (3) in a Galerkin variational formulation.
The resulting integrals over Ωα can be transformed into integrals over [0, 1]2

∫∫

Ωα

f(x, y)dx dy =

∫ 1

0

∫ 1

0

f
(
xα(u, v), yα(u, v)

)
det(Jα) du dv , (11)

where Jα = ∂Fα/∂(u, v) denotes the Jacobian of Fα, and evaluated via Gaussian quadra-
ture. The weak form on Ωα then leads to the system of algebraic equations Kα hα = fα,
where hα contains the coefficients hα

ij . The entries of Kα are of the form

Kα
k,ℓ =

1

µ

∫ 1

0

∫ 1

0

(
∇Rk J

−1
α

)T (
∇Rℓ J

−1
α

)
detJα du dv , (12)

where the indices k and ℓ correspond to a lexicografic ordering of the unknowns. Given
that patches number 11 and 25 are formed by vertically magnetized magnets of size hm

and strength M0, the entries of fα are of the form

fαℓ =

{
M0 hm

∫ 1

0
(Rℓ(1, v)−Rℓ(0, v)) dv if α = 11 or α = 25 ,

0 otherwise .
(13)

Imposing the continuity of both the domain parametrization and the field solution along
the patch boundaries results in linear dependencies of a number of control points and
expansion coefficients corresponding to neighbouring patches. These can easily be elim-
inated from the final system as detailed in [13]. Collecting the contributions from every
patch we obtain a system of linear equations

Kh = f , (14)

where h contains the expansion coefficients of the solutions on all patches.

3.2. Shape sensitivity analysis

To be able to solve the shape optimization problem by a gradient-based optimization
algorithm, the first order sensitivity of the cost functional (5) constrained by the magnetic
field equation (3) needs to be computed. To this end, we proceed in a standard way (see
e.g. [14]). The derivative of the discrete magnetic field solution with respect to the
boundary control points dij for instance can be found by solving the auxiliary system of
linear equations

K
∂h

∂dij
=

∂f

∂d ij
− ∂K

∂dij
h, (15)

obtained by differentiating the system (14). Here we have that ∂f/∂dij = 0. The
derivative ∂K/∂dij can be computed by integration over the reference domain. The
optimization problem is solved using SQP implemented in MATLAB’s fmincon function
using as initial guess the shapes shown in Figure 2.
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Figure 2: Decomposition of the computational domain Ω into a set of 30 patches Ωα (left). Detailed
view on the four poles with the boundary control points indicated. (right).

3.3. Shape regularization by imposing convexity

We regularize the shape optimization algorithm by imposing the convexity of the
shape of the ferromagnetic pole covers. This results in a set of simple linear equality and
inequality constrains on the control points, which are added to the shape optimization
problem.

4. Domain Parametrization using B-Splines

In this section we discuss the techniques that we employ to construct a parametriza-
tion Fα defined in (8) of a patch Ωα that is both invertible and of sufficiently high
quality. Given the parametrization of the boundary of Ωα that typically results from
a shape updating step in the optimization process, our goal is to compute the control
points d corresponding to the interior control points that satisfy both requirements on
Fα. The difficulty of this task increases with the geometrical complexity of Ωα. Given
that the procedures to find d have to be applied within each step of an outer optimiza-
tion algorithm, it is of paramount importance to keep their computational complexity
limited.

To ensure regularity of Fα(u, v) we require that given some ǫ > 0, the Jacobian
Jα(u, v) satisfies det(Jα(u, v)) ≥ ǫ for all (u, v) ∈ (0, 1)2. We denote by det[dij ,dkℓ]
the determinant of the 2 × 2 matrix formed by the x and y-coordinates of dij and dkℓ.
Differentiating (8), we obtain

det(Jα(u, v)) =

m∑

i,j=1

n∑

k,ℓ=1

det[dij ,dkℓ]
dMα,p

i (u)

du
Nα,q

j (v)Mα,p
k (u)

dNα,q
ℓ (v)

dv

=

2m−1∑

i=1

2n−1∑

j=1

cij M
α,2p−1
i (u)Nα,2q−1

j (v) ,

(16)
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where Mα,2p−1
i (u) and Nα,2q−1

j (v) are B-splines of order 2p−1 and 2q−1 over the patch
Ωα, respectively, and to where to each of the coefficients cij corresponds a quadratic form
determined by the square symmetric matrix Qij such that [17]

cij = dTQijd . (17)

Given that the B-splines are positive, the regularity of Fα(u, v) can be ensured by im-
posing that each of the coefficients cij in (16) is positive.

To ensure that a parametrization Fα is of high quality we require the matrix gα =
JT
αJα to be well approximated by the identity (see e.g. Corollary 6.4.3 in [18]). To this

end we introduce the Winslow functional W [Fα(d)] [19] defined by

W [Fα(d)] =

∫∫

[0,1]2
W[Fα(u, v;d)] du dv , (18)

where for over (u, v) ∈ (0, 1)2 the integrand W[Fα(u, v;d)] is given by

W[Fα(u, v;d)] =
trace(gα)√
det(gα)

=
λ1 + λ2√

λ1λ2

=
‖∂Fα/∂u‖2 + ‖∂Fα/∂v‖2

det(Jα)
, (19)

and where λ1 and λ2 denote the eigenvalues of gα. A high quality of Fα then corre-
sponds to as low value of W [Fα(d)] as possible. Minimizing W [Fα(d)] over the feasible
set of control points d that yield positive coefficients cij is however too computationally
demanding to be carried out at every step of the outer optimization algorithm. We there-
fore resort to a two-stage heuristic in which in the first stage a reference parametrization
is found by solving the afore mentioned constrained optimization problem. In the second
stage the parametrization is updated to changes in the geometry at small computational
cost. In case that the update fails to result in positive coefficients cij , the reference
parametrization is updated in a process similar to remeshing in the classical finite ele-
ment methods. In the remainder of this section, we give more details of both of these
stages.

4.1. Constructing a Reference Parametrization

In the first stage we construct a reference parametrization denoted by d0 by minimiz-
ing the Winslow functional (18) over the design space of spline control points d subject to
the constraint that the coefficients cij defined by (17) remain positive. This optimization
problem is solved to local optimality using a non-linear optimization method.

4.2. Updating the Parametrization to the Current Geometry

In the second stage we update the reference parametrization d0 to the current shape
of the patch Ωα by minimizing the second order Taylor polynomial of the Winslow
functional (18) around the point d0. This polynomial can be written as

W [Fα(d)] ≈ W [Fα(d0)] +G(d0)(d0 − d) + 1/2(d0 − d)TH(d0)(d0 − d) , (20)

where G(d0) and H(d0) denote the gradient and Hessian of W [Fα] with respect to the
control points d evaluated in the point d0, respectively. Minimizing this polynomial is
then equivalent to solving the linear system of equations

H(d0)(d0 − d) = −G(d0) , (21)

resulting in an inexpensive updating formula.
9



5. Numerical experiments

This section consists of two subsections. In Subsection 5.1 we validate our iso-
geometric shape optimization algorithm on a synthetic problem for which an analytical
expression for the optimal shape is known. In Subsection 5.2 we solve the design problem
of the magnet array shown in Figure 5(a)-(b).

5.1. Synthetic Problem with Analytical Expression for the Optimal Shape

In this subsection we show that in the absence of end effects the analytical expression
for the optimal shape of the pole cover given in [4] can be derived. We subsequently em-
ploy this expression to validate the implementation of our shape optimization algorithm
by verifying that the difference between the numerically and analytically determined
shapes converges to zero at a rate that increases with the polynomial order of the spline
approximation. To derive the analytical expression for the optimal shape, we consider
first the magnetic field generated above an idealized Hallbach magnet array of height
hm that extends to infinity in lateral directions. We assume the magnet to be mounted
on a ferrro-magnetic plate reducing the problem to computing the magnetic field caused
by the magnet strip {(x, y, z) | − ∞ ≤ x ≤ ∞,−hm ≤ y ≤ 0,−∞ ≤ z ≤ ∞} in the
overlying half-space {(x, y, z) | − ∞ ≤ x ≤ ∞, 0 ≤ y,−∞ ≤ z ≤ ∞}. We assumed the
magnet to be magnetized in the y-direction in such a way that, given some amplitude M0

and given some wavelength λ, the magnet’s pre-magnetization vector M can be written
as M = (0,M0 cos(πx/λ), 0). The problem is thus reduced to the coordinates x and y.
Let µr denote the magnet’s permeability. To solve the magnetic field problem in the air
region, we solve the Laplace equation for scalar magnetic vector φ(x, y) supplied with
appropriate boundary conditions. We proceed in a similar way to what for example [20]
refers to as Type (a) magnet arrays and find that

φ(x, y) = C1 cos(π x/λ) exp(−π y/λ) , (22)

where C1 is an integration constant equal to

C1 =
M0 hm

µr + πhm/λ
exp(

πhm

λ
) . (23)

The magnetic field strength in the region above the magnet is therefore given by

‖B‖ = µ0

√
(∂φ/∂x)2 + (∂φ/∂y)2 = µ0C1π/λ exp(−π y/λ) , (24)

and trivially satisfies Condition (2). In the derivation above, end-effect were neglected.
Hallbach arrays for magnetic density separation have been proposed in literature

the [1]. To reduce the amount of magnetic material used however, a new design in
which magnets magnetized in only upward direction and in which the magnet poles are
interleaved with iron poles has been proposed in [4]. In this design the magnetic field
distribution above the poles is brought into the desired shape by covering both the iron
and magnetic poles with iron parts as shown in Figure 1. The air boundary of these
ferromagnetic coverings are a line of constant the magnetic scalar potential. The optimal
shape for this covering is thus know as soon as a scalar potential for the optimal field
is known. This optimal scalar potential is given by (22) assuming no end-effects are
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present. The optimal shape is thus found by setting φ(x, y) equal to a constant φ0 and
making the relationship between x and y explicit to obtain

Canal(x) =
λ

π
log[cos(

π x

λ
)] + C2 , (25)

where C2 = λ/π(logC1−log φ0). For λ = 0.06m and −λ/3 ≤ x ≤ λ/3 this curve is shown
as the curve Γb in Figure 3. This curve was used to shape the pole covers in Figure 1.
In [4] is was verified numerically that a periodic continuation of the configuration shown
in Figure 1 does give the a field distribution satisfying Condition (2).
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Figure 3: The computational domain Ωp in the synthetic shape optimization problem.

The aim of the remainder of this subsection is to show that in a synthetic shape
optimization algorithm that has the curve (25) as the optimal solution, our iso-geometric
shape optimization algorithm converges to this optimum at the rate of convergence given
by O(Hp), where H and p denote the meshwidth used to discretize the design curve and
the polynomial degree of the spline approximation, respectively. This rate of convergence
will be shown to be attained in the polynomial degree p is sufficiently high. To this end we
define, given y(x) a smooth function in x and y = 0.2077m, the computational domain
Ωp = {(x, y) | − λ/3 ≤ x ≤ λ/3, y(x) ≤ y ≤ y} representing the air domain above a
single magnetic pole. On this domain we consider solving the Laplace equation for the
scalar potential φ subject to the exact solution (22) given on the boundary. The goal of
the synthetic shape optimization algorithm is to minimize the functional

I0[φ;D] =

∫

D

(
∂‖B‖2
∂x

)2

dx dy (26)

whereD = [−0.02, 0.02]×[0.06, 0.12] [m×m] by varying the shape of y(x). Motivating this
choice for I0[φ;D] is that if ∂x‖B‖ = 0 then automatically ∂x(∂y‖B‖) = ∂y(∂x‖B‖) = 0
and Condition (2) is satisfied. The evaluation of this cost functional requires second
order derivatives of the scalar potential φ. The curve Canal(x) is given by (25) is the an-
alytical solution to this design problem. Let Copt(x) denote its approximation computed

11



numerically by the IGA shape optimization algorithm on the discretization defined by
the following geometry knot vectors

Ξu = { 0, . . . , 0︸ ︷︷ ︸
p + 1 times

, 1
32 , . . . ,

31
32 , 1, . . . , 1︸ ︷︷ ︸

p + 1 times

} Ξv = { 0, . . . , 0︸ ︷︷ ︸
q + 1 times

, 1
5 , . . . ,

4
5 , 1, . . . , 1︸ ︷︷ ︸

q + 1 times

}. (27)

We compute the scaled L2-norm of the difference between Copt(x) and Canal(x) for H ∈
{ 1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
24}, p ∈ {2, 3, 4} and q = p. For p = 3, the afore mentioned choices ofH leads

to a problem with the number of design variables Ndv equal to Ndv ∈ {3, 5, 7, 9, 17, 25}.
Results are given in Figure 4.

Figure 4 (a) shows how the scaled error in the computed design curve decreased with
the number of design variables Ndv for the three polynomial degrees. This figure shows
that while for p = 2 the error only scales as O(H1/2), for p = 3 and p = 4 the error
does scale according to O(Hp). The non-optimal convergence rate for p = 2 is likely to
be due to the second order derivative of the second order approximation of φ causing
a non-sufficiently smooth behaviour. For p ≥ 3 however, the error scales with H as
expected. Figure 4 (b) shows the error in the computed design curve as a function of x
for the various values of H and for p = 3. This figures shows how the error is reduced as
the spatial resolution is increased.
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Figure 4: Verification of the isogeometric shape optimization algorithm: (a) convergence rate with
respect to h-refinement for various spline degrees; (b) plot of the absolute error in the found shape for
several levels of refinement, p = q = 3.

5.2. Shape Optimization of Pole Covers of Magnetic Density Separators

Before describing the application of the iso-geometric shape optimization algorithm
to the density separator, we evaluate the cost functional (5) on the design proposed in
[4] and shown in Figure 1. In all of the numerical experiments in this subsection we
use the subdivision of the computational domain in patches shown in Figure 2 and a
spline approximation of degree p = 3 = q. The cost function values obtained will serve
as reference data in future comparisons. We evaluate the cost functional I0(Az;D1) and
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I0(Az;D2), i.e., the dispersion ∂‖B‖/∂y averaged over the domain D1 and D2 defined
by (6) for both magnet-iron pole orderings given in Figure 1 and in Figure 5(a). The
value for log10[I0(Az;D1)/area(D1)] and log10[I0(Az;D2)/area(D2)] for these two con-
figurations are given in the first two lines of Table 1, respectively. The comparison of
these two lines shows that assuring the end pole to be a magnet pole reduces the average
dispersion in both D1 and D2. The numbers shown quantify the statement that switch-
ing the magnet-iron pole ordering around is effective in obtaining a more uniform field
above the magnet array. To show the effect of the reduction of the dispersion on the dis-
tribution of ‖B‖ above the magnet array, we plotted in Figure 5(a) ‖B‖(x, y) along three
horizontal lines at height y = 6 cm, 7 cm, and 8.5 cm. In Figure 5(b) we did the same for
∂‖B‖/∂y. By comparing Figure 5(a) with its equivalent in Figure 1(b), the improvement
in field uniformity can clearly be seen. In the sequel of this section we will only consider
configurations having a magnet as end pole. Figure 5(b) will act as a reference in the
qualitative improvement of ∂‖B‖/∂y by iso-geometric shape optimization.

The third and fourth lines of Table 1 demonstrate that the design of the magnet array
can be further improved using iso-geometric shape optimization. These two lines list the
average value of the dispersion I0(Az;D1) and I0(Az;D2) over the domain D1 and D2 for
two geometries resulting from a the shape optimization process. The two optimization
strategies differ in the choice of the objective domain. The third and fourth line of
Table 1 correspond to choosing the objective domain Ω0 defined (5) equal to D1 ∪ D2

and D1, respectively. These variants require 8 and 25 iterations to converge. The third
line shows that the shape optimization process is successful in finding a geometry of the
pole coverings that reduces the cost functional in both D1 and D2. The fourth line shows
that excluding the exterior domain D2 from the optimization allows to find a geometry
with a lower cost functional in D1 at the expense of a higher cost functional over D2,
demonstrating that the end-effects are harder to control than the interior domain.

In Figure 5(c)-(d) we plotted the geometry resulting from an optimization process
withD1∪D2 as objective domain as well as the distribution of ‖B‖ and ∂‖B‖/∂y over the
magnet array. Compared with the initial geometry, the second pole (counting from the
left) is lowered and the third pole covering is more asymmetric. The increased uniformity
in both ‖B‖ and ∂‖B‖/∂y can clearly be seen.

Figure 5(e)-(f) corresponds to D1 as objective domain. Compared with the initial
geometry, the second pole is lowered and the fourth pole is less rounded. Figure 5(f)
shows that by excluding the exterior region from the design close to flat lines for ∂‖B‖/∂y
can be obtained. This is in stark contrast with the situation shown in Figure 5 (b) and
shows that the optimization target set forth in Section can be reached in D1.

Design Ω0 # it I0(Az;D1) I0(Az;D2)

magnet-pole ordering in [4]: Fig. 2 − − -3.072 -2.334
modified pole ordering: Fig. 5 (a) - (b) − − -3.147 -2.55
IGA optimized: Fig. 5 (c) - (d) D1 ∪D2 8 -3.926 -3.269
IGA optimized: Fig. 5 (e) - (f) D1 25 -4.755 -2.251

Table 1: Log10 of cost function value defined by (5) over the objective domains D1 and D2 for four
designs of magnetic density separators.

Finally, let us return to the motivation of this work on reducing the end effects
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Figure 5: The graphs of ‖B‖ and
∂‖B‖
∂y

super imposed on the design. On the top (a), (b) the design from

[4]. Below two optimized magnetic density separators that correspond to different objective domains
Ω0. (c),(d): Ω0 = D1 ∪D2 = [0, 0.225]× [0.06, 0.11]. (e),(f): Ω0 = D1 = [0, 0.175]× [0.06, 0.11].

left from D. Lahaye et al. [4]. Figure 5 show that our design reduces the end effects
significantly, and thereby being promising for realistic industrial applications.
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6. Conclusions

We developed an isogeometric analysis-based shape optimization algorithm and ap-
plied it to improvement of the design of a permanent magnet array for waste separation
recently proposed in engineering literature. The distinct feature of our algorithm is
the global nature of the update of the discretization at each step of the optimization
algorithm. We verified the shape optimization algorithm in a synthetic problem with an-
alytical solution and applied it to the realistic design problem. The design problem was
solved up to the specifications resulting in new shapes for the ferromagnetic parts cover-
ing the poles in the array. This paper therefore contributes to the future developments
of magnetic density separators.
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