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Summary

In this report we give an overview of models and discretisation techniques for the simula-
tion of multiphase flow in long pipelines. Due to the size of the pipelines we focus on one-
dimensional models, which are derived from three-dimensional conservation laws for mass,
momentum and energy. All discussed one-dimensional models are hyperbolic, the most ac-
curate ones are also non-conservative. We discuss the Discontinuous Galerkin Finite Ele-
ment Method, which is a discretisation technique suitable for hyperbolic models, together
with additional methods to handle discontinuities and non-conservative models. We apply
theDG-FEMdiscretisation to a commonly used two-phase flowmodel and verify the results
using two test cases. Several test cases, however, fail when one of the phases vanishes. We
propose several solutions to resolve this problem.

Joost van Zwieten, the author of this report, is a PhD student at Delft University. He
carries out his project for Shell. The project aims at defining the next generation of numerical
schemes and solver for the numerical-physical modelling of multiphase flow transport through
wells and pipeline-riser systems. Shell has their in-house dynamic model COMPAS to solve for
the transient flow of gas, oil, and water. The current numerical scheme in COMPAS applies
an approximate Riemann discretization on a collocated grid, with implicit time discretization
using a Newton-Raphson solver. The solver can become slow under certain conditions, such
as low flow with the generation and transport of terrain slugs in the low spots of the pipeline.
Therefore the COMPAS numerics are currently upgraded to a finite volume discretization
on a staggered grid, with implicit time integration using a segregated solver with tri-diagonal
matrices. The PhD project is meant to track the latest developments of numerical schemes for
multiphase pipeline transport, as available in the open literature. The PhD project will also
define a new scheme that, if successful, can be implemented in COMPAS in the near future.

At Delft University the project is monitored by Duncan van der Heul, Kees Vuik, and
Ruud Henkes.

At Shell the project is monitored by Benjamin Sanderse, Patricio Rosen Esquivel, and
Ruud Henkes.
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Chapter 1

Introduction

The oil and gas industry requires accurate simulation tools for the design and safe operation
of pipeline systems. Unstable flow may cause problems at the receiving facilities, such as
flooding of the separator or a compressor trip, and it may cause pipeline integrity problems
(vibrations, fatigue). For example, unstable flow can occur when the gas flow is too slow to
drag liquid through upward inclined pipe sections. Liquid slugs followed by compressed gas
bubbles arise and typically travel with high velocity through the pipe.

Since the pipelines can have a length of more than hundred kilometers, simulation of
a three-dimensional multiphase model is infeasible. Cross sectionally averaged one-dimen-
sionalmultiphasemodels are derived,which are significantly simpler fromthe computational
point of view, however, they require extra closure models to compensate for the averaging.
Theone-dimensionalmodels shouldbe able topredict the onset of unstable flow, correct slug
length distributions, slug frequency et cetera. For applications involving automated control,
the simulation should be performed in real-time [16].

In this chapterwepresent anoverviewofmodels andnumerical schemes developed in the
past thirty years. These schemes can be divided into coarse grid (Section 1.1) and flow regime
capturing schemes (Section 1.2). In Section 1.3 we propose some possible improvements to
the existing schemes.

1.1 Early models
The first models and numerical schemes of 1D multiphase flow models were developed for
simulations of loss of coolant accidents in pressurised water reactors in the nuclear industry
[3, 5]. These simulations are characterised by fast transients. The oil and gas industry, on
the other hand, was interested in the simulation of slow transients corresponding to mass
transport over a long period of time, up toweeks. Several commercial or in-house codes were
developed tomeet these requirements: OLGA[4] andLedaFlow[32] are commercially, with
OLGA being the market leader. PeTra [31] has been a research tool, and parts of it are now
available in OLGA. COMPAS [23] is the Shell in-house dynamic simulator.

1.1.1 Partial Differential Equations
All threemodelsmentioned above are based on the two-fluidmodel [24]. TheOLGAmodel
comprises three equations for the conservation of mass of the three fields gas, liquid and
liquid droplets in gas. The first version of OLGA did not include the droplet field, which
caused a significant error in the approximation of the pressure drop in vertical annular flow.
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The model consists of two momentum equations for the gas phase (gas and droplet fields)
and liquid phase, and a slip relation for the gas and droplet velocities to account for gravity
and drag forces. Furthermore, there is a single energy conservation equation and a volume
equation in the form of a pressure evolution equation. As is usually done in the derivation of
one-dimensional two-phase flow models, the pressure is assumed to be constant over a cross
section. Both the gas and liquid phase are assumed to be compressible.

The PeTra model and software package [31] is an extension of the OLGA model. The
model aims to restore some three-dimensional details, which are lost due to averaging. The
model keeps track of sevenfields: the three phases gas, oil andwater and allmixtures (droplets
and dispersions) of oil and water in the three phases. For all fields except the liquid-liquid
dispersions a mass balance equations is used. For the liquid-liquid dispersions an explicit
relation is used. There are three equations for the conservation of momentum of gas and
droplets, oil and water dispersion and water and oil dispersion. Like in OLGA, there is a
volume equation in the form of a pressure evolution and a total energy equation.

COMPAS [23] uses a slightly different, simplified approach in comparison with OLGA
and PeTra. Like PeTra three phases are considered: gas, oil and water. For each phase a
mass balance equation is solved. There is a single total momentum balance and the model
is closed with respect to the phase velocity components by introducing two slip relations.
Furthermore, there is a total energy balance.

1.1.2 Flow regimes
Being limited by computational power, the above mentioned models use very coarse grid
with elements magnitudes larger than the diameter of the pipe. Many important features,
such as slugs, rolls waves et cetera, are too small to be represented by such a coarse grid.
The mentioned codes make heavily use of empirical modelling to compensate for this. Flow
regime maps, see for instance Taitel and Dukler [48], are used to determine momentary flow
behaviour at every point in the pipe based on the mass flow rates, pressure, temperature and
pipe inclination. For a given flow regime, the friction of the fluid-fluid and fluid-wall inter-
faces and slip relations for bubbles and droplets, if taken into account, are empirically mod-
elled.

1.1.3 Discretisation
The mentioned software packages use a first order Finite Difference or Finite Volume dis-
cretisation with some form of upwinding for stabilisation. When using an explicit time inte-
gration, themaximum allowed time step size for stable integration scales with the ratio of the
meshwidth and the largest absolute eigenvalue of the semi-discrete system. For the two-fluid
model the largest eigenvalue is roughly equal to the speed of sound of the liquid phase. The
maximum allowed time step would be orders of magnitudes smaller than the desired simu-
lation times, even using a rather coarse mesh and it thus not practically feasible. Therefore,
the mentioned codes use implicit time integration and a time step size restriction based on
the phase velocities.

1.1.4 Numerical improvements
The models and schemes described above are rather diffusive and to be fast enough for real-
time simulations [14]. In his PhD thesis, Flåtten [16] derived several schemes which reduce
the amount of numerical diffusion. To increase the numerical accuracy (through decreasing
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the numerical diffusion) Flåtten extended the AUSM-type schemes [36] for the Euler equa-
tions, which are based on a splitting of the flux in a convective and a pressure part, to the
two-fluid equations [14]. The amount of diffusion that the scheme generates is comparable
to Roe-type methods, while being computationally more efficient. However, the scheme in-
troduces spurious oscillations in the neighbourhood of discontinuities, caused by omitting
pressure variation in the numerical mass flux. Later, Evje and Flåtten [15] addressed this is-
sue by applying a splitting of the mass flux into a pressure and volume fraction component.
The pressure component is chosen to be diffusive, in order to reduce the oscillations, and the
volume fraction component is equal to the AUSM-type flux.

Beside the spatial discretization, also a proper temporal discretization is needed While
OLGA and PeTra use a fully or strongly implicit time discretisation, which eliminates the
CFL-condition completely, Flåtten chooses a semi or weakly implicit scheme [15] where,
roughly speaking, pressure waves are discretised implicitly andmomentum and volume frac-
tion waves explicitly. The resulting CFL-condition lowers to a convective CFL-condition,
often magnitudes lower than the sonic CFL-condition. The scheme requires the solution of
one relatively simple linear equation, hence it remains computationally efficient. Unfortu-
nately, the diffusion of pressure waves increases for increasing time step size.

Wangensteen [53] studied specifically the numerical aspects of the transition from and to
single phase flow for the incompressible two-fluid equations with constant mixture velocity
and the compressible two-fluid equations on Eulerian grids. An incorrect choice of numeri-
cal flux could lead to an unstable system when a pipe becomes completely filled with water.
Wangensteen derived a set of conditions for the numericalmass flux, e.g. an elementmust not
be overfilled, and proposed a numerical flux satisfying those conditions based on a splitting
of the mass flux in a mixture and slip component. The method is named Mixture Slip Flux
Splitting (MSFS). Numerical experiments revealed that the method was less accurate than a
Roe scheme. Therefore, Wangensteen combined both the MSFS and Roe methods into a
hybrid scheme which is stable in the region of single phase flow and accurate otherwise.

In a series of simulations the onset of unstable flow due to varying inflow conditions was
compared with the Viscous Kelvin Helmholtz stability analysis of the analytical incompress-
ible two-fluid model. The simulations showed that the onset is very sensitive to numerical
parameters and type of flux limiter.

Wangensteen derived an MSFS scheme for the compressible two-fluid equations, similar
to the weakly implicit scheme derived by Evje and Flåtten [15], but on a staggered grid where
mass and momentum grid points are shifted with respect to each other. In certain situations
the method does not converge.

1.2 Towards flow regime and slug capturing
As mentioned above, in the early two-fluid models the flow regimes are modelled explicitly.
This means that based on certain physical criteria (involving dimensionless numbers like the
Reynolds number and the Froude number), the flow regime is selected (like stratified flow,
slug flow, annular flow, and bubbly flow). For the selected flow regime specific closure re-
lations are applied. These closure relations are among others for the wall friction, for the
friction at the interface between phases, and for the entrainment of droplets and bubbles.
One might wonder whether the two-fluid model, being derived from the three-dimensional
conservation laws, is capable of generating the correct flow behaviour by itself. For instance,
when assuming a stratified geometry, e.g. gas on top of liquid, and including liquid entrain-
ment in the gas phase, it seems possible to describe a slug quite reasonably. If the model is
also capable of generating the slugs, then there would be no need for the explicit modelling
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of friction and slip relations based on an estimation of a flow regime.
The Kelvin-Helmholtz instability is one of several mechanism which initiate slugs. Issa

and Kempf [26] demonstrated the ability of the isentropic two-fluid model, with compress-
ible gas phase and incompressible liquid phase, to capture the Kelvin-Helmholtz instability
and generate slugs when using a discretisation accurate enough to describe waves with short
wavelengths. Empirical modelling was only used for the friction of the fluid-fluid and fluid-
wall interfaces. Furthermore, the model is capable of growing, merging and collapsing slugs,
without extra empirical modelling.

Issa and Kempf observed that the onset and growth of instabilities are very sensitive to
liquid-wall friction models, some of which even fail to produce slugs. By tuning the the
friction model, the observed flow regimes of various simulations of a horizontal and slightly
downward inclined pipe corresponded quite well with the flow pattern maps by Taitel and
Dukler [48] for stratified and slug flow.

Bonizzi, Andreussi and Banerjee [7] went one step further by trying to capture more
flow regimes, an attempt to come on par with OLGA, PeTra and COMPAS in terms of
applicability, yet limited to near-horizontal pipelines. Compared to Issa and Kempf [26] the
model is extended with the flow regimes annular and bubbly. Similar to the PeTra model,
the two-fluid model is extended with liquid entrainment in the gas phase and gas bubbles
in the liquid phase, which, according to the authors, is enough to represent the mentioned
flow regimes. Bonizzi, Andreussi and Banerjee [7] showed that the model quite accurately
captures the transition between flow regimes comparedwith a flow regimemap byTaitel and
Dukler [48].

The ability to capture slugs and more flow regimes is promising. However, solving the
two-fluid model using an accurate discretisation can be computationally demanding. Issa
and Kempf [26] used a first order upwind, staggered Finite Volume Method, which is rather
diffusive compared tomore advancedmethods. Since toomuchnumerical diffusion can can-
cel the Viscous Kelvin-Helmholtz instability, they had to use a very fine mesh. Renault [43]
and Holmås [20] both came up with different solutions for an accurate and fast numerical
scheme.

Renault [43] developed a slug capturing scheme based on a simplified two-fluid model
and discretised it using a Lagrangian Finite Volumemethod. Themovingmesh is used to fol-
low slugs and fast moving waves, hence this scheme is also labelled slug tracking. The scheme
is claimed to be robust and fast. Unfortunately, we could not find benchmarks supporting
this. A short description of the slug tracking is given below.

The Lagrangian mesh contains elements of two different types: slugs and sections. A
slug element is completely filled with liquid, for simplicity without entrainment. The liquid
phase is considered to be incompressible, hence a slug moves with a uniform velocity. The
velocities of the front and nose (tail) of the slug are explicitly modelled, going against the
philosophy of Issa and Kempf [26], and allow the slug to grow and shrink, e.g. when the
front velocity is higher than the nose velocity then the slug gains mass from the ‘sections’ in
front and/or behind.

The section elements contain both liquid and gas in a stratified flow regime. For these
elements a simplified two-fluid model is solved. Renault decoupled the momentum equa-
tions of original two-fluid equations, which makes it easier to compute, while maintaining
the Viscous Kelvin-Helmholtz instability criterion of the original model needed for the cor-
rect initiation of slugs. There are in general multiple section elements between slugs, if any,
and sections can be merged and split to ensure that all section elements have a similar width.
An exact Riemann solver is used to resolve waves on section-section edges.

Holmås [20] studied the simulation of stratified and stratified wavy flow regimes using
an incompressible two-fluidmodel on a fine grid. The two-fluidmodel is valid for longwave-

9



lengths, magnitudes larger than the diameter of a pipe. Short wavelengths, not resolved on a
coarsemesh, are amplified by themodel, which is unphysical and causes a problemwhen dis-
cretising themodel on afinemesh, e.g. elementswidths equal to thepipediameter. Holmås et
al. [22] suggested to apply diffusion to both themass and themomentumequation, such that
the short waves are dampened. Numerical simulations confirmed the stability and showed
convergence under mesh refinement.

The dissipative nature of first order discretisation methods prevents wave growth in cer-
tain situations. Holmås, Clamond and Langtangen [21] applied a pseudo-spectral Fourier
method, which has exponential convergence and is hardly affected by dissipation compared
to low order finite volume and finite difference methods. The space-discrete system is trans-
formed such that the linear parts vanish, i.e. in absence of nonlinear terms the system is solved
exactly. The result is integrated using a fifth-order Runge-Kutta method. According to Lee-
beeck and Nydal [33] the Fourier spectral method breaks down for slug flow.

The two-fluid model as used by Holmås in the first two papers, is not able to capture
experimentally observed roll-waves, which do not necessarily vanish or grow and generate
slugs. Holmås [19] claims that this is caused by the friction model and proposes a modified
version of the Biberg friction model [6]. The Biberg friction model assumes an algebraic
eddy viscosity distribution and determines the interfacial shear stress by computing the ve-
locity profile over a cross section, approximating the pipe as a channel. The friction model
is closed by relations for the amount of turbulence at the interface. Holmås improved these
closure relations for roll-waves. Numerical simulations are in quite good agreement with
experiments.

1.3 Improving accuracy and efficiency
Apart fromHolmås [20] all numerical schemes discussed above are based onfirst order Finite
Volume or Finite Difference Methods. A slug or flow regime capturing scheme requires a
more accurate discretisation, which enlarges the computation time. For smooth hyperbolic
problems it is known that theDiscontinuousGalerkin Finite ElementMethod (DG-FEM) is
computationally more efficient than the first order schemes [18]. Problems involving shocks
benefit from hp-refinement: a high order basis with a coarse mesh for smooth parts and a
low order basis with a finemesh in the neighbourhood of discontinuities. We propose to use
a DG-FEM method with hp-refinement to discretise a two-fluid model, which is capable of
capturing flow regimes e.g. by using the friction model developed by Biberg [6].

1.4 Purpose of this report
This report is meant to give an overview of existing numerical methods for representing the
multiphase flow in pipelines. The multiphase flow can contain up to three phases (gas, oil,
water). The models are all time dependent and one-dimensional in space (i.e. the pipe axis).
Based on the literature overview a new, more advanced numerical method will be proposed.
That new model will be developed, tested, and implemented in the PhD project carried out
by the author. The present report will also define some representative test cases that will be
used during the course of the planned study.
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1.5 Reading guide
In the following chapters we study inmore detail the two-fluidmodel andDG-FEMdiscreti-
sation. In Chapter 2 we give a brief derivation of two-fluid models, including simplifications
such as assuming one ormore phases to be incompressible and using a slip relation instead of
a momentum balance equation. Furthermore, we discuss the modelling of friction factors.

In Chapter 3 we analyse hyperbolic problems and in particular the non-conservative sub-
set, to which many two-fluid models belong. We give a DG-FEM weak formulation of non-
conservative hyperbolic problems and discuss various methods to stabilise the weak formu-
lation. Finally, we discuss the Runge-Kutta method for time integration of the weak formu-
lation.

In Chapter 4 we repeat several test problems discussed in the literature. Chapter 5 con-
cludes this report.
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Chapter 2

Models

In this chapter we discuss some frequently used models for describing the flow of multiple
phases in a pipeline. We start with the derivation of one-dimensional multiphase models by
averaging three-dimensional conservation laws (Section 2.2). Then various assumptions and
simplifications are discussed, roughly characterised as follows: using multiple pressures for
the phases (Section 2.3), using a single pressure for each phase (Section 2.4), assuming the
liquid phase to be incompressible (Section 2.6), using a slip relation to describe the relative
velocity between the phases (Section 2.7) and assuming both phases to be incompressible and
assuming a constant mixture velocity (Section 2.8). Finally, we discuss the friction terms in
Section 2.9.

2.1 Notation
Let Ω(x, t) denote the cross sectional area of a pipe, not necessarily cylindrical, at position x
and time t . Let a phase Ωβ be a subset of the pipe Ω, disjoint from other phases. We assume
that the pipe is completely filled with phases, hence we may formally write

∪βΩβ(x, t) = Ω(x, t), ∀x, t. (2.1)

Figure 2.1 shows an example of a pipe at some fixed point in time, containing three phases.

2.2 Averaging
As starting point for the derivation of one-dimensionalmultiphasemodelswe use the general
three-dimensional conservation laws for mass, momentum and energy, in Cartesian coordi-
nates respectively given by [54]

ρ,t + (ujρ),j = g(ρ), (2.2)

(ρui),t + (ujρui),j = σij,j + ρg
(ρu)
i , (2.3)

(ρE),t + (uiρE),i = (uiσij),j + (kT,i),i + ρuig
(ρu)
i + ρg(ρE). (2.4)

where ρ [kg m−3] is the mass density, ui [m s−1] the velocity in spatial direction i, p [Pa]
the pressure, E [m2 s−2] the thermodynamic internal energy density, σ [kg m−1 s−2] the
stress tensor and g(ρ) [kg m−3 s−1], g(ρu)

i [m s−2] and g(ρE) [m2 s−3] are sources for the
mass, momentum and energy equations, respectively.
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Figure 2.1: Fictitious pipe containing three immiscible phases.

Without loss of generality we may replace the stress tensor by a combination of pressure
p and a viscous stress tensor τ ,

σij = −pδij + τij . (2.5)

Some models discussed below use a different form of the energy equation (2.4), the so-called
entropy equation, given by

T (ρs),t +T (uiρs),i =
(
E − 2e+ sT − p

ρ

)
g(ρ) +ui,jτij +(kT,i),i +ρg(ρE). (2.6)

For a derivation, see Appendix A.
The three conservation laws are valid for multiphase flows. Given only these three equa-

tions, there is, however, nothing which describes the behaviour of a specific phase. The
objective is to obtain a one-dimensional model which keeps track of the (one-dimensional)
density of each phase. Most one-dimensional models reach this by averaging the three con-
servation laws over Ωβ(x, t), the cross section of phase β at position x and time t. We give a
short derivation of a small family of one-dimensional models, following to some extent the
derivations given by Ishii and Hibiki [25] and Ransom and Hicks [42].

The three conservation laws (2.2)–(2.4) can be put into the general form

qi,t + (ujqi),j = fij,j + gi, (2.7)

where q is some conserved quantity, u a velocity and f and g may depend on q and u. Con-
sider the integration of the first term of Equation (2.7) over cross section Ωβ . The cross
section changes shape in spatial dimension x and in time t, hence interchanging integration
and differentiation requires the application of Leibniz integration rule:∫

Ωβ

qi,t =
(∫

Ωβ

qi

)
,t

−
∫

∂Ωβ

qiηj,tnj , (2.8)
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where η denotes the position of the interface as a function of time t and axial position x and
n is the unit outward normal of ∂Ωβ .

For the second termof Equation (2.7) we apply the Leibniz integration rule to the deriva-
tive to spatial dimension x and partial integration for the remaining spatial derivatives:

∫
Ωβ

(ujqi),j =
(∫

Ωβ

uxqi

)
,x

−
∫

∂Ωβ

uxqinjηj,x +
∫

∂Ωβ

ujqinj

=
(∫

Ωβ

uxqi

)
,x

−
∫

∂Ωβ

qinj (uxηj,x − uj) . (2.9)

Note that we used nx = 0, which follows from Ωβ being ‘flat’ in the first spatial dimension,
in order to write the term arising from the partial integration in a concise form. Applying
Leibniz integration rule to the third term of Equation (2.7) yields∫

Ωβ

fij,j =
(∫

Ωβ

fix

)
,x

−
∫

∂Ωβ

(fixnjηj,x − fijnj) . (2.10)

We are now ready to apply cross sectional averaging to the balance equations (2.2), (2.3),
(2.4). Integration of the conservation of mass (2.2) and applying identities (2.8) and (2.9)
yields(∫

Ωβ

ρ

)
,t

+
(∫

Ωβ

uxρ

)
,x

=
∫

∂Ωβ

ρnj (ηj,t + uxηj,x − uj) +
∫

Ωβ

g(ρ). (2.11)

We introduce the following shorthand notations for an average area integral

Aβq :=
(∫

Ω
1
)−1 ∫

Ωβ

q, (2.12)

and a boundary integral scaled with the cross sectional area

Bβq :=
(∫

Ω
1
)−1 ∫

∂Ωβ

q. (2.13)

Dividing Equation (2.11) by the area of the cross section Ω, assuming the cross sectional area
to be invariant in t and x and applying the shorthands yields

(Aβρ),t + (Aβ (uxρ)),x = Bβ (njṁj) +Aβg
(ρ). (2.14)

where
njṁj := njρ (ηj,t + uxηj,x − uj) . (2.15)

The term ṁ is the mass (per area) transfer rate through the interface ∂Ωβ .
As we did not explicitly say anything about continuity of quantities, the velocity and

density may jump at the interface. Since the interface, being infinitesimally small, cannot
accumulate mass, we must ensure that, considering an interface between some phasesL and
G, the amount of mass flowing out of L equals the amount flowing intoG and vice versa.
In other words, the mass transfer rate must not jump,

JnjṁjK = 0, (2.16)

14



where nj the normal with respect to the interface under consideration. In case there is no
mass transfer at this interface, then, by Equation (2.15), the velocity in normal direction is
continuous across the boundary.

We continue with the momentum balance (2.3). Application of Leibniz rules (2.8), (2.9)
and (2.10) and assuming that the cross sectional area is invariant in t and x yields

(Aβ (ρui)),t + (Aβ (uxρui)),x = Bβ (njṁjui)

+ (Aβσix),x −Bβ (σixnjηj,x − σijnj) +Aβ

(
ρg

(ρu)
i

)
. (2.17)

Doing the same for the energy balance (2.4) gives

(Aβ (ρE)),t + (Aβ (uxρE)),x = Bβ (njṁjE)
+ (Aβ (uiσix)),x −Bβ (uiσixnjηj,x − uiσijnj) + (Aβ (kT,x)),x

−Bβ (kT,znjηj,x − kT,jnj) +Aβ

(
ρuig

(ρu)
i

)
+Aβ

(
ρg(ρE)

)
. (2.18)

The entropy balance (2.6) is more difficult to process. The volume integrals of the stress and
temperature diffusion terms do not reduce to a boundary integral, when applying partial
integration, due to the division by the temperature. Application of Leibniz rules (2.8) and
(2.9) and assuming that the cross sectional area is invariant in t and x yields

(Aβ (ρs)),t + (Aβ (uiρs)),x = Bβ (njṁjs) +Aβ

((
E

T
− 2e
T

+ s− p

ρT

)
g(ρ)

)
+Aβ

(
ui,jτij

T
+

(kT,i),i

T

)
+Aβ

(
ρg(ρE)

T

)
. (2.19)

The averaged equations derived above are the basis for a family of one-dimensionalmod-
els. Besides definitions for the sources g, the mass transfer rate ṁ and equations of state,
which are problem dependent, themodel lacks closure relations for the velocity and pressure
at the phase boundaries. Several simplifications of the one-dimensional balance equations
(2.14), (2.17), (2.18) and (2.19) and closure relations are discusses below.

2.3 Ransom & Hicks model
One of themost completemodels is formulated byRansom andHicks [42], amongst others.
The model describes the flow of two phases in a two-dimensional channel with fixed height,
assuming that one of the phases is always (completely) below the other. Furthermore, it is as-
sumed that there is nomass transfer betweenphases or between aphase and the exterior of the
pipe: ṁ = 0. We present a slightly more general derivation, suitable for three-dimensional
pipes. First, we apply the geometry assumptions to the averaged equations derived in the
previous section. Then we recall relations for the boundary values, as derived by Ransom
and Hicks [42].

We generalise the geometry assumptions to three dimensions as follows. Assume the
pipe has a cross section Ω, invariant in time t and axial direction x. Assume there are two
phases, L and G, L being below G — think of liquid and gas — and separated at height
h : (x, t) → R. Formally, theL andG cross sections are given by

ΩL(x, t) := Ω ∩ {(y, z) ∈ R2, y < h(x, t)}, (2.20)
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Figure 2.2: Cross section of a pipe showing the geometrical assumptions of the Ransom and
Hicks model

and
ΩG(x, t) := Ω ∩ {(y, z) ∈ R2, y > h(x, t)}, (2.21)

respectively. The position of the interface is defined by h as

ηy(x, t) := h(x, t), (2.22)

The z-part of η is invariant in t and x. See Figure 2.2 for an example. Finally, we assume the
motion in z-direction to be negligible, i.e. uz = 0.

Similar to the averaging of cross sections, we apply an averaging to boundary values. Let
Γγ denote the interface between phasesL andG, phaseL and the pipe wall and phaseG and
the pipe wall, respectively defined by

Γγ :=


∂ΩL ∩ ∂ΩG if γ = (LG),
∂ΩL ∩ ∂Ω if γ = (LW ),
∂ΩG ∩ ∂Ω if γ = (GW ).

(2.23)

The letterW in (LW ) and (GW ) denotes the pipewall. Let operatorBβγ be the boundary
integral of interface γ ∈ {(LG), (LW ), (GW )} scaled by the pipe cross sectional area:

Bβγ (qnj) :=
(∫

Ω
1
)−1 ∫

∂Ωβ∩Γγ

qnj (2.24)

with outward normal nj with respect to ∂Ωβ . We approximate boundary integrals of some
quantity q, e.g. u or p, by

Bβ (qnj) ≈ q̂γBβγnj . (2.25)

where q̂γ : (x, t) → R is the average of q on Γγ . At the end of this section we give the
relations for these average quantities as derived by Ransom and Hicks.

The averaged balance equations (2.14), (2.17) and (2.18) contain boundary integrals in-
volving the motion of the interface. For example, the momentum equation (2.17) contains,
after applying the averaging approximation (2.25), the term

σ̂γixBβγ (njηj,x) . (2.26)

By the geometry assumption, we know that theL-wall andG-wall interfaces do not change,
i.e. η,t = η,x = 0 on Γ(LW ) and Γ(GW ). Hence

Bβγ (njηj,x) = δγ(LG)Bβ(LG) (njηj,x) . (2.27)
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The remaining boundary integral can be transformed by applying Leibniz integration rule
once again,

0 =
∫

Ωβ

1,x =
(∫

Ωβ

1
)

,x

−
∫

Ωβ

ηj,xnj . (2.28)

This yields
Bβγ (njηj,x) = δγ(LG) (Aβ1),x . (2.29)

The termAβ1 is simply the volume fraction of phase β.
We are now ready to state the set of equations defining the (three-dimensionally ex-

tended) Ransom and Hicks model. Applying the zero mass transfer assumption (ṁj = 0)
to the mass balance equation (2.14) gives

(Aβρ),t + (Aβ (uxρ)),x = Aβg
(ρ). (2.30)

Applying zero mass transfer, approximation (2.25) and identity (2.29) to the averaged mo-
mentum equation (2.17) in x yields

(Aβ (ρux)),t + (Aβ (uxρux)),x = − (Aβp),x + p̂(LG)x (Aβ1),x

+ (Aβτxx),x − τ̂(LG)xx (Aβ1),x + τ̂γxjBβγnj +Aβ

(
ρg(ρu)

x

)
. (2.31)

Similarly, using the additional assumption that the velocity at the pipe wall is zero, the aver-
aged energy equation (2.18) becomes

(Aβ (ρE)),t + (Aβ (uxρE)),x = (Aβ (uiτix − uxp)),x

− û(LG)iτ̂(LG)ix (Aβ1),x + û(LG)iτ̂(LG)ijBβ(LG)nj + û(LG)xp̂(LG) (Aβ1),x

+ (Aβ (kT,x)),x − kT̂(LG),x (Aβ1),x + kT̂γ,jBβγnj

+Aβ

(
ρuig

(ρu)
i

)
+Aβ

(
ρg(ρE)

)
. (2.32)

In order to write the averaged entropy equation (2.19) in this form, we need to assume that
the term ui,jτij + (kT,i),i vanishes, in which case the entropy equation takes the simple
form

(Aβ (ρs)),t + (Aβ (uxρs)),x

= Aβ

((
E

T
− 2e
T

+ s− p

ρT

)
g(ρ)

)
+Aβ

(
ρg(ρE)

T

)
. (2.33)

Ransom and Hicks augment the six equations (2.30), (2.31) and (2.33) for β ∈ {L,G}
with an equation describing the motion of the interface betweenL andG,

h,t + û(LG)xh,x = û(LG)y, (2.34)

which is a direct result of the zero mass transfer assumption applied to Equation (2.15), and
with a total vertical momentum balance, given by

((AL +AG) (ρuy)),t + ((AL +AG) (uxρuy)),x

= −p̂(LW )BL(LW )ny − p̂(GW )BG(GW )ny

+ ((AL +AG) τyx),x + τ̂(LW )yjBL(LW )nj + τ̂(GW )yjBG(GW )nj

+ (AL +AG)
(
ρg(ρu)

y

)
, (2.35)
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which follows from summing the averaged momentum balance (2.17) for both phasesL and
G.

We now apply a series of approximations to the eight differential equations in order to
reduce the number of unknowns. The averages of products are approximated by products
of averages, e.g.

Aβ (ρui) ≈ ρβuβiAβ1, (2.36)

(no Einstein summation!). Furthermore, the following interface terms are approximated.
For a justificationwe refer the reader to Ransom andHicks [42]. Themass-weighted average
transverse velocity is approximated by the transverse velocity at the interface betweenL and
G:

(AL +AG) (ρuy)
(AL +AG) ρ ≈ û(LG)y (2.37)

The axial velocity at the interface between L and G is approximated by a equal-weighted
average of the average axial phase velocities:

û(LG)x ≈ 1
2 (uLx + uGx) . (2.38)

The pressure terms at the three interfaces are approximated as follows:

p̂(LW ) ≈ pL, (2.39)
p̂(GW ) ≈ pG, (2.40)

and

p̂(LG) ≈ 1
2 (pL + pG) . (2.41)

This completes the model up to equations of state, a viscous stress tensor τij and a relation
between the height of the interfaceh and the volume fractionsAβ1. The viscous stress tensor
will be discussed in Section 2.9.

Above approximations lead to a hyperbolic one-dimensional model, as proven by Ran-
som and Hicks [42]. The model is, however, not conservative, even if we ignore the sources
g and the viscous stress tensor τ : see Equations (2.31) and (2.34).

2.3.1 Transverse hydrodynamic behaviour
The two pressure models by Ransom and Hicks [42] explicitly model hydrodynamic be-
haviour in transversal direction. Or, to be more precise, other models explicitly remove hy-
drodynamic behaviour by assuming a hydrostatic situation in transversal direction, with or
without a gravity.

To analyse the transverse dynamic behaviour of the model we consider a channel (2D)
with heightH [m], ignore all variation in x and assume both phases to be inviscid. Further-
more, we assume all sources, including mass transfer, to be zero. The model reduces to the
following set of equations.

(Aβρ),t = 0, β ∈ {L,G} (2.42)

(Aβ (uxρ)),t = 0, β ∈ {L,G} (2.43)

(Aβ (ρs)),t = 0, β ∈ {L,G} (2.44)

h,t = û(LG)y, (2.45)(
(ALρ+AGρ) û(LG)y

)
,t

= pL − pG. (2.46)
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By Equation (2.42), the total density per phaseAβρ does not change in time. Let themixture
density ρm be defined by

ρm := (AL +AG) ρ. (2.47)

Then, the mixture transverse momentum equation (2.46) becomes

ρmû(LG)y,t = pL − pG. (2.48)

Combining this equationwith equation (2.45) gives the following ordinary differential equa-
tion describing the height of the interface betweenL andG:

h,tt = 1
ρm

(pL − pG) . (2.49)

Since we assume a two-dimensional system, the relation between the height h and the
volume fractions is simply given by:

HAL1 = h, (2.50)

and

HAG1 = H − h. (2.51)

The average density per phase ρβ is then found by dividing the averaged phase density by the
volume fraction:

ρL = HALρ

h
, (2.52)

and

ρG = HAGρ

H − h
. (2.53)

We assume the following equations of state. PhaseG satisfies the ideal gas law:

pG = ρGc
2
G. (2.54)

where cL is the speed of sound of phase L. For phase L we use a linear relation around a
point determined by density ρ0L and pressure p0L:

pL = (ρL − ρ0L) c2
L + p0L, (2.55)

here, cL is the speed of sound of phaseL.
Substituting equations (2.50)–(2.55) in equation (2.49) gives the ODE

h,tt = 1
ρm

(
HALρc

2
L

h
− ρ0Lc

2
L + p0L − HAGρc

2
G

H − h

)
. (2.56)

Wewill derive a solution to a linearisation of this ODE around the equilibrium point h0. To
find h0 we need to solve the following equation:

0 = HALρc
2
L

h0
− ρ0Lc

2
L + p0L − HAGρc

2
G

H − h0
. (2.57)
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Multiplying with h0 (H − h0) gives the quadratic equation

0 = h2
0
(
ρ0Lc

2
L − p0L

)
+ h0

(
−Hρ0Lc

2
L +Hp0L −HALρc

2
L −HAGρc

2
G

)
+H2ALρc

2
L. (2.58)

The physical solution should should satisfy 0 ≤ h0 ≤ H . Note that under certain circum-
stances there might be no physical solutions h0.

Linearising the ODE (2.56) around the equilibrium point gives

h,tt = −ω2 (h− h0) , (2.59)

where ω is given by

ω =

√√√√ 1
ρm

(
HALρc2

L

h2
0

+ HAGρc2
G

(H − h0)2

)
. (2.60)

The solution of the ODE is given by

h = h0 + k1 cosωt+ k2 sinωt, (2.61)

where k1, k2 ∈ R are coefficients independent of t.
Consider the following situation:

H = 1 m, (2.62)
h0 = 0.25 m, (2.63)
p0 = 105 Pa, (2.64)
p0L = 105 Pa, (2.65)
ρ0L = 1000 kg m−3, (2.66)
cL = 1500 m s−1, (2.67)
cG = 300 m s−1. (2.68)

In this case we choose an equilibrium height h0 and pressure p0 and let the constantsALρ
and AGρ be derived from these quantities. This situation is roughly equivalent to a pipe
filled with one quarter of water and three quarters of air, both phases being at room temper-
ature and one bar. Using equation (2.60) we can compute the oscillation frequency of the
system:

ω ≈ 6 · 103 s−1. (2.69)
If we advance the system with a classical fourth order, explicit Runge-Kutta method, then
the restriction on the time step is

∆t / 5 · 10−4 s. (2.70)

To put this into perspective, we compute the time step restriction based on a first order Fi-
nite Volume discretisation, ignoring source terms, and a fourth order, explicit Runge-Kutta
method time integration. The largest eigenvalue of the hyperbolic model is roughly equal to
the speed of sound of phaseL. This gives the CFL condition [11]

cL∆T
∆x ≤ 1.392, (2.71)

which is comparable to restriction (2.70) when ∆x ≈ 0.54 m. For the simulation of very
long pipelines, much wider elements are used in practice, in which case the restriction due to
the source terms (2.70) is dominant.
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2.4 Equal pressure
As discussed previously, the transverse momentum equation (2.35) as used in the Ransom
and Hicks model may have a very small time scale, compared to the other differential equa-
tions. This might pose a problem when discretising these equations. In many models the
transverse momentum equations are ignored and it is assumed that at every axial point of
the pipe the pressure is constant in y and z:

p(x, y, z, t) = p(x, t). (2.72)

Applying this assumption to the averaged momentum equations (2.17) yields

(Aβ (ρux)),t + (Aβ (uxρux)),x + p,xAβ1

= Bβ (njṁjux) +Aβ

(
τxxnjv

(x)
j − τxjnj

)
+Aβ

(
ρg(ρu)

x

)
. (2.73)

Note that we do not assume a certain geometry of the phases, contrary to the Ransom and
Hicksmodel. Togetherwith themass balance (2.14), approximation (2.36), equations of state
and a relation for the viscous stress tensor, this forms a complete model. This model features
only three differential equations per phase, whereas the Ransom and Hicks model consists
of eight equations for two phases. Both models are non-conservative.

A consequence of the equal pressure assumption is that themodel is not unconditionally
hyperbolic. In the case of a systemwith two phases, sayL andG, Stewart andWendroff [47]
showed that the model is not hyperbolic if the following condition holds:

0 < (uGx − uLx)2
<

a2
La

2
G

αLρGa2
G + αGρLa2

L

(
(αGρL)

1
3 + (αLρG)

1
3
)3
. (2.74)

When the phase velocities are close to each other, which can occur in practice, the model
becomes non-hyperbolic. Several solutions have been proposed in the literature to (re)gain
unconditional hyperbolicity, based on a different choice for the pressure at the interface be-
tween the two phases. Re-deriving the momentum equation with the assumption that the
average pressure per phase equals p yields

(Aβ (ρux)),t + (Aβ (uxρux)),x = − (Aβp),x + p̂(LG) (Aβ1),x

+ (Aβτxx),x − τ̂(LG)xx (Aβ1),x + τ̂γxjBβγnj +Aβ

(
ρg(ρu)

x

)
. (2.75)

In CATHARE [5] (with δ = 1) and in Evje and Flåtten [14] (with δ = 1.2) the pressure at
the interface is chosen such that the system is unconditionally hyperbolic:

p− p̂(LG) = δ
αLαGρLρG

αLρG + αGρL

(uL − uG)2
. (2.76)

Choosing δ ≥ 1 ensures hyperbolicity [14]. Toumi,Kumbaro andPaillere [51] discuss several
other choices for the pressure at the interface.

2.5 Hydrostatic pressure
The pressure of a fluid varies e.g. in y under influence of gravity. We can take vertical pressure
variation due to gravity into account by solving the momentum balance equation (2.3) in
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direction y assuming the fluid is in equilibrium, i.e. (ρui),t = uy = 0, and the source term
g

(ρu)
y = ggrav cos θ, ggrav being the accelaration due to gravity. This gives

p,y (y) = −ρ (y) ggrav cos θ. (2.77)

Please note that the thex-direction follows the pipe, while y is perpendicular to the pipewall,
hence the term cos θ in the gravity force. Solving this equation analytically for a particular
phase β can be difficult, depending on the equation of state. We assume, however, that the
density variation is negligible and replace ρ (y) with the density at a reference point yref. Fur-
thermore, we assume that the phase lives in a section Ωβ = {(y, z) ∈ Ω : h ≤ y ≤ h}.
This yields

p,y (y) = −ρ (yref) ggrav cos θ, h < y < h, (2.78)

where h < yref < h. Solving this simplified equation for p gives

p(y) = p (yref) − (y − yref) ρ (yref) ggrav cos θ, h < y < h, (2.79)

where p (yref) and ρ (yref) are related via the equation of state. If we choose yref such that

yrefAβ1 = Aβy, (2.80)

then p (yref) is the average pressure of the phase. Finally, imposing continuity of the pressure
gives a set ofn−1 relations for the (average) phase pressures, wheren is the number of phases.

An example using two phases L andG. Let h be the height of the interface between L
andG andH the height of the pipe. The pressure in phaseL is given by

p(y) = pL − (y − yref;L) ρLggrav cos θ, 0 ≤ y < h, (2.81)

and the pressure in phaseG by

p(y) = pG − (y − yref;G) ρGggrav cos θ, h < y ≤ H. (2.82)

Imposing continuity ath, ignoring surface tension, gives a relation between the average pres-
sure of both phases,

p(h) := lim
y↗h

p(y) = lim
y↘h

p(y). (2.83)

The pressure at the interface including the pressure correction term as discussed in the pre-
vious section is given by

p(h) − p̂(LG) = δ
αLαGρLρG

αLρG + αGρL

(uL − uG)2
. (2.84)

These definitions of pressure and interface presure can be used in the following momentum
balance equation,

(Aβ (ρux)),t + (Aβ (uxρux)),x = − (Aβp),x + p̂(LG) (Aβ1),x

+ (Aβτxx),x − τ̂(LG)xx (Aβ1),x + τ̂γxjBβγnj +Aβ

(
ρg(ρu)

x

)
. (2.85)

Henkes, Vreenegoor andHaandrikman [17] use a slightly different, but analytically iden-
tical form of the momentum balance equation with δ = 0, where the termAβp is replaced
by terms involving the interface pressure p (h). In fact the formulation of Henkes et al. is
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used in most of the industrial pipeline tools, like OLGA, LedaFlow, and Compas. We show,
in two different ways, the equivalence with (2.85) in case of two phases.

We choose the reference point yref at the interface, yref = h, and substitute the hydro-
static pressure equation (2.79) in the term (Aβp),x. This gives

(Aβp),x =
(
Aβ

(
p (h) − (y − h) ρggrav cos θ

))
,x

(2.86)

= (Aβ),x p (h) +Aβp,x (h) −
(
Aβ

(
(y − h) ρggrav cos θ

))
,x
. (2.87)

Applying the Leibniz integration rule (2.8) with t replaced by x yields(
Aβ

(
(y − h) ρggrav cos θ

))
,x

= Aβ

(
h,xρggrav cos θ

)
−Bβ

(
(y − h) ρggrav cos θηj,xnj

)
(2.88)

= Aβ

(
h,xρggrav cos θ

)
. (2.89)

The boundary integral vanishes because y − h = 0 at the interface and ηj,x = 0 at the pipe
wall, assuming that the pipe does not change the geometry in x. Finally, the two pressure
terms in the momentum equation (2.85) become

(Aβp),x − p̂(LG) (Aβ1),x

= Aβ (p,x (h)) +Aβ

(
h,xρggrav cos θ

)
+
(
p (h) − p̂(LG)

)
(Aβ),x . (2.90)

For the second derivation we start with the pressure as defined by equations (2.81) and
(2.82), which defines the reference points yref;L and yref;G such thatALp = p (yref;L)AL1
andAGp = p (yref;G)AG1. We start with the liquid phase. Substituting Equation (2.81) in
ALp gives

ALp = pLAL1 = p (h)AL1 + (h− yref;L) ρLggrav cos θAL1 (2.91)
= p (h)AL1 + ρLggrav cos θAL (h− y) . (2.92)

where we used the identity (2.80). Taking the derivative ofALp to x gives

(ALp),x = p,x (h)AL1 + p (h) (AL1),x + ρLggrav cos θ (AL (h− y)),x (2.93)

= p,x (h)AL1 + p (h) (AL1),x

+ ρLggrav cos θ (ALh,x +BL ((h− y) ηj,xnj)) . (2.94)

The boundary integral vanishes because y − h = 0 at the interface and ηj,x = 0 at the pipe
wall, assuming that the pipe does not change the geometry in x, hence

(ALp),x = p,x (h)AL1 + p (h) (AL1),x

= p,x (h)AL1 + p (h) (AL1),x + ρLggrav cos θALh,x.
(2.95)

Finally, the two pressure terms in the momentum equation (2.85) become

(ALp),x − p̂(LG) (AL1),x

= p,x (h)AL1 +
(
p (h) − p̂(LG)

)
(AL1),x + h,xρLggrav cos θAL1. (2.96)

For the gas phase the analysis is exactly the same:

(AGp),x − p̂(LG) (AG1),x

= p,x (h)AG1 +
(
p (h) − p̂(LG)

)
(AG1),x + h,xρGggrav cos θAG1. (2.97)

The terms with h,x in equations (2.96) and (2.96) are also referred to as the ‘hydraulic
gradients’. They enable (depending on the precise conditions) the initiation and growth of
unstable waves and slugs starting with a stratified base flow.
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2.6 Incompressible phase
Under some circumstances we may assume that one of the phases, say a liquid phase, is in-
compressible. This implies that the density of the respective phase is constant. The general
averaged equations (2.14), (2.17) and (2.18) remain valid. In case of a two phase, (y,z-invariant
pressure) hydrostatic equilibrium model, discussed in the previous section, we may exploit
the incompressibility to obtain a set of conservative equations. [50]

Let subscript L denote an incompressible phase. Approximating averages of products
with products of averages, see Equation (2.36), gives the following averaged axialmomentum
equation:

(αLρLuLx),t +
(
αLρLu

2
Lx

)
,x

+ αLp,x = BL (njṁjux)

+ (ALτxx),x −BL (τxxnjηj,x − τxjnj) +AL

(
ρg(ρu)

x

)
. (2.98)

Substitutingmass balance equation (2.14) and approximating boundary termBL (njṁjux)
withBL (njṁj)uLx yields

αLρLuLx,t + 1
2αLρLu

2
Lx,x + uLALg

(ρ) + αLp,x

= (ALτxx),x −BL (τxxnjηj,x − τxjnj) +AL

(
ρg(ρu)

x

)
. (2.99)

Dividing by αLρL yields an equation without non-conservative products, that is, when we
ignore the terms involving the viscous stress tensor τ .

The averaged axial momentum equation for the remaining compressible phase (2.73) is
non-conservative. Instead, we use the sum of momentum equations for both phases, which
is conservative:∑

β

(Aβ (ρu)),t +
∑

β

(Aβ (uxρux)),x +
∑

β

(Aβp),x =
∑

β

Bβ (njṁjux)

+
∑

β

(Aβτxx),x +
∑

β

Bβ (τxxnjηj,x − τxjnj) +
∑

β

Aβ

(
ρg(ρu)

x

)
. (2.100)

If the cross section of the pipe Ω is invariant in x, then a part of the boundary integral in-
volving τ vanishes: ∑

β

Bβ (τxxnjηj,x) = 0. (2.101)

Together with the mass balance (2.14), the energy balance (2.18) and an equation of state
for the compressible phase, this forms a conservative model up to the terms involving mass
transfer and viscous stress tensor.

2.7 Slip relation
When a strong coupling exists between two phases, it suffices to use a mixture momentum
equation (2.100) and a so-called slip relation describing the relative motion of the phases.

Zuber and Findlay [56] derived a general slip relation suitable for any flow regime involv-
ing two phases:

uG = C0δβAβu+ AGur

AG1 (2.102)

24



Here, C0 is a phase distribution parameter: < 1 if the gas concentration is higher at the
center than close to the pipe wall and> 1 if the gas concentration is higher close to the pipe
wall. For the second term several definitions are given for different flow regimes. For example
for slug flow the following definition may be used,

AGur

Ag
= 0.35

(
fgravity (ρL − ρG)D

ρ1

) 1
2

. (2.103)

and for churn-turbulent bubbly flow,

AGur

Ag
= 1.53

(
σfgravity (ρL − ρG)

ρL

) 1
4

, (2.104)

whereD [m] denotes the diameter of the pipe and σ [m s−2] the surface tension.

2.8 Incompressible phases with constant mixture velocity
Wangensteen [53] studied an isentropic two-phase model with the assumptions that both
phases are incompressible and the mixture velocity is constant. The model consists of just
two PDE’s. The derivation is as follows.

Dividing themass balance (2.14) by the constant density ρ and ignoring sources andmass
transfer gives

(Aβ1),t + (Aβux),x = 0. (2.105)

We define the mixture velocity um as

um :=
∑

β

Aβux. (2.106)

Given themixture velocity, we need onemore equation in order to findboth phase velocities.
Sincewe have no information about the pressurewe choose a linear combination of the equal
pressure momentum balance equations (2.73) such that the pressure term vanishes:

(AL−G (ρui)),t + (AL−G (uxρui)),x =

(AL−Gτix),x −BL−G (τixnjηj,x − τijnj) +AL−G

(
ρg

(ρu)
i

)
. (2.107)

whereAL−Gf := AG1ALf −AL1AGf andBL−G = AG1BLf −AL1BGf .
Any linear combination of the volume fraction balance (2.105), the volume equation

(
∑

β Aβ1 = 1), the momentum difference equation (2.107) and some relation for the mix-
ture velocity (2.106) gives a complete model.

2.9 Flow regimes
Besides averaged quantities, themodels described above depend on quantities at boundaries,
such as the mass transfer rate ṁ and the viscous stress tensor τ . Especially the viscous stress
and the size of the (cross sectional) phase boundary depend on the shape of the (cross sec-
tional) phase.

In order to find these boundary values, we need to determine the so-called flow regime.
There are various flow regimes distinguished by different authors. Here, we give a couple
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Figure 2.3: Flow pattern map from [30] (reillustrated)

of examples. A flow regime where multiple phases are separated in height is called stratified
flow. This is used in the Ransom and Hicks model, discussed in Section 2.3. Some authors
distinguish a smooth and a wavy version. In case there is an outer layer of liquid and an inner
core of gas the flow regime is called annular. In case there are liquid droplets transported in
the gas phase, it is called annular dispersed. A flow pattern map can be used to determine
the flow regime based on themass flow rates. Figure 2.3 shows an example flow patternmap.
See also Taitel and Dukler [48] for a discussion about flow regimes and transitions.

In the remainder of this sectionwe focus on the stratified flow regime. Based on this flow
regimewewant to derive a relationbetween average phase velocities and viscous stresses at the
phase boundaries. First consider a single phase situation. Note that the averaged equations
(2.14), (2.17) and (2.18) remain valid in this special case. Poiseuille obtained experimentally a
relation for the pressure drop for viscous, incompressible, laminar flows in a smooth, cylin-
drical pipe, involving a function/constant depending on the temperature and the type of
fluid, later recognised as the viscosity. Later the following equation is derived, in accordance
with Poiseuille’s result, based on theNavier-Stokes equations and the no-slip boundary con-
dition,

p,x = 8µux

r2 , (2.108)

called the Hagen-Poiseuille law/equation, although usually stated in terms of head loss in-
stead of pressure drop. Here, ux [m s−1] denotes the average velocity of the flow and r [m]
the pipe radius.

For high/higher Reynolds numbers, the flow becomes turbulent with a laminar bound-
ary layer. The size of the boundary layer decreases with increasing Reynolds number, until
the size becomes comparable with the roughness of the wall, in which case the laminar layer
breaks up completely and the flow becomes fully turbulent [37]. Due to the turbulence the
Hagen-Poiseuille equation fails to hold. Instead, theDarcy formula can be used to determine
the pressure drop,

p,x = fDρ|ux|ux

4r , (2.109)

where fD denotes the Darcy friction factor. The friction factor depends on the Reynolds
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number of the flow, usually defined as

Re = 2rρ|ux|
µ

, (2.110)

and the ratio of the pipe roughness, ε [m], and pipe diameter.
For completely turbulent flow, von Kármán [29] derived the following Darcy friction

factor
fD,turbulent :=

(
1.74 + 2 log r

ε

)−2
. (2.111)

For completely laminar flow, the Darcy friction factor follows from the Hagen-Poiseuille
equation (2.108),

fD,laminar := 64
Re

. (2.112)

For intermediate Reynolds numbers, the Colebrook function may be used to approximate
the friction factor. The Colebrook relation was conveniently drawn in a chart by Moody
[37].

Applying the Darcy formula (2.109) and incompressibility and steady state assumptions
to the averaged equations (2.14), (2.17) and (2.18) yields the following equalities for the viscous
stress terms,

BY (τijnj) = fD;Y ρY |uY x|uY x

4r , (2.113)

BY

(
τixnjv

(x)
j

)
= 0. (2.114)

(AY τix),x = 0, (2.115)

Where the last equality follows from (also) assuming the fluid to be Newtonian. Due to
symmetry we may write the normal component of the viscous stress as

τijnj = 1
8fD;Y ρY |uY x|uY x. (2.116)

The above discussion holds for single phase flow in cylindrical pipes. In case of two
phases, say liquid and gas, respectively denoted by L and G, equality (2.116) is commonly
used to approximate the viscous terms, yielding

BL(LW ) (τijnj) ≈ 1
8fD;L(LW )ρL|uLx|uLxBL(LW )1, (2.117)

and
BG(GW ) (τijnj) ≈ 1

8fD;G(GW )ρG|uGx|uGxBG(GW )1, (2.118)

for the liquid-wall and gas-wall interface, respectively. The friction at the interface between
the gas and the liquid phase is approximated by

BG(GL) (τijnj) ≈ 1
8fD;G(GL)ρG|uGx − uLx| (uGx − uLx)BG(GL)1. (2.119)

By conservation of momentum:

BL(LG) (τijnj) ≈ −BG(GL) (τijnj) . (2.120)
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Chapter 3

Discretisation

The models discussed in Chapter 2 are (conditionally) hyperbolic. In this chapter we discuss
various discretisation methods for this type of differential equations. In the second section
we discuss properties of hyperbolic systems, such as uniqueness, and the so-called Riemann
problem, which is extensively used in discretisations. In Section 3.3 we discuss a DG-FEM
weak formulation for non-conservative systems. In Section 3.4we give a stabilisationmethod
for theweak formulation. In Section 3.5wediscuss amethod for reducing oscillations in high-
order discretisation. Finally, in Section 3.6 the Runge-Kutta method for time integration is
discussed.

In Appendix B we give some background information on the DG-FEM.

3.1 Notation
Let Ω ⊂ R and f : Ω → Cn any function. Then the jump of f on x ∈ Ω is defined by

JfK (x) := lim
y↘x

f(x) − lim
y↗x

f(x), (3.1)

and the average value of f at x by

{{f}} (x) := limy↘x f(x) + limy↗x f(x)
2 . (3.2)

Note that if f is continuous at x, then JfK (x) = 0 and {{f}} (x) = f(x).
Let f, g : Ω → Rn with Ω ⊂ R. Then the following relation holds,

JfgK = {{f}} JgK + JfK {{g}} . (3.3)

3.2 Properties of hyperbolic systems
Consider a system of n partial differential equations in time t and space dimension x given
by

ui,t (x, t) + gij (u (x, t) , x, t)uj,x (x, t) = 0 for almost all x ∈ X, t ∈ T, (3.4)

where the solutionu : X×T → Rn is a function of space and time and g : Rn ×X×T →
Rn×n is a matrix dependent on the solution u, space and time and subsetsX,T ⊂ R define
the space and time domain, respectively.
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Definition 3.1 (hyperbolicity). Let n ∈ N, g : Rn × X × T → Rn×n. The system of
partial differential equations given by equation (3.4) is called hyperbolic at (u, x, t) if the
matrix g(u, x, t) is diagonalisable with real eigenvalues. The system is called hyperbolic if g
is hyperbolic for all u ∈ Rn, x ∈ X, t ∈ T .

In this chapter we consider only hyperbolic systems.

Definition 3.2 (conservation). A systemof partial differential equations is called conservative
if it is of the following form:

ui,t (x, t) + (fi (u(x, t), x, t)),x = 0, (3.5)

where u : X × T → Rn and f : Rn ×X × T → Rn a so-called flux function.

Lemma 3.3. A conservative system with flux function f independent of x is hyperbolic if the
jacobian of f with respect to u is diagonalisable with real eigenvalues.

Proof. Let g(u, t) be the jacobian of f(u, t) with respect to u:

gij (u, t) = fi,uj (u, t) . (3.6)

Then system (3.5) is equal to system (3.4). Hence, the former is hyperbolic if latter is.

3.2.1 Uniqueness
It is well known [35] that a solution to a hyperbolic systemmay contain discontinuities, even
when the initial and boundary conditions are continuous. At these discontinuities the differ-
ential equation (3.4) is undefined. As a consequence, multiple solutions may exist.

For example, consider the inviscid Burgers equation on an infinite domain, given by

u,t + uu,x = 0, for almost all x ∈ R, t ∈ R+. (3.7)

This is clearly a hyperbolic differential equation. We will try to find solutions to this differ-
ential equation for the initial value

u(x, 0) =
{
uL if x < 0,
uR if x > 0,

(3.8)

where uL < uR ∈ R. We state the following two solutions; a justification will be given in
the following sections: a shock moving with velocity 1

2 (uL + uR),

ushock(x, t) =
{
uL if x < 1

2 (uL + uR) t,
uR if x > 1

2 (uL + uR) t.
(3.9)

and a rarefaction wave,

urarefaction(x, t) =


uL if x

t < uL,

uR if x
t > uR,

x
t if uL < x

t < uR.

(3.10)

It is easy to verify that both ushock and urarefaction satisfy the initial condition (3.8) and the
differential equation (3.7). Hence, we have found two solutions for a single problem.
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3.2.2 Parabolic regularisation
Which of the two solutions is correct? Without additional constraints the answer is both.
The Burgers equation was originally defined with a viscous term:

u,t + uu,x = εu,xx. (3.11)

Solving this differential equation given the same initial value (3.8) does yield a unique solu-
tion. Letting the viscosity ε go to zero gives a unique solution to the inviscid differential
equation.

Themodels discussed inChapter 2 are derived frombalance equations containing viscous
terms as well. These terms are, however, neglected as they are assumed to be small. We may
use the viscous terms to decide which of all solutions to the inviscid differential equation is
the physically relevant one.

In absence of physical viscosity, an artificial viscosity termmaybe added to the hyperbolic
system:

ui,t(x, t) + gij(u(x, t), x, t)uj,x(x, t) = ε (νijuj,x(x, t)),x , (3.12)

where ν ∈ Rn×n is a nonzero viscosity matrix and ε > 0 a small parameter. This is also
called a parabolic regularisation. As in the examples above, the relevant solution is the limit
of solutions to the parabolic differential equations for ε going to zero.

3.2.3 Entropy conditions
It canbequite difficult to use the parabolic regularisation todecidewhich solution is relevant,
especially in numerical computations. Consider the following PDE,

ui,t + (f (u))i,x = 0, (3.13)

and the PDE with added viscosity,

ũi,t + (f (ũ))i,x = ε (νij (ũ, x, t) ũj,x),x . (3.14)

Assume we have a function η : Rn → R, called the entropy function, and a function
ψ : Rn → R, called the entropy flux, such that ψ,j (u) = η,i (u) fi,j (u) for all u ∈ R.
Multiplying the viscous conservative system (3.14) with η,i (ũ) gives

η,i (ũ)
(
ũi,t + (f (ũ))i,x

)
= εη,i (ũ) (νij (ũ, x, t) ũj,x),x , (3.15)

which can be written as

(ηi (ũ)),t + (ψ (ũ)),x

= ε (η,i (ũ) νij (ũ, x, t) ũj,x),x − εη,ik (ũ) ũk,xνij (ũ, x, t) ũj,x. (3.16)

Integration over a rectangle (x1, x2) × (t1, t2) ⊂ X × T gives

∫ x2

x1

[η (ũ)]t2
t=t1

dx+
∫ t2

t1

[ψ (ũ)]x2
x=x1

dt = ε

∫ t2

t1

[η,i (ũ) νij (ũ, x, t) ũj,x]x2
x=x1

dt

− ε

∫ x2

x1

∫ t2

t1

η,ik (ũ) ũk,xνij (ũ, x, t) ũj,x dt dx. (3.17)
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If we let the viscosity vanish, be means of letting ε go to zero, the first integral on the right
hand side will vanish [35]. If we are able to assert that the second integral on the right hand
side is always nonnegative (for positive ε, hence in the limit for ε → 0, if existing), then we
obtain the following condition for entropy solutions u of the inviscid system of differential
equations (3.13):∫ x2

x1

[η (u)]t2
t=t1

dx+
∫ t2

t1

[ψ (u)]x2
x=x1

dt ≤ 0, ∀(x1, x2) ⊂ X, (t1, t2) ⊂ T. (3.18)

We can achieve this by an extra constraint onη: thematrixη,ikνij shouldbe (strictly) positive
definite,

η,ik (v) νij (v, x, t)wjwk > 0, ∀v, w ∈ Rn, ‖w‖1 6= 0. (3.19)
Note that this requires νij (v) to be an invertible matrix for all v ∈ Rn.

To summarise, we have the following definition.

Definition 3.4 (entropy solution, conservative case). Let νij : Rn → Rn×n be such that
νij (v) is an invertible matrix for all v ∈ Rn and let η, ψ : Rn → R be functions such
that ψ,j (v) = η,i (v) fi,j (v) ,∀v ∈ Rn and such that η satisfies condition (3.19). A weak
solution u : X × T → Rn to the inviscid system (3.13) is called an entropy solution (with
respect to η, ψ and ν) if it satisfies condition (3.18).

For the general case, i.e. not limited to conservative systems, the entropy condition is
more difficult. We repeat an entropy condition given by LeFloch [34], which is compatible
with the conservative condition. Consider the following hyperbolic system,

ui,t + gij (u)uj,x = 0, (3.20)

where u(x, t) : X × T → U and g(u, x, t) : U × X × T → Rn, and the parabolic
regularisation using viscosity matrix ν(u, x, t) : U ×X × T → Rn×n,

ũi,t + gij (ũ) ũj,x = ε (νij (ũ, x, t) ũj,x),x , ε > 0, (3.21)

where ũ(ε, x, t) : R ×X × T → U is the viscous solution.
Instead of defining an entropy function η(u) : U → R, we define a vector γ(u) : U →

Rn, comparable to η,i but we will discuss this later. Multiplying the viscous system (3.21)
with γi yields

γi (ũ) (ũi,t + gij (ũ, x, t) ũi,x) = εγi (ũ) (νij (ũ, x, t) ũj,x),x , (3.22)

Rearranging the right hand side yields

γi (ũ) ũi,t + γi (ũ) gij (ũ, x, t) ũi,x

= ε (γi (ũ) νij (ũ, x, t) ũj,x),x − εγi,k (ũ) ũk,xνij (ũ, x, t) ũj,x. (3.23)

If we let ε go to zero, then the first term on the right hand side vanishes. If we assert that the
second term on the right side is always nonnegative, then we obtain the following condition:

γi (ũ) ũi,t + γi (ũ) gij (ũ, x, t) ũi,x ≤ 0, (3.24)

which should hold in the weak sense. This can be achieved by the following condition on γ:

γi (v) νij (v, x, t)wjwk > 0, ∀v, w ∈ Rn, ‖w‖1 6= 0. (3.25)

In case the general system is conservative, then we would like to recover the conservative
entropy condition, hence there should exist functions η, ψ : U → R such that η,i(v) =
γi(v) and ψ,j(v) = γigij(v) for all v ∈ U . The following lemma ...
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Proposition 3.5. Let f : U → R and gij = fi,j . If γ satisfies

γi,j (v) = γj,i (v) , ∀v ∈ U (3.26)

and
γi,j (v) gjk (v) = γk,j (v) gji (v) , ∀v ∈ U (3.27)

then there exist functions η, ψ : U → R such that η,i (v) = γi (v) and ψ,j (v) =
η,i (v) fi,j (v) for all v ∈ U .

For a proof we refer the reader to LeFloch [34].
To summarise, we have the following definition.

Definition 3.6 (entropy solution, general case). Let νij : Rn → Rn×n be such that νij (v)
is an invertiblematrix for all v ∈ Rn and let γ : U → Rn be a function satisfying conditions
(3.25), (3.26) and (3.27). A weak solution u : X × T → Rn to the inviscid system (3.20) is
called an entropy solution (with respect to γ and ν) if it satisfies condition (3.24).

We now claim that both entropy conditions are equivalent for conservative systems:

Corollary 3.7. Both entropy conditions (3.18) and (3.24) are equal (in the weak sense) when
g : U → Rn×n is the jacobian of a function f : U → Rn.

Proof. This follows immediately from Proposition 3.5.

3.2.4 Riemann Problem
Consider the following Riemann Problem for the non-conservative hyperbolic PDE (3.4) on
Ω = Rwith s = 0,

u0(x) =
{
uL : x < 0,
uR : x > 0.

(3.28)

In the following two sections we give two different solutions to the Riemann problem.
An entropy condition can be used to decide which of both is the valid solution.

3.2.5 Rarefaction Waves
A rarefaction wave is a smooth solution to the Riemann problem. Assume the solution u is
constant for fixed x

y =: ξ,

u (x, t) = ũ
(x
t

)
= ũ (ξ) . (3.29)

Substituting in (3.4) yields

gij (ũ (ξ)) ũj,ξ (ξ) = ξũi,ξ (ξ) , (3.30)

which is an eigenvalue problem with ξ being an eigenvalue and ũi,ξ an eigenvector.
Define ξ as

ξ = λ (ũ (ξ)) , (3.31)

and ũ (ξ) as
ũi (ξ) = α (ξ) ri (ũ (ξ)) , (3.32)

where λ(u) is an eigenvalue of g (u) and ri (u) a corresponding eigenvector andα a param-
eter. Then (3.30) is satisfied.
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Taking the derivative of the eigenvalue with respect to ξ and substituting (3.32) gives

1 = λ,j (ũ (ξ)) ũj,ξ (ξ) = λ,j (ũ (ξ))α (ξ) rj (ũ (ξ)) , (3.33)

which canbe solved forα ifλ,j (ξ) rj (ũ (ξ)) 6= 0. Substitutingα in (3.32) gives a differential
equation for the solution of the Riemann problem:

ũi,ξ (ξ) = ri (ũ (ξ))
λ,j (ũ (ξ)) rj (ũ (ξ)) . (3.34)

3.2.6 Shock Waves
Alouges and Merlet [1] gave the following definition for a shock curve for the non-conserva-
tive system, based on a vanishing viscosity (3.12) where the viscosity matrix ν commutes with
the jacobian matrix g.

Definition 3.8 (Alouges-Merlet Shock Curve). Assume the k-th is genuinely nonlinear. Let
λ and r be the eigenvalue and eigenvector, respectively, of the k-th field. The approximate
k-shock curve starting from uL A nonconstant solution to{(

gij(uR) − σδij

)
uR

j,σ = uR
i − uL

i ,

uR(λ(uL)) = uL,
(3.35)

for σ in the neighbourhood of λ(uL) is called an approximate k-shock curve of (3.4).

Chalmers and Lorin [10] defined an approximate solution of the shock curve.

Lemma 3.9. An approximate solution to (3.35) is given by

uRi (σ) = uLi + 2(σ − λ(uL))
λ,j(uL)rj(uL)ri(uL) + 4(σ − λ(uL))2

(λ,j(uL)rj(uL))2 ri,j(uL)rj(uL)

+ O(|σ − λ(uL)|3). (3.36)

Proof. See Chalmers and Lorin [10].

3.3 Weak formulation
We follow the approach of Rhebergen, Bokhove and Van der Vegt [44] to obtain a weak
formulation for the non-conservative hyperbolic PDE. The weak formulation is based on
the DLM-measure named after Dal Maso, LeFloch and Murat [13]. This measure gives a
meaning to products of functions with discontinuities and their derivatives by introducing a
path connecting the discontinuities and integrating over this path. We repeat the definition
of the path and measure.

Definition 3.10 (Integration paths, [13]). A Lipschitz continuous path φ : [0, 1] × Rn ×
Rn → Rn is called an integration path if it satisfies the following properties:

φi(0; q, v) = qi and φi(1; q, v) = vi ∀i ∈ I,∀q, v ∈ Rn, (3.37)

φi(τ ; q, q) = qi ∀i ∈ I,∀q ∈ Rn, (3.38)

|φi,τ (τ ; q, v)| ≤ K |qi − vi| ∀i ∈ I,∀q, v ∈ Rn, τ a.e. ∈ [0, 1]. (3.39)
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Theorem 3.11 (DLMmeasure, [13]). Let q : (a, b) → Rn be a function of bounded variation
and f : Rn → Rn be a continuous function. Then there exists a unique real-valued bounded
Borel measure µ on (a, b) characterised by the two following properties:

1. If q is continuous on a Borel set B ⊂ (a, b), then

µi(B; f, q) =
∫

B

fij(q)qi,x dλ(x), ∀i ∈ I, (3.40)

where λ is the Borel measure.

2. If q is discontinuous at a point x ∈ (a, b), then

µi({x}; f, q) =∫ 1

0
fij(φ(τ ; q(x−), q(x+))φj,τ (τ ; q(x−), q(x+)) dλ(τ), ∀i ∈ I, (3.41)

where q(x−) := limy↗x q(y) and q(x+) = limy↘x q(y).
Consider the following PDE

ui,t + (fi(u)),x + si = 0. (3.42)

We obtain a weak formulation by multiplying the PDE (3.42) with a test function v and
integrating the result using two different measures, a Lebesgue measure for the time deriva-
tive and source term and a DLM measure for the terms involving spatial derivatives, yielding∫

Ω
v(x) (qi,x(x, t) + si(q(x, t))) dλ(x) +

∫
Ω
v(x) dµi(x; f, q) = 0,

∀i ∈ I. (3.43)

The DG-FEM formulation follows from defining a set E of open, connected, nonoverlap-
ping elements such that ∪E is dense in Ω, a broken polynomial spaceQ and assuming q, v ∈
Q. LetD denote the set of element edges, including anyboundaries. Substituting the contin-
uous (3.40) and discontinuous (3.41) definitions of theDLMmeasure yields the semi-discrete
DG-FEM formulation∑

E∈E

∫
E

v(x) (qi,t(x, t) + si(q(x, t)) + fij(q(x, t))qj,x(x, t)) dλ(x)+

∑
x∈D

v(x)
∫ 1

0
fij(φ(τ ; q(x−, t), q(x+, t)))φj,τ (τ ; q(x−, t), q(x+, t))) dλ(τ) = 0,

∀i ∈ I. (3.44)

Since the DLM measure is nonzero on element edges, the trial function v needs to have
a (single) value at these points. We define this value by comparing the scheme with conven-
tional DG-FEM schemes for conservative hyperbolic PDE’s. Let JqK := x 7→ q(x+) −
q(x−) denote the jump of q at x and {{q}} := x 7→ 1

2 (q(x+) + q(x−)) the average. As-
suming the non-conservative part of f to be zero, fn = 0, the DG-FEM formulation (3.44)
becomes∑

E∈E

∫
E

v(x) (qi,t(x, t) + si(q(x, t)) + Fc,i(q(x, t)),x) dλ(x)

+
∑
x∈D

v(x) JFc,i(q(·, t))K (x) = 0, ∀i ∈ I. (3.45)
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By asserting v = {{v}} and applying integration by parts to the flux term in the element
integral we obtain an unstable, conservative DG-FEM scheme with central fluxes:

∑
E∈E

∫
E

v(x) (qi,t(x, t) + si(q(x, t)) − v,x(x)Fc,i(q(x, t))) dλ(x)

−
∑
x∈D

JvK (x) {{Fc,i(q(·, t))}} (x) = 0, ∀i ∈ I. (3.46)

3.4 Stability
Due to the central approximation of the flux at element edges, the semi-discrete ODE (3.44)
is unstable. There are various methods to stabilise the ODE, mostly originating from Finite
VolumeMethods, varying in the amount of addeddissipation. Usually the less computation-
ally demanding methods add the largest amount of dissipation, which often severely reduces
the accuracy of low-order Finite Volume Methods. A high-order DG-FEM discretisation
suffers far less from numerical dissipation [11]. For this reason, we prefer a cheap stabilisation
method.

3.4.1 Rusanov
The Rusanov stabilisation is an example of a cheap and dissipative method. In Castro et
al. [9] Rusanov stabilisation is derived for a non-conservative FVM. The equivalent of this
stabilisation for a DG-FEM scheme is given by the following term, to be added to the right
hand side of the semi-discrete ODE (3.44):

stabi := −1
2
∑
x∈D

C(q(x−, t), q(x+, t)) JvK (x) Jqi(·, t)K (x), ∀i ∈ I. (3.47)

The function C determines locally, i.e. at each interface, the amount of added viscosity and
should be larger than the absolute eigenvalues of the flux function g at the interface.

3.5 Discontinuous solutions
Strong oscillations may occur in a large area (spreading across multiple elements) around
a discontinuity, possibly leading to an unstable situation, for instance when a solution be-
comes nonphysical. Persson and Peraire [39] proposed a technique to suppress the oscilla-
tions by adding viscosity locally and only when necessary. We repeat a short description of
the method.

We add a viscous term to the original PDE (3.42) as follows:

ui,t + fij(u)uj,x + si(u) = (εui,x),x , ∀i ∈ I, (3.48)

where ε is a parameter controlled by a shock sensor. As noted in Cockburn and Shu [11]
discretisation of this PDE with the DG-FEM as described above by regarding εui,x as a flux
function may lead to an inconsistent scheme. The local DG [12] method is introduced to
circumvent this. The PDE (3.48) is written as a (larger) system of first order derivatives by
introducing the intermediate variablewi,

ui,t + fij(u)uj,x + si(u) = (εwi),x , ∀i ∈ I, (3.49)
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wherewi is defined as
wi − ui,x = 0, ∀i ∈ I. (3.50)

There are other choices possible for this splitting, e.g. the viscosity could be incorporated
in wi, however, we observed that system (3.49), (3.50) produces the most stable and sharp
results.

We discretise the viscous system (3.49), (3.50) in a similar way as described above. The
PDE’s are multiplied by a test function v ∈ Q and integrated over the domain using the
DLM measure for all spatial derivatives, including the split viscous terms, and the Lebesgue
measure for the remaining terms:∫

Ω
v(x) (qi,t(x, t) + si(q(x, t), x, t)) dλ(x) +

∫
Ω
v(x) dµi(x; f, q)

=
∫

Ω
v(x) dµi(x; δ, εw) + stabi, ∀i ∈ I, (3.51)

∫
Ω
v(x)wi(x, t) dλ(x) −

∫
Ω
v(x) dµi(x; δ, u) = 0, ∀i ∈ I. (3.52)

Note that for conservative fluxes, in this case (εwi) , x and ui,x, the DLM measure on dis-
continuous points is equivalent to a central flux. No additional stabilisation is required since
the derivatives combined represent a second order derivative.

The amount of viscosity ε is determined by a shock sensor. We use the shock sensor as
described in Persson and Peraire [39]with aminormodification. The shock sensor is applied
to the sum of the internal energy for each phase, projected onQ, denoted by z. The highest
mode of z at elementE is measured against z − zE1, the quantity with zero average value:

SE =
∫

E
ẑ2

EPψ
2
EP (x) dλ(x)∫

E
(z − zE1)2(x) dλ(x)

. (3.53)

We use the same algorithm for obtaining a viscosity as described in Persson and Peraire [39]
using the above shock sensor SE .

3.6 Temporal integration
The time-dependentODE’s obtained after discretising the spatial part of a PDE canbe solved
with various explicit and implicit ODE solvers. We discuss one important family of solvers:
the Runge-Kutta methods.

Consider the following nonlinear PDE:

u,t = L (u) . (3.54)

The general Runge-Kutta method is characterised by the following system of equations [11]:

vi = αijvj + ∆tβijL (vj) , (3.55)

where αij and βij , i, j ∈ {0, 1, . . . , n} are coefficients. Given an initial value v0 at time t,
solving the system yields an approximate solution vn at time t+ ∆t. This procedure can be
repeated by solving system (3.55) again using vn of the previous solution as initial value v0.
Note that ∆t need not be constant.
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TheRunge-Kutta method is explicit, in the sense that each intermediate step vi depends
only on the previous steps vj , j < i, if the coefficients αij satisfy

αij = 0 ∀j ≥ i. (3.56)

In the following we limit the discussion to scalar, one-dimensional ODE’s. Total varia-
tion of the local means is defined as

|u|T V =
∑

j

∣∣∣∣∣
∫

Ej+1

udx−
∫

Ej

udx

∣∣∣∣∣ . (3.57)

ARunge-Kuttamethod is stablewhen the total variation of the localmeans does not increase
for each intermediate time step:

|vi+1|T V ≤ |vi| . (3.58)

If the ODE does not satisfy this condition no matter how small the time step, we may apply
a slope limiter ΛΠ to enforce this:

vki = ΛΠ (αijvkj + ∆tβijL (vkj)) . (3.59)

Cockburn and Shu [11] showed that the Runge-Kutta method is indeed stable when using a
slope limiter and the following CFL-condition: at each time step k and each edge j + 1

2 the
following condition should hold,

c∆t
(

|f∗ (a, ·)|Lip

δj+1

|f∗ (·, b)|Lip

δj+1

)
≤ 1

2 , (3.60)

where c ∈ R a constant such that

|βij | ≤ cαij ∀i, j. (3.61)

For a general system of ODE’s there is no equivalent stability result.
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Chapter 4

Test problems

In this chapter we discuss several test problems. We have simulated the first two test prob-
lems (Sections 4.3 and 4.4) using an equal pressure model (Section 4.1) discretised with the
non-conservative DG-FEM scheme and a fourth-order Runge-Kutta method (Section 4.2).
The remaining test problems (Sections 4.5–4.8) have not been simulated due to stability
problems. We will address this problem in a future report.

4.1 Model
We use the equal pressure model, as described in Section 2.4, without friction. The conser-
vation of mass is given by

(Aβρ),t + (Aβ (uxρ)),x = 0, (4.1)

and the conservation of momentum by

(Aβ (ρux)),t + (Aβ (uxρux + p)),x − p̂(LG) (Aβ1),x −Aβ (ρ) g sin (θ) = 0, (4.2)

with the pressure at the interface p̂(LG) given by Equation (2.76). To close the system, we
assume the gas phase to be an ideal gas with sound velocity cG,

ρG = c−2
G p, (4.3)

and for the liquid phase we use a linearisation of the density around a reference pressure pL0,
at which the density is ρL0,

ρL = ρL0 + c−2
L (p− pL0) . (4.4)

The coefficient cL is the speed of sound at the reference pressure pL0. Furthermore, the
volume equation holds:

AL (1) +AG (1) = 1. (4.5)
The model can be written in the following form,

qi,t + Fc(q)i,x + fn;ij(q)qj,x + si(q) = 0, (4.6)

where i ∈ {1, 2, 3, 4}. The vector q ∈ R4 holds the conserved quantities:

qi =


AL (ρ)
AG (ρ)
AL (ρu)
AG (ρu)

 . (4.7)
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To define the functionsFc, fn and s, we need to assume averages of products and prod-
ucts of averages to be equal. This allows us to write e.g. the average velocity in phase L, uL,
as

uL = q3

q1
. (4.8)

The functions Fc : R4 → R4 and fn : R4 → R4×4 are, respectively, the conservative and
non-conservative parts of the flux:

Fc(q) =


q3
q4

q2
3

q1
+ αL(q)p(q)

q2
4

q2
+ αG(q)p(q)

 , (4.9)

and

fn(q) =


0 0 0 0
0 0 0 0

−p̂(LG)(q) ∂αL

∂q1
(q) −p̂(LG)(q) ∂αL

∂q2
(q) 0 0

−p̂(LG)(q) ∂αG

∂q1
(q) −p̂(LG)(q) ∂αG

∂q2
(q) 0 0

 . (4.10)

The volume fractions αL := AL (1), αG := AG (1) and the average pressure p and in-
terface pressure p̂(LG) are functions of q, for which we derive expressions below. Function
s : R4 → R4 represents the source terms:

s(q) =


0
0

q1g sin(θ)
q2g sin(θ)

 . (4.11)

4.1.1 Pressure and volume fractions
In order to find expressions for the average pressure p and volume fractionsαL,αG in terms
of the quantities q1 and q2 we need the volume equation (4.5), the equations of state (4.3)
and the (4.4) and the definition of q1 and q2:

q1 = αLρL, (4.12)

and
q2 = αGρG. (4.13)

We combine the five equations into the following quadratic equation for the pressure p:

p2 − p
(
q1c

2
L + q2c

2
G + pL0 − ρL0c

2
L

)
+ q2c

2
G

(
pL0 − ρL0c

2
L

)
= 0. (4.14)

After solving for pwe can find the values for the volume fractions as follows:

αG = q2c
2
G

p
, (4.15)

and
αL = 1 − αG. (4.16)

From Equation (4.15) we can find the derivatives of the volume fractions to qj :

∂αG

∂q1
= −q2c

2
G

p2
∂p

∂q1
= −∂αL

∂q1
, (4.17)
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Table 4.1: Initial data for the shock tube test problem

x < 0 m x > 0 m

αwater 0.71 0.70

p 265000 Pa 265000 Pa

uwater 1 m s−1 1 m s−1

uair 65 m s−1 50 m s−1

and
∂αG

∂q2
=
c2

g

p
− q2c

2
G

p2
∂p

∂q2
− ∂αL

∂q2
. (4.18)

The derivatives of p to qj can be obtained from (4.14).
Given the averaged quantities derived above we can compute the interface pressure as

defined in Equation (2.76).

4.2 Discretisation
Todiscretise themodel described above, we use theWeak formulation as described in Section
3.3, with a linear path connecting discontinuities:

φi

(
τ ; q−, q+) = (1 − τ) q−

i + τq+
i , (4.19)

where q−, q+ ∈ R4 are the states left and right of a discontinuity.
We apply the viscous regularisation as described in Section 3.5 to reduce oscillations in

the neighbourhood of discontinuities.
The semi-discrete weak formulation is integrated in time using a five-stage, fourth-order,

low-storage Runge-Kutta method [8].

4.3 Shock tube
The large relative velocity shock tube test problem [14] [53] is a Riemann problem with the
following initial data: the liquid volume fraction jumps from 0.71 to 0.7 and the gas velocity
from 65 to 50 m s−1, the pressure is constant at 2.65 · 105 Pa and the liquid velocity is
1 m s−1. There is no gravity force. See also Table 4.1. This Riemann problem generates four
shocks, two of them moving at relatively high velocities, the other two with low velocities.

Figure 4.1 shows the solution of the system at t = 0.1 s, discretised with the DG-FEM
method as described in this paper with 6 and 24 elements, both having 8 basis functions per
element. For comparison results obtained using the first order Roe FVM as described in Evje
and Flåtten [14] is shown using 192 elements, the same amount of DOF’s as for DG with 24
elements.

All three solutions attain the same shock speeds and intermediate levels in the eyeball-
norm. Both DG-schemes show no signs of the Gibbs phenomenon on the global scale.
Zooming in on the edges does reveal a slight oscillation. The size of the oscillations is re-
lated to the amount of viscosity added to the system and can be further reduced at the cost
of less sharp shocks.
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Figure 4.1: Results for the shock tube test problem at t = 0.6 s with 24 and 6 elements,
all using 8 Legendre basis functions. Top-left: volume fraction water, top-right: pressure,
bottom-left: velocity water, bottom-right: velocity air

4.4 Water faucet
Thewater faucet test problem [40] consists of a vertical pipe, 12m long, filled with a mixture
of water (0.8 volume fraction) and air. Water flows initially with 10 m s−1 downwards, the
air is at rest. At the top of the pipe the conditions are the same as the initial conditions. The
bottom the pipe is at a constant pressure of 105 Pa. Under influence of gravity (10 m s−2)
the liquid will accelerate and the liquid fraction will decrease by conservation of mass. See
also Table 4.2 and Figure 4.2.

Trapp and Riemke [52] derived the analytical solution to this problem with incompress-
ible liquid and gas phase. The water velocity is given by

uwater (x, t) =
{√

u2
water (x, 0) + 2gx : x < uwater (x, 0) t+ 1

2gt
2,

uwater (x, 0) + gt : otherwise.
(4.20)

The water volume fraction is given by

αwater (x, t) =
{
αwater (x, 0) uwater(x,0)

uwater(x,t) : x < uwater (x, 0) t+ 1
2gt

2,

αwater (x, 0) : otherwise.
(4.21)

Since the pressure variation of the originalmodel with compressible phases is small, this solu-
tion is considered to be a very good approximation to the system with compressible phases.

This test problem is discussed by Evje and Flåtten [14], Wangensteen [53], Toumi and
Kumbaro [50] and Toumi, Kumbaro and Paillere [51].
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Table 4.2: Initial and boundary conditions for the water faucet test problem

x = 0 m 0 m < x < 12 m x = 12 m

αwater 0.8 0.8

p 105 Pa 105 Pa

uwater 10 m s−1 10 m s−1

uair 0 m s−1 0 m s−1

t = 0 t = 0.6

inlet
uwater = 10 m s−1

uair = 0 m s−1

αwater = 0.8

outlet
p= 105 Pa

Figure 4.2: Illustration of the water faucet test problem at time t = 0 and t = 0.6. The
black area denotes the water phase.
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Figure 4.3: Results for the water faucet test problem at t = 0.6 s with 24 and 6 elements,
all using 8 Legendre basis functions. Top-left: volume fraction water, top-right: pressure,
bottom-left: velocity water, bottom-right: velocity air

Figure 4.3 shows the solution of the system at t = 0.6 s, discretised with the DG-FEM
method as described in this paper with 6 and 24 elements, both having 8 basis functions per
element. For comparison results obtained using the first order Roe FVM as described in Evje
and Flåtten [14] is shown using 192 elements, the same amount of DOF’s as for DG with
24 elements. Also the approximate solution is shown, which is based on the exact solution
of the incompressible problem for the volume fraction and liquid velocity and a numerical
solution of the Roe scheme with 1200 DOF’s for the pressure and gas velocity.

The results are similar to the shock tube test problem. The Gibbs phenomenon is com-
pletely suppressed for both DG solutions, even on a small scale there are no wiggles present.
The DG solutions converge to the approximate solution.

4.5 Separation
The separation test problem is designed to test the stability of the numerical schemes for the
transition to and from single-phase flow. A vertical pipe of 7.5 m is closed on both sides
and initially filled with a homogeneous mixture of water and air at rest. See also Table 4.3 for
the initial and boundary conditions. Under influence of gravity, ‘switched on’ at t = 0 the,
air will flow up and water down. Eventually both fluids are fully separated, i.e. the volume
fractions are either zero or one almost everywhere.

This test problem is discussed by Evje and Flåtten [14] and Wangensteen [53].
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Table 4.3: Initial and boundary conditions for the separation test problem

x = 0 m 0 m < x < 7.5 m x = 12 m

αwater 0.5

p 105 Pa

uwater 0 m s−1 0 m s−1 0 m s−1

uair 0 m s−1 0 m s−1 0 m s−1

Table 4.4: Initial data and pipe angle φ for the oscillating manometer test problem

x [m] x < −5 −5 < x < 5 5 < x

φ [] − 1
2π

x
10π

1
2π

αwater [] 0 1 0

uwater [m s−1] 2.1 2.1 2.1

uair [m s−1] 2.1 2.1 2.1

4.6 Oscillating manometer
The oscillating manometer test problem, introduced by Ransom [41] and discussed by dis-
cussed by Evje and Flåtten [14] andWangensteen [53], is themultiphase pipe flow equivalent
of a pendulum. A U-shaped tube is partially filled with water, under influence of gravity
located at the bottom of the tube, and both water and air are given an initial uniform veloc-
ity. See Figure 4.4 for an illustration. Like a pendulum, the interaction between kinetic and
gravity forces yields an oscillating flow.

The gravity force is included in the momentum source term:

g(ρu)
x := fgravity cosφ, (4.22)

where φ is the pipe inclination, see Table 4.4. Note that x denotes the position of the pipe,
not an axis of a cartesian coordinate system. Note that this violates assumptions used for the
derivation of the one-dimensional model. Evje and Flåtten [14] placed a virtual connection
between both ends of the tube as to eliminate the need for boundary conditions.

4.7 Horizontal or near-horizontal pipe
A straight pipewith small or zero inclination θ is initially filled uniformlywith liquid and gas
flowing at velocity usL0 and usG0, respectively. At the inlet the superficial velocity is kept
constant: usL = usL0 and usG = usG0. At the outlet the pressure is equal to atmospheric
pressure patmos. Depending on the inclination θ and the inlet velocities usL0 and usG0 slugs
start to appear. We are interested in the transition surface in (θ, usL0, usG0) from stratified
to slug flow, the slug frequency and slug length distribution.

44



p = 105 Pa

Figure 4.4: Illustration of the oscillating manometer test problem. The black area denotes
the water phase.

45



−θ

inlet

outlet

Figure 4.5: Illustration of the setup of the near-horizontal pipe test problem.The black area
denotes the liquid phase.
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Figure 4.6: Illustration of the severe slugging cycle test problem

This test problem is discussed by Issa and Kempf [26] and Renault [43]. Experimental
results are obtained by Woods, Hurlburt and Hanratty [55]. See also the references men-
tioned by Issa and Kempf [26] for more experimental results.

4.8 Severe slugging cycle
Flow lines including risers may produce severe slugging behaviour. Slugs form at the base
of the riser, partially due to liquid flowing down, and, when accumulated enough mass, are
blown out through the riser. This procedure repeats itself. The length and frequency of
slugs and the appearance of slugs at all depend on the flow conditions. Roughly speaking,
low superficial phase velocities will cause slugging, while high velocities will cause stable flow.
For a comprehensive description of the meganism of slug flow in risers, see Seim et al. [46]

The following setup is used to examine severe slugging. The flow line consists of a 1deg
downwards inclined section of 9.14 m, followed by a riser of 3 m. The pipe has diameter of
25.4 mm. At the inlet there is a gas buffer of 0.0048 m3, which is equivalent to a flowline
(with gas only) of 9.5 m. At the inlet the mass flow of the two phases is varied to investigate
the flow regime. At the outlet the pressure is equal to ambient pressure. See Figure 4.6 for
an illustration.

This test problem is discussed by Jansen, Shoham and Taitel [27], Baliñoa, Burr and
Nemoto [2], Taitel et al. [49], Sarica and Shoham [45] and Seim et al. [46].
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Chapter 5

Conclusions

In this report we have given an overview of one-dimensional multiphase flow models and
discretisation techniques for the simulation of long pipelines. The commonly used models
and numerical schemes generation of models and numerical schemes are characterised by a
coarse mesh and explicit modelling of flow regime transitions. More recently, the attention
moved towards flow regime capturing schemes, where themultiphase flowmodel itself, with
suitable choices for friction terms, is used to initiate the correct flow behaviour, provided
that the discretisation is accurate enough. The slug capturing models require much more
computational effort than the flow-regime based models.

The one-dimensional multiphase models are derived from three-dimensional conserva-
tion laws for mass, momentum and energy by averaging over the cross sectional area of the
pipe per phase. This yields for each phase a set of conservation laws, connected by interface
terms. The model is supplemented with relations for the friction at the interface and mass
transfer, amongst others. Several simplifications have been suggested in literature: assuming
a liquid phase to be incompressible and a slip relation which describes the relative motion of
the phases, replacing a momentum balance for a single phase.

Many one-dimensional multiphase flow models are non-conservative, (conditionally)
hyperbolic equations. It is not possible to derive a FVM or DG-FEM weak formulation in
the traditional way when non-conservative products are present in the flux terms. A solu-
tion is provided in the form of a special measure, which gives a meaning to non-conservative
products by introducing a path connecting the discontinuous points and integrating the
non-conservative products along this path. The method is a generalisation of the traditional
DG-FEM and FVM schemes. The correct choice for a path is not well defined.

Several stabilisationmethods for FVMandDG-FEMschemes of conservative hyperbolic
PDEs have been adapted to non-conservative PDEs. High-order methods require additional
stabilisation to reduce oscillations within elements. An artificial viscosity term can be added
to the system of PDEs, which locally adds diffusion when oscillations start to appear.

Such a DG-FEM scheme with artificial viscosity is applied to a two-fluid model and has
been subjected to two test problems. The results compare well with an established scheme.
No visible oscillations are present due to the artificial viscosity. The scheme fails on problems
involving transitions from and to single phase flow

The scheme that we applied to several test problems has three major problems, which
the author will address in the next period of his PhD project. Firstly, the scheme is unstable
when there is a transition from and to single phase flow. Evje and Flåtten [14] have developed
a FVM scheme which is unconditionally stable, by introducing a rather dissipative flux. We
believe that combining the DG-FEM scheme in multiphase regions with a stable, first order
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FVM scheme in transition regions is, at the moment, the most viable solution to stabilise
our numerical scheme. The DG-FEM framework allows us to choose a (polynomial) basis
per element. Choosing a basis consisting of a single, constant function is mathematically
equivalent to a first order FVM scheme.

The second problem is the representation of shocks using high order polynomials, as
used in DG-FEM schemes. Currently, we apply diffusion to eliminate the Gibbs phenome-
non, at the cost of smearing of shocks. For other systems, better results have been reported by
applying hp-refinement in combination with an error estimator controlling the refinement.
For now, we propose to use a shock sensor to control the refinement in the followingway: in
the neighbourhood of shocks elements are subdivided and the order of the polynomial basis
is reduced.

The third problem is the rather strictCFL condition of two-fluid systemsdiscretisedwith
DG-FEM and integrated in time using an explicit Runge-Kutta method. The oil and gas
industry is less interested in accurately resolving the fast, sonic waves, which are the main
cause of the strict CFL condition, but is interested in doing long simulations. We intend to
circumvent the CFL condition by using a fully implicit time integration. While we could use
an implicit Runge-Kutta method to integrate the semidiscrete DG-FEM scheme, we believe
that using DGFEM for the time dimension as well has an advantage: the freedom/ability to
use hp-refinement for space and time.

The resulting discrete system is nonlinear, both when using an implicit Runge-Kutta
method or DG-FEM for the time dimension. We can solve this system using pseudo-time
stepping, which involves adding a pseudo-time dimension and applying an explicit time in-
tegrator until the solution has converged in pseudo-time, or using Newton’s method. Both
methods have their advantages. We will investigate which method works best.

To summarise, in the next period the author will investigate the use of hp-refinement,
both for resolving shocks and for stabilising the transition from and to single phase flow. To
circumvent the strict CFL condition the author will apply space time DG-FEM and investi-
gate methods to solve the resulting discrete, nonlinear system.
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Appendix A

Derivation entropy equation

The total energyE is related to internal energy e and velocity u as follows:

E = e+ 1
2uiui. (A.1)

Applying this to the left hand side of the energy balance (2.18) gives

(ρE),t + (uiρE),i = E
(
ρ,t + (uiρ),i

)
+ ρE,t + uiρE,i

= E
(
ρ,t + (uiρ),i

)
+ ρe,t + uiρe,i + 1

2ρ (ujuj),t + 1
2uiρ (ujuj),i . (A.2)

The last two terms can be written as

1
2ρ (ujuj),t + 1

2uiρ (ujuj),i = ρujuj,t + uiρujuj,t

= uj

(
(ρuj),t + (uiρuj),i

)
− ujuj

(
ρ,t + (uiρ),i

)
. (A.3)

Entropy per unit mass is defined as [54]

Tδs = δe− pδ
1
ρ
, (A.4)

where δ indicates small changes. The terms of (A.2) involving the internal energy e can be
written as

ρe,t + uiρe,i = Tρs,t + Tuiρs,i + p

ρ
ρ,t + p

ρ
uiρ,i

= T
(

(ρs),t + (uiρs),i

)
+
(
p

ρ
− Ts

)(
ρ,t + (uiρ),i

)
− pui,i. (A.5)

Combining (A.3) and (A.5) in (A.2) yields

(ρE),t + (uiρE),i =
(
E + p

ρ
− Ts− ujuj

)(
ρ,t + (uiρ),i

)
+ T

(
(ρs),t + (uiρs),i

)
− pui,i + uj

(
(ρuj),t + (uiρuj),i

)
. (A.6)

Substituting thebalance laws (2.2)–(2.4) and applyingEquation (2.5) yields the entropy equa-
tion:

T (ρs),t+T (uiρs),i =
(
E − 2e+ sT − p

ρ

)
g(ρ)+ui,jτij +(kT,i),i+ρg

(ρE). (A.7)
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Appendix B

DG-FEM

We discuss the Discontinuous Galerkin Finite Element Method (DG-FEM) by means of the
following nonlinear, conservative, hyperbolic system ofmPDEs on a d-dimensional domain
Ω ⊂ Rd, d ∈ {1, 2, 3, . . . },

ui,t + fij(u),j = 0 (B.1)
where i ∈ {1, 2, . . . ,m} is an index of the PDEs, j ∈ {1, 2, . . . , d} an index of the spatial
dimensions, ui ∈ U , with U the set of piecewise continuous functions from (x ∈ Ω, t) to
R, and fij := U → R. We do not discuss boundary conditions in this chapter.

Let E ∈ Rd be a set of open, non-overlapping, connected subsets, such that the union
approximates Ω:

Ω̃ :=
⋃

E∈E
E ≈ Ω. (B.2)

The set of elements E defines a mesh on Ω̃. Let Ũ be space of functions from (x ∈ Ω, t) to
R such that everyu ∈ U is continuous on everyE ∈ E . Typically a space spanned by several
polynomials perE ∈ E is used.

We replace u in the PDEs (B.1) with ũ ∈ Ũ , multiply the result with a test function
v ∈ Ũ and integrate over an elementE ∈ E ,∫

E

(ṽũi,t + ṽfij(ũ),j) dλ = 0. (B.3)

Applying partial integration to the flux term yields∫
E

(ṽũi,t − ṽ,jfij(ũ)) dλ+
∫

∂E

ṽfij ( ũ|∂E)nj dλ = 0. (B.4)

where nj is the unit outward normal to the boundary ∂E. Note that the functions in Ũ
are discontinuous at the boundary ofE. The term ũ|∂E denotes the trace of u taken from
within E. Formally, we define ũ|∂E at x ∈ ∂E as the limit of ũ(y), y going to x along a
path insideE:

ũ|∂E := E 3 x 7→ lim
E3y→x

ũ(y). (B.5)

At this point there is no connection with neighbouring elements and, as a consequence,
no global conservation. To solve this we replace the flux f in the boundary integral with the
numerical flux f∗, which takes the values ũ of both sides of an edge and returns a single flux
value: ∫

E

(ṽũi,t − ṽ,jfij(ũ)) dλ+
∫

∂E

ṽf∗
ij(ũ)nj dλ = 0. (B.6)
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We finally arrive at a DG-FEM scheme: find u ∈ Ũ such that for all v ∈ Ũ ,∑
E∈E

∫
E

(ṽũi,t − ṽ,jfij(ũ)) dλ+
∑
E∈E

∫
∂E

ṽf∗
ij(ũ)nj dλ = 0. (B.7)

To implement this scheme we must choose a basis {pk}k for Ũ , describe the solution ũ
in terms of this basis,

ũ(x, t) = ûk(t)pk(x), (B.8)

and evaluate the DG-FEM scheme (B.7) using test functions pl:∑
E∈E

∫
E

(plûkipk,t − pl,jfij(ũ)) dλ+
∑
E∈E

∫
∂E

plf
∗
ij(ũ)nj dλ = 0. (B.9)

Rewriting this equation gives a system of time-dependent ODEs,

ûki,t =
∑
E∈E

M−1
kl

∫
E

pl,jfij(ũ) dλ−
∑
E∈E

∫
∂E

plf
∗
ij(ũ)nj dλ, (B.10)

where
Mlk :=

∑
E∈E

∫
E

plpk dλ. (B.11)

is the mass matrix.
We list several properties of the DG-FEM scheme (B.7):

• The DG-FEM scheme (B.7) has the following non-linear stability TODO: add eqn
ref) has a strong nonlinear stability result for scalar hyperbolic equations [28]

1
2 (‖ũ‖Ω̃),t ≤ 0, (B.12)

[28] provided that the numerical flux f∗ is an E-flux [38]:(
f∗(u+, u−) − f(u)

) (
u+ − u−) ≤ 0, ∀u ∈ [u−, u+]. (B.13)(

f∗
j (u) − fj(w)

)
JuKj ≤ 0, (B.14)

Furthermore, Jiang and Shu [28] show that theweak solution converges to the unique
entropy solution if the weak solution is bounded and the flux f is convex.

• The DG-FEM scheme has a local conservation property. To see this, we substitute
v = 1 in equation (B.6),(∫

E

ũi dλ

)
,t

+
∫

∂E

njf
∗
ij(ũ) dλ = 0, ∀E ∈ E . (B.15)

We assumed here that the mesh E does not change in time.
Due to the numerical flux f∗ being single valued (on element edges), we also have the
global conservation. Before we prove this, we introduce the jump operator. On an
edge ewith normal nwe define the jump of a function u ∈ U as

JuKj := e 3 x 7→ lim
ε→0+

nj (f(u(x+ εn)) − f(u(x− εn))) . (B.16)
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Note that −n is also a normal of e, however, the jump operator is the same for n and
−n. The jump operator can be interpreted as a gradient for discontinuities.
In equation (B.7), we collapse all boundary integrals occuring twice into a single inte-
gral by introducing a jump in ṽ,

∑
E∈E

∫
E

(ṽũi,t − ṽ,jfij(ũ)) dλ−
∑

e∈
⋃

E∈E
∂E\∂Ω̃

∫
e

JṽKk nkf
∗
ij(ũ)nj dλ

+
∑

e∈
⋃

E∈E
∂E∩∂Ω̃

∫
e

ṽf∗
ij(ũ)nj dλ = 0. (B.17)

The second summation iterates over all shared element edges, the third summation
over the edges at the boundary of Ω̃. Note that the solution at ∂Ω̃ is single valued.
Finally, let v = 1 on Ω̃,(∑

E∈E

∫
E

ui dλ

)
,t

+
∑

e∈
⋃

E∈E
∂E∩∂Ω̃

∫
e

f∗
ij(ũ)nj dλ = 0. (B.18)

The jumps of ṽ vanish which causes all internal boundary integrals to vanish and we
obtain global conservation.

• Basis functions have support on a single element. This implies that the mass matrix is
block diagonal. It is, in general, cheap to compute the inverse, as needed for explicit
timestepping of the semi-discrete formulation (B.7). When using an orthonormal ba-
sis, e.g. tensor products of normalised Legendre polynomials on orthotopes (hyper-
rectangles), the mass matrix is the identity matrix. An important consequence is that
it is very easy and effective to parallelise the DG-FEM scheme.
Due to the continuity of basis functions in CG-FEM, basis functions have support on
multiple elements, yielding a mass matrix which is not block diagonal.

• The DG-FEM scheme is quite liberal in the choice of a mesh. A mesh with hanging
nodes, see FigureB.1 for an example, are supportedwithout anymodificationor special
choice of basis functions. This is an important difference with continuous Galerking
FEM, where either a special, continuous basis needs to be constructed or the mesh
needs tobe adjusted to eliminate the hangingnodes. Note that the latter is not possible
when using a mesh of orthotopes, see Figure B.2. Furthermore, the DG-FEM scheme
allows combinations of elements with different shapes.

• A DG-FEM scheme with only constant basis functions is equivalent to a Finite Vol-
ume Scheme.
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Figure B.1: An example of a mesh of triangles with a hanging node.

Figure B.2: An example of a mesh of rectangular elements with several hanging nodes.
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