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Abstract

This paper deals with fast and reliable numerical solution methods for the in-
compressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of
the governing equations, the Picard and Newton methods are used to linearize these
coupled partial differential equations. For space discretization we use the finite ele-
ment method and utilize the two-by-two block structure of the matrices in the arising
algebraic systems of equations. The Krylov subspace iterative methods are chosen
to solve the linearized discrete systems and the development of computationally and
numerically efficient preconditioners for the two-by-two block matrices is the main
concern in this paper. In non-Newtonian flows, the viscosity is not constant and its
variation is an important factor that effects the performance of some already known
preconditioning techniques. In this paper we examine the performance of several
preconditioners for variable viscosity applications, and improve them further to be
robust with respect to variations in viscosity.

Mathematics subject classification: 65F10 65F08 65N30.

Key words: non-Newtonian flows, Navier-Stokes equations, two-by-two block systems,
Krylov subspace methods, preconditioners.

1 Introduction
In this paper, we assume that the velocity u and the pressure p satisfy the following
generalized stationary incompressible Navier-Stokes equations:

−∇ · (2ν(DII(u), p)Du) + u · ∇u +∇p = f, in Ω

∇ · u = 0, in Ω
(1)

with boundary conditions given by

u = g, on ∂ΩD

ν
∂u
∂n
− np = 0. on ∂ΩN

Here Ω is a bounded and connected domain Ω ⊂ Rd (d = 2, 3), and ∂Ω = ∂ΩD ∪ ∂ΩN is
its boundary, where ∂ΩD and ∂ΩN denote the parts of the boundary where Dirichlet and
Neumann boundary conditions for u are imposed, respectively. The terms f : Ω→ Rd and
g are a given force field and Dirichlet boundary data for the velocity. The term n denotes
the outward-pointing unit normal to the boundary.

The term Du = 1
2
(∇u +∇Tu) denotes the rate-of-deformation tensor and ν(·) denotes

the kinematic viscosity which depends on the second invariant of the rate-of-deformation
tensor DII(u) = 1

2
tr(D2u) and the pressure p. The following models are most often used

in non-Newtonian fluids:

3



• [M1] ν(DII(u), p) = ν0 + τ(DII(u))
α
2 describing ”power law” non-Newtonian fluids

(e.g., [10]);

• [M2] ν(DII(u), p) = ν∞ + (ν0 − ν∞)(1 + βDII(u))
α
2 describing ”Carreau law” non-

Newtonian fluids;

• [M3] ν(DII(u), p) =
√

2 sinφp(DII(u))−
1
2 describing ”Schaeffer law” non-Newtonian

fluids (e.g., [31]);

• [M4] non-Newtonian fluids with pressure and shear dependent viscosity (e.g., [19]),

with appropriate parameters ν0, ν∞, α, β, τ , φ.
In this work we only consider the Bingham model, namely, ν(DII(u)) = ν0+τ(DII(u))−

1
2

(M1 with α = 1), which is a special case of ”power law” non-Newtonian fluids. Due to
the possible singularity of DII(u), some regularization techniques are required. Here we
utilize a widely used regularization method, namely, ν(DII(u)) = ν0 + τ(DII(u) + ε2)−

1
2

(c.f., [10, 14]). In practice, in order to characterize well the Bingham flow, one needs to
choose ε as small as possible. On the other hand, in numerical experiments we see that
reasonably small values of ε lead to higher computational complexities for the numerical
solution methods.

Since the viscosity function ν(DII(u)) also depends on the velocity u, two terms in
(1) exhibit a nonlinear behavior: ∇ · (2ν(DII(u))Du) and (u · ∇u). Thus, a linearization
technique is needed. As it turns out, for various linearizations, the variable viscosity Oseen-
or Stokes-type problem arises. In all cases, however, the finite element discretization of
the linearized problems results in discrete linear systems of two-by-two block form. In
this paper, Krylov subspace methods with appropriate preconditioners are chosen to solve
the resulting linear systems. As far as the authors know, efficient preconditioners are only
proposed for the variable viscosity Stokes-type problems before, e.g., [14, 28]. In this paper,
fast and reliable preconditioning techniques are considered for both linearized problems,
i.e., the Oseen- and Stokes-type problems with variable viscosity. In the past decades,
the most often used preconditioners for the incompressible Navier-Stokes equations are
originally proposed and analysed for the constant viscosity case, c.f., the surveys [5, 8]
and the books [1, 12, 30]. Some preconditioners can be straightforwardly utilized for the
variable viscosity applications due to their algebraic constructions. In this paper we choose
the augmented Lagrangian preconditioner for the Oseen-type problem (Section 3) and
the block lower-triangular and the SIMPLER preconditioners for the Stokes-type problem
(Section 4). On the other hand, the variation of viscosity is an important factor effecting
the efficiency of those preconditioners, and in this case their robustness with respect to
a variable viscosity is a crucial objective for the fast and reliable preconditioners. In
order to fully achieve this objective, we modify the above mentioned preconditioners and
also propose some computational improvements. The comparison between the targeted
preconditioners and the efficiency of the Oseen- and Stokes-type problems are illustrated
in Section 5. Conclusions and future work are outlined in Section 6.
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2 Problem formulation and linearization
For the weak formulation of the stationary Navier-Stokes equations (1), we define the
approximate solution and test spaces for the velocity as

H1
E = {u ∈ H1(Ω)d|u = g on ∂ΩD},

H1
E0

= {v ∈ H1(Ω)d|v = 0 on ∂ΩD},

H1(Ω)d = {ui : Ω→ Rd | ui,
∂ui
∂xj
∈ L2(Ω), i, j = 1, · · ·, d},

and for the pressure as

L2(Ω) = {p : Ω→ R |
∫

Ω

p2 <∞}.

Then the weak formulation reads as follows:
Find u ∈ H1

E and p ∈ L2(Ω) such that∫
Ω

2ν(DII(u))Du : DvdΩ +

∫
Ω

(u · ∇u)vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

fvdΩ,∫
Ω

q∇ · udΩ = 0,

(2)

for all v ∈ H1
E0

and all q ∈ L2(Ω). The pressure is uniquely defined only up to a constant
term. To make it unique, one usually imposes the additional constraint

∫
Ω
p dΩ = 0. We

also assume that the discretization is done using a stable pair of FEM spaces, satisfying
the LBB condition [12].

As mentioned, the nonlinearity of the considered problem is handled by some lineari-
zation methods. The two well-known and most often used methods are the Newton and
Picard methods [12], briefly introduced below.

Let (u0, p0) be an initial guess and let (uk, pk) be the approximate solution at the kth
nonlinear step. Then we update the velocity and the pressure on the (k + 1) step as
uk+1 = uk + δuk, pk+1 = pk + δpk for k = 0, 1, · · · until convergence, where δuk ∈ H1

E0
and

δpk ∈ L2(Ω) (provided uk ∈ H1
E and pk ∈ L2(Ω)). Substituting uk+1 and pk+1 into the

weak formulation (2), the correction (δuk, δpk) should satisfy the following problem:
Find δuk ∈ H1

E0
and δpk ∈ L2(Ω) such that∫

Ω

2ν(DII(uk))Dδuk : DvdΩ +

∫
Ω

2ν ′(DII(uk))[Duk : Dδuk][Duk : Dv]dΩ

+

∫
Ω

(uk · ∇δuk) · vdΩ +

∫
Ω

(δuk · ∇uk) · vdΩ−
∫

Ω

δpk (∇ · v)dΩ = Rk∫
Ω

q (∇ · δuk)dΩ = Pk,

(3)
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for all v ∈ H1
E0

and q ∈ L2(Ω). The residual terms are obtained as

Rk =

∫
Ω

f · vdΩ−
∫

Ω

2ν(DII(uk))Duk : DvdΩ−
∫

Ω

(uk · ∇uk) · vdΩ +

∫
Ω

pk∇ · vdΩ

Pk = −
∫

Ω

q (∇ · uk)dΩ.

(4)

This procedure is refereed to as the Newton linearization method. In the regularized
Bingham model, i.e., ν(DII(u)) = ν0 + τ(DII(u) + ε2)−

1
2 , the derivative ν ′(DII(u)) in terms

of DII(u) is ν ′(DII(u)) = −1
2
τ(DII(u) + ε2)−

3
2 . More details on the Newton method can be

found, for example, in [12, 17].
Picard linearization is obtained in a similar way as Newton method, except that the

terms, i.e.,
∫

Ω
(δuk ·∇uk) ·vdΩ and

∫
Ω

2ν ′(DII(uk))[Duk : Dδuk][Duk : Dv]dΩ are dropped.
Thus, the linear problem in Picard method reads as follows:
Find δuk ∈ H1

E0
and δpk ∈ L2(Ω) such that∫

Ω

2ν(DII(uk))Dδuk : DvdΩ +

∫
Ω

(uk · ∇δuk) · vdΩ−
∫

Ω

δpk (∇ · v)dΩ = Rk∫
Ω

q (∇ · δuk)dΩ = Pk,

(5)

for all v ∈ H1
E0

and q ∈ L2(Ω). Similarly, we update the approximations as uk+1 = uk+δuk
and pk+1 = pk + δpk for k = 0, 1, · · · until convergence.

3 The variable viscosity Oseen-type problem
Let Xh

E0
and P h be finite dimensional subspaces of H1

E0
and L2(Ω), and let {~ϕi}1≤i≤nu be

the nodal basis of Xh
E0

and {φi}1≤i≤np be the nodal basis of P h. According to the Galerkin
framework, the discrete corrections of the velocity and the pressure are represented as

δuh =
nu∑
i=1

δui~ϕi, δph =

np∑
i=1

δpiφi,

where nu and np are the total number of degrees of freedom for the velocity and the
pressure. The linear systems arising in Newton and Picard linearizations are of the form[

F BT

B O

] [
δuh
δph

]
=

[
f
g

]
or Fx = b, (6)

where the system matrix F =

[
F BT

B O

]
is nonsymmetric and of a two-by-two block form.

The matrix B ∈ Rnp×nu corresponds to the (negative) divergence operator and BT corre-
sponds to the gradient operator (e.g., [12]). Here we assume either that the discrete LBB
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condition is satisfied, otherwise some stabilization is applied, resulting in a nonzero (2, 2)
block. When comparing Newton and Picard linearization methods, the difference appears
in the pivot block F ∈ Rnu×nu , which is of the form F = Aν + δ1Âν + N + δ2N̂ . Newton
method corresponds to δ1 = δ2 = 1, while Picard method corresponds to δ1 = δ2 = 0.
Given the approximation uh, the entries of Aν , Âν , N and N̂ are

Aν ∈ Rnu×nu , [Aν ]i,j =

∫
Ω

2ν(DII(uh))D~ϕi : D~ϕj,

Âν ∈ Rnu×nu , [Âν ]i,j =

∫
Ω

2ν ′(DII(uh))[Duh : D~ϕj][Duh : D~ϕi],

N ∈ Rnu×nu , [N ]i,j =

∫
Ω

(uh · ∇~ϕj)~ϕi,

N̂ ∈ Rnu×nu , [N̂ ]i,j =

∫
Ω

(~ϕj · ∇uh)~ϕi.

(7)

In this paper the linear system (6) arising in Newton (3) or Picard method (5) is referred
to as the Oseen-type problem with variable viscosity.

Computing the solutions of the linear systems in (6) is the kernel and most time-
consuming part in the numerical simulations. Therefore, fast and reliable solution tech-
niques are critical. As is well known, direct solution methods are highly robust with respect
to both problem and discretization parameters, and are, therefore, a preferred choice in the
numerical simulations performed by engineers and applied scientists. The limiting factors
for the sparse direct solvers are most often the computer memory demands and the need to
repeatedly factorize matrices, which are recomputed during the simulation process, as for
instance, the Jacobians in nonlinear problems. For real industrial applications where the
models are mostly in three space dimensions and result in very large scale linear systems of
the type (6), rapidly convergent iterative methods, accelerated by a proper preconditioner
become the methods of choice. In this work, we consider preconditioned Krylov subspace
methods, see the books [1, 12, 30].

3.1 Preconditioning the variable viscosity Oseen-type problem

As already mentioned, the linear systems in (6) are of two-by-two block form, and how
to precondition such systems have been intensively studied in the past decades. In this
work we limit ourselves to preconditioners, based on approximate block factorizations of
the coefficient matrix. The literature on this class of preconditioners is huge. We refer for
more details to the articles [2, 3, 4, 20, 25], the surveys [5, 8, 9, 32] and the books [1, 12, 30],
with numerous references therein. In general, the exact factorization of a two-by-two block
matrix reads[

A11 A12

A21 A22

]
=

[
A11 O
A21 S

] [
I1 A−1

11 A12

O I2

]
=

[
I1 O

A21A
−1
11 I2

] [
A11 A12

O S

]
, (8)

where I1 and I2 are identity matrices of proper dimensions. The pivot block A11 is assumed
to be nonsingular and S = A22−A21A

−1
11 A12 is the exact Schur complement matrix. In our
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case, A11 = F , A12 = BT , A21 = B and A22 = O. So, S = −BF−1BT .
As preconditioners for such matrices of two-by-two block form, block lower- or upper-

triangular approximate factors are often used[
Ã11 O

A21 S̃

]
,

[
Ã11 A12

O S̃

]
. (9)

Here the matrix Ã11 denotes some approximation of A11, given either in an explicit form or
implicitly defined via an inner iterative solution method with a proper stopping tolerance.
The matrix S̃ is some approximation of the exact Schur complement S.

The results in [3] show that the quality of the preconditioners in (9) can be improved
by making a sufficient number of inner iterations when implicitly approximating A11 and
by choosing a sufficiently accurate approximation S̃. The most challenging task turns out
to be the construction of numerically and computationally efficient approximations of the
Schur complement, which is in general dense and it is not practical to form it explicitly.

For the two-by-two block system arising in the incompressible Navier-Stokes equations
with constant viscosity, several state-of-art approximations of the Schur complement are
proposed and analysed, c.f., [6, 7, 11, 13, 15, 18, 22, 26, 28, 29, 33]. Due to their algebraic
construction, some of them can be straightforwardly used for the variable viscosity case.
However, the variation of viscosity is an important factor and effects the efficiency of the
available preconditioners. We choose the augmented Lagrangian (AL) method (see e.g.,
[2, 6, 7]) to check the impact of variations in viscosity, and to even improve further its
performance.

Following the AL framework, we first algebraically transform the system (6) into an
equivalent one as follows[

F + γBTW−1B BT

B 0

] [
δuh
δph

]
=

[
f̂
g

]
or Fγx = b̂, (10)

where f̂ = f + γBTW−1 g, and γ > 0 and W are suitable scalar and matrix parameters.
Clearly, the transformed system (10) has the same solution as (6) for any value of γ and
any nonsingular matrix W .

The equivalent system (10) is what we intend to solve and the AL-type preconditioner
proposed for Fγ in (10) is of a block lower-triangular form

Pγ =

[
F + γBTW−1B 0

B − 1
γ
W

]
. (11)

To distinguish from the modified AL preconditioner introduced later, the precondi-
tioner Pγ is referred to as the ideal AL preconditioner. It can be seen that the exact Schur
complement SFγ = −B(F + γBTW−1B)−1BT of the transformed matrix Fγ is approxi-
mated by − 1

γ
W . We analyse the ideal AL preconditioner using the technique in [7, 15],

for instance. Consider the following generalized eigenvalue problem

Fγv = λPγv. (12)
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We see that
P−1
γ Fγ =

[
I (F + γBTW−1B)−1BT

0 γW−1B(F + γBTW−1B)−1BT

]
.

Thus, the eigenvalues λ in (12) are either equal to 1 (with multiplicity equal to the dimen-
sion of F ∈ Rnu×nu) or coincide with those of the matrix γW−1B(F + γBTW−1B)−1BT .
Applying Sherman-Morrison-Woodbury’s formula to (F + γBTW−1B)−1, we have

Q̃ ≡ γW−1B(F + γBTW−1B)−1BT = γQ− γQ(I + γQ)−1γQ,

where Q = W−1BF−1BT . The matrix BF−1BT is the negative Schur complement of the
original system matrix F in (6). We state the following theorem, which has been shown in
[16] and is included here only for completeness.

Theorem 3.1 Let µ = a + i b be an eigenvalue of Q = W−1BF−1BT , λ be an eigen-
value of the eigenproblem (12) and δ be an eigenvalue of the matrix Q̃ = γW−1B(F +
γBTW−1B)−1BT . Then the following holds:

(1) The matrices Q and Q̃ have the same eigenvectors and the eigenvalues of Q̃ are equal
to

δ =
γµ

1 + γµ
=

1

1 + 1
γµ

. (13)

(2) The eigenvalues λ equal

λ =

{
1, with multiplicity nu
δ.

When γ →∞ all nonzero eigenvalues λ converge to 1.

(3) Assume that µ is bounded in a rectangular box, i.e., there exist constants {amin, amax, bmax},
independent of the mesh size parameter h, such that{

amin ≤ a ≤ amax,
| b |≤ bmax.

}
Then λ is also bounded in a rectangular box with sizes, independent of h. Further-
more, there holds

δ = 1− 1 + γ a

(1 + γ a)2 + γ2b2
+ i

γ b

(1 + γ a)2 + γ2b2
. (14)

For any γ ≥ 1, and any value of a and b, we have

1− 1 + γ|a|
(1 + γ a)2 + γ2b2

< R(δ) < 1 and |I(δ)| = γ|b|
(1 + γ a)2 + γ2b2

< 1, (15)

where R(·) and I(·) are the real and the imaginary part of a complex number.
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As mentioned, the transformation (10) holds true for any nonsingular matrix W . In
practiceW is often chosen to be the pressure mass matrixM as in [6], or to be the identity
matrix as in [2, 9]. For the Oseen-type problem with variable viscosity, it has been proved
in [16] that with W = M or even diag(M) (the diagonal of M), the eigenvalues µ of
Q = W−1BF−1BT are bounded in a rectangular box with bounds independent of the
mesh size. In [16] the viscosity is considered to be a function of space and time, and this
type of variation of viscosity arises in multiphase flow problems. Although the viscosity is
dependent of different parameters, Theorem 3.1 always holds true. Then, based on (3) in
Theorem 3.1 the spectrum of the eigenvalue problem (12) is also bounded in a rectangular
box and the bounds are independent of the mesh size. Thus, the ideal AL preconditioner
withW = M or diag(M) is fully robust with respect to the space discretization parameter.

For the variable viscosity Oseen-type problems arising in multiphase flow, numerical
results in [16] show that the AL preconditioner with W = diag(M) is indeed independent
of the mesh size as expected. However, robustness with respect to the variation of viscosity
is not guaranteed. In order to also achieve this objective, it is natural to let W incorporate
the ”information” of the variable viscosity. Therefore, here we choose W as the scaled
pressure mass matrix, i.e., Mν = {(Mν)i,j} ∈ Rnp×np with (Mν)i,j = (ν−1φi, φj). This is
one of the main contributions of this paper, related to the AL preconditioner utilised in the
Bingham flow. Numerical experiments in Section 5 show that the AL preconditioner with
W = diag(Mν) is rather robust with respect to the variation of viscosity and results in a
much faster convergence thanW = diag(M). Following the proof of Theorem 3.1 in [16], it
is straightforward to conclude that the AL preconditioner with W = Mν or W = diag(Mν)
is also independent of the mesh refinement.

Indeed, the convergence rate is effected by the ratio of the extremal values of the
viscosity,

νmin = inf
Ω
ν(·), νmax = sup

Ω
ν(·).

Especially, in the regularized Bingham model, we have νmin = O(1) and νmax = O(ε−1)
[14]. The robustness of the AL preconditioner with respect to the parameter ε is not
theoretically explored in this paper, and is considered as a direction for future research.
Instead, in Section 5 we provide thorough numerical experiments and illustrate that the
AL preconditioner with W = diag(Mν) is robust with respect to the parameters ε, τ in the
Bingham model and, as predicted, is fully independent of the mesh size.

The second parameter in the AL scheme is the scalar γ. As pointed out in Theorem 3.1,
with γ →∞ and for any nonsingular matrix W , all the eigenvalues of the preconditioned
matrix P−1

γ Fγ cluster at one. This result means that for large values of γ and provided that
we solve the sub-systems with the modified pivot block Fγ = F + γBTW−1B accurately
enough, the AL preconditioner ensures a very fast convergence, within a few iterations.
However, with increasing γ the modified pivot block Fγ becomes increasingly ill-conditioned
and computing solutions of systems with Fγ becomes more and more difficult. In earlier
related publications (c.f., [7]), relatively small values of γ have been used since in that case
one can use known methods that are efficient when solving systems with F . The choice of
γ is discussed in more details at the end of this section.
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Although the matrices F and B are sparse, the modified pivot block Fγ is in general
much denser. Furthermore, Fγ contains discretizations of mixed derivatives, and Fγ is
not block-diagonal. Besides, the mixed derivatives bring additional difficulties for the
numerical solution methods. How to efficiently solve systems with Fγ in the AL framework
is in general still an open question and more research efforts need to be invested here. In
this work, we utilize the approach proposed in [7] and illustrate it for a problem in two

space dimensions. In 2D, F is of the form F =

[
F11 F12

F21 F22

]
, where each block is square and

of order nu/2. Denoting B =
[
B1 B2

]
, we have

Fγ = F + γBTW−1B

=

[
F11 F12

F21 F22

]
+ γ

[
BT

1

BT
2

]
W−1

[
B1 B2

]
=

[
F11 + γBT

1 W
−1B1 F12 + γBT

1 W
−1B2

F21 + γBT
2 W

−1B1 F22 + γBT
2 W

−1B2

]
:=

[
Fγ,11 Fγ,12

Fγ,21 Fγ,22

]
.

A possible approach is to approximate Fγ by a block lower-triangular matrix

F̃γ =

[
F̃γ,11 O

Fγ,21 F̃γ,22

]
,

and replacing Fγ by F̃γ in the ideal AL preconditioner (11) we obtain the modified AL
preconditioner as follows

P̃γ =

[
F̃γ O
B − 1

γ
W

]
=

F̃γ,11 O O

Fγ,21 F̃γ,22 O
B1 B2 − 1

γ
W

 , (16)

where the terms F̃γ,11 and F̃γ,22 denote approximations of Fγ,11 and Fγ,22, for instance,
obtained via an inner iterative solution method with a proper stopping tolerance.

The modified AL preconditioner offers two main advantages compared to the ideal one.
When solving systems with F̃γ one needs to solve two sub-systems with Fγ,11 and Fγ,22.
In this way, the size of the linear system to be solved is reduced. Besides, as already
mentioned, there are approximations of mixed derivatives in Fγ, i.e., Fγ,21 and Fγ,12. This
can be an obstacle when applying known solution techniques, such as algebraic multigrid
(AMG) methods. Here we use AMG as a block solver and the details are presented in
Section 5. A comparison between applying the multigrid solver for the whole block Fγ and
for the sub-blocks Fγ,11, Fγ,22 shows that the modified AL preconditioner is superior to the
ideal AL preconditioner in terms of overall CPU time. Details are described in Section 5.

For the case of constant viscosity, attempts to determine the optimal γ are found in [7].
Although some theory has been derived in [7], the optimal value turns out to be problem
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dependent and expensive to calculate. Therefore, γ = 1 has been used in the numerical
tests in many studies, for example [6, 15]. In [16] the good properties of that choice are
justified. For non-Newtonian flows, we studied the effect of γ on the behaviour of the
solver numerically. Results, not included here, show that a minimal number of iterations
is obtained by choosing the value of γ to be 1. Therefore, for all numerical experiments in
this paper, γ = 1.

Up to the knowledge of the authors, so far variable viscosity in considered only for
Stokes-type problems, see [14]. For comparison reasons we include here the approximate
formulations of (3) and (5) that lead to Stokes-type problem.

4 The variable viscosity Stokes-type problem
As given in Section 2, at each nonlinear step the updates (δuk, δpk) are computed by
solving the linear problem (3) via Newton method or the problem (5) via Picard method.
At the (k + 1) step, the velocity and the pressure are corrected as uk+1 = uk + δuk and
pk+1 = pk + δpk. The above process continues until convergence. Since uk+1 and pk+1

are approximate solutions, when computing the updates (δuk, δpk), we can even drop the
linearization terms from the convection terms in (3) and (5). Then, the linear problem in
Newton method reads as follows:
Find δuk ∈ H1

E0
and δpk ∈ L2(Ω) such that∫

Ω

2ν(DII(uk))Dδuk : DvdΩ +

∫
Ω

2ν ′(DII(uk))[Duk : Dδuk][Duk : Dv]dΩ

−
∫

Ω

δpk (∇ · v)dΩ = Rk∫
Ω

q (∇ · δuk)dΩ = Pk.

(17)

The linear problem for the Picard method reads as follows:
Find δuk ∈ H1

E0
and δpk ∈ L2(Ω) such that∫

Ω

2ν(DII(uk))Dδuk : DvdΩ−
∫

Ω

δpk (∇ · v)dΩ = Rk∫
Ω

q (∇ · δuk)dΩ = Pk,

(18)

for all v ∈ H1
E0

and q ∈ L2(Ω). The residuals Rk, Pk are the same as given in (4), i.e.,

Rk =

∫
Ω

f · vdΩ−
∫

Ω

2ν(DII(uk))Duk : DvdΩ−
∫

Ω

(uk · ∇uk) · vdΩ +

∫
Ω

pk∇ · vdΩ

Pk = −
∫

Ω

q (∇ · uk)dΩ.
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In this way, we see that the above iterative procedure involves the convection term in the
right-hand side vector only. If the norm of the residuals Rk and Pk is smaller than the
stopping tolerance, we can guarantee that the corresponding solutions satisfy the weak
formulation (2).

After discretization with stable FEM pairs, the linear systems arising in (17) and (18)
are of the form [

A BT

B O

] [
δuh
δph

]
=

[
f
g

]
or Ax = b, (19)

where the pivot block A is symmetric positive definite (spd) and of the form A = Aν+δ1Ãν .
The terms Aν and Ãν are the same as in (7). Newton method corresponds to δ1 = 1 and
Picard method – δ1 = 0. Although the pivot block A is spd, the coefficient matrix A is
symmetric but indefinite.

4.1 Preconditioning the variable viscosity Stokes-type problem

We refer to the problems (17) and (18) or their representations in matrix form (19) as the
variable viscosity Stokes-type problems. Compared to the Oseen-type problem, the benefits
of solving the Stokes-type problem are that due to the absence of the convection term, the
coefficient matrix A is symmetric and some numerically cheaper Krylov subspace method
can be used, such as the minimal residual method (MINRES). Besides, efficient precondition-
ers of the Schur complement for the Stokes-type problems are easier to construct. We test
two preconditioners for the Stokes-type problem–the block lower-triangular preconditioner
and the SIMPLER preconditioner.

The block lower-triangular preconditioner is of the form PL =

[
Ã O

B S̃

]
, where Ã de-

notes an approximation of the pivot block A, and the term S̃ denotes an approximation
of the exact Schur complement S = −BA−1BT . The Stokes problem arising in the incom-
pressible Newtonian flows has been studied rather well and efficient approximations of S
are well-known. For example, the pressure mass matrix M is a very efficient and numer-
ically cheap such approximation, see [22]. For the variable viscosity Stokes-type problem
(19), in [14] a scaled pressure mass matrix Mν is originally proposed as an approximation
of the Schur complement. The definition of Mν is presented above, and as analysed in [14]
the scaled pressure mass matrix Mν leads to a much better approximation of the Schur
complement than the pressure mass matrix. In this work S̃ is taken to be the diagonal of
Mν , i.e., S̃ = −diag(Mν).

In [14] at each preconditioning step the sub-systems with the pivot block A are solved
by a direct method, which is clearly not suitable for large scale simulations in terms of
CPU time and memory requirements. Here we suggest a computational improvement,
based on the strategy of constructing the modified AL preconditioner, as described in (16),

namely, in the two dimensional case, the pivot block A =

[
A11 A12

A21 A22

]
is approximated by

13



Ã =

[
Ã11 O

A21 Ã22

]
. The terms Ã11 and Ã22 denote approximations of A11 and A22 obtained

by an inner iterative solution method with a proper stopping tolerance. In summary, the
block lower-triangular preconditioner for the Stokes-type problem with variable viscosity
is

PStokes =

[
Ã O

B S̃

]
=

Ã11 O O

A21 Ã22 O
B1 B2 −diag(Mν)

 . (20)

SIMPLE (semi-implicit pressure linked equation) is used by Patanker [27] as an itera-
tive method to solve the Navier-Stokes problem. The scheme belongs to the class of basic
iterative methods and exhibits slow convergence. In [18, 33] SIMPLE and its variant SIM-
PLER are used as preconditioners in a Krylov subspace method to solve the incompressible
Navier-Stokes equations, achieving in this way, a much faster convergence. SIMPLE and
SIMPLER rely on an approximate block-factorization of saddle point matrices and due
to their simplicity, remain attractive preconditioning techniques. We briefly describe both
formulations for the Stokes matrix A in (19).

The SIMPLE preconditioner PSIMPLE reads:

PSIMPLE =

[
A O

B S̃

] [
I1 D−1BT

O I2

]
,

where D is the diagonal of the block A and S̃ = −BD−1BT . Solutions of systems with
PSIMPLE are straightforward, see Algorithm 4.1.

Algorithm 4.1 (Algorithm SIMPLE) Given y = [yu; yp], x = P−1
SIMPLEy is found

within the following steps.

Step 1: Solve Ax?u = yu

Step 2: Solve S̃xp = yp −Bx?u

Step 3: Compute xu = x?u −D−1BTxp

Step 4: Set x = [xu; xp]

SIMPLER differs slightly from SIMPLE. It includes a pressure prediction step, see
Algorithm 4.2.

Algorithm 4.2 (Algorithm SIMPLER) Given y = [yu; yp], x = P−1
SIMPLERy is found

within the following steps.

Step 0: Solve S̃x?p = yp −BD−1yu

Step 1: Solve Ax?u = yu −BTx?p

14



Step 2: Solve S̃δxp = yp −Bx?u

Step 3: Update xp = x?p + δxp and xu = x?u −D−1BT δxp

Step 4: Set x = [xu; xp]

We see, that when applying PSIMPLER, two solutions with S̃ and one solution with A are
required. Based on earlier experience, we modify PSIMPLER as follows:

(i) We choose S̃ = −diag(Mν). The choice is motivated first by the observation that
Mν is a good approximation of BA−1BT and second, that solutions with a diagonal
matrix are cheap and trivially implemented.

(ii) In Step 1, instead of solving systems with A, we approximate A as Ã =

[
Ã11 O

A21 Ã22

]
,

where Ã11 and Ã22 indicate that we use an inner iterative solver with a proper stop-
ping tolerance for the blocks A11 and A22.

In this way the computational complexities of applying PSIMPLER and PStokes become
nearly the same.

5 Numerical illustrations
We choose as a benchmark the well-known two-dimensional lid-driven cavity problem,
equipped with the boundary conditions u1 = u2 = 0 for x = 0, x = 1 and y = 0; u1 =
1, u2 = 0 for y = 1. The problem is discretized using a uniform Cartesian mesh and the
Q2-Q1 finite element pair. In this paper we consider the regularized Bingham model, i.e.,
ν(DII(u)) = ν0 + τ(DII(u) + ε2)−

1
2 . We fix ν0 = 1 and vary the regularization parameter ε

and the coefficient τ , as ε = 10−1, 10−2, 10−3, 10−4, and τ = 1, 2.5.
As already mentioned, two nonlinear solution methods are utilized - Picard and New-

ton. The nonlinear iterations are terminated when the norm of the relative residual
‖[Rk;Pk]‖/‖[R0;P0]‖ is decreased by six orders of magnitude, where (Rk, Pk) is defined
in (4).

Solutions with the linearized problems, i.e., Fγ in (10) and A in (19), are solved by
a preconditioned iterative method, in this case the generalized conjugate residual method
(GCR) [1] as it allows the use of variable preconditioners. The stopping tolerance for GCR is
also relative and is denoted by εGCR.

The preconditioner for the Oseen-type problem is P̃γ, defined in (11). Here, γ = 1 and
W is chosen as W = diag(Mν) or W = diag(M). The preconditioner for the Stokes-type
problem is either PStokes in (20) or PSIMPLER in Algorithm SIMPLER.When applying those
preconditioners, we need to solve systems with the sub-blocks Fγ,11, Fγ,22 and A11 and A22,
respectively. This is done either by a direct method or by an algebraic multigrid method,
namely, agmg (see [23, 21, 24]). For agmg, the relative stopping tolerance is denoted by εagmg.
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The implementation of agmg is in Fortran and Matlab interface is provided. Therefore, its
performance in terms of CPU time is comparable with that of the sparse direct solver in
Matlab - the ’backslash’ operator. For nonsymmetric matrices agmg uses the GCR method
accelerated by an algebraic multigrid preconditioner, based on aggregation techniques.

The presented GCR iterations are averaged over the total number of nonlinear iterations.
All the results in this paper are carried out in Matlab 7.13 (R2011b), and performed on a
Linux-64 platform with 4 Intel(R) Core i5 CPUs, 660@3.33GHz. The reported execution
time is in seconds. Whenever agmg is used, the setup time is included in the reported time
figures.

Tables 1-6 present results for the Oseen-type problem and Tables 7-9 for the Stokes-type
problem.

In Tables 1-2 we choose εagmg = εGCR = 10−6. Such a small tolerance is not necessary in
practice, but here it is used just for the analysis reason. Table 1 shows the performance of
the modified AL preconditioner P̃γ for the two choices of W . The sub-blocks Fγ,11, Fγ,22

in P̃γ are solved by agmg. We see from Table 1 that for the choice of W = diag(Mν) the
linear GCR iterations are very robust with respect to h, ε and τ . Therefore, in the rest of
the experiments we fix W = diag(Mν).

Table 2 shows a comparison between the ideal and the modified AL preconditions, i.e.,
Pγ and P̃γ. The sub-blocks Fγ,11, Fγ,22 in P̃γ and Fγ in Pγ are solved by agmg. We see
from Table 2 that using P̃γ leads to a slight increase in the number of linear iterations,
however, the gain in total solution time is substantial. We note also that the performance
of agmg, applied to Fγ turns out to be rather sensitive to the regularized parameter ε in
terms of the iteration number. Its performance when applied to Fγ,11 and Fγ,22 is mainly
independent of ε. This is illustrated in Table 3. As seen, the reported CPU time for the
agmg solver consists of two parts, i.e., the setup time and the solution time. The sub-blocks
Fγ,11 and Fγ are obtained from the last Picard iteration.

Next, we present experiments with εagmg = εGCR = 10−2 in Tables 4 and 5. Comparison
between the results with h = 1/64 in Tables 2 and 4 shows that in this case almost no
increase in the number of nonlinear iterations is observed, however, the total execution
time is reduced by a factor 10. Results in Tables 4 and 5 show that the modified AL
preconditioner P̃γ is robust with respect to the parameters τ , ε, the mesh size and dif-
ferent linearization methods in terms of the linear GCR iteration number. The nonlinear
iterations and the total solution time are reduced by a factor around 2 when using Newton
linearization method.

Table 6 illustrates the performance of agmg itself. We set the parameter ε = 10−4 to
simulate a more difficult scenario. In the regularized Bingham model the extreme values
of the viscosity are νmin = O(1) and νmax = O(ε−1). A smaller value of ε results in a
larger variation in viscosity. We see that the agmg solver is fully independent of the mesh
size, the parameter τ and the different linearization methods. Also, we compare it with
the ’backslash’ direct sparse solver in Matlab. For the problem sizes we test, agmg already
shows its superiority, and this superiority will be increasingly stronger for larger problem
sizes.
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Next, in Tables 7-9 we illustrate the overall performance of the nonlinear solver when the
original discrete problem is written in Stokes form. The efficiency of PStokes and PSIMPLER

with εagmg = εGCR = 10−2 are shown in Tables 7 and 8.
As seen, both preconditioners are quite robust with respect to the mesh size, the pa-

rameters ε, τ in the Bingham model, and the different linearization methods in terms of the
linear iterations. The total solution time by using PStokes preconditioner is slightly smaller
than PSIMPLER in both Picard and Newton linearizations. The same as in Oseen-type
problem, Newton method reduces the nonlinear iterations and the overall computational
time by a factor 2, compared to Picard method.

The efficiency of agmg for A11 is presented in Table 9. In the Stokes-type problem,
since the sub-blocks A11 and A22 are spd, agmg uses the conjugate gradient (CG) Krylov
subspace method accelerated by the multigrid preconditioner. Here, the agmg solver is
also fully independent of the mesh size, the parameter τ and the different linearization
methods. The superiority to the direct method is exhibited too.

The comparison between the behaviour of the numerical solution methods for the Oseen
and Stokes formulations (Table 4-5 and 7-8) shows that in both cases the nonlinear itera-
tions are the same. The explanation for this effect is that for the considered non-Newtonian
flow with the Bingham model, the diffusion is dominant and for the linearization the con-
vection term can be moved to the right-hand side vector.

For the two problems, the average linear iterations are almost the same but the overall
computational time for the Stokes-type problem is only half of that for the Oseen-type
problem in both Newton and Picard methods. Further, the sub-blocks A11 and A22 are
spd and agmg uses the CG method, which is numerically cheaper than the GCR method used
for Fγ,11 and Fγ,22. Also, the blocks A11 and A22 are sparser than Fγ,11 and Fγ,22, and the
sparsity is another reason making agmg to work more efficiently for the Stokes formulation.
Comparing the results in Table 6 and 9, we see that the overall computational time of
agmg for the Stokes-type problem is reduced about three times, compared to that for the
Oseen-type problem.

Finally, we include some plots of the numerically computed solution. Determining
the rigid regions of the viscoplastic flow, formally regions where DII(u) = 0, is the most
challenging task from modeling point of view. However, when a regularized model is used
the condition DII(u) = 0 does not hold exactly. In practice one needs to choose the
regularization parameter ε as small as possible. On the other hand, small values of the
regularization parameter ε lead to more computational work, see the nonlinear iterations
and the total solution time in the previous tables. To give an insight regarding reasonable
values of ε which can well predict the rigid regions, Figures 1-2 show the computed isolines
of (DII(u))

1
2 for ε ∈ {10−2, 10−3, 10−4, 10−5}. These figures appear to be nearly identical

with those in [10, 14] and we see that for ε ≈ 10−4 the computed results give a fairly good
prediction of the rigid regions. The relatively large values, i.e., ε ≥ 10−3 are not enough to
recover the viscoplastic properties.
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6 Conclusions and future work
In this paper we consider fast and reliable numerical solution methods for the incom-
pressible non-Newtonian Navier-Stokes equations. Among the several non-Newtonian fluid
models here we limit ourselves to the regularized Bingham model. When linearizing the
governing nonlinear equations, Oseen- or Stokes-type problems arise. In both cases, the
coefficient matrices are of a two-by-two block form. Numerically and computationally effi-
cient preconditioners for the so-arising systems are the main concern in this paper. Various
preconditioners are analysed, namely, the modified augmented Lagrangian preconditioner
for the Oseen formulation and the block lower-triangular and the SIMPLER precondition-
ers for the Stokes formulation. Numerical experiments show that all the preconditioners
are fully independent of the mesh size, and are rather robust with respect to the parameters
in the Bingham model.

Due to their algebraic construction, the tested preconditioning techniques are straight-
forwardly applicable for other non-Newtonian fluid models. A detailed study on their
performance in other applications is subject to a future research. Besides, how to further
accelerate the convergence of the nonlinear iterations needs separate attention. One possi-
ble way is to combine the Newton and Picard methods, where a few Picard iterations can
be performed to obtain a better initial guess for Newton method.
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Table 1: Oseen formulation with Picard method, comparison between two choices of W in
P̃γ.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−2 10−2 10−3 10−4

h = 1/32
Picard iter. 17 74 161 197 30 105 198 193
GCR iter. with W = diag(Mν) 22 22 24 26 24 25 27 35
GCR iter. with W = diag(M) 46 124 338 > 500 64 167 418 > 500
h = 1/64
Picard iter. 16 86 230 264 28 135 299 543
GCR iter. with W = diag(Mν) 21 21 23 27 22 22 25 27
GCR iter. with W = diag(M) 46 122 351 > 500 67 173 > 500 > 500

Table 2: Oseen formulation with Picard method, comparison between Pγ and P̃γ, h = 1/64.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−2 10−2 10−3 10−4

Pγ
Picard iter. 16 86 230 264 28 135 299 543
GCR iter. 18 19 19 19 18 19 19 16
Total solution time 81.63 452.20 1740.06 2405.62 115.29 714.34 2232.95 5656.66
P̃γ
Picard iter. 16 86 230 264 28 135 299 543
GCR iter. 21 21 23 27 22 22 25 27
Total solution time 20.41 120.91 371.06 680.08 41.36 211.75 576.97 1720.52

Table 3: Oseen formulation with Picard method, comparison of the agmg solver for systems
with Fγ,11 and Fγ. εagmg = 10−6, h = 1/64, random right-hand side vector.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−2 10−2 10−3 10−4

Fγ,11

Setup time: 3.80e-2 4.00e-2 4.00e-2 4.00e-2 4.00e-2 3.80e-2 3.90e-2 3.80e-2
Solution time: 2.80e-2 2.80e-2 3.00e-2 4.40e-2 2.70e-2 2.80e-2 3.40e-2 4.50e-2
Total time: 6.60e-2 6.80e-2 7.00e-2 8.40e-2 6.70e-2 6.60e-2 7.30e-2 8.30e-2
agmg iter.: 11 11 11 16 11 11 13 17
Fγ
Setup time: 1.99e-1 1.95e-1 2.11e-1 2.13e-1 1.93e-1 2.01e-1 2.01e-1 2.03e-1
Solution time: 2.27e-1 2.47e-1 3.69e-1 4.50e-1 2.02e-1 2.34e-1 3.51e-1 5.95e-1
Total time: 4.26e-1 4.42e-1 5.80e-1 6.63e-1 3.95e-1 4.35e-1 5.52e-1 7.98e-1
agmg iter.: 22 24 34 40 20 23 33 48
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Table 4: Oseen formulation with Picard method, P̃γ as a preconditioner.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

h = 1/32
Picard iter. 17 73 160 197 30 105 198 193
GCR iter. 6 6 7 8 7 6 7 7
Total solution time 1.33 5.30 12.22 18.28 2.51 7.96 15.76 19.06
h = 1/64
Picard iter. 16 86 229 264 28 134 299 542
GCR iter. 6 5 6 7 6 6 6 6
Total solution time 5.78 24.59 71.49 96.93 9.16 42.19 95.63 194.27
h = 1/128
Picard iter. 14 94 297 548 26 157 426 580
GCR iter. 6 5 5 6 5 5 5 6
Total solution time 19.68 110.56 347.31 733.54 33.41 188.42 524.38 851.94
h = 1/256
Picard iter. 12 101 365 844 23 171 554 1106
GCR iter. 6 4 5 5 5 5 5 6
Total solution time 88.67 527.58 1952.55 4679.06 147.61 978.13 3106.49 6814.22

Table 5: Oseen formulation with Newton method, P̃γ as a preconditioner.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

h = 1/32
Newton iter. 11 39 82 101 18 55 101 99
GCR iter. 6 6 7 8 8 6 7 8
Total solution time 1.04 3.42 7.68 10.03 1.96 4.99 9.53 11.52
h = 1/64
Newton iter. 10 45 117 134 16 69 151 272
GCR iter. 6 6 6 7 6 6 7 6
Total solution time 4.94 18.29 48.16 59.67 7.92 30.48 64.60 117.26
h = 1/128
Newton iter. 9 50 151 276 15 81 216 291
GCR iter. 6 5 6 6 5 6 6 6
Total solution time 12.58 65.53 215.11 421.35 21.67 111.06 316.21 496.87
h = 1/256
Newton iter. 8 53 185 427 14 88 280 555
GCR iter. 6 5 5 6 6 5 6 6
Total solution time 50.73 300.98 1045.20 2675.65 90.17 616.86 2044.52 4423.35
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Table 6: Oseen formulation, agmg performance for Fγ,11, εagmg = 10−6 and random right-
hand side vectors.

Picard linearization Newton’s linearization
τ = 1 τ = 2.5 τ = 1 τ = 2.5

h = 1/32
Setup time: 1.00e-2 1.00e-2 1.20e-1 1.10e-2
Solution time: 1.00e-2 1.00e-2 1.10e-2 1.10e-2
Total time: 2.00e-2 2.00e-2 2.30e-2 2.20e-2
agmg iter.: 17 17 16 16
Direct solver time: 1.88e-2 1.90e-2 1.89e-2 1.82e-2
h = 1/64
Setup time: 3.80e-2 4.00e-2 6.30e-2 5.60e-2
Solution time: 5.10e-2 4.90e-2 5.50e-2 6.70e-2
Total time: 8.90e-2 8.90e-2 1.18e-1 1.23e-1
agmg iter.: 17 16 19 19
Direct solver time: 1.35e-1 1.38e-1 1.14e-1 1.19e-1
h = 1/128
Setup time: 1.85e-1 1.86e-1 1.90e-1 1.88e-1
Solution time: 2.13e-1 2.46e-1 2.45e-1 2.70e-1
Total time: 3.98e-1 4.32e-1 4.35e-1 4.58e-1
agmg iter.: 18 21 19 23
Direct solver time: 7.47e-1 7.47e-1 7.43e-1 7.47e-1
h = 1/256
Setup time: 8.43e-1 8.51e-1 8.36e-1 1.01
Solution time: 6.49e-1 7.72e-1 7.77e-1 1.22
Total time: 1.49 1.62 1.61 2.23
agmg iter.: 13 15 15 17
Direct solver time: 4.85 4.86 4.89 5.01
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Table 7: Stokes formulation with Picard method.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

h = 1/32
Picard iter. 17 73 161 197 30 105 198 194
GCR iter. with PStokes. 7 8 9 10 9 9 9 10
Total solution time with PStokes 0.75 3.79 8.75 13.55 1.53 5.68 11.44 15.67
GCR iter. with PSIMPLER. 7 8 8 10 9 9 10 11
Total solution time with PSIMPLER 0.79 3.94 9.20 15.63 1.76 6.43 13.29 17.72
h = 1/64
Picard iter. 16 86 229 264 28 134 299 542
GCR iter. with PStokes 7 7 8 9 7 8 9 7
Total solution time with PStokes 2.37 12.83 42.74 59.98 4.15 22.03 61.48 102.00
GCR iter. with PSIMPLER. 8 8 9 11 8 9 11 11
Total solution time with PSIMPLER 2.89 15.94 53.05 75.26 5.11 26.99 82.07 129.81
h = 1/128
Picard iter. 14 94 297 547 26 157 428 580
GCR iter. with PStokes 7 6 7 8 6 7 8 8
Total solution time with PStokes 6.98 44.12 170.85 364.46 13.35 82.54 277.31 431.85
GCR iter. with PSIMPLER. 8 8 8 8 8 9 9 11
Total solution time with PSIMPLER 10.23 62.77 222.17 440.94 16.86 120.42 373.07 595.74
h = 1/256
Picard iter. 12 102 364 845 23 171 553 1109
GCR iter. with PStokes 6 6 6 7 6 7 7 8
Total solution time with PStokes 26.85 213.35 806.54 2169.58 49.98 404.64 1437.16 3335.93
GCR iter. with PSIMPLER. 7 7 8 8 7 8 8 10
Total solution time with PSIMPLER 31.76 281.14 1124.13 2846.15 68.22 588.82 1886.11 4441.81
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Table 8: Stokes formulation with Newton method.

τ = 1 τ = 2.5

ε 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

h = 1/32
Newton iter. 11 39 83 101 18 55 101 99
GCR iter. with PStokes 7 8 9 10 9 9 9 11
Total solution time with PStokes 0.45 1.79 3.99 6.38 0.82 2.60 5.51 8.32
GCR iter. with PSIMPLER 7 8 8 10 9 9 10 11
Total solution time with PSIMPLER 0.49 2.01 4.32 7.28 1.08 3.28 6.33 9.37
h = 1/64
Newton iter. 10 45 116 134 16 69 151 273
GCR iter. with PStokes 7 7 8 9 8 8 9 8
Total solution time with PStokes 1.62 7.45 21.96 31.59 2.68 12.16 31.55 55.29
GCR iter. with PSIMPLER 8 8 9 11 8 9 11 11
Total solution time with PSIMPLER 1.85 8.62 25.74 40.80 3.02 14.68 41.96 66.86
h = 1/128
Newton iter. 9 50 151 275 15 81 216 291
GCR iter. with PStokes 7 6 7 8 7 7 8 8
Total solution time with PStokes 4.56 28.25 98.16 193.62 8.94 48.99 146.48 233.63
GCR iter. with PSIMPLER 8 8 9 9 7 8 9 11
Total solution time with PSIMPLER 6.18 36.10 126.07 239.86 10.07 66.68 189.47 313.52
h = 1/256
Newton iter. 8 53 185 424 14 88 279 555
GCR iter. with PStokes 7 6 7 7 7 7 7 8
Total solution time with PStokes 20.35 131.73 486.04 1151.59 33.65 237.81 791.87 1761.28
GCR iter. with PSIMPLER 8 8 8 8 8 9 9 10
Total solution time with PSIMPLER 22.72 168.89 640.19 1544.96 46.20 329.62 1029.81 2377.25
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Table 9: Stokes formulation, agmg performance for A11, εagmg = 10−6 and random right-
hand side vectors.

Picard linearization Newton linearization
τ = 1 τ = 2.5 τ = 1 τ = 2.5

h = 1/32
Setup time: 4.00e-3 3.00e-3 4.00e-3 3.00e-3
Solution time: 5.00e-3 7.00e-3 4.00e-3 6.00e-3
Total time: 9.00e-3 1.00e-2 8.00e-3 9.00e-3
agmg iter.: 18 18 18 20
Direct solver time: 6.76e-3 6.74e-3 5.97e-3 5.78e-3
h = 1/64
Setup time: 8.00e-3 8.00e-3 8.00e-3 9.00e-3
Solution time: 1.60e-2 1.80e-2 2.10e-2 2.20e-2
Total time: 2.40e-2 2.60e-2 2.90e-2 3.10e-2
agmg iter.: 16 18 21 20
Direct solver time: 3.32e-2 3.23e-2 3.44e-2 3.52e-2
h = 1/128
Setup time: 2.40e-2 2.70e-2 2.60e-2 2.40e-2
Solution time: 8.20e-2 1.06e-1 9.00e-2 1.23e-1
Total time: 1.06e-1 1.33e-1 1.16e-1 1.47e-1
agmg iter.: 19 23 21 24
Direct solver time: 1.67e-1 1.57e-1 1.54e-1 1.57e-1
h = 1/256
Setup time: 9.30e-2 1.03e-1 1.00e-1 1.02e-1
Solution time: 2.83e-1 3.33e-1 3.04e-1 3.73e-1
Total time: 3.76e-1 4.36e-1 4.04e-1 4.75e-1
agmg iter.: 16 17 17 19
Direct solver time: 8.04e-1 8.06e-1 9.74e-1 9.46e-1
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(a) ε = 10−2 (b) ε = 10−3

(c) ε = 10−4 (d) ε = 10−5

Figure 1: Computed isolines for (DII(u))
1
2 = {10−1, 10−2, 10−3} with τ = 1.
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(a) ε = 10−2 (b) ε = 10−3

(c) ε = 10−4 (d) ε = 10−5

Figure 2: Computed isolines for (DII(u))
1
2 = {10−1, 10−2, 10−3} with τ = 2.5.
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