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Abstract

In this report we explore the performance of the SIMPLER , augmented La-
grangian, ’grad-div’ preconditioners and their variants for the two-by-two block sys-
tems arising in the incompressible Navier-Stokes equations. The lid-driven cavity and
flow over a finite flat plate are chosen as the benchmark problems. For each problem
Reynolds number varies from a low to the limiting number for a laminar flow.

Mathematics subject classification: 65F10, 65F08.

Key words: incompressible Navier-Stokes equations, two-by-two block systems, pre-
conditioners.

1 Introduction
A mathematical model for incompressible flows reads as follows:

−ν∆u + (u · ∇)u +∇p = f on Ω,

∇ · u = 0 on Ω,

u = g on ∂ΩD,

ν
∂u
∂n
− np = 0 on ∂ΩN .

(1)

Here u is the velocity, p is the pressure and the positive coefficient ν is the kinematic
viscosity, assumed here to be constant. Here Ω is a bounded and connected domain Ω ⊂ Rd

(d = 2, 3), and ∂Ω = ∂ΩD ∪ ∂ΩN is its boundary, where ∂ΩD and ∂ΩN denote the parts
of the boundary where Dirichlet and Neumann boundary conditions for u are imposed,
respectively. The terms f : Ω→ Rd and g are a given force field and Dirichlet boundary data
for the velocity. The term n denotes the outward-pointing unit normal to the boundary.

Due to the presence of the term (u ·∇)u, the system (1) is nonlinear. Thus, a lineariza-
tion technique is needed. Quite often, the Picard and Newton methods are utilised. In
both approaches the finite element (FE) discretization of the linearized problems results in
systems of two-by-two block form. In the past decades many state-of-art preconditioners
are proposed for the two-by-two block systems arising in the incompressible Navier-Stokes
equations. In this report we choose the SIMPLER, augmented Lagrangian and ’grad-div’
preconditioners to explore their efficiency on some academic benchmark problems. Be-
sides, we propose improvements for these three preconditioners. The organization of the
report is as follows. In Section 2 we briefly state the problem formulation and the Newton
and Picard linearization methods. The SIMPLER, augmented Lagrangian, ’grad-div’ pre-
conditioners and their variants are introduced in Section 3. Section 4 contains numerical
illustrations and some conclusions are given in Section 5.

3



2 Problem formulation and linearization
For the weak formulation of the stationary Navier-Stokes equations (1), we define the
approximate solution and test spaces for the velocity as

H1
E = {u ∈ H1(Ω)d|u = g on ∂ΩD},

H1
E0

= {v ∈ H1(Ω)d|v = 0 on ∂ΩD},

H1(Ω)d = {ui : Ω→ Rd | ui,
∂ui
∂xj
∈ L2(Ω), i, j = 1, · · ·, d},

and for the pressure as

L2(Ω) = {p : Ω→ R |
∫

Ω

p2 <∞}.

Then the weak formulation reads as follows:
Find u ∈ H1

E and p ∈ L2(Ω) such that

ν

∫
Ω

∇u : ∇vdΩ +

∫
Ω

(u · ∇u)vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

fvdΩ,∫
Ω

q∇ · udΩ = 0,

(2)

for all v ∈ H1
E0

and all q ∈ L2(Ω). The pressure is uniquely defined only up to a constant
term. To make it unique, one usually imposes an additional constraint

∫
Ω
p dΩ = 0. We

also assume that the discretization is done using a stable FE pair, satisfying the LBB
condition [12].

The nonlinearity of the considered problem is handled by a linearization method. Two
well-known and most often used linearization methods are the Newton and Picard methods
[12], briefly introduced below.

Let (u0, p0) be an initial guess and let (uk, pk) be the approximate solutions at the
kth nonlinear step. Then we update the velocity and the pressure on the (k + 1) step as
uk+1 = uk + δuk, pk+1 = pk + δpk for k = 0, 1, · · · until convergence, where δuk ∈ H1

E0
and

δpk ∈ L2(Ω) (provided uk ∈ H1
E and pk ∈ L2(Ω)). Substituting uk+1 and pk+1 into the

weak formulation (2), the correction (δuk, δpk) should satisfy the following problem:
Find δuk ∈ H1

E0
and δpk ∈ L2(Ω) such that

ν

∫
Ω

∇δuk : ∇vdΩ +

∫
Ω

(uk · ∇δuk) · vdΩ +

∫
Ω

(δuk · ∇uk) · vdΩ−
∫

Ω

δpk (∇ · v)dΩ = Rk∫
Ω

q (∇ · δuk)dΩ = Pk,

(3)

for all v ∈ H1
E0

and q ∈ L2(Ω). The residual terms are obtained as

Rk =

∫
Ω

f · vdΩ− ν
∫

Ω

∇uk : DvdΩ−
∫

Ω

(uk · ∇uk) · vdΩ +

∫
Ω

pk(∇ · v)dΩ

Pk = −
∫

Ω

q (∇ · uk)dΩ.

(4)
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This procedure is refereed to as the so-called Newton linearization method.
Picard linearization is obtained in a similar way as Newton method, except that the

term
∫

Ω
(δuk · ∇uk) · vdΩ is dropped. Thus, the linear problem in Picard method reads as

follows:
Find δuk ∈ H1

E0
and δpk ∈ L2(Ω) such that

ν

∫
Ω

∇δuk : ∇vdΩ +

∫
Ω

(uk · ∇δuk) · vdΩ−
∫

Ω

δpk (∇ · v)dΩ = Rk∫
Ω

q (∇ · δuk)dΩ = Pk,

(5)

for all v ∈ H1
E0

and q ∈ L2(Ω). Similarly, we update the approximations as uk+1 = uk+δuk
and pk+1 = pk + δpk for k = 0, 1, · · · until convergence.

3 Preconditioning techniques
Let Xh

E0
and P h be finite dimensional subspaces of H1

E0
and L2(Ω), and let {~ϕi}1≤i≤nu be

the nodal basis of Xh
E0

and {φi}1≤i≤np be the nodal basis of P h. According to the Galerkin
framework, the discrete corrections of the velocity and pressure are represented as

δuh =
nu∑
i=1

δui~ϕi, δph =

np∑
i=1

δpiφi,

where nu and np are the total number of degrees of freedom for the velocity and pressure.
The linear systems arising in Newton and Picard linearizations are of the form[

A BT

B O

] [
δuh
δph

]
=

[
f
g

]
or Ax = b, (6)

where the system matrix A =

[
A BT

B O

]
is nonsymmetric and of a two-by-two block form.

The matrix B ∈ Rnp×nu corresponds to the (negative) divergence operator and BT corre-
sponds to the gradient operator (e.g., [12]). Here we assume that the LBB condition is
satisfied, otherwise, the (2, 2) block becomes nonzero because some stabilization is required.
When comparing Newton and Picard linearization methods, the difference appears in the
pivot block F ∈ Rnu×nu , which is of the form A = Aν +N +δ1N̂ . Given the approximation
uh, the entries of Aν , N and N̂ are

Aν ∈ Rnu×nu , [Aν ]i,j = ν

∫
Ω

∇~ϕi : ∇~ϕj,

N ∈ Rnu×nu , [N ]i,j =

∫
Ω

(uh · ∇~ϕj)~ϕi,

N̂ ∈ Rnu×nu , [N̂ ]i,j =

∫
Ω

(~ϕj · ∇uh)~ϕi.

(7)
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Newton method corresponds to δ1 = 1, while Picard method corresponds to δ1 = 0. Also,
in Picard linearization, the velocity pivot block A is of a block diagonal form. However,
this structure does not hold in Newton linearization due to the presence of N̂ . The linear
system (6) arising in Newton (3) or Picard method (5) is often referred to as the Oseen
problem.

Finding the solutions of the linear systems in (6) is the kernel and most time-consuming
part in the numerical simulations. Therefore, fast and reliable solution techniques are
critical. In this report Krylov subspace iterative solution methods [12, 28] accelerated by
numerically and computationally efficient preconditioners are utilised.

Linear systems of the form (6) are in a two-by-two block form, and how to precondition
such systems have been intensively studied. In this work we limit ourselves to precondition-
ers, based on approximate block factorizations of the original matrix. The literature on this
class of preconditioners is huge. We refer for more details to the articles [2, 3, 4, 18, 23], the
surveys [5, 8, 10, 30] and the books [12, 28], with numerous references therein. In general,
the exact factorization of a two-by-two block matrix is[

A11 A12

A21 A22

]
=

[
A11 O
A21 S

] [
I1 A−1

11 A12

O I2

]
=

[
I1 O

A21A
−1
11 I2

] [
A11 A12

O S

]
, (8)

where I1 and I2 are identity matrices of proper dimensions. The pivot block A11 is assumed
to be nonsingular and S = A22−A21A

−1
11 A12 is the exact Schur complement matrix. In our

case, A11 = A, A12 = BT , A21 = B and A22 = O. So, S = −BF−1BT .
As preconditioners for such matrices of two-by-two block form, approximate block-

factorization and block lower- or upper-triangular approximate factors are often used[
Ã11 O

A21 S̃

] [
I1 Ã−1

11 A12

O I2

]
(9)

[
Ã11 O

A21 S̃

]
,

[
Ã11 A12

O S̃

]
. (10)

Here the matrix Ã11 denotes some approximation of A11, given either in an explicit form or
implicitly defined via an inner iterative solution method with a proper stopping tolerance.
The matrix S̃ is some approximation of the exact Schur complement S.

Comparing to the approximation of the pivot velocity block A11, the most challenging
task turns out to be the construction of approximations of the Schur complement S, which is
in general dense and it is not practical to form it explicitly. For the two-by-two block system
arising in the incompressible Navier-Stokes equations, several state-of-art approximations
of the Schur complement are proposed and analysed, c.f., [6, 7, 11, 13, 14, 17, 20, 24, 26,
27, 31]. In this report we choose the SIMPLER, augmented Lagrangian and ’grad-div’
preconditioners for study and furthermore propose some improvements.
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3.1 The SIMPLER preconditioner

SIMPLE (semi-implicit pressure linked equation) is used by Patanker [25] as an iterative
method to solve the Navier-Stokes problem. The scheme belongs to the class of basic itera-
tive methods and exhibits slow convergence. Vuik et al [17, 31] use SIMPLE and its variant
SIMPLER as a preconditioner in a Krylov subspace method to solve the incompressible
Navier-Stokes equations, achieving in this way, a much faster convergence. SIMPLE and
SIMPLER rely on an approximate block-factorization of saddle point matrices and due
to their simplicity, remain attractive preconditioning techniques. We briefly describe both
formulations for the Oseen problem A in (6).

The SIMPLE preconditioner PSIMPLE reads:

PSIMPLE =

[
A O

B S̃

] [
I1 D−1BT

O I2

]
,

where D is the diagonal of the block A and S̃ = −BD−1BT . Solutions of systems with
PSIMPLE are straightforward, namely,

Algorithm SIMPLE
Given y = [yu; yp], x = P−1

SIMPLEy is found within the following steps.

Step 1: Solve Ax?u = yu

Step 2: Solve S̃xp = yp −Bx?u

Step 3: Compute xu = x?u −D−1BTxp

Step 4: Set x = [xu; xp]
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SIMPLER differs slightly from SIMPLE. It includes a pressure prediction step, and
reads as

Algorithm SIMPLER
Given y = [yu; yp], x = P−1

SIMPLERy is found within the following steps.

Step 0: Solve S̃x?p = yp −BD−1yu

Step 1: Solve Ax?u = yu −BTx?p

Step 2: Solve S̃δxp = yp −Bx?u

Step 3: Update xp = x?p + δxp and xu = x?u −D−1BT δxp

Step 4: Set x = [xu; xp]

It is pointed out in [16] that at high Reynolds number D = diag(A) can become very
small in certain cells leading to sudden divergence. Therefore, the velocity block A is
approximated by a diagonal matrix D̃ =

∑
|A| in [16], where

∑
|A| denotes the row sum

of absolute values of A. In this report PSIMPLER with D̃ =
∑
|A| is referred to as the ideal

SIMPLER preconditioner.
In Newton linearization the velocity pivot block A is not of a block diagonal form.

For example, A :=

[
A11 A12

A21 A22

]
in the two dimensional case. We can approximate A by

Ã =

[
Ã11 O

A21 Ã22

]
, and replace it with Ã in step 1 of the two algorithms above. Here the

terms of Ã11 and Ã22 indicate that we use an inner iterative solver with a proper stopping
tolerance for systems with the blocks A11 and A22. The SIMPLER preconditioner with
Ã and D̃ =

∑
|Ã| is referred to as the modified SIMPLER preconditioner in this report.

Since A is already of block diagonal structure in Picard linearization, the strategy leading
to the modified SIMPLER preconditioner is not necessary. Numerical results in Section 4
illustrate that compared to the ideal SIMPLER preconditioner, the average number of the
linear iterations does not increase by using the modified one. Thus, the computational time
can be reduced. To more clearly see this, we assume that the computational complexity
of iteratively solving a system with A ∈ Rnu×nu is O(n2

u). Then, the complexity of solving
systems with A11 and A22 is O(n2

u/2). Theoretical analysis of the modified SIMPLER
preconditioner is considered to be one research direction in future.
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3.2 The augmented Lagrangian method

In the so-called augmented Lagrangian approach, we first transform the linear system (6)
into an equivalent one with the same solution, which is of the form[

A+ γBTW−1B BT

B O

] [
uh
ph

]
=

[
f̂
g

]
or AALx = b̂, (11)

where f̂ = f + γBTW−1 g, and γ > 0 and W are suitable scalar and matrix parameters.
Clearly, the transformed system (11) has the same solution as (6) for any value of γ and
any nonsingular matrix W .

The equivalent system (11) is what we intend to solve and the AL-type preconditioner
proposed for AAL in (11) is of a block lower-triangular form

MAL =

[
A+ γBTW−1B O

B − 1
γ
W

]
. (12)

To distinguish from the modified AL preconditioner introduced later, the preconditioner
MAL is referred to as the ideal AL preconditioner [6]. It can be seen that the exact
Schur complement SAAL

= −B(A + γBTW−1B)−1BT of the transformed matrix AAL
is approximated by − 1

γ
W . As analysed in [6, 14], for any non-singular matrix W the

eigenvalues of the preconditioned matrixM−1
ALAAL will cluster to the unit with large values

of γ. This means that large γ results in a few iterations for any W if subsystems with
AAL := A + γBTW−1B are solved accurately enough. However, AAL will be continually
ill-conditioned by increasing γ, and finding solutions of systems with it turns out to be
more difficult. Therefore, a nature choice of γ = 1 or O(1) has been used in the numerical
tests in many studies, for example [6, 14]. In this report γ = 1 is chosen in the ideal AL
preconditioner.

How to efficiently solve the modified pivot block AAL is still an open question in the AL
framework. Although the components A and B are sparse, the modified pivot block AAL
is in general much denser. Furthermore, AAL contains discretizations of mixed derivatives,
and AAL is not block-diagonal in Picard and Newton linearizations. Some approximation
of the block AAL leads to the modified AL preconditioner as follows. Here we take two
dimensions as an example to illustrate the modified AL preconditioner, originally proposed

in [7]. The original pivot matrix A is A =

[
A11 A12

A21 A22

]
(A12 and A21 are zero in Picard

linearization) and B =
[
B1 B2

]
. Then the modified pivot block AAL can be written as

AAL :=

[
AAL,11 AAL,12

AAL,21 AAL,22

]
=

[
A11 + γBT

1 W
−1B1 A12 + γBT

1 W
−1B2

A21 + γBT
2 W

−1B1 A22 + γBT
2 W

−1B2

]
,

and its approximation can be obtained by neglecting one of the off-diagonal block

ÃAL =

[
ÃAL,11 O

AAL,21 ÃAL,22

]
.
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Given the approximation ÃAL, the modified AL preconditioner is obtained as

M̃AL =

ÃAL,11 O O

AAL,21 ÃAL,22 O
B1 B2 − 1

γ
W

 , (13)

where the terms ÃAL,11 and ÃAL,22 denote approximations of AAL,11 and AAL,22, for in-
stance, obtained via an inner iterative solution method with a proper stopping tolerance.
In [7] systems with AAL,11 and AAL,22 are solved by using the direct solution method, which
is not feasible for large simulations in terms of the total solution time and storage. In this
report we test an algebraic multigrid (AMG) solver.

The modified AL preconditioner offers two main advantages compared to the ideal
one. When solving systems with ÃAL one needs to solve two sub-systems with AAL,11 and
AAL,22. In this way, the size of the linear system to be solved and the computational time
is reduced. Besides, there are approximations of mixed derivatives in AAL, i.e., AAL,21

and AAL,12. This can be an obstacle when applying known solution techniques, such as
AMG methods. On the other hand, there exists an optimal value of γ which minimizes
the iterations of the Krylov subspace methods by using the modified AL preconditioner.
Although there exists some theoretical prediction of the optimal value in [7], the optimal
value is problem dependent and expensive to calculate. Therefore, the optimal γ are
determined through numerical experiments in this report.

An other parameter in the AL framework is the matrix parameter W . The transfor-
mation (11) holds true for any nonsingular matrix W . In practice W is often chosen to be
the pressure mass matrix M , or its diagonal diag(M) [6, 7, 14]. Theoretical analysis and
numerical experiments therein show that the ideal and modified AL preconditioners with
W = M or diag(M) are independent of the mesh refinement. In this report, W = diag(M)
is utilised in modified and ideal AL preconditioners.

More details on the comparison between the modified and ideal AL preconditioners are
shown in Section 4.

3.3 The ’grad-div’ preconditioner

The augmented Lagrangian framework is also known as ’First-Discretize-Then-Stabilize’
technique. There are also other techniques, known as ’First-Stabilize-Then-Discretize’,
which are briefly described here. Adding a stabilization term −γ∇(∇·u) to the momentum
equation in (1), one can obtain the so-called ’grad-div’ stabilization formulation (cf. e.g.,
[9, 15])

−ν∆u + (u · ∇)u− γ∇(∇ · u) +∇p = f on Ω,

∇ · u = 0 on Ω.
(14)

The added term is zero since the velocity is divergence free. The set of the ’grad-div’
stabilized Navier-Stokes equations is nonlinear and we still use the Picard and Newton
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methods to linearize it. After discretizing the linearized equations with stable FE pairs,
the system at each nonlinear step is still of two-by-two block form, namely,[

FGD BT

B O

] [
δuh
δph

]
=

[
f
g

]
or FGDx = b, (15)

where the block FGD is of the form FGD = Aν +N + γG+ δ1N̂ . The matrices Aν , N and
N̂ are the same as given in (7). The term γG is the discrete operator of γ(∇ · δu,∇ · v)
(v is the test function).

The preconditioner proposed for FGD is of the same form as the ideal AL preconditioner

MGD =

[
FGD O
B − 1

γ
W

]
. (16)

In this report the preconditionerMGD is referred to as the ideal ’grad-div’ preconditioner.
So far, the quite often used choices of W and γ has been the pressure mass matrix M (or
diag(M)) and γ = 1 in [9, 15]. In this report W = diag(M) and γ = 1 are chosen.

The difference between the AL and ’grad-div’ methods is in the velocity pivot block. It
is clear that FGD is sparser than AAL since FGD arises in the discretization of an operator
(also noted in [9]). On the other hand, G is analogous to the matrix BTB. Thus, the
matrix FGD is analogous to AAL with W being the identity matrix. This indicates that the
means to tune the ’grad-div’ stabilization is only the constant γ, while in the AL framework
we possess γ and W to play with.

Using the same strategy which leads to the modified AL preconditioner, we can modify
the ’grad-div’ preconditioner as follows. Here, we still take two dimensions as an example.

The pivot block is defined as FGD :=

[
FGD,11 FGD,12

FGD,21 FGD,22

]
, which is not block diagonal in both

Picard and Newton linearizations due to the presence of the matrix G. We approximate it

as F̃GD =

[
F̃GD,11 O

FGD,21 F̃GD,22

]
and the modified ’grad-div’ preconditioner is obtained as

M̃GD =

F̃GD,11 O O

FGD,21 F̃GD,22 O
B1 B2 − 1

γ
W

 , (17)

where F̃GD,11 and F̃GD,22 denote that we use an inner iterative solution method with a
proper stopping tolerance for solving systems with them. In the modified ’grad-div’ pre-
conditioner, we still choose W = diag(M) and its efficiency is dependent of the parameter
γ. In this report we use numerical experiments to determine the optimal γ.

We thoroughly explore the performance of the ideal and modified ’grad-div’ precondi-
tioners and more details are presented in Section 4.
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4 Numerical experiments
In this section we present numerical results by using the three preconditioners introduced
in Section 3. The test academic problems are the lid-driven cavity and the flow over a
finite flat plate. When Newton or Picard linearization method is used, the number of
nonlinear iterations is refereed to as Newton or Picard iterations. The stopping tolerance
for the nonlinear iterations is relative and chosen to be 10−10. In order to achieve a fast
convergence rate of the nonlinear solver, the continuation method is utilised. This method
means that in Newton or Picard linearization method, the computed solution from a lower
Reynolds number is given as a ’good’ initial guess for the next simulation with a higher
Reynolds number. To solve the linear system at each nonlinear iteration, the generalized
conjugate residual method (GCR) [1] is used since it allows variable preconditioners. The
relative stopping tolerance for GCR is chosen to be 10−2 and the number of iterations is
denoted as GCR iterations. The reported GCR iterations are averaged over the total number
of nonlinear iterations.

Besides a direct solution method, in this report we also use an aggregation based al-
gebraic multigrid method– agmg (see [21, 19, 22]) to solve the subsystems in the three
preconditioners. The implementation of agmg is in Fortran and a Matlab interface is pro-
vided. Its performance in terms of CPU time is comparable with that of ’backslash’ sparse
direct solver in Matlab. For nonsymmetric matrices agmg uses the GCR method accelerated
by the multigrid preconditioner. For systems with symmetric and positive definite matrices
the Conjugate Gradient (CG) method is chosen in agmg. When the agmg solver is used to
solve the subsystems corresponding to the velocity and pressure unknowns, the relative
stopping tolerance is denoted as εagmg,u and εagmg,p.

All experiments in this report are carried out by using Matlab 7.13 (R2011b), and
performed on a Linux-64 platform with 4 Intel(R) Core i5 CPUs, 660@3.33GHz. All
reported execution times are in seconds. Whenever agmg is used, its setup time is included
in the reported times.

The finite element pair used in this report is Q2-Q1. The flow Reynolds number is
defined by Re = UL/ν, where U is the reference velocity, and L is the reference length of
the computational domain. For each test problem, stretched grids are used. The stretching
function is introduced in every test problem.

4.1 Lid Driven Cavity (LDC)

The first benchmark problem is the two-dimensional lid-driven cavity problem, equipped
with the boundary conditions u1 = u2 = 0 for x = 0, x = 1 and y = 0; u1 = 1, u2 = 0 for
y = 1. The reference velocity and length are chosen as U = 1 and L = 1. Thus, Reynolds
number is Re = ν−1. The stretched grids are generated based on the uniform Cartesian
grids with n×n cells. The stretching function is applied in both directions with parameters
a = 1/2 and b = 1.1 [c.f., [16]]

x =
(b+ 2a)c− b+ 2a

(2a+ 1)(1 + c)
, c = (

b+ 1

b− 1
)
x̄−a
1−a , x̄ = 0, 1/n, 2/n, ..., 1.
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The results in Table 1-4 are obtained by solving subsystems in these three precondi-
tioners through a direct solution method. A direct solution method is not practical in large
scale simulations due to its limitations in solution time and memory requirements. The
reason by using it is that we want to illustrate the ’best’ performance of these precondi-
tioners, without effected by inaccurate solutions of subsystems computed via an iterative
solution method with a proper stopping tolerance.

The average number of GCR iterations by using the ideal AL and ’grad-div’ precondi-
tioners is fully independent of the mesh size and Reynolds number in both Newton and
Picard linearization methods, see Table 1-2. Results in Table 3 show that in Picard lin-
earization, the modified AL and ’grad-div’ preconditioners are independent of the mesh
size and Reynolds number too. In Newton linearization, the modified AL and ’grad-div’
preconditioners are independent of the mesh size but dependent of Reynolds number, see
Table 4. We see from Table 4 that in Newton linearization the number of GCR iterations
by using the modified AL preconditioner is 44, which is acceptable for the ’worst’ situation
with Re = 10000 and 2562 grids. The optimal value of γ involved in the modified AL
and ’grad-div’ preconditioners is independent of the mesh refinement. Therefore, we can
carry out numerical experiments on a coarse grid to determine the optimal γ, then use this
choice also on a fine mesh. On a coarse mesh the user does not need to pay so many efforts
to find the precisely optimal γ, since relatively small differences from the precisely optimal
γ do not result in a big change of the number of GCR iterations.

From Table 3-4, we see that the optimal value of γ for the modified AL and ’grad-div’
preconditioners changes with varying Reynolds number. We see that for the modified AL
preconditioner the optimal value of γ lies in the interval [0.004, 0.02] in Picard linearization,
and in [0.008, 0.04] in Newton linearization. For the modified ’grad-div’ preconditioner,
the optimal γ lies in the interval [0.01, 0.06] in Picard linearization, and in [0.02, 0.06] in
Newton linearization. The meaning of finding out these intervals is that in practice they
can help users to ’easily’ choose a good γ, although these intervals containing the optimal
values of γ are problem dependent.

The ideal SIMPLER preconditioner is independent of Reynolds number in Picard lin-
earization, but this independence is not remained in Newton linearization, see Table 1-2.
Also, Newton linearization results in more GCR iterations by using the ideal SIMPLER
preconditioner, compared to Picard linearization. The reason is that in the SIMPLER
preconditioner, the approximation of the velocity sub-block is needed and it is taken as a
diagonal matrix with the row sum of its absolute values in the corresponding diagonal po-
sitions. In Newton linearization, the velocity sub-block is more complicated and this type
of approximation of it does not work as well as in Picard linearization. Independence of the
mesh size by using the ideal SIMPLER preconditioner is not obtained in both Picard and
Newton linearizations, see Table 1-2. Results in Table 4 show that in Newton linearization,
the number of GCR iterations by using the modified SIMPLER preconditioner is indepen-
dent of Reynolds number, and is also much less than that by using the ideal SIMPLER
preconditioner. This result shows that the modified SIMPLER preconditioner is more ef-
ficient in terms of total solution time, compared to the ideal SIMPLER preconditioner in
this test problem.
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As mentioned already, in Picard linearization it is not necessary to use the strategy
leading to the modified SIMPLER preconditioner. In Newton linearization, the velocity
block in the ideal SIMPLER preconditioner is of a block two-by-two form in 2D. In order
to reduce computational complexity, we convert it to a block lower-triangular form as used
in the modified SIMPLER preconditioner. In Picard linearization, the velocity block is
already of a block diagonal structure. This is the reason why we only present the modified
AL and ’grad-div’ preconditioners in Table 3. For Picard linearization it is reasonable to
compare the modified AL and ’grad-div’ preconditioners with the ideal SIMPLER precon-
ditioner, as in Table 5.

Results in Table 5-6 are obtained by using agmg for subsystems. As seen, the modified
’grad-div’ preconditioner is most efficient in terms of total computational time, followed by
the modified AL preconditioner. We see from Table 5-6 that the number of GCR iterations
by using the modified ’grad-div’ preconditioner is more than that with the modified AL
preconditioner. As mentioned already, the modified ’grad-div’ preconditioner gains its
superiority due to its relatively sparse structure. agmg is expected to work more efficiently
for sparse matrices, and this pays off the more GCR iterations.

For a higher Reynolds number, such as Re ≥ 2500, agmg fails for the velocity subsystems
in these three preconditioners. It takes more than 1000 agmg iterations to converge to the
desired accuracy. The reason is that for a large Reynolds number, the convection term
is dominant and the diffusion term is weak. The velocity sub-block turns to be far from
diagonally dominant. agmg is designed to work well for diagonally dominant matrices,
such as Laplacian matrix. In order to make agmg work, we perturb the velocity sub-blocks
in the three preconditioners. This perturbation is done by adding h2I to them, where
h is the mesh size. By using this perturbation the sub-blocks become more diagonally
dominant in those ’difficult’ situations (Re ≥ 2500) and agmg can work. This perturbation
is only used in the preconditioners, not in the coefficient matrices. On the other hand,
this perturbation changes the original preconditioner and its efficiency can be attenuated.
When the perturbation is applied, more GCR iterations are needed. The results marked
by ? in Table 5-6 are obtained by adding this perturbation. In Table 6 this perturbation
starts from Re = 400 for the modified SIMPLER preconditioner.

Efficient solvers for subsystems are crucial. The performance of these three precon-
ditioners can be quite different by using different inner solvers for subsystems involved
therein. Improving some already known solution methods, such as agmg, for velocity sub-
systems with a high Reynolds number is on-going research.

Picard iterations may stagnate if Reynolds number is large, such as Re = 10000. To
avoid the possibly slow convergence rate of Picard linearization and possibly narrow con-
vergence region of Newton method, a combination of these two methods can be utilised.
One can carry out some Picard iterations to obtain a reasonably ’good’ solution, and then
use this solution as an initial guess for Newton iterations. In this way, a fast convergence
rate of the nonlinear iterations can be achieved. More numerical experiments on this type
of nonlinear solution method are carrying out now and a comparison between it and the
continuation method will be reported.

Figure 1-2 plot the profiles of two components of the computed velocity, and these plots
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are close to the results given in [29].
There are many references testing the three preconditioners and their variants on the

LDC problem, c.f. [7, 14, 9, 15, 16]. It is not easy to compare the results given in this
report and other references, since different settings are used in different papers. For the
ideal and modified AL preconditioners, the number of linear iterations are close to each
other in this report and [7, 14] when the same settings are used, such as the same stopping
tolerance, the same mesh and the same inner solver for the subsystems. For the ideal
and modified ’grad-div’ preconditioner, we compare our results with [9, 15]. The same
settings also result in a comparable result, in terms of the number of linear iterations. To
the SIMPLER preconditioner, the reference [16] is chosen for comparison. Finite volume
method is used in [16] while the number of linear iterations is still close to the results
shown in this report. Sure, the same settings are crucial to have a fair comparison.

Table 1: LDC: Picard and average GCR iterations by using the ideal AL, ’grad-div’ and
SIMPLER preconditioners. Sub-systems are solved directly.

Re 100 400 1000 2500 5000 10000
Grid Picard / GCR iterations
642

AL: 14/2 29/2 32/2 57/2 stagnation stagnation
GD: 14/4 28/3 31/3 51/3 stagnation stagnation

SIMPLER: 15/23 28/32 32/30 58/29 stagnation stagnation
1282

AL: 13/2 28/2 31/2 48/2 308/2 stagnation
GD: 14/4 27/3 30/3 50/3 282/3 stagnation

SIMPLER: 17/32 32/41 32/41 48/42 284/42 stagnation
2562

AL: 13/2 26/2 28/2 45/2 202/2 stagnation
GD: 14/4 26/3 29/3 50/3 218/3 stagnation

SIMPLER: 19/40 41/58 52/58 55/62 212/62 stagnation
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Table 2: LDC: Newton and average GCR iterations by using the ideal AL, ’grad-div’ and
SIMPLER preconditioners. Sub-systems are solved directly.

Re 100 400 1000 2500 5000 10000
Grid Newton / GCR iterations
642

AL: 5/2 7/2 7/2 7/3 6/3 7/3
GD: 7/6 7/6 8/6 7/6 7/6 7/7

SIMPLER: 7/35 8/50 9/72 9/108 10/167 18/210
1282

AL: 5/2 7/2 6/2 6/3 6/3 6/4
GD: 7/6 8/6 7/6 8/6 7/6 8/7

SIMPLER: 7/56 8/66 9/90 9/140 10/232 26/223
2562

AL: 5/2 7/2 6/2 6/3 6/3 6/4
GD: 7/6 8/6 7/6 7/6 7/6 7/6

SIMPLER: 8/73 8/102 11/122 8/174 10/251 34/237

Table 3: LDC: Picard and average GCR iterations by using the modified AL and ’grad-div’
preconditioners with optimal γ. Sub-systems are solved directly.

Re 100 400 1000 2500 5000 10000
Grid Picard / GCR iterations (optimal γ)
642

AL: 14/5(0.02) 29/9(0.01) 35/11(0.008) 55/9(0.006) stagnation stagnation
GD: 14/7(0.06) 27/11(0.04) 32/15(0.02) 66/14(0.01) stagnation stagnation
1282

AL: 14/5(0.02) 28/9(0.01) 33/11(0.008) 45/9(0.006) 306/14(0.004) stagnation
GD: 13/7(0.06) 27/11(0.04) 31/16(0.02) 55/15(0.01) 296/18(0.01) stagnation
2562

AL: 14/5(0.02) 28/9(0.01) 33/10(0.008) 45/10(0.006) 202/12(0.004) stagnation
GD: 13/7(0.06) 26/10(0.04) 30/15(0.02) 55/14(0.01) 218/17(0.01) stagnation
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Table 4: LDC: Newton and average GCR iterations by using the modified AL, ’grad-div’
preconditioners with optimal γ and the modified SIMPLER preconditioner. Sub-systems
are solved directly.

Re 100 400 1000 2500 5000 10000
Grid Newton / GCR iterations (optimal γ)
642

AL: 6/7(0.04) 7/14(0.04) 7/21(0.02) 9/34(0.01) 9/45(0.01) 11/49(0.008)
GD: 6/10(0.06) 7/16(0.04) 7/27(0.04) 8/41(0.02) 8/55(0.02) 10/84/(0.02)

SIMPLER: 8/34 9/43 11/47 17/63 21/67 stagnation
1282

AL: 6/7(0.04) 7/15(0.04) 7/22(0.02) 8/33(0.01) 9/43(0.01) 10/46(0.008)
GD: 6/10(0.06) 7/17(0.04) 7/29(0.04) 8/45(0.02) 8/64(0.02) 10/90(0.02)

SIMPLER: 9/52 9/71 13/67 18/64 26/71 stagnation
2562

AL: 6/7(0.04) 6/15(0.04) 7/22(0.02) 8/34(0.01) 9/40(0.01) 10/44(0.008)
GD: 6/10(0.06) 6/17(0.04) 7/29(0.04) 8/45(0.02) 8/65(0.02) 10/95(0.02)

SIMPLER: 9/70 10/112 14/99 16/94 31/77 stagnation

Table 5: LDC: Picard, average GCR iterations and total solution time by using the modified
AL, ’grad-div’ preconditioners with optimal γ and the ideal SIMPLER preconditioner.
Sub-systems are solved by agmg, εagmg,u = 10−2, εagmg,p = 10−4, grids: 1282.

Re 100 400 1000 2500? 5000? 10000

modified AL preconditioner
Picard iterations: 14 27 33 66 286 stagnation
GCR iterations: 5 9 11 17 19
total time: 22.7 65.1 119.6 457.7 2636.3

modified ’grad-div’ preconditioner
Picard iterations: 13 27 31 51 308 stagnation
GCR iterations: 7 11 16 28 24
total time: 10.8 35.8 64.4 159.5 812.5

ideal SIMPLER preconditioner
Picard iterations: 14 27 31 51 325 stagnation
GCR iterations: 40 53 63 92 107
total time: 81.5 235.2 508.4 929.7 9548.7
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Table 6: LDC: Newton, average GCR iterations and total solution time by using the modified
AL, ’grad-div’ preconditioners with optimal γ and the modified SIMPLER preconditioner.
Sub-systems are solved by agmg, εagmg,u = 10−2, εagmg,p = 10−4, grids: 1282.

Re 100 400 1000 2500? 5000? 10000?

modified AL preconditioner
Newton iterations: 6 7 7 8 9 13
GCR iterations: 8 14 21 33 50 95
total time: 14.8 26.2 74.6 194.2 277.1 606.7

modified ’grad-div’ preconditioner
Newton iterations: 6 7 8 9 9 13
GCR iterations: 10 17 28 53 77 126
total time: 8.5 15.7 32.7 119.1 167.9 355.6

modified SIMPLER preconditioner
Newton iterations: 10 8? 8? 11 15 stagnation
GCR iterations: 43 82 84 80 90
total time: 68.3 102.9 232.8 203.2 561.6
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Figure 1: LDC: profiles of u along the line x = 0.5 computed on the stretched grid 2562.
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Figure 2: LDC: profiles of v along the line y = 0.5 computed on the stretched grid 2562.
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4.2 Flow over a finite flat plate (FP)

This example, known as Blasius flow, models a boundary layer flow over a flat plate. To
model this flow, the Dirichlet boundary condition ux = 1, uy = 0 is imposed at the inflow
boundary (x = −1; −1 ≤ y ≤ 1) and also on the top and bottom of the channel (−1 ≤
x ≤ 5; y = ±1), representing walls moving from left to right with speed unity. The plate
is modelled by imposing a no-flow condition on the internal boundary (0 ≤ x ≤ 5; y = 0),
and the Neumann condition is applied at the outflow boundary (x = 5; −1 < y < 1),
i.e., ν ∂u

∂n
− np = 0. The reference velocity and length are chosen as U = 1 and L = 5.

Thus, Reynolds number is Re = 5/ν. The non-uniform grid is generated by applying the
stretching function in the y-direction with b = 1.01 [c.f., [16]]:

y =
(b+ 1)− (b− 1)c

(c+ 1)
, c = (

b+ 1

b− 1
)1−ȳ, ȳ = 0, 1/n, 2/n, ...1.

The results in Table 7-8 illustrate that the ideal AL and ’grad-div’ preconditioners
are fully independent of the mesh size and Reynolds number in both Picard and Newton
linearization methods.

The performance of the modified AL and ’grad-div’ preconditioners, see Table 9-10,
is independent of the mesh size in both Picard and Newton linearizations. Independence
of Reynolds number is clearly seen in Picard linearization, and more clearly exhibited in
Newton linearization for the finest grid. Still we see that the optimal γ involved therein
changes with varying Reynolds number, but does not depend on the mesh size. For mod-
ified AL preconditioner, the interval containing the optimal values of γ is [0.06, 0.3] in
Picard linearization, and is [0.05, 0.1] in Newton linearization. For modified ’grad-div’
preconditioner, the intervals are the same as the modified AL preconditioner in both Pi-
card and Newton linearizations. The intervals are different from those in LDC problem,
and this observation also convinces that the optimal values of γ are problem dependent.

Results in Table 7-8 show that the ideal SIMPLER preconditioner is nearly independent
of Reynolds number in Picard linearization, but it is not valid in Newton method. In both
Picard and Newton methods, the ideal SIMPLER preconditioner is not independent of the
mesh size. Still, more GCR iterations are needed in Newton linearization, the same reason
as given for the LDC problem.

For Newton linearization, the number of GCR iterations by using the modified SIMPLER
preconditioner is nearly the same as that by using the ideal SIMPLER preconditioner, see
Table 8 and Table 10. This illustrates that the modified SIMPLER preconditioner is also
a successful improvement to the ideal one in this test case.

The results in Table 11-12 are computed by using agmg for subsystems. The place where
noted with ? denotes that the perturbation technique is added there. The perturbation is
the same and added due to the already mentioned reason as for the LDC problem. Still,
we see that the modified ’grad-div’ preconditioner is most efficient in terms of the total
solution time for this test problem. Sure, this conclusion may change if other solution
methods are used for subsystems involved in these preconditioners.
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Table 7: FP: Picard and average GCR iterations by using the ideal AL, ’grad-div’ and
SIMPLER preconditioners. Sub-systems are solved directly.

Re 1000 5000 10000 50000 100000
Grid Picard / GCR iterations

96× 32
AL: 14/4 16/4 18/3 29/4 47/4
GD: 13/6 14/6 14/6 16/5 16/4

SIMPLER: 16/66 28/63 29/78 142/70 433/48
192× 64

AL: 13/4 14/4 15/3 29/2 33/3
GD: 13/6 14/5 14/5 16/4 16/4

SIMPLER: 16/95 21/123 34/106 38/153 74/132
384× 128

AL: 13/4 13/4 15/3 29/3 30/3
GD: 13/5 14/5 14/5 15/5 17/5

SIMPLER: 15/123 19/184 27/183 42/226 40/219

Table 8: FP: Newton and average GCR iterations by using the ideal AL, ’grad-div’ and
SIMPLER preconditioners. Sub-systems are solved directly.

Re 1000 5000 10000 50000 100000
Grid Newton / GCR iterations

96× 32
AL: 6/4 6/4 5/5 7/7 6/9
GD: 7/7 7/9 6/9 6/9 7/9

SIMPLER: 11/94 8/123 8/182 11/215 11/241
192× 64

AL: 6/4 5/4 5/4 6/5 6/6
GD: 7/7 6/8 6/8 6/7 6/8

SIMPLER: 10/139 8/216 8/232 12/327 14/362
384× 128

AL: 6/4 5/4 5/4 6/5 6/5
GD: 7/7 6/8 6/8 6/8 6/8

SIMPLER: 9/185 7/344 8/369 12/395 14/433
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Table 9: FP: Picard and average GCR iterations by using the modified AL and ’grad-div’
preconditioners with optimal γ. Sub-systems are solved directly.

Re 1000 5000 10000 50000 100000
Grid Picard / GCR iterations (optimal γ)

96× 32
AL: 14/8(0.3) 16/12(0.1) 18/12(0.1) 29/12(0.08) 47/16(0.06)
GD: 14/16(0.3) 14/22(0.1) 14/22(0.1) 17/22(0.08) 17/24(0.06)

192× 64
AL: 13/10(0.3) 15/12(0.1) 16/12(0.1) 30/10(0.08) 35/14(0.06)
GD: 14/16(0.3) 14/22(0.1) 14/22(0.1) 17/22(0.08) 16/26(0.06)

384× 128
AL: 14/14(0.3) 14/13(0.1) 14/13(0.1) 22/14(0.08) 30/13(0.06)
GD: 14/18(0.3) 14/24(0.1) 14/24(0.1) 17/31(0.08) 15/32(0.06)

Table 10: FP: Newton and average GCR iterations by using the modified AL, ’grad-div’
preconditioners with optimal γ and the modified SIMPLER preconditioner. Sub-systems
are solved directly.

Re 1000 5000 10000 50000 100000
Grid Newton / GCR iterations (optimal γ)

96× 32
AL: 7/17(0.1) 6/20(0.08) 6/25(0.08) 7/50(0.05) 7/55(0.05)
GD: 7/22(0.1) 6/28(0.08) 6/34(0.06) 7/39(0.04) 7/40(0.04)

SIMPLER: 11/93 8/135 7/166 10/233 9/270
192× 64

AL: 7/14(0.1) 6/19(0.08) 6/21(0.08) 7/51(0.05) 7/55(0.05)
GD: 7/25(0.1) 6/32(0.08) 6/41(0.06) 7/48(0.04) 7/50(0.04)

SIMPLER: 10/140 7/208 7/230 11/314 11/354
384× 128

AL: 7/14(0.1) 6/21(0.08) 6/26(0.08) 7/32(0.05) 6/41(0.05)
GD: 7/26(0.1) 6/41(0.08) 6/47(0.06) 7/56(0.04) 6/55(0.04)

SIMPLER: 9/179 7/333 8/364 12/390 14/426
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Table 11: FP: Picard, average GCR iterations and total solution time by using the modified
AL, ’grad-div’ preconditioners with optimal γ and the ideal SIMPLER preconditioner.
Sub-systems are solved by agmg, εagmg,u = 10−2, εagmg,p = 10−4, grids: 192× 64.

Re 1000 5000 10000 50000 100000
modified AL preconditioner

Picard iterations: 14 21 26 33 38
GCR iterations: 10 11 10 19 22
total time: 40.8 87.5 97.9 201.4 311.3

modified ’grad-div’ preconditioner
Picard iterations: 14 14 14 17 16
GCR iterations: 17 23 22 22 24
total time: 27.1 34.0 32.7 89.5 69.8

ideal SIMPLER preconditioner
Picard iterations: 19 34 39 43 74
GCR iterations: 88 105 105 152 130
total time: 294.3 1154.8 1483.2 1375.3 2652.6

Table 12: FP: Newton, average GCR iterations and total solution time by using the modified
AL, ’grad-div’ preconditioners with optimal γ and the modified SIMPLER preconditioner.
Sub-systems are solved by agmg, εagmg,u = 10−2, εagmg,p = 10−4, grids: 192× 64.

Re 1000 5000 10000 50000 100000
modified AL preconditioner?

Newton iterations: 8 7 7 8 8
GCR iterations: 19 23 27 59 89
total time: 69.3 51.9 65.3 115.1 214.5

modified ’grad-div’ preconditioner
Newton iterations: 8 7 7 9 8
GCR iterations: 25 32 39 44 44
total time: 27.5 22.9 82.7 102.8 97.4

modified SIMPLER preconditioner
Newton iterations: 14 9 9 11 12
GCR iterations: 108 146 172 269 373
total time: 290.3 267.3 317.8 518.3 788.8
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5 Conclusions
In this report we consider to use the AL, ’grad-div’ and SIMPLER preconditioners and
their variants for the two-by-two block systems arising in the incompressible Navier-Stokes
equations. The main aim of this report is to explore their performance, based on thorough
experiments on some benchmark problems. The modified ’grad-div’ preconditioner turns
out to be the most efficient in terms of total solution time. But this conclusion may change
if other efficient solution methods are used for subsystems involved in the preconditioners.
Improving some already known solvers, such as agmg, to make them more efficient is very
crucial typically when Reynolds number is large.
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