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Chapter 1

Introduction

An electrical network is formed by generators (producers), loads (consumers) and trans-
mission lines for the connection between producers and consumers.

Time integration methods used to simulate a large electrical network, at the scale of a
country, cost too much computing time. To understand this observation, we are interested
especially in methods to transform an electrical network into a set of equations and in time
integration methods.

This report is divided into four parts. The first part is an historical overview of electrical
simulation methods. The second part describes various methods to transform an electrical
network into a set of equations. The third part is a summary of time integration methods.
Finally, the last part is an overview of approaches which can be used to decrease the
computing time.
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Chapter 2

Electrical simulation history

To understand the motivation of users of electrical software to use one particular method
for the electrical simulation, it is useful to have a quick overview of what has been developed
in the past and also what has been done in the last six years.

2.1 Short historical overview

From Figure 2.1, it appears that advanced mathematical tools are not used directly in
software for electrical simulation. Actually, for the study of large networks for transient
recovery voltage, the nodal analysis developed in the sixties by Dommel is still used (Sec-
tion 3.4) (EMPT-RV, PSCAD and RTDS). The strong point of this method is the easy
way and the fast computation to get the set of equations. However, other methods can
be used to model an electrical network (Section 3.5 and Section 3.6). Mathematical tools
developments are in expansion but few of these tools are used for solving the set of equa-
tions.

2.2 Last six years literature

The topic of my research is the fast simulation of transient recovery voltage for networks
represented by a large amount of lumped elements (large networks). Two issues need to
be considered:

• Modeling methods;

• Numerical integration methods.

Especially, in the modeling method world, many methods to translate an electrical
network into a set of differential equations are already found. However, it will be interesting
to use a Model Order Reduction (MOR) for large networks. MOR permits to reduce the
set of differential equations in order to be faster during the time numerical integration
(Section 5.1). Various methods are presented by Antoulas [1] in 2005. Several publications
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Figure 2.1: Time line electrical simulation
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in electrical paper has been published about MOR applied in power systems [13] [20] [27]
[19] [22] [12] [28] [23]. Also hybrid methods of modeling electrical networks can be used
[7] [26]. The principle of hybrid methods is to cut into several parts the network and use
different modeling methods for each parts.

In the numerical integration world, two parts are taken into account multirate methods
and the computation time. The computation time can be reduced by using fast solvers [29]
in well implemented package [32]. Fast solvers are used in electricity for the calculation of
the power flow for example [17]. Secondly, the multirate approach is also interesting for
decreasing the computation time. This approach is based on slow and fast time component
and the error. In electricity, several papers has been published about this method with is
indexed in three sub-methods (Section 5.2) [8] [14] [33] [31] [30] [25].
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Chapter 3

Electrical modeling

Electrical modeling is a method to convert an electrical network into a set of equations.
There are three main methods and they are based on the general electrical laws and on the
graph theory. However, the first step is to transform an electrical network into an electrical
diagram.

3.1 Electrical diagram

Definition:
An electrical diagram is composed of lumped elements, which represents the electrical

network. The current through a lumped element is denoted by i(t) and measured in Ampere
(A). The voltage across an element is denoted by v(t) and the unit of v(t) is Volt (V).
The main lumped elements are:

• Ideal voltage source

The ideal voltage source is an element of which the voltage is independent of the
current delivered. The voltage supplies is denoted e(t).

e(t)

ie(t)

Figure 3.1: Symbol of an ideal voltage source

• Ideal current source

The ideal current source is an element of which the current supplied is independent
from its voltage. The current supplies is denoted j(t).

7



j(t)

Figure 3.2: Symbol of an ideal current source

• Resistor

The current flow depends on a property of the resistor called resistance. In 1827,
Ohm observed the relation between the current through and the voltage across the
resistor as a factor R such as:

vR(t) = RiR(t) (3.1)

and

R =
1

G
(3.2)

where R is the resistance in Ohm (Ω) and G is the conductance in Siemens (S).

R

vR(t)

iR(t)

Figure 3.3: Symbol of a resistor

• Inductor

An inductor is an energy storage device. The voltage across an inductance is propor-
tional to the derivative of the current through it. The voltage-current relationship is
given by:

vL(t) = L
diL(t)

dt
(3.3)

where L is the inductance in Henry (H).

L

vL(t)

iL(t)

Figure 3.4: Symbol of an inductor
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• Capacitor

Like an inductor, a capacitor is an energy storage device. The capacitor is the
opposite of the inductor, the current is proportional to the derivative of the voltage
across it. The fundamental equation of a capacitor is:

iC(t) = C
dvC(t)

dt
(3.4)

where C is the capacitance in Farad (F ) .

C

vC(t)

iC(t)

Figure 3.5: Symbol of a capacitor

• Earth

It is the reference potential for the voltages.

Figure 3.6: Symbol of the earth

Two type of connections are used:

• series connection

R1 R2
1 2 3

Figure 3.7: series connection

In Figure 3.7, resistance R1 and R2 are in serie because the node 2 is common to
these two elements.

• parallel connection

In Figure 3.8, resistance R1 and R2 are in parallel because all extremities elements
are connected together.
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R1

R2

1 2

Figure 3.8: parallel connection

3.2 General electrical law and theorem

3.2.1 Kirchhoff’s laws

Kirchhoff’s current law (KCL)

Kirchhoff’s current law states that at every node of the electrical diagram, the currents
entering a node are equal to the currents leaving from this node.[9].

∑

currents entering

ie(t) =
∑

currents leaving

il(t) (3.5)

Properties:

• Kirchhoff’s current law forbids series connection of current sources;

• An ideal current source supplying a current of zero ampere is considered as an open
circuit.

Kirchhoff’s voltage law (KVL)

Kirchhoff’s voltage law states that the sum of all voltage differences in a closed loop in an
electrical diagram is equal to zero volt [9].

∑

vloop(t) = 0 (3.6)

Properties:

• Kirchhoff’s voltage law forbids parallel connection of voltage sources;

• An ideal voltage source supplying a voltage of zero volt is considering as a short-
circuit.

3.2.2 Thévenin-Norton theorem

Thévenin-Norton theorem enables to convert a non-ideal voltage source into a non-ideal
current source and vice-versa [9].
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eTh(t)

RTh

jN(t) RN

Figure 3.9: Thevenin-Norton Transformation

The mathematical formulation of this transformation is : RN = RTh and jN(t) =
eTh(t)
RTh

Remark:
If a same load is connecting to the non-ideal voltage source or the non-ideal current

source modeling by this theorem, the current through the load and the voltage across the
load will be the same in both cases.

3.2.3 Millman’s theorem

Millman’s theorem permits to calculate the voltage between two nodes [24]. In the following
diagram (Figure 3.10), we want to calculate the voltage v(t).

e1(t)

R1 Rn

en(t)e2(t)

R2

v(t)

Figure 3.10: Millman’s theorem

The Millman’s theorem states that:

v(t) =

∑n

i=1
ei(t)
Ri

∑n

i=1
1
Ri

(3.7)

where n is the number of branches. Here, a branch is a voltage source and a resistance in
series.
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3.3 Graph theory applied to an electrical diagram

Graph theory is useful to pass from an electrical diagram into a graph. From this graph,
it is possible to complete the edge node incidence matrix T ∈ Nnbel×n where nbel is the
number of element and n is the number of node and the elements matrix D ∈ Rnbel×nbel

[18][35]. We can build the matrix T as:

Tij =







+1 if the direction of the branch j leaves the node i
−1 if the direction of the branch j enters the node i
0 else

We can build also the incidence matrix TG for conductances,TL for inductances, TC for
capacitances, Te for voltage sources and Tj for current sources. For this only branches with
this type of element is taken into account. After that, we can build the matrix D as:

Djj =























G if the branch j represents a conductance
L if the branch j represents an inductance
C if the branch j represents a capacitance
e(t) if the branch j represents a voltage source
j(t) if the branch j represents a current source

We can build also the element matrix of DG for conductances,DL for inductances, DC

for capacitances, De(t) for voltage sources and Dj(t) for current sources. For this only
branches with this type of element is taken into account.

3.4 Nodal analysis

The Nodal analysis method is based on KCL (Section 3.2.1) and on the Thévenin-Norton
theorem (Section 3.2.2). If the electrical diagram is only resistive and with current sources,
the general equation can be written from the graph theory (Section 3.3)[21][34]:

TDGT
T v̂(t) = TJdiag(Dj(t)) (3.8)

We can denote this equation by:
Y v̂(t) = ĵ(t) (3.9)

where Y = TDGT
T and ĵ(t) = TJdiag(Dj(t)).

• Y is the nodal admittance matrix (this matrix is only composed by conductance of
resistances );

• v̂(t) is the vector with the unknown voltage;

• ĵ(t) is the vector with the current sources.

Using inductances or capacitances is not possible with the previous method because
they impose differential equations. However, Dommel’s method transforms differential
equations of the network into algebraic equations. The principle of transformation can be
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derived from the Trapezoidal rule. After this transformation, inductances or capacitances
can be modeled as a control current source with a resistance in parallel[11]. From Dommel’s
method, we can write:

• An inductance is replaced by a resistance RL∆t in parallel with a control current
source jL∆t(t).

• A capacitance is replaced by a resistance RC∆t in parallel with a control current
source jC∆t(t).

It is only after this transformation that graph theory can be applied. The new formu-
lation of the method is:

TDG∆tT
T v̂(t) = TJdiag(j∆t(t)) (3.10)

We can denote this equation by:

Y∆tv̂(t) = ˆj∆t(t) (3.11)

where Y∆t = TDG∆tT
T and ˆj∆t(t) = TJdiag(j∆t(t)).

At each step, it is needed to recalculate the current of all inductances and capacitances
for the next step. The advantages of Dommel’s method are:

• Simplicity: the network is reduced to a number of current sources and resistances of
which Y is easy to construct ;

• Robustness: the integration method is the Trapezoidal rule, which is a numerically
stable and a robust integration routine.

However, the method has some disadvantages too:

• An ideal voltage source poses a problem, the Thévenin-Norton theorem can not be
applied;

• It is difficult to change the computational step size dynamically during the calcula-
tion. The resistance values should be recomputed at each change. This implies that
Y has to be inverted every time step. This is time-consuming for large networks.

3.5 Modified nodal analysis

The Modified Nodal Analysis (MNA)[15] was developed to decrease the time of simulation.
This method is developed from the KCL(Section 3.2.1) and KVL(Section 3.2.1). The MNA
method has several forms and the result is always a Differential Algebraic Equation (DAE).
A DAE has an index to identified it nature. From the definition of [2] the DEA index is the
minimum number of differentiation to arrive to an Ordinary Differential Equation (ODE)
(index 0). The simple method was developed by Prof. L. van der Sluis [3] [4] and a general
method was developed for complex electrical diagram [31]. The DAE index is for the
simplest formulation is 1 and for the second formulation is 2. Implicit integration methods
are recommended to solve DAE.
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3.5.1 Simple method

The mathematical formulation of this method is [34]:

ẋ1(t) = Ãx2(t) (3.12)

B̃(t)x2(t) = C̃x1 + D̃source(t) (3.13)

n ∈ N is the number of differential variables,
m ∈ N is the number of algebraic variables,
p ∈ N is the number of sources,
x1 ∈ Rn of differential variables,
x2 ∈ Rm of algebraic variables,

Ã ∈ Rn×m representing the linear relation between ẋ1 and x2,

B̃(t) ∈ Rm×m, it is the MNA matrix which may contain time-dependent elements,

C̃ ∈ Rm×n representing the linear relation between x1 and x2,

D̃ ∈ Rm×p representing the linear relation between E(t) and x2,
source(t) ∈ Rn of time dependent contributions to the right-hand side

vector from voltage and current sources.
Vector x1 is composed of all currents through inductances (iln) and all voltages across

capacitances(vcn) where ln represents the nth inductance and cn represents the nth capaci-
tance of the electrical diagram. Vector x2 is composed of all voltage between all nodes and
the reference voltage of the electrical diagram vn0 where n =1 to N and N is the number of
node and all currents through capacitances (icn) and all currents through voltage sources
(ien) where cn represents the nth capacitance and en represents the nth voltage source of the
electrical network. The matrices Ã, B̃(t), C̃ and D̃ define the electrical network topology.

To complete all matrices and vectors, there are two possibilities, the first is a mathe-
matical approach (based on the graph theory) and the second is a logical method.

3.5.2 General method

The mathematical formulation of this method is[31]:





TDCT
T 0 0

0 DL 0
0 0 0



 ẋ+





TDGT
T TL Te

−T T
L 0 0

−T T
e 0 0



 x+





Tjdiag(Dj(t))
0

Tediag(De(t))



 = 0 (3.14)

If all elements of the ith row of Equation (3.14) are equal to 0, the ith column and ith

row of the first and second matrix can be deleted and the ith row of the vector.
After this transformation, the vector x is composed of differential variables and algebraic

variables. x is composed of all voltages between all nodes and the reference voltage of the
electrical diagram vn0 where n =1 to N and N is the number of node, of all currents through
inductances (iln) and of all currents through voltage sources (ien) where ln represents the
nth inductance and en represents the nth voltage source of the electrical network. The
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differential variables correspond to all voltages around a capacitance (if a capacitance is
between the node 2 and 3 the differential variables are v20 and v30, Equation (3.4)) and to
all current through inductance (Equation (3.3)).

Remarks:

• T T
e is not invertible;

• TDCT
Tu(t) + TDGT

Tu(t) + TLil(t) + Teie(t) + Tjdiag(Dj(t)) = 0 corresponds to
the KCL equation. The KCL equation contains differential variables and algebraic
variables (Equation (3.4));

• DLil(t) + T T
e u(t) = 0, this equation corresponds to the calculation of the derivative

of the current thought all inductances (Equation (3.3)).

3.6 Black box

The Black Box (BB) representation is based on the KVL (Section 3.2.1). The mathematical
formulation is a first Order Differential Equation (ODE). Each black box represents a
component of the electrical network. Inside each black box, there are two matrices As

and Bs. A black box can be connected to one or more black boxes by Millman’s theorem
(Section 3.2.3). The formulation of this method is:

dx(t)

dt
= ẋ(t) = f(t, x) = Ax(t) + Bsource(t) (3.15)

where

• nbx ∈ N is the number of differential variables (number of inductances and capaci-
tances);

• nbs ∈ N is the number of sources;

• x ∈ Rnbx is the state vector;

• source(t) ∈ Rnbs is the time-dependent input vector;

• A ∈ Rnbx×nbx is the state matrix and is formed by all matrices As and the Millman’s
theorem;

• B ∈ Rnbx×nbs is the input matrix and is formed by all matrices Bsand the Millman’s
theorem.

Vector x is composed of all currents through inductances (iln) and all voltages across
capacitances(vcn) where ln represents the nth inductance and cn represents the nth capaci-
tance of the electrical network. Matrices A and B define the electrical network topology.
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From Equation 3.15, an analytical solution can be found. However, this method is slow
due to the eigenvalue computation (matrix Λ) and the transformation matrix where each
column consists of eigenvector (matrix T ) of the matrix A [10].

A = TΛT−1 (3.16)

If all sources are time independent, the analytical solution is [10]:

x(t) = TeΛtT−1x(0)− A−1
[

I + TeΛtT−1
]

Bsource (3.17)

If all sources are sinusoidal, the analytical solution is:

x(t) = TeΛtT−1xconst + TQ [Ω sin(ωt)− Λ cos(ωt)]T−1Bsource (3.18)

xconst = x(0)− TQ [Ω sin(0)− Λ cos(0)]T−1Bsource (3.19)

or

x(t) = TeΛtT−1xconst + TQ [Ω sin(ωt+ ϕ)− Λ cos(ωt+ ϕ)]T−1Bsource (3.20)

where source(t) = cos(Ωt+ ϕ)source, Q = [Λ2 + Ω2]
−1

and Ω = diag(ω).

3.7 Comparison

NA MNA BB
∆t constant adaptive adaptive

Complexity of the method Easy Medium Medium
exact solution No No(execpt for reduction to index 0) Yes(if linear)

Non-linear elements Yes (difficult) Non-linear DAE Non-linear ODE
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Chapter 4

Overview of time integration
methods

The general form of a system of ordinary differential equations (ODE) is:

dx(t)

dt
= ẋ(t) = f(x, t) (4.1)

where x ∈ Rn and n is the number of differential variables. The initial condition of the
integration method is x(t0) = x0. The solution of this differential equation is:

x(t) = x(t0) +

∫ t

t0

f(x, t)dt (4.2)

A time integration method solves differential equations. There are many time integra-
tion methods. The choice of a method depends on the characteristics of the problem and
on the required solution. In this chapter, some basic integration methods and approach of
the time step control are described.

There are two important notations:

• Continuous function x(t);

• Numerical approximation un ≈ x(tn) where tn = n∆t and ∆t is the time step.

4.1 Basic methods

In this section, we give three basic methods, Euler forward, Euler backward and the Trape-
zoidal rule [35].

• Euler forward

The Euler forward method is based on the formulation of the derivative during one
step (∆t) at the time t to find an approximation of x(t +∆t). The remainder term
is O(∆t).
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ẋ(t0) =
x(t1)− x(t0)

∆t
+O(∆t) (4.3)

so
x(t1) = x(t1) + ∆tẋ(t0) +O(∆t2) (4.4)

The general form of Euler forward where we remove the O(∆t2) term is:

un+1 = un +∆tf(un, tn) (4.5)

This method is explicit.

• Euler backward

The Euler backward method is based on the formulation of the derivative at the time
t+∆t to find an approximation of x(t+∆t).

ẋ(t1) =
x(t1)− x(t0)

∆t
+O(∆t) (4.6)

so
x(t1) = x(t0) + ∆tẋ(t1) +O(∆t2) (4.7)

and the general formulation where we remove the O(∆t2)term is:

un+1 = un +∆tf(un+1, tn+1) (4.8)

This method is implicit.

• Trapezoidal rule

The Trapezoidal rule uses the average value of the Euler forward and Euler backward
approximation. The following formulation is the trapezoidal rule.

un+1 = un +
∆t

2
(f(un, tn) + f(un+1, tn+1)) (4.9)

The norm of the local discretization error en is the error made in a single step. For Euler
forward and Euler backward, en is the same and is en =

∣

∣

∆t
2
ẍ(τn)

∣

∣ where τn ∈ [tn tn+1].

For the Trapezoidal rule, en is en =
∣

∣

∣

∆t2

12

...
x (τn)

∣

∣

∣
where τn ∈ [tn tn+1].

To study the stability, the test equation used is:

ẋ(t) = λx(t) (4.10)

where x ∈ R and λ ∈ C. In electricity, λ is considered as the time constant of the system
and the time constant can be real in the case of an RL circuit or complex in the case of an
RLC circuit.

From this equation, the stability region is defined as the region of λ∆t where the
numerical integration method is stable:
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0-1 ℜ(λ∆t)

ℑ(λ∆t)

Figure 4.1: Stability region: stable inside of the circle

0 1 ℜ(λ∆t)

ℑ(λ∆t)

Figure 4.2: Stability region: stable outside of the circle

0 ℜ(λ∆t)

ℑ(λ∆t)

Figure 4.3: Stability region: stable in the left half plane

4.2 Runge-Kutta methods

The family of Runge-Kutta methods was developed by the German mathematicians C.
Runge and M.W. Kutta in 1901. The advantages of this method are the easy implemen-
tation in a computer program, very stable, adaptive time stepping and self-starting [16].

4.2.1 Introduction

With an s-stage Runge-Kutta (RK) method, the solution of the system of differential
equations (Equation (4.1)) can be written as [6]:

un+1 = un +∆t

s
∑

i=1

biki (4.11)
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ki = f

(

tn + cih, un +∆t

s
∑

j=1

aijkj

)

(4.12)

All RK methods can be defined by their own Butcher tableau, which puts the coefficients
of the method in the following table:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

Table 4.1: Butcher tableau

An RK method can be explicit if aij = 0 for i ≤ j, semi-explicit if aij = 0 for i < j and
else the RK method is implicit.

4.2.2 Explicit Runge-Kutta methods

Explicit Runge-Kutta methods are for example RK2 or RK4. The coefficient ki is only
calculated from the previous ki and k1 = f(t, x).

• RK2

The Runge-Kutta 2 (RK2) is a second order numerical integration method. The
error en is proportional to ∆t2. The formulation of this method is:

k1 = f(tn, un) (4.13)

k2 = f(tn + α∆t, un + α∆tk1) (4.14)

un+1 = un +∆t

[(

1−
1

2α

)

k1 +
1

2α
k2

]

(4.15)

for some α where 0 ≤ α ≤ 1. If α = 1, the formulation and the stability region is the
same as the Trapezoidal rule.

• RK4 The Runge-Kutta 4 (RK4) is a fourth order numerical integration method. The
error en is proportional to ∆t4. The formulation of this method is:

k1 = f(tn, un) (4.16)

k2 = f(tn +
∆t

2
, un +

∆t

2
k1) (4.17)

k3 = f(tn +
∆t

2
, un +

∆t

2
k2) (4.18)

k4 = f(tn +∆t, un +∆tk3) (4.19)

un+1 = un +∆t

[

k1 + 2k2 + 2k3 + k4

6

]

(4.20)
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4.2.3 Semi-explicit and implicit Runge-Kutta methods

A system of equations needs to be solved in the case of a semi-explicit and an implicit
method to find ki for i = 1 to s. If we take the following form:

ẋ(t) = f(t, x) = Ax(t) + Bsource(t) (4.21)

,
we can write: k = [k1 . . . ks]

T ,

Ã =







a11A . . . a1sA
...

. . .
...

as1A . . . assA






andm(tn,∆t) =







Aun +Bsource cos(ω(tn + c1∆t) + ϕ)
...

Aun +Bsource cos(ω(tn + cs∆t) + ϕ)






.

Moreover, if Equation (4.21) and Equation (4.12) are taken into account, all coefficients ki
can be written as:

ki = A(un +∆t

s
∑

j=1

aijkj) + Bsource cos(ω(tn + ci∆t) + ϕ) (4.22)

Consequently, the system to solve is:

(I −∆tÃ)k = m(tn,∆t) (4.23)

For a semi-explicit Runge-Kutta method, the formulation of Ã is:

Ã =







a11A 0 0
...

. . . 0
as1A . . . assA






.

With these methods, it is only necessary to invert [I − aii∆tA] instead of [I −∆tÃ].

4.2.4 IMEX RK

The advanced IMplicit-EXplicit Runge-Kutta scheme divides the differential equation into
two differential equations, the fast part and the slow part. For an ODE, the following form
is used[16] [5]:

ẋ = fE(t, x) + fL(t, x) (4.24)

where

• fL is the function containing the stiff part of the ODE and it is solved by an implicit
method;

• fE is the function containing the non-stiff part of the ODE and it is solved by an
explicit method.
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The formulation of the IMEX RK is:

un+1 = un +∆t

s
∑

i=1

b̃ifE(tn + c̃i∆t, ui) + ∆t

s
∑

i=1

bifL(tn + ci∆t, ui) (4.25)

with internal stages given by:

ui = un +∆t
∑i−1

j=1 ãijfE(tn + c̃i∆t, ui) + ∆t
∑i

j=1 aijfL(tn + ci∆t, ui) (4.26)

c̃1 ã11 ã12 · · · ã1s
c̃2 ã21 ã22 · · · ã2s
...

...
...

. . .
...

c̃s ãs1 ãs2 · · · ãss

b̃1 b̃2 · · · b̃s

Table 4.2: Butcher tableau for the slow part (non-stiff part)

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

Table 4.3: Butcher tableau for the fast part (stiff part)

4.2.5 Other RK methods

Runge-Kutta methods go from the first order to higher order. The first order is equiva-
lent to Euler forward. From this family of numerical integration, some modern methods
have been developed as the Runge-Kutta-Fehlberg (RKF) in 1960 or the Runge-Kutta-
Chebyshev (RKC) in 1980 [16].

4.3 Step size control

4.3.1 General idea

If we consider the interval [tn, tn+1] where tn+1 = tn +∆t. Let us assume that the method
has an order p, the norm of the local error discretization is en and the tolerance Tol is
specified by the user. The step size control is based on the following rule[16]:

• if en ≤ Tol, ∆t is accepted and the future step size will be slightly larger;
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• if en ≥ Tol, ∆t is rejected and redone with ∆tnew smaller. This step is used until
en ≤ Tol.

The choice of the time step ∆t is based en and Tol. en is calculated in the majority of
cases from the difference between the integration method of the order p and p − 1. The
formulation of the calculation of ∆tnew is:

∆tnew = θ∆told
p

√

Tol

en
(4.27)

for some θ and p where 0 < θ ≤ 1 and p ≥ 2

4.3.2 Adaptive Runge-Kutta methods

The adaptive time stepping can be done by an adaptive Runge-Kutta method. This idea
is if all ki are calculated for the order p, it is possible to compute the result at the order
p− 1. These methods avoid the recalculation of a complete RK method at an order p− 1.
The Butcher tableau for an adaptive RK method is :

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

b̂1 b̂2 · · · b̂s

Table 4.4: Butcher tableau for adaptive RK

with

ûn+1 = un +∆t

s
∑

i=1

b̂iki (4.28)

where ûn+1 is the computed solution with an order p− 1. Now, we can compute the error
en as the difference between ‖un+1 − ûn+1‖∞. We can define the error as:

en = ‖un+1 − ûn+1‖∞ (4.29)

=

∥

∥

∥

∥

∥

un +∆t

s
∑

i=1

biki − un −∆t

s
∑

i=1

b̂iki

∥

∥

∥

∥

∥

∞

(4.30)

=

∥

∥

∥

∥

∥

∆t

s
∑

i=1

(bi − b̂i)ki

∥

∥

∥

∥

∥

∞

(4.31)

When en is found, the algorithm of Section 4.3.1 is used.
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Chapter 5

Challenges

After the electrical modeling and the study of different methods of time integration for ODE
and DAE set of equations, the next part of my study will be the model order reduction
and the multi-rate integration method.

5.1 Model order reduction

The idea of this part is if the system is represented in a matrix formulation, it is possible
to reduce the system in order to find a solution close of the solution of the non-reduce
system. For example an ODE system of this form is taken [1]:
{

ẋ = Ax+Bu(t)
y = Cx+Du(t)

where A ∈ Rn×n, B ∈ Rp×n, C ∈ Rn×m and D ∈ Rp×m.
After to use an model order reduction method, the ODE representation of this system

is:
{

˙̂x = Âx̂+ B̂u(t)

y = Ĉx̂+ D̂u(t)

where Â ∈ Rk×k, B̂ ∈ Rp×k, Ĉ ∈ Rk×m, D̂ ∈ Rp×m and k < n

5.2 Multirate integration method

A multi-rate method is a different approach of the time step control. Two categories of
differential variables are inside of the system of equation, the slow and the fast. To do this
different methods are available:

• monolithic approaches [30]

• co-simulation approaches [31]

• multivariate approaches [25]
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The monolithic approaches has two methods, the first is to compute the slow part of
the system and after the fast part by interpolation of the slow part or vis-versa. This
method works well when different frequencies are inside of the system.

The co-simulation approaches allow individual components to be simulated by different
simulation tools running simultaneously and exchanging information in a collaborative
manner.

The multivariate approach is to convert the ODE system into a PDE system when the
frequencies of the system are known.
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