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A fast nonlinear conjugate gradient based method for 3D

frictional contact problems

Jing Zhao ∗, Edwin A. H. Vollebregt∗†, Cornelis W. Oosterlee∗‡

Abstract

This paper presents a fast numerical solver for a nonlinear constrained optimization
problem, arising from a 3D frictional contact problem. It incorporates an active set
strategy with a nonlinear conjugate gradient method. One novelty is to consider the
tractions of each slip element in a polar coordinate system, and use azimuth angles as
variables, instead of conventional traction variables. A corresponding preconditioner
using diagonal scaling is incorporated. The fast Fourier transform (FFT) technique
accelerates all matrix-vector products encountered, due to a Toeplitz structure. Nu-
merical tests show that this method is robust and it significantly reduces the compu-
tational time, compared to existing solvers.

Keywords: frictional contact problem, azimuth angle variables, active set strategy,
nonlinear conjugate gradient, preconditioner, fast Fourier transform.

1 Introduction

1.1 Physics

The frictional contact problem has attracted interest from many researchers, due to
various applications in the industry and engineering fields, e.g. rolling contact fatigue (RCF)
[8], the fatigue life of machine elements [27], friction and wear [5, 10, 25]. This problem
concerns two elastic bodies. When they are pressed together, the forces they obtain from
each other results in elastic deformation. This yields a contact area where the surfaces of
the two bodies coincide, and exert stresses on each other. These stresses are composed of
normal stress (pressure), and the frictional stress (traction) acting in the tangential direction.
When and where the frictional stress is small, the two bodies stick to each other. However,
local sliding occurs where the frictional stress is large enough. The challenge is to find the
distribution of the frictional stress, and the subdivision of the contact area: which part is
an adhesion area and in which part does slip occur.

The model for frictional contact starts with a known contact area and pressure distribu-
tion. Then the frictional stress should satisfy:

1. In the adhesion area, the magnitude of the tractions does not exceed the traction
bound, and there is no slip.

2. In the slip area, the traction bound is reached, and the resulting slip points in the
opposite direction of the tractions.
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The traction bound comes from the frictional law that is used. For this one may take
Coulomb’s law locally, which states that the traction bound equals the product of the normal
pressure and a friction coefficient. The magnitude of the tangential tractions should be less
or equal to the traction bound. On the one hand, this gives rise to inequality constraints. On
the other hand, when slip occurs, equality should hold, and the directions of the tangential
tractions and the resulting slip should be opposite. This brings in nonlinearity.

1.2 Solution strategies

The classic solutions to frictional contact problems with partial sliding stem from the
work by Cattaneo [3] and Mindlin [19]. In the last decades, other solution techniques have
been studied, for example Johnson [11] and Kalker [13] contributed with fundamental work.

The numerical solution techniques employ variational inequalities [11, 13, 34]. They are
generally divided into two classes. One is the class of finite element methods (FEM) [14, 16,
34], that are widely used, especially in the case of large deformations, and nonlinear elastic
materials. These methods typically focus on overall behavior. Due to the discretization of
the contacting bodies, this method can be computationally expensive. The other class is
the boundary element methods (BEM) [1, 13, 15, 18], that are well-suited for “concentrated
contact” and efficient for homogeneous elastic problems. The boundary value problem is
transformed to a boundary integral equation. The dimensionality of the problem decreases,
i.e., the 3D contact problem is solved by considering 2D contact regions where only the
boundary is discretized. Hence, this method reduces the computational time significantly.

When the contacting bodies are of different materials, the tangential tractions and normal
displacements interact with each other. In this case, the normal and tangential problems
can not be easily separated. A straightforward way to process it is to solve a fully coupled
formulation[33]. Another popular approach is via the so-called “Panagiotopoulos process”
[7, 13, 21]. In each iteration, the normal problem is solved first followed by the tangential
problem. When contacting bodies are of the same material, i.e. a so-called quasi-identity
case, these two problems can be decoupled, and one iteration is sufficient [13].

1.3 Solution algorithms

Kalker’s variational approach [13], which is a prominent method for the rolling contact
problem, employs the Green’s function for the elastic half-space. It involves the NORM
and TANG algorithms for normal and tangential problems, respectively. Both algorithms
employ an active set strategy [20]. In the TANG algorithm, this leads to systems of non-
linear equations, that are solved using Newton’s method and Gauss-elimination (GE). This
approach has O(n3.5) complexity, with n the number of contact elements. Another method
is the ConvexGS method [28]. It reduces the global problem to a small-sized optimization
problem on each element, and solves by a block Gauss-Seidel iteration. This method is
incorporated into the software CONTACT [31]. However, the Gauss-Seidel process is also
slow for fine discretization with a complexity of about O(n2.3) [29].

Algorithms in the FEM framework include the penalty approach, the augmented Lag-
rangian technique, etc. Comparing with the BEMmethods, we encounter similar approaches
for the nonlinear equations, like Newton-based methods [34], or a nonlinear Gauss-Seidel
method [12] that is similar to ConvexGS.

1.4 A new solution method

The motivation of our work is to develop a fast solver for the 3D frictional contact
problem, especially for the so-called shift problem, e.g. the Cattaneo shift [3]. It is a transient
contact problem, and concerns one object pressed onto another, and shifted tangentially.
It plays an important role in the study of rolling contact problems, since there can be
generally a sequence of shift problems. In this paper we solve the tangential problem, with
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the solutions from the normal problem already available. It can be easily incorporated into
the Panagiotopoulos process, to deal with more complicated contact.

Our new method contributes to the BEM solvers. We call it “TangCG”, since it searches
for the tangential tractions and is based on the nonlinear conjugate gradient method. The
constraint that the magnitude of tractions on each slip element should equal the traction
bound, inspires to place the traction vector at a circle in a polar coordinate system, with the
radius being the traction bound. We use azimuth angles as variables, which is a significant
difference from conventional solvers.

The TangCG algorithm is a so-called bound-constrained conjugate gradient (BCCG)
method, which was proposed for linear complementarity problems in normal contact [30].
The BCCG method uses an active set strategy, and employs the conjugate gradient (CG)
method for the governing linear system. Differently, the governing system in frictional con-
tact problems is mainly nonlinear, hence, we employ a nonlinear conjugate gradient (NLCG)
method [24]. The TangCG algorithm is combined with a diagonal scaling preconditioner.

The most time consuming part of the solution procedure relates to a Boussinesq integral
[11, 13], which gives the relation between tractions and deformation. It results in a dense,
symmetric and positive definite coefficient matrix. This matrix is block Toeplitz matrix with
Toeplitz blocks (BTTB)1. Such structure can be exploited by fast Fourier transform (FFT),
which has been applied in the field of contact problems, e.g. [4, 26, 32]. The complexity is
reduced by FFT to O(n logn) with n the number of unknowns.

1.5 Structure of this paper

Section 2 gives the mathematical formulation of the 3D frictional contact problem and
explains existing solvers. The TangCG method is illustrated and numerically analyzed in
Section 3. Section 4 shows the numerical results of our new method, and also compares the
efficiency with an existing method. Section 5 concludes.

2 Formulation of the 3D frictional contact problem

This section introduces the physical problem and the mathematical model of frictional
contact. For more details, we refer to [13]. Subsequently, the discretization and existing
methods for the model are given.

2.1 Notations

We specify some notations that will be used. The element index is I or J , which often
appears as subscripts. Sub- or super-scripts x and y indicate x- and y-directions, respectively.
Letters in bold represent vectors. The tractions on element I is defined by pI = [pIx, pIy],
including two traction components in the x- and y-directions. Without the subscript I, e.g.
u is defined by u = [ux,uy]. Here, ux = [u1x, u2x, ...] indicates the x-direction deformation
of all elements, and a similar definition applies on uy.

Vector s̄I and sI are slip velocity and distance, respectively, on element I. For the use
in Section 3, the primary variables on an adhesion element have two entries for x- and y-
directions, but we use only one entry on each slip element, carrying the information about
angles. They are denoted by subscript a, while subscript s denotes auxiliary variables, that
have two entries for x- and y-directions on each adhesion and slip element. Superscript k is
an iteration index.

1Toeplitz matrix is a matrix with constant diagonals.
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2.2 Mathematical model of the frictional contact problem

First of all, we identify the geometry of two elastic bodies in undeformed state. A
coordinate system Oxyz is used on each particle of these two bodies to identify its position x.
This coordinate system is assumed to move with the contact region, with z pointing normally
to the other body and x, y directing tangentially. Deformation occurs when the bodies are
brought into contact. An elastic field including stress σ, strain ǫ and displacements u arise in
the bodies and on their surfaces. The formulation of contact problems particularly focuses
on the surface quantities: surface displacements u(i)(x) of body i, (i = 1, 2) at position x,
and surface tractions p(i)(x). The deformation at position x is defined by the displacement
difference, i.e., u(x) = u(1)(x) − u(2)(x). Moreover, we solve for only tractions p(1), since
the relation p(1) = −p(2) is valid for all particles on the surfaces.

The normal problem can be solved by Hertz theory [9] if the contacting surfaces are
smooth and quadratically or by a numerical method (e.g. [31]) if the profile is non-Hertzian.
The solution pressure is compressive in the contact area, and vanishes outside of it.

Tangential tractions result from the overall motion of the two bodies, causing a tendency
of the surfaces to slip with respect to each other, called “rigid slip”. In rolling contact it is of-
ten characterized via “creepage”, which is the average relative velocity between the surfaces,
and is given by the difference between the forward rolling velocity and the circumferential
velocity.

The formulation concerns three aspects, i.e., slip, elastic deformation, and the friction
between the two contacting bodies. First of all, the relation between slip, rigid slip and
deformation is defined by [31]:

s̄ := w̄ +
1

V

Du

Dt
, (1)

where, s̄ is the slip velocity of two opposing particles on the contacting surfaces with respect
to each other. It is the summation of the relative rigid slip velocity w̄ and the change of
deformation Du

Dt
scaled by the rolling velocity V .

Concerning the effect of friction, the contact area C is divided into an adhesion area H
and a slip area S, according to the contact conditions:

{

in the adhesion area H(t) : ||s̄(x, t)|| = 0, ||p(x, t)|| ≤ g(x, t),

in the slip area S(t) : ||s̄(x, t)|| > 0, p(x, t) = −g(x, t) s̄(x,t)
||s̄(x,t)|| .

(2)

The norm || · || is the Euclidean norm. These conditions state that the magnitude of the
tangential tractions at position x can not exceed the corresponding traction bound g in
the adhesion area. When the traction bound is reached, local slip occurs with its direction
opposite to the tractions.

The traction bound g in this model is obtained by applying the Coulomb’s frictional law
locally

g(x, t) = µpn(x, t), (3)

where µ is a constant friction coefficient, and pn is the normal pressure.
The deformation u in Eq. (1) is obtained by the half-space approach, which is based on

four simplifying assumptions [13]. Firstly, the contacting bodies are made of homogeneous
linear elastic material. Secondly, the contact area is very small compared with the contacting
bodies and hence, it is flat. The geometry is assumed to be sufficiently smooth, and we ignore
the effects of inertial force, which is a quasi-static approach.

Based on the classic solutions by Boussinesq and Cerruti (see Johnson [11] or Kalker
[13]), the relation between the deformation u and traction p is given by:

u(x, t) =

∫

C(t)

A(x,x′)p(x′, t)dx′. (4)

This integral states that at a certain time instance t, the deformation at point x is influenced
by the tractions on all points x′ ∈ C. Here, the kernel function A(x,x′) gives the influence
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of a unit traction at x′ on the deformation at x. It can be written as:

A(x,x′) = A(x− x′), (5)

which indicates that the influence coefficient depends on the relative positions of two surface
points x and x′. This property leads to a specially structured matrix after discretization.

2.3 Discretization

The discretization focuses on a rectangular potential contact area, which contains the
true contact area. A rectangular mesh is placed on this 2D region, with N = nx × ny

elements of size δx × δy. The coordinates of the center of the element I are denoted by
[xI , yI ].

Tractions p in the surface integral (4) are approximated by an element-wise constant
functions. The cell-centered discretization of the integral (4) yields, for each contacting
element I:

uIx =

N
∑

J=1

(Axx
IJpJx +Axy

IJpJy), uIy =

N
∑

J=1

(Ayx
IJpJx +Ayy

IJpJy), (6)

where, uIx is the deformation in x-direction of element I. Influence coefficient, e.g., Axy
IJ

is the influence to the x-direction deformation on element I, caused by a unit y-direction
traction on another element J . It is computed by integrating (4) over a single element J ,
with respect to an observation point at the center of element I (see [13] for the detailed
formulas).

Writing (6) in matrix form, we obtain:

u = Ap, A ∈ R
2n×2n, u,p ∈ R

2n, (7)

where, the global coefficient matrix A has 2× 2 blocks:

A =

(

Axx Axy

Ayx Ayy

)

, (8)

with each block Axx, Axy, Ayx, Ayy ∈ R
n×n. These blocks are dense, symmetric, positive

and definite (SPD). Moreover, due to property (5), these blocks are BTTB if the contact
area is rectangular.2.

To discretize slip Eq. (1), a sequence of time instances is used, with length δt = t − t′,
where t and t′ are the current and previous time points, respectively. Applying a backward
Euler method for the derivative, we obtain:

s̄I = w̄I +
uI − u′

I

δtV
. (9)

Define the traversed distance per time step δq = V · δt, which is called time step for short.
The shift on one element sI := δq · s̄I is the aggregated slip distances over δq. Then,
discretized Eq. (9) reads:

sI = wI + (uI − u′
I), 1 ≤ I ≤ N, (10)

where, rigid shift wI is defined as:

wI = [ξ − φyI , η + φxI ]. (11)

Here ξ, η are longitudinal and lateral shifts, respectively, and φ is the rotation shift [31].
Since the deformation at a previous time u′

I vanishes in a shift problem, Eq. (10) yields:

sI = wI + uI . (12)

2Otherwise, they are not BTTB anymore. An approach of applying FFTs in this case is given in [32].
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After disretization, condition (2) becomes:

{

in the adhesion area H : ||sI || = 0, ||pI || ≤ gI ,
in the slip area S : ||sI || > 0, pI = −gI · sI/||sI ||.

(13)

In the solution procedure, these two conditions are equivalent to solving the following equa-
tions:

• For adhesion element I ∈ H :
sI = 0. (14)

• For slip element I ∈ S:

{

p2Ix + p2Iy = gI , (15)

pIxsIy − pIysIx = 0, (16)

where Eq. (16) is derived from the fact that slip sI and traction pI are in opposite
directions, and hence, p⊥

I ⊥sI with p⊥
I = [−pIy, pIx]. Eqs. (15) and (16) give rise to

nonlinearity.

The frictional contact problem now consists of Eqs. (7), (12) and (13). It was shown
that this problem can also be considered as a variational inequality [13]:

min
p

1

2
pTAp+wTp, s.t. ||pI || ≤ gI for I ∈ C. (17)

This is a nonlinear convex optimization problem [2], for which, the corresponding Karush−Kuhn−Tucker
(KKT) conditions [17] provide both sufficient and necessary conditions for the existence of
a unique solution. The KKT conditions also result in Eqs. (7), (12), and (13).

2.4 Existing algorithms

There are essentially two existing methods based on the above formulation. One is
Kalker’s “TANG” algorithm [13]. It is an active set method and consists of inner and
outer iterations. In each outer iteration it fixes the subdivision of the contact area, which
determines the corresponding governing systems (14)-(16). The resulting solution is used
to modify the subdivision according to contact condition (13). Newton’s method is applied
for the nonlinear system, and the linearized system in every inner iteration is solved by
Gauss-elimination.

The limitation of this method shows when the problem size is large. Gauss-elimination,
with complexity O(n3), is time-consuming and memory-taking.

An alternative is the “ConvexGS” algorithm [28], which is a block Gauss-Seidel iteration.
The elements in contact are processed one by one, with the recently updated tractions fixed.
The subproblem defined on each element is derived based on the element-wise constraints
in the convex optimization formulation (17). The corresponding nonlinear system (15)-(16)
for the element is solved by Newton’s method.

However, this method cannot benefit from an implementation using FFTs exploiting the
BTTB structure.

3 New method: TangCG algorithm

We present our new algorithm TangCG for frictional contact in this section. Its main
components are introduced in Section 3.1. Section 3.2 illustrates this method based on a
small test, for additional insight. Section 3.3 gives the resulting algorithm.
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Figure 1: The main components of the TangCG method. The adjacent pieces are related to
each other.

3.1 Main components of the TangCG algorithm

The TangCG algorithm consists of six main components, shown in Fig. 1, where the
adjacent pieces are related to each other.

The TangCG method adopts the framework of an active set strategy from the BCCG
method [30]. In each outer iteration, the adhesion and slip areas are fixed and systems (14)-
(16) are solved approximately; then we modify the subdivision of contact area, according to
condition (13).

We introduce the most pronounced component of the TangCG algorithm. Different from
conventional methods that use traction variables, we change variables in the slip area, where
the magnitude of tractions should equal the traction bound. On each slip element I, traction
pI lies at a circle with radius gI . Therefore, we can define pI in a polar coordinate system
with its two components pIx and pIy along the horizontal and vertical axis, respectively.
Since gI is known, pI can be uniquely determined by the azimuth angle θI as: pI =
gI · [cos(θI), sin(θI)]. Thus, Eq. (15) is automatically satisfied. Only Eq. (16) is to be solved
on each slip element.

For the resulting nonlinear system, TangCG employs a nonlinear conjugate gradient
(NLCG) method. In each NLCG iteration, the system is linearized, and a CG process is
applied. Concerning the construction of the search directions, the conjugacy may be lost as
the iterations proceed. The Polak-Ribière formula [22] is in our case the preferable choice
compared to the Fletcher-Reeves formula [6] to improve the search directions: the former
directs the search direction automatically towards the steepest descent direction when the
residual in the previous iteration is orthogonal to the new search direction, while the latter
restarts the solution process in this case [23].

Since the TangCG algorithm avoids generating Jacobian matrices, the matrix-vector
products (MVPs) encountered only depend on the influence coefficient matrix A in (7),
which includes submatrices being block Toeplitz with Toeplitz blocks(BTTB). The fast
Fourier transform (FFT) technique is applied to accelerate such MVPs with complexity
O(n logn).

3.2 Illustration of the TangCG algorithm

This subsection aims at showing how the pieces shown in Fig. 1 are combined to result in
an efficient algorithm. A very small test case is considered. It consists of only two elements
in contact, with elements 1 and 2 in the adhesion and slip areas, respectively. The traction
bounds gI , I = 1, 2 are given.
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3.2.1 Change of variables in slip area

Let’s start with a prominent component of the method, which is the change of variables
in the slip area. The following discussion is for the kth TangCG iteration, with the tractions
pk−1 and slip sk−1 known from the previous iteration. For clarity of the equations, we avoid
the iteration indices k − 1 and k where possible.

When the slip area S is empty, i.e. in the full adhesion case, the governing system
s = Ap + w = 0 is linear. When the slip area S is not empty, it becomes nonlinear.
Considering the two-element test, the governing system reads:

Ff = 0, (18)

with

F1 = s1x, (19)

F2 = s1y, (20)

F3 = p22x + p22y − g22 , (21)

F4 = p2xs2y − p2ys2x, (22)

where the first two equations correspond to adhesion element 1. Eqs. (21) and (22) for
slip element 2 bring in nonlinearity, and TangCG applies a NLCG method. The nonlinear
system (18) is linearized by a truncated Taylor expansion, which yields:

Jf · δpf = −Ff (p
k−1), (23)

with Jacobian matrix Jf = ∇Ff (p
k−1) having the following form:

Jf (p
k−1) =









Axx
11 Axy

11 Axx
12 Axy

12

Ayx
11 Ayy

11 Ayx
12 Ayy

12

0 0 p2x p2y
a1 a2 a3 a4









, (24)

and:

a1 = p2xA
yx
21 − p2yA

xx
21 , a2 = p2xA

yy
21 − p2yA

xy
21 ,

a3 = p2xA
yx
22 − p2yA

xx
22 + s2y, a4 = p2xA

yy
22 − p2yA

xy
22 − s2x.

This Jacobian matrix corresponds to variables δpf = [δp1x, δp1y, δp2x, δp2y]
T . It is not

symmetric and thus the CG method can not be applied.
A change of variables in the slip area can overcome this difficulty. Since traction p2

is placed at a circle of radius g2 (e.g. see Fig. 2(a)), the nonlinear Eq. (21) is satisfied
automatically and can be eliminated. The linearized version of this equation gives:

p2xδp2x + p2yδp2y = −(p22x + p22y − g22)

= 0 (since assuming ||p2|| = g2), (25)

which indicates δp2 ⊥ p2. It further yields:

δp2x = −p2yδθ2, δp2y = p2xδθ2. (26)

This relation satisfies ||δp2|| = ||p2||δθ2, which is the definition of the arc length correspond-
ing to the angle δθ2. This arc length is approximated by vector δp2 which is orthogonal to
p2.
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3.2.2 Reduced system

Eliminating Eq. (21) yields a reduced system written as:

Fr = 0, (27)

and the linearized system with relation (26) is given by:

Jrδpr = −Fr, (28)

with a 3× 3 Jacobian matrix:

Jr =





Axx
11 Axy

11 a1
Ayx

11 Ayy
11 a2

a1 a2 a4p2x − a3p2y



 . (29)

The corresponding variables are δpr = [δp1x, δp1y, δθ2]
T satisfying

δpf = Tδpr, (30)

with transformation matrix T defined by:

T =









1
1

−p2y
p2x









, (31)

whose transpose can convert δpf to δpr. The reduced Jacobian matrix (29) is symmetric
and positive definite (SPD), so we can apply CG to it.

3.2.3 Solution method for the reduced system

The reduced system (27) is solved by an NLCG method. In each of its iterations, the
CG method is applied to the linearized system (28), with initial iterate δp0

r = 0.
First of all, we compute the residual of linearized system (28) by:

ra = −Fr − Jr · δp
0,

= −Fr, (because δp0
r = 0), (32)

which is equal to the residual of the nonlinear system (27). The search direction va adopts
the steepest descent direction when the area subdivision changed. Otherwise, it employs
the Polak-Ribière formula. The line search aims at determining a step length α, such that
the residual resulting from the updated iterate is orthogonal to the current search direction
va. This yields formula for α given by:

α =
(ra,va)

(va,qa)
, (33)

where qa is the change of the residual caused by va, defined by:

qa = Jrva. (34)

Subsequently, the iterate of linear system (28) is corrected by δp1
r = αva. This further gives:

Tδp1
r = αTva ⇒ δp1

f = α · vs, (35)

where vs is the auxiliary search direction defined by:

vs = Tva. (36)

The new traction iterate is given by:

pk = pk−1 + δp1
f = pk−1 + α · vk

s . (37)

Moreover, the tractions on each slip element need to be projected onto the corresponding
circle. This represents one NLCG iteration.
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3.2.4 Matrix-vector products

To compute qa in (34), TangCG does not directly implement this multiplication of
Jacobian matrix Jr and vector va, but takes a detour, which allows the use of FFTs. Vector
va is transformed to the auxiliary search direction vs by (36). Then its influence on slip δs
can be computed by

δs = Avs, (38)

where the FFT technique can be applied due to the matrix A in (8). Eq. (34) with relation
(26) yields:

qa =





δs1x
δs1y

p2xδs2y − p2yδs2x + s2yv2x − s2xv2y



 . (39)

This indicates that on adhesion element 1 we have δs1 = qa1, and on slip element 2, δs2
also has its influence as seen in the last formula in (39).

3.2.5 Active set framework from BCCG(K)

An outer iteration is processed after every K inner iterations. It validates the contact
conditions, and adjusts the subdivision of the contact area. The adhesion elements with
||pI || > gI are moved to the slip area, and are projected to ||pI || = gI . Remember that
tractions pI of each slip element should have opposite directions with the slip sI . The
elements are moved to the adhesion area if these two vectors lie in the same half plane.
Finally, the tolerance of the solution is checked.

3.2.6 Illustration from view by angles

Since TangCG uses angle variables in the slip area, it can be explained from the view
of angles as well. We define the anti-clockwise angle to be positive. Fig. 2 shows the kth
TangCG iteration on slip element I. (We drop the superscripts k − 1 and k in this figure.)
In this discussion, we will use six angles τi, i ∈ {1, 2, 3, 4, 5, 6}.

In Fig. 2(a), the traction pI lies at the circle with radius gI . It is expected that

θp = θs + π, (40)

i.e., the azimuth angle of slip sI plus π is equal to azimuth angle of pI . We notice that
τ2 = θs + π − θp is the residual of Eq. (40); τ2 represents the angle along which pI should
move, in order to be located opposite to sI . However, a change in pI also causes a change
in sI . So τ2 is not the exact angle that pI needs to be changed with.

The angle residual computed by Eq. (32) is given by:

raI = −(pIxsIy − pIysIx)

= || − p⊥
I ||||sI || cos(τ1)

= gI ||sI || sin(τ2) (since τ2 = π/2− τ1)

≈ gI ||sI ||τ2, if τ2 → 0, (41)

where −p⊥
I = [pIy,−pIx] is orthogonal to pI , and τ1 is the angle between −p⊥

I and sI .
Residual raI can be regarded as the angle τ2 scaled by gI ||sI ||. It gives a preliminary angle
by which the traction pk

I should move.
In the first iteration, the search direction is equal to raI . As a result of linearization,

the auxiliary search direction vsI is orthogonal to pI , as seen in Fig. 2(b). It is a linear
approximation of the arc length, corresponding to the angle raI .
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Figure 2: First TangCG inner iteration on slip element I. (a) At the beginning, traction
pI lies at the circle with radius gI . It should be opposite to slip sI . (b) Primary residual
raI (equal to search direction vaI) is computed. The auxiliary search direction vsI is set to
be orthogonal to pI , due to linearization. (c) Line search is performed to get a step length

α = (va,ra)
(va,qa)

, where qaI is obtained from the information of two angles τ4, τ6. (d) Update the

traction by pk−1
I + αvk

sI , which is then projected onto the circle, obtaining pk
I .

By the line search, the TangCG method computes the change of slip δsI , as shown in
Fig. 2(c). It calculates the change of angle residual qa as in (39):

qaI = pIx · δsIy − pIy · δsIx + sIy · vIx − sIx · vIy

= ||p⊥
I ||||δsI || cos(τ3) + ||v⊥

I ||||sI || cos(τ5)

= gI ||δsI || sin(τ4) + ||v⊥
I ||||sI || sin(τ6) (since τ4 = π/2− τ3, τ6 = π/2− τ5)

≈ gI ||δsI ||τ4 + ||v⊥
I ||||sI ||τ6, if τ4, τ6 → 0, (42)

where v⊥
I = [−vIy, vIx]. The two angles τ4, τ6 are presented in Fig. 2(c). They, together

with the concrete scaling, give the angle change qaI .
Then, the TangCG method computes the step length. The updating is shown in Fig.

2(d): after adding αvI to pk−1
I , the result is projected onto the circle again, which yields

new iterate pk
I .
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3.2.7 Preconditioning

The idea of preconditioning for Krylov subspace methods is to reduce the condition
number of the coefficient matrix. In the TangCG algorithm, the preconditioner is applied
to the reduced Jacobian matrix (29) in each NLCG iteration.

We use a diagonal matrix as the preconditioner, which scales the main diagonal of the
Jacobian, to result in a matrix with constant diagonal entries. This constant can be chosen
to be any diagonal component of Jacobian, corresponding to an adhesion element. The
residuals in the adhesion and slip areas have different meanings: residuals are “slip” in the
former and “angle” in the latter area. Hence, the preconditioner scales the quantities to the
same measure, e.g. the measure in the adhesion area. Regarding computational time, the
preconditioner should not cost much.

In the two element case, a preconditioner M for Jr in (29) is given by:

M =





1
Axx

11 /A
yy
11

Axx
11 /(a4p

k
2x − a3p

k
2y)



 . (43)

With M = S2, the preconditioned matrix SJrS has values of Axx
11 on its main diagonal.

3.3 The resulting algorithm

We detail the resulting TangCG algorithm with preconditioner M below. (The unpre-
conditioned algorithm can be obtained by setting M = I.)

0. Given normal pressure pn and contact area C, we solve for the tangential tractions
and the subdivision of the contact area. The initial adhesion and slip areas are set as:
H0 = C and S0 = ∅. We use zero initial tractions p0 = 0.

1. Start iterations k = 1, 2, ... by computing slip sk−1 = w +Apk−1.

2. Compute corresponding primary residual rk−1
a , as Eq. (32):

{

rk−1
aI = −sk−1

I , I ∈ Hk−1,

rk−1
aI = −(pk−1

Ix sk−1
Iy − pk−1

Iy sk−1
Ix ), I ∈ Sk−1.

(44)

3. Preconditioning by: zk−1
a = Mrk−1

a .

4. Compute primary search direction vk
a:

4.1 If the subdivision did not change, i.e. Hk−1 = Hk−2, then choose vk
a conjugate

to vk−1
a as:

vk
a = zk−1

a + βk · vk−1
a , with βk = max(0, βk

PR), (45)

where βk
PR is the Polak-Ribière formula: βk

PR =
(zk−1

a ,rk−1

a −r
k−2

a )

(zk−2

a ,r
k−2

a )
.

4.2 Else, restart CG by using vk
a = zk−1

a , the steepest descent direction.

5. Compute auxiliary search direction vk
s by Eq. (36):

vk
sI =

{

vk
aI , I ∈ Hk−1,

vkaI · [−pk−1
Iy , pk−1

Ix ], I ∈ Sk−1.
(46)

Here, search direction vk
sI can be regarded as the desired change of traction δpk. For

a slip element, this corresponds to the desired change of angle vkaI .

6. Compute the change in the slip by Eq. (38), i.e.: δsk = qk
s = Avk

s .
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7. Compute the change in primary residual qk
a by Eq. (39):

{

qk
aI = qk

sI , I ∈ Hk−1,

qkaI = pk−1
Ix · δskIy − pk−1

Iy · δskIx + sk−1
Iy · vkIx − sk−1

Ix · vkIy, I ∈ Sk−1.
(47)

8. Compute the step length by Eq. (33), i.e.: αk =
(rk−1

a ,vk
a)

(qk
a,v

k
a)

.

9. Update tractions: p̃k = pk−1 + αk · vk
s for all elements. Then use:

pk
I =

{

p̃k
I , I ∈ Hk−1,

gI · p̃k/||p̃k||, I ∈ Sk−1.
(48)

10. In the inner iteration, i.e. mod(k,K) 6= 0, the subdivision of the contact area is fixed,
i.e., Hk = Hk−1, Sk = Sk−1, go to Step 1.

11. At the end of each Kth inner iteration, i.e. mod(k,K) = 0, do the following:

11.1 Check elements I ∈ Hk−1. If ||pk
I || > gI , then move I to the slip area, and set

pk
I = gI · pk

I/||p
k
I ||. This gives H̃

k and S̃k.

11.2 Compute sk = w + Apk, and check the elements I ∈ S̃k. If (pk
I , s

k
I ) > 0, then

move I to the adhesion area. This results in Hk and Sk.

11.3 Check for convergence. If the subdivision of the contact area does not change,
and the stopping criteria on the solution is satisfied, then we are done. Else go
to Step 1.

Remark 3.1. Steps 1-10 present one inner iterations, where a nonlinear system is solved ap-
proximately by K iterations of NLCG. Line search is performed in Steps 5-8. Step 11 checks
the contact conditions and convergence, according to the BCCG(K) algorithm. Moreover,
Steps 9 and 11.1 insure that ||pI || = gI , I ∈ S is always satisfied.

Remark 3.2. In the above algorithm, there are K inner iterations before checking the
conditions. It may happen that the tolerance is already reached within the K inner iterations.
An improved version is to leave the inner iteration as soon as a tolerance is reached, and
check the conditions in the outer iteration.

3.4 2× 2 test

To investigate the performance of NLCG within the preconditioned TangCG algorithm,
we enlarge the test to a 2 × 2 grid, where Elements 1 and 2 are in adhesion and 3 and
4 are in slip. The contact area is [−1, 1] × [−1, 1]mm2. The material parameters are:
G = 200N/mm2, ν = 0.42. The traction bound is defined as g = [0.4, 0.8, 0.282843, 0.5].
The true solution reads: p∗

1 = [0.2, 0.1];p∗
2 = [0.1, 0.2];p∗

3 = [0.2, 0.2];p∗
4 = [0.3, 0.4]. The

true slip is s∗1 = [0, 0]; s∗2 = [0, 0]; s∗3 = [−0.1,−0.1]; s∗4 = [−0.3,−0.4].
We linearize the nonlinear system at true solution p∗. By setting δp3x = −β3 · p∗3y, δ3y =

β3 ·p∗3x, and δp4x = −β4 ·p∗4y, δ4y = β4 ·p∗4x, the Jacobian matrix is reduced to a 6×6 matrix:

J∗
r =

















Axx
11 Axy

11 Axx
12 Axy

12 ax31 ax41
Ayx

11 Ayy
11 Ayx

12 Ayy
12 ay31 ay41

Axx
21 Axy

21 Axx
22 Axy

22 ax32 ax42
Ayx

21 Ayy
21 Ayx

22 Ayy
22 ay32 ay42

ax31 ay31 ax32 ay32 ay33p
∗
3x − ax33p

∗
3y ay34p

∗
4x + ax34p

∗
4y

ax41 ay41 ax42 ay42 ay43p
∗
3x − ax43p

∗
3y ay44p

∗
4x + ax44p

∗
4y

















. (49)

Here, for elements I ∈ S and the elements in contact J ∈ C:

if I 6= J : axIJ = Ayx
IJ · p∗Ix −Axx

IJ · p∗Iy, ayIJ = Ayy
IJ · p∗Ix −Ayx

IJ · p∗Iy,

if I = J : axII = Ayx
II · p∗Ix −Axx

II · p∗Iy + s∗Iy, ayII = Ayy
II · p∗Ix −Ayx

II · p∗Iy − s∗Ix.
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The Jacobian matrix (49) is SPD. Its condition number is found to be 88.
The TangCG algorithm employs an NLCG process, whose convergence should be similar

to the linear CG algorithm when the iterates are close to true solution p∗. We test whether
this is also true for the TangCG algorithm. We also check whether the preconditioner
improves the convergence near p∗.

As a test, four different initial points are implemented, respectively, with their absolute
distances to p∗ being δi = 0.02, 0.001, 1× 10−5, 1 × 10−7(i = 1, 2, 3, 4). CG is applied to
the linearized system J∗

r δp
∗
r = 0, with initial δp0

r = T T (p∗ − p0). The iterate is conver-
ted to traction by (30) and further the nonlinear residual is compared with those by the
unpreconditioned and preconditioned TangCG algorithms.

These results are shown in Fig. 3. It can be seen that the closer the initial point is at the
true solution, the more similar the convergence by TangCG is to the CG convergence. As the
iterate approaches the true solution, the Jacobian matrix obtained by linearization in each
TangCG iteration is close to the exact Jacobian J∗

r . In this case, the NLCG method within
TangCG is the same as CG, as seen in Fig. 3(d). Moreover, we find that the preconditioner
indeed improves the convergence of TangCG.
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Figure 3: The convergence behavior of TangCG with and without preconditioning, compared
to CG, for four different initial points.

4 Numerical results

A Cattaneo shift problem is tested here. A sphere is pressed onto a plane, and is then
shifted tangentially. Sphere ad plane are of the same material, with shear modulus G =
200N/mm2, and Poisson’s ratio ν = 0.42. The potential contact area is [−a, a] × [−b, b]
where a = b = 1.2857mm. The total normal force is Fn = 9.1954N . The curvature
Rx = Ry = 0.01mm−1, and the profile of the sphere is h = 1

2Rx
x2 + 1

2Ry
y2. Coulomb’s law

is applied with friction coefficient µ = 0.4.
Since the two contacting bodies are quasi-identical, the solution process is decoupled to
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first solve the normal problem, followed by the tangential problem. The former is solved by
Hertz theory [11] or a numerical method [31], which results in a contact area C and normal
pressure pn. Applying Coulomb’s law, we thus obtain the traction bound g = µpn. Below
we focus on solving the tangential problems, with seven different slip cases, as specified in
Table 1. The stopping criterion on the accuracy of the tractions is given by

subdivision of contact area ξ η φ
Case 1 full adhesion 0 0 5× 10−7

Case 2 0.6% slip 1.5× 10−5 0 1× 10−5

Case 3 20% slip 0 0.0015 0.0012
Case 4 40% slip 0.0021 0.0010 0.003
Case 5 60% slip 0.0037 0.0045 0.004
Case 6 80% slip 0 0.005 0.009
Case 7 full slip 0.0044 0 0.08

Table 1: Test setting: seven cases with different percentages of slip. Longitudinal shift ξ,
lateral shift η and rotation shift φ are prescribed. They are used to compute rigid shift w
(see Eq. (11)).

||pk − pk−1||

||pk||
< ε, (50)

where, if not specified differently, we use ε = 10−5. The norm used in this section is the

“root-mean-square” norm, defined as ‖ x ‖rms=
√

1
n

∑n

i=1 x
2
i . This stopping criterion is

chosen since engineers pay most attention to tractions, rather than to the slip, which is
the residual of nonlinear system (27). Moreover, when (50) is satisfied, the residual of this
nonlinear system is smaller than 10−8 in our numerical tests.

The tangential solvers are TangCG(K) algorithms with and without preconditioning,
using the improved version mentioned in Remark 3.2. Remember that K is the number
of NLCG iterations for one nonlinear system before checking the contact conditions. We
implemented these two algorithms for the seven problem cases, in order to find an optimal
value for K. They are then compared with each other, yielding the most efficient algorithm.
It is also compared with the ConvexGS method [28], from the perspective of CPU time.

4.1 Optimal K

First we use a 120× 100 grid, which involves 5732 contacting elements with 5732× 2 =
11464 traction unknowns. We apply K ∈ {1, 2, 3, 4, 5} for the seven cases of Table 1.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
K = 1 30 46 147 75 148 90 48
K = 2 30 52 66 91 119 82 48
K = 3 30 54 86 72 105 77 65
K = 4 30 50 94 94 117 95 57
K = 5 30 53 78 106 156 88 37

Table 2: Unpreconditioned TangCG(K): the total number of inner iterations with different
values ofK for the seven slip cases, using a 120×100 grid (with 5732×2 = 11464 unknowns).

Table 2 gives the total number of inner NLCG iterations by TangCG(K) iterations. For
Case 1, the full adhesion problem, the results are independent of the values of K. Remember
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that the TangCG(K) method starts with the subdivision H0 = C, and S0 = ∅. This is
already the correct subdivision in the full adhesion case. The governing system is linear,
and TangCG is actually equivalent to the CG method.

When slip occurs, different K values show different results. K = 1 is the fastest in the
slight slip Case 2. It gets worse when more slip is included, as seen in Cases 3-6, where
K = 3 seems a proper choice. The reason is that the slip area has to be found from initial
area S0 = ∅. If K = 1, then only one inner iteration is performed and the traction iterates
may not be accurate enough to perform a useful adjustment of the subdivision of the contact
area: in Step 11 of the TangCG algorithm (see Section 3.3), many elements that are first
moved from the adhesion to slip area, may be immediately moved back. Using a larger value
for K can improve this situation. However, if K is too large, there would be unnecessarily
many inner iterations.

In the full slip Case 7, K = 5 results in the fastest convergence. The initial slip area
S0 tends to be S = C. More precise solutions can move more elements into the slip area
at once, which accelerates the convergence. Moreover, the results of other values for K are
also acceptable.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
K = 1 29 43 42 59 66 52 27
K = 2 29 50 50 52 63 51 32
K = 3 29 48 46 55 49 42 41
K = 4 29 45 59 49 55 50 31
K = 5 29 54 51 55 56 47 22

Table 3: Preconditioned TangCG(K): the total number of inner iterations with different
values ofK for the seven slip cases, using a 120×100 grid (with 5732×2 = 11464 unknowns).

From the above discussion, we find K = 3 is an optimal choice for the unpreconditioned
TangCG(K) method in different cases. The same conclusion can be found for TangCG(K)
with preconditioning, from the results in Table 3. Therefore, we will use K = 3 in the
following tests.

4.2 Comparison between TangCG(3) with and without precondi-
tioning

Comparing these two tables, we find that the preconditioner helps to accelerate the
convergence, depending on the different slip situations. One exception is the full adhesion
Case 1, where the main diagonal entries of the Jacobian are almost the same. Hence, the
condition number after preconditioning hardly reduces.

Fig. 4 displays the convergence behavior of the two methods for Cases 2-7, that include
slip. In this figure, we use ε = 10−8 in the stopping criterion (50), to examine the behavior
of these two methods near the true solution. We find that TangCG(3) with preconditioning
greatly speeds up the convergence. It gives almost linear reduction of the difference between
two iterates, when approaching the true solution. TangCG(3) without preconditioning, on
the other hand, displays a slower convergence speed, and even an oscillate reduction in Case
2.

4.3 Comparison with ConvexGS method

We compare the CPU time by TangCG(3) with preconditioning to the ConvexGS method
in the software CONTACT. The codes are written in Matlab 8.0 (R2012b). Both meth-
ods are implemented on Windows 7, 64-bit platform with Intel(R) Core(TM)2 Duo CPU,
E8500@3.16 GHz, 3.17 GHz.
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Figure 4: Convergence of TangCG(3) with and without preconditioning for Cases 2-7, with
ε = 10−8 in the stopping criterion (50). The horizontal axis is number of inner iterations,
and the vertical axis is the difference between two iterates.
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Figure 5: CPU time in seconds by TangCG(3) with preconditioning and ConvexGS for (a)
Cases 1 and 3, (b) Cases 5 and 7.

TangCG(3) requires fewer iterations than ConvexGS for the test case with a small per-
centage of slip. With more slip, the iteration numbers are comparable. Fig. 5 shows the
CPU time (in seconds) for some of the test cases, by TangCG(3) with preconditioning (de-
noted by solid lines), and ConvexGS (denoted by dashed lines). For the smallest problem,
both methods require approximately the same time. The superiority of TangCG(3) shows
when more unknowns are involved. The speedup factor is defined as the ratio of time by
ConvexGS and by TangCG(3). For around 1× 104 unknowns, the speedup factors for Cases
1,3,5,7 are about 11,10,6,4, respectively. They grow to 25,26,15,11 when the number of
unknowns is multiplied by a factor of 4.

17



5 Conclusion

In this paper we propose the TangCG algorithm to solve a nonlinear constrained optim-
ization formulation, arising from the frictional contact problem. The corresponding KKT
conditions provide the governing equations and contact conditions. The TangCG algorithm
applies an active set strategy. The subdivision of the contact area is fixed and the result-
ing governing system is solved approximately. The resulting solution is used to modify the
subdivision based on these contact conditions.

Because the magnitude of the tractions on a slip element equals the traction bound, we
can change the conventional traction variables to azimuth angles, when placing the traction
vector of each slip element in a polar coordinate system. This changes the constraints to
simple bounds such that the BCCG strategy can be used. The resulting nonlinear equa-
tions are solved by several NLCG iterations, which is based on linearization and applies a
CG method in each iteration. A diagonal scaling preconditioner is combined to bring the
residuals of adhesion and slip areas to the same scale, and all matrix-vector products in this
algorithm are speeded up by FFTs.

The TangCG algorithm is tested for Cattaneo shift problems, with different amounts of
slip. The preconditioner is found to accelerate the convergence when slip occurs. Comparing
with the state-of-the-art ConvexGS method, the computational time is reduced dramatically
and the corresponding speedup factor grows as problem size increases. This confirms the
efficiency of our new method.
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