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Abstract

This work presents a new algorithm to compute eigenpairs of large unsymmetric matrices.
Using the Induced Dimension Reduction method (IDR(s)), which was originally proposed for
solving systems of linear equations, we obtain a Hessenberg decomposition, from which we
approximate the eigenvalues and eigenvectors of a matrix. This decomposition has two main
advantages. First, IDR(s) is a short-recurrence method, which is attractive for large scale
computations. Second, the IDR(s) polynomial used to create this Hessenberg decomposition
is also used as a filter to discard the unwanted eigenvalues. Additionally, we incorporate the
implicitly restarting technique proposed by D.C. Sorensen, in order to approximate specific
portions of the spectrum and improve the convergence.
Keywords: Eigenpairs approximation, Induced Dimension Reduction method, implicitly
restarting, polynomial filter.

1 Introduction

A variety of applications involve the solution the eigenvalue problem. This problem consists in
finding a subset of pairs (λ, x) of a matrix A ∈ Cn×n, such that:

Ax = λx, (1)

where λ ∈ C is called eigenvalue, and the nonzero vector x ∈ Cn is its corresponding eigen-
vector. When the matrix A is large and unsymmetric, solving the eigenvalue problem becomes
computationally challenging.

Methods to approximate a subset of eigenpairs of large unsymmetric matrices are usually based
on the construction of a standard Hessenberg decomposition associated with the matrix A, i.e.

AUm = UmBm + um+1e
T
m, (2)

where Um ∈ Cn×m, Bm is a Hessenberg matrix of order m, um+1 ∈ Cn, and em is the m-th
canonical vector, with m being typically much smaller than n. Under certain conditions, the
eigenvalues of the matrix Bm approximate a subset of eigenvalues of A.

The Induced Dimension Reduction (IDR(s)) was introduced in 2008 for solving systems of
linear equations [24]. IDR(s) is a short-recurrence method which has obtained attention for its
rapid convergence and computational efficiency. IDR(s) as a method to compute eigenvalues was
first studied by M. H. Gutknecht and J.-P. M. Zemke in [7]. The work that we present here is
a continuation of [2]. We describe how to obtain an underlying Hessenberg decomposition of the
form (2) from IDR(s), and we combine it with the implicitly restarting technique introduced by
D.C. Sorensen [25] for Arnoldi in order to approximate the eigenpairs of interest. Additionally, we
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suggest a parameter selection for our proposed method which defines a filter polynomial for the
spectrum.

This report is structured as follow. In section 2, we present an overview of the Hessenberg de-
compositions, which are the basis for large scale eigenvalues/eigenvectors approximation. Section
3 explains how to compute a Hessenberg decomposition based on the IDR method. Two tech-
niques to refine the information obtained from the IDR-Hessenberg factorization are discussed in
section 4. In Section 5, we present numerical experiments to illustrate the behavior of the method
proposed.

We use the following notation: capital letters denote matrices, and the transpose of a matrix
A is represented by AT . Column vectors are represented by bold-face, lower case letters. Greek
lower case letters represent complex scalars. In is the identity matrix of order n, and wherever
the context is clear the subindex n is eliminated. Subspaces are denoted by uppercase calligraphic
letters.

2 Background on Hessenberg decompositions

In Eq. (2), the columns of the matrix Um represent a basis for the Krylov subspace,

Km(A,x) = {x, Ax, A2x, . . . , Am−1x}. (3)

The upper Hessenberg matrix Bm is the projection of the matrix A over Km(A,x). Projections
onto Krylov subspaces are the basis for several methods to solve system of linear equations and
eigenpairs approximation (see for example [19, 20]). To compute eigenvalues of large, unsymmetric,
and sparse matrices, the most common options between the Krylov methods are Bi-Lanczos [10]
and the Arnoldi method [1]. Each of them creates a different Hessenberg decomposition associated
with the matrix A. Bi-Lanczos method uses a short-recurrence formulas to create two Hessenberg
tridiagonal decompositions of the form

AVm = VmTm + feTm

and
ATWm = WmT

T
m + seTm,

where em is the m-th canonical vector, f and s ∈ Cn, Tm ∈ Cm×m is a tridiagonal matrix,
the matrix Vm ∈ Cn×m is a basis for Km(A,v1), Wm ∈ Cn×m is a basis for Km(AT ,w1) and
the matrices Vm and Wm are bi-orthogonal (WT

mVm = Im). However, despite being an efficient
short-recurrence method, Bi-Lanczos is numerically unstable (see [15]).

Arnoldi method, on the other hand, builds a Hessenberg decomposition

AVm = VmHm + feTm,

where f ∈ Cn and Vm is a matrix with orthogonal columns and represents a basis for Km(A,v1).
This method is widely used to approximate a subset of the eigenpairs of A; nevertheless, its
computational and memory cost increases per iteration. An option to overcome this issue is to
restart the process (see [17]). Other Hessenberg decompositions to approximate eigenpairs based
on Newton and Chebyshev polynomials can be found in [8, 9, 4, 16].

The IDR(s) is a Krylov method proposed for solving systems of linear equations. It is based
on the following theorem:

Theorem 1. Let P = [p1, p2, p3, . . . ,ps] be an n × s matrix, and let {µj} be a sequence in C.
With G0 ≡ Cn, define

Gj+1 ≡ (A− µj+1I)(Gj ∩ P⊥) j = 0, 1, 2 . . . ,

where P⊥ represents the orthogonal complement of P . If P⊥ does not contain an eigenvector of
A, then, for all j = 0, 1, 2 . . . , the following hold
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1. Gj+1 ⊂ Gj, and

2. dimension(Gj+1) < dimension(Gj) unless Gj = {0}.

Proof. See [22, 24].

In order to solve a system of linear equations, IDR(s) forces the residual vector rk = b−Axk
to be in the nested and shrinking spaces Gj , and then extracts the approximate solution xk.
In the original implementations of IDR(s), the authors do not create explicitly any Hessenberg
decomposition ([24, 28]). M. H. Gutknecht and J.-P. M. Zemke in [27] deduce a generalized
Hessenberg decomposition from the IDR(s) method

AWmUm = WmĤm + weTm, (4)

from which only the eigenvalues values of A are approximated by the solution of the eigenvalue
pencil (Ĥm, Um). Here the matrices Um and Ĥm are in Cm×m, with Um upper triangular and,
Hm is a Hessenberg matrix. The matrix Wm is not explicitly built.

In the next section, we present a IDR(s)-based Hessenberg decomposition which generates, in
exact arithmetic, the same eigenvalues of the generalized Hessenberg decomposition presented in
[7]. It is worth to remark two advantages of the IDR(s) Hessenberg decomposition proposed here.
First, we explicitly build the matrix Wm, and, we can approximate the eigenvectors. Second, the
IDR(s) decomposition is of the form (2) and this is particularly suitable to apply the implicitly
restarted technique of D.C. Sorensen [25].

3 A Hessenberg decomposition based on the IDR(s) method

This section proposes a method to build a standard Hessenberg decompositions using the IDR(s)
method. First, we review the generalized Hessenberg decomposition presented in [7], then, we
present an equivalent standard Hessenberg decomposition. A vector wi+1 in Gj , according to [24],
can be written as

wi+1 = (A− µjI)

(
wi −

s∑
`=1

c`wi−`

)
, (5)

where the s + 1 vectors wi−s, wi−s−1, . . . , wi belong to Gj−1, µj ∈ C with b i
s+1c = j, and the

constants c` are obtained from the solution of the s× s system of linear equations:

(PT [wi−s, wi−s+1, . . . , wi−1])c = PTwi.

Using Eq. (5), we have:

Awi = wi+1 + µj+1wi − µj+1

s∑
`=1

c`wi−` +

s∑
`=1

c`Awi−`, (6)

or equivalently:

Awi −
s∑
`=1

c`Awi−` = wi+1 + µj+1wi − µj+1

s∑
`=1

c`wi−`.

From the latter equation, the authors in [7] propose a generalized Hessenberg decomposition:

AWmUm = WmHm + weTm, (7)
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where Um is an upper triangular matrix and Ĥm is an upper Hessenberg matrix; their columns
are defined as

ui =



0
...
0

−

c1...
cs


1
0
0
...
0



, and ĥi =



0
...
0

−µj+1

c1...
cs


µj+1

1
0
...
0


The matrix pencil (Ĥm, Um) is called the Sonneveld pencil. The eigenvalues of this pencil are
divided in two sets: {µk}tk=1 with t = bm−1s+1 c, and the approximations to the eigenvalues of A
or Ritz values {θk}mk=t. We create an IDR(s)-based standard Hessenberg decomposition of the
form (2). Setting Wk = [w1, w2, . . . ,wk], and assuming that Awi−` can be written as a linear
combination of the vectors w1, w2, wi−`, wi−`+1, for i = 1, 2, . . . , i− 1, we obtain

Awi−` = Wi−`+1hi−`. (8)

Combining Eqs. (6) and (8), we obtain

Awi = Wi+1hi

where

hi =





0
...
0


−µj+1

c1...
cs


µj+1

1


+

s∑
`=1

c`hi−`


for i = s+ 1, . . . .m. (9)

Applying Eq. (9) for i = 1, 2, . . . ,m, we obtain a standard Hessenberg decomposition that we
call the IDR factorization:

AWm = Wm+1H̄m (10)

= WmHm + wm+1e
∗
m. (11)

The matrix Wm is a non-orthogonal basis for the Krylov subspace and the Hessenberg matrix
Hm has exactly the same eigenvalues as the matrix Sonneveld matrix pencil (see Figure 1 for a
comparison of Ritz values obtained from the IDR factorization, the Sonneveld pencil, and the
Arnoldi method). This result is summarized in the following theorem:

Theorem 2. Matrix Hm, whose columns are defined in (9), can be written as

Hm = ĤmU
−1
m

where the matrices (Ĥ, Um) define the Sonneveld pencil proposed in [7].
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Figure 1: This figure shows Ritz values generated by our proposed IDR(s = 4) factorization, the
Sonneveld pencil, and Arnoldi.

Proof. (Induction over the columns of Hm). For 1 ≤ i ≤ s+ 1, let us assume a starting standard
Hessenberg decomposition for the Sonneveld pencil. As an inductive step let us assume that
Hm×i = Ĥm×iU

−1
i , or if we represent the columns of the inverse Um as [u−1]i, we can write the

previous expression as hk = Ĥm×k[u−1]k for 1 ≤ k ≤ i. For k = i + 1, taking into account the
structure of the matrix Um, we obtain that the i+ 1-th column is:

Ĥm×i+1[u−1]i+1 = Ĥm×i+1

(
s∑
`=1

c`[u
−1]i−` + ei+1

)
Using the induction hypothesis, we obtain

Ĥm×i+1[u−1]i+1 =

s∑
`=1

c`hi−` + ĥi+1,

and this is exactly equal to the proposed formula of the (i+ 1)-th column of Hm in (9).

If we assume that k vectors have been created in Gj , then any linear combination of these is
also a vector in Gj . Therefore, we can rewrite this equation as

wi+1 = (A− µjI)

(
wi −

s∑
`=1

c`wi−`

)
+

k∑
`=1

βi−`wi−`

The selection of the parameters βs yields different versions of IDR(s). For example, choosing the
parameter β` to impose biorthogonality between the set of vectors {w`}k`=1 and {P`}k`=1 [28], or to
make the vector wi+1 orthogonal to the previous vectors in the subspace [27]. Algorithm 1 outlines
the process to create an IDR factorization of size m in which β`s are selected to orthogonalize the
vector in Gj .

The matrix Hm, created by Algorithm 1, is called the Sonneveld matrix in [7]. At this stage,
it is worth to comment on the main differences between the work presented here and the work
in [7]. First, we create a standard Hessenberg decomposition rather than the Generalized Hes-
senberg decomposition proposed in [7]. The standard Hessenberg decomposition is suitable to
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Algorithm 1 IDR(s) Process applied to a matrix A

1: Given s ∈ N, P ∈ Rn×s, W ∈ Cn×s+1 and H ∈ Cs+1×s, such that AWs = Ws+1H̄s

2: for i = s+ 1, . . . ,m do
3: if i is multiple of s+ 1 then
4: Choose the parameter µj for the subspace Gj
5: end if
6: Solve the s× s system of linear equations

(PT [wi−s, wi−s+1, . . . , wi−1])c = PTwi

7: v = wi −
∑s
`=1 c`wi−` . v ∈ Gj−1 ∩ P⊥

8: wi+1 = (A− µjI)v . New vector in Gj
9: Create the i+1-th column of H according to (9).

10: βi−` = wT
i wi−` for ` = 1, 2, . . . , k, βi = ‖wi+1 −

∑k
`=1 βi−`wi−`‖.

11: wi+1 = (wi+1 −
∑k
`=1 βi−`wi−`)/βi

12: hi−`,i = hi−`,i + βi−` for ` = 1, 2, . . . , k and hi+1,i = βi
13: Wi+1 = [w1, w2, . . . , wi, wi+1] . Update the IDR factorization
14: end for

apply the implicit restarting technique. Another difference is that by means of our proposed IDR
factorization, the eigenvectors of the matrix A can be approximated without extra calculations.
The authors in [7] remove the µj values from the spectrum of the Sonneveld pencil (Ĥ, Um); this
process is called purification and it creates a smaller pencil that only contains the approximations
of the eigenvalues of A. The disadvantage of the purification process is that the Krylov basis has
to be recalculated to approximate eigenvectors. The numerical stability difference between our
proposed method and the Sonneveld pencil has been recently addressed in [29] by J.-P. M. Zemke.

3.1 Operation count and memory consumption

The Arnoldi method, in them-th iteration, requires one matrix-vector multiplication and m(m+1)
2 +

1 inner products. For IDR(s), the number of inner products does not depend on the iteration

number m. In Algorithm 1, every s + 1 iterations, performs 7s2+5s
2 + 1, inner products, s + 1

matrix-vectors products, and it also requires the solution of s + 1 systems of linear equations
of order s. All of this indicates that the computational work of IDR(s) does not grow in every
iteration, in contrast to the Arnoldi method. In terms of computational work, IDR(s) is an
intermediate option between Bi-Lanczos and Arnoldi method.

IDR(s) and Arnoldi have similar memory requirements. In the m−th iteration, IDR has to
store the Hessenberg matrix H̄m of size (m+ 1)×m, the matrix Wm+1 of size n× (m+ 1), and
additionally the matrix P of size n× s. In some application, however, where only the eigenvalues
are required, the IDR(s) could be adapted to low memory requirements. IDR(s) would not need
to save all the columns of the matrix Wm; it would only required the last s+ 1 vectors of Wm+1,
the matrix H̄m, and the matrix P .

3.2 Approximation of the eigenpairs and stopping criteria

To obtain an approximation of the eigenpairs of the matrix A, we first compute an eigenpair of
the small matrix Hm, i.e.,

Hmy(i) = θiy
(i) with ‖y(i)‖ = 1.

Then, setting our eigenpair approximation as (θi, x
(i) = Wmy(i)), and using the relation (10), we

have that
Axi − θixi = AWmyi − θiWmyi = wm+1e

t
myi.
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From the previous Eq. and setting [y(i)]m as the m-th component of the vector y(i), we can obtain
the following bound

‖Ax(i) − θix(i)‖ ≤ ‖wm+1‖|[y(i)]m|, (12)

or, if we normalize the vector wm

‖Ax(i) − θix(i)‖ ≤ hm+1,m|[y(i)]m|. (13)

However, it is not suitable to use (hm+1,m[y(i)]m) ≤ ε as stopping criteria, because Wm is not
a matrix with orthogonal columns, in consequence, the norm of this matrix produces scaling effect
over (12). For this reason, we consider

‖Ax(i) − θix(i)‖
‖Wm‖

≤ ε,

Then, we need that
hm+1,m|[y(i)]m|‖Wm‖ ≤ ε.

In this way, we avoid the scaling effect of the matrix Wm over the residual bound. Furthermore,
it is not necessary to compute the norm of Wm in every iteration. An observation made in [27] is
that the matrix Wm has m blocks of size s+ 1 orthogonal vectors then

‖Wm‖ ≤
√
m.

We stop the process when
hm+1,m|[y(i)]m|

√
m ≤ ε. (14)

3.3 Relation between the Arnoldi and other Hessenberg decompositions

In this section, we review the relation between different Hessenberg decompositions. In particular,
we are interested in the difference between a Hessenberg decomposition obtained by Arnoldi and
an IDR(s)-Hessenberg decomposition. Let us assume that after m steps of the Arnoldi method
applied to the matrix A ∈ Cn×n, with an initial vector x ∈ Cn and without breakdown, we obtain
the following Hessenberg decomposition

AVm = VmHm + feTm = Vm+1H̄m. (15)

On the other hand, let us consider another Hessenberg decomposition associated with the matrix
A and the same initial vector x

AXm = XmGm + geTm = Xm+1Ḡm, (16)

where the columns of the matrix Xm+1 do not form an orthogonal set. One can related Eqs. (15)
and (16) using the reduced QR factorization of the matrix Xm+1

Xm+1 = Qm+1Rm+1, (17)

and obtain
AQm = Qm+1Rm+1H̄

(I)
m R−1m . (18)

Comparing Eqs. (15) and (18), we obtain by uniqueness of the Arnoldi Hessenberg decomposition
(see theorem 2.4 in [25]), that Qm+1 = Vm+1, and,

H̄m = Rm+1ḠmR
−1
m . (19)

The latter equation can be rewritten as

Hm = RmGmR
−1
m +

gm+1,m

rm,m
reTm, (20)
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where r = [ri,m+1]mi=1. Eq. (20) can also be found in [6] and [16]. A direct consequence of
this equation is that the Ritz values obtained in an Arnoldi Hessenberg decomposition, and the
Ritz values obtained from a factorization that generates a non-orthogonal Krylov basis, are not
the same. The condition number of the Krylov basis generated Xm, which is at the same the
condition number of Rm, might determine how far the eigenvalues of Gm are from the approxi-
mated eigenvalues resulting from the Arnoldi process. To exemplify this, we consider the following
matrix, in Matlab notation

A = sprandn(100,100,0.2). (21)

In Figure 2, we plot the Ritz values obtained by H̄15 generated by Arnoldi, and the Ritz values
obtained by Ḡ15 = R−116 H̄15R15. We select randomly three groups of 10000 matrices R each, with
different condition numbers. One can observe that the Ritz values tend to be more clustered
around the Arnoldi’s Ritz values, when the condition number of matrices R decrease.

Figure 2: For the matrix (21), we plot the Ritz values of H̄10 generated by Arnoldi (yellow dots) and
the Ritz values of matrices G10 (blue dots), where Ḡ10 = R−111 H̄10R10, Matrices R are generated
randomly in three groups. In each group, the matrices R have a fixed condition number.

.

Now, let us turn to the case of IDR(s), we consider again the matrix (21), and we obtain
different IDR(s)-Hessenberg decompositions

AW70 = W70H70 + weT70,

for s = 1, 2, 3 . . . , 35. Upper part of Figure 3 shows the evolution of the condition number of the
matrix W70 generated by IDR(s), when the value s increases. One can observe how the condition
number of W70 decreases while parameter s increases. Despite the high condition numbers of the
matricesW70, IDR(s) generates, in this experiment, a good approximation of the largest magnitude

Ritz value λ
(A)
1 generated by Arnoldi (see lower Figure 3). This analysis suggests that the Ritz

values of largest magnitude, generated by IDR(s), are closer to some of the Ritz values generated
by Arnoldi when we select large values of s. In [23], P. Sonneveld drew a similar conclusion for
IDR(s) in the context of solving systems of linear equations; using stochastic analysis, he related
the behavior of the Arnoldi-based method GMRES ([21]) and IDR(s) when s tends to infinity.
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Figure 3: Upper: condition number of the matrix W70 generated by IDR(s) as function of s.

Lower: difference between the largest magnitude Ritz values generated by Arnoldi (λ
(A)
1 ) and

IDR(s) (λ
(I)
1 ) as function of the value s.

4 Refining the spectral information

In some applications it is important to find eigenvalues and their corresponding eigenvectors in a
specific region of the complex plane. For example, the eigenvalues with largest real part for stability
analysis, or the nearest eigenvalues to a given point for vibration analysis. For this reason, we
implement two techniques to refine the spectral information obtained from the Hessenberg relation
described in the previous section.

4.1 A polynomial filter based on the selection of the parameters µj

The explicit restart is one of the first ideas to restart a Hessenberg decomposition [17]. This is
based on initiating the process with an improved initial guess. The new initial guess can be a
linear combination of the approximated wanted eigenvectors, or an initial guess of the form

v+
1 = pk(A)v1, (22)

where pk is a polynomial which amplifies the components of v1 toward the desired eigenvectors
and reducing those in the remaining eigenvectors (see [18]). The polynomial pk is called a filter
polynomial. An example of the form of pk might be

pk(t) = (t− ω1)(t− ω2) . . . (t− ωk). (23)
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Different options to select the parameter {ωi}ki=1 have been studied in [18], [25], and [14].
For IDR(s), the authors prove in [24] that every vector in the subspaces Gj satisfies

wk = Ψm−j(A)Ωj(A)w1, where Ωj(t) = (t− µ1)(t− µ2) . . . (t− µj), (24)

and Ψm−j(A) is a polynomial of degree m − j and its coefficients are fully determined by the
IDR(s) procedure. There is an analogy between Eqs.(22) and (23), and Eq. (24). We exploit
this fact by applying the polynomial Ωj as a polynomial filter. This idea is similar to the one
presented by Saad in [18]. We select the parameters µi in (24) to minimize the infinity norm of
Ωj in the area where the unwanted eigenvalues are localized. This is achieved by choosing µi as
the Chebyshev nodes on the interval [l, u], where l and u are the foci of the ellipse that encloses
the unwanted portion spectrum of the matrix Hm (see Figure 4). The polynomial filter Ωj(A) is
not fixed, the polynomial Ωj(A) grows when the IDR process creates vectors in a new subspace
Gj . We stress that the IDR polynomial filter is implicitly applied over the vector wk: it does not
require any additional computation; it is achieved by a special choice of the parameters µj .

While the authors in [7] remove the parameters {µi} by a process called purification, we exploit
these parameters to turn Ωj(A) into a polynomial filter inherent to the IDR(s) process.

Figure 4: Select µj to minimize the norm of the IDR polynomial (24) in the ellipse which encloses
the unwanted eigenvalues.

4.2 Implicitly restarting

The most successful variant to approximate subsets of eigenvalues and their corresponding eigen-
vectors of large and sparse matrices is the Implicitly Restarted Arnoldi Method (IRAM) proposed
by D.C. Sorensen in 1992. This method is also the basis for the software package ARPACK [13].
The idea is to truncate the Hessenberg decomposition by removing the uninteresting part of the
spectrum using QR steps. After this truncation, the Hessenberg decomposition is expanded to
improve the Ritz values and eigenvalues in the direction of the wanted portion of the spectrum.
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The main idea of the implicit restart is to apply orthogonal transformations to the Hessen-
berg decomposition to reorder the Ritz values. To illustrate this, let us consider a Hessenberg
decomposition of size m+ 1

AZm+1 = Zm+1Hm+1 + zm+2e
∗
m+1, (25)

and suppose that λ is an unwanted Ritz value (it is also called exact shift). Consider the orthogonal
matrix Q and the upper triangular matrix R, such that:

Hm+1 − λI = QR.

If we multiply the Eq. (25) by Q on the right, and define Ĥm+1 = Q∗Hm+1Q, and Ẑm+1 = Zm+1Q
we obtain

AẐm+1 = Ẑm+1Ĥm+1 + zm+2e
∗
m+1Q.

Now, if we discard the vectors ẑm+2, and truncate the matrix Ẑm+1 to m columns, we obtain a
new Hessenberg decomposition of size m

AẐm = ẐmĤm + ẑm+1e
∗
mQ.

which does not contain the unwanted Ritz value λ.
The implicitly restarted Arnoldi has been analyzed in different works for example: [12], [14],

and [11]. Another variant of implicit restarting using the Schur factorization was proposed by
Stewart in [26], and a new implementation was recently proposed by Bujanović and Drmač in [5].

In the context of an IDR factorization, we implement the implicit restarting technique taking
advantage of the input parameter of the Algorithm 1. After the creation of an IDR factorization of
size m, we discard the unwanted Ritz values using the implicit restarting technique, and then we
truncate it to obtain a new Hessenberg factorization of size s which is the input parameter of the
iterative process. The value of s should be greater or equal to the number of wanted eigenpairs.
The Algorithm 2 outlines the IDR(s) with implicit restarting.

Algorithm 2 Implicitly restarting of an IDR factorization

1: Given an initial Hessenberg relation of size s. The value of s should be greater or equal to the
number of wanted eigenvalues, and m > s.

2: Expand the initial factorization using Algorithm 1, to obtain the IDR factorization of size m:

AWs = WsHs + ws+1e
∗
s → AWm = WmHm + wm+1e

∗
m

3: Reorder the IDR factorization, using as a shift λ ∈ {µ1, . . . , µj}∪{the unwanted eigenvalues}.
4: Truncate the IDR factorization to obtain the new Hessenberg relation of size s in which the

unwanted Ritz values where eliminated.
5: Test for convergence. If no convergence go to 2 with the new Hessenberg relation else return

5 Numerical experiments

In this section, we present six numerical experiments to illustrate the computational performance
of the IDR(s) for eigenvalues computations. First, we compare the basic IDR (Algorithm 1) with
the basic Arnoldi. In the other experiments, we compare the implicitly restarted version of IDR
and Arnoldi. All the experiments were executed using Matlab 8.0 (R2012b) on a computer with
I7 Intel processor 2.4Ghz, 4GB of RAM memory.

In the case of the parameter selection for IDR(s) with implicit restart, we select s as the
number of wanted eigenvalues, and, the parameter m is selected as 2× s. P ∈ Cn×s is a random
matrix with orthogonal columns. The initial guess is selected randomly and we use this vector
as initial guess in both IDR and IRAM. In the first iteration the initial Hessenberg factorization
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for IDR(s) of size s is computed using the Arnoldi method. The selection of the parameter µj
is discussed in the section 4.1. We adapt the formula (14) for IDR(s) with implicit restart for
multiple eigenpairs in the following way:

hm+1,m max
1≤i≤s

|[y(i)]m|
√
m ≤ ε.

where ε = 10−10‖A‖F .
From the second to the sixth experiment, we compare the CPU time of IDR(s) with implicit

restart implemented in Matlab and two implementations of IRAM: the first one is a Matlab
interpreted code and the second one is the built-in command eigs. The command eigs is an
interface for the ARPACK’s FORTRAN-native-code. Therefore, in most of the experiments the
command eigs produces the shortest CPU time, when this is compared with other native Matlab
codes.

Experiment 1. We consider a random sparse matrix of dimension 1000. This matrix is
generated in Matlab using the following command1

A = sprandn(1000,1000,0.1);

We compare the basic versions of IDR(s = 10) and Arnoldi to find the eigenvalue of A with largest
module λ = −10.0581+0.27421i. The parameters µj and P for IDR are selected randomly. Figure
5 shows the evolution of the absolute error for each algorithm. We stop the algorithms when the
absolute error is smaller than 10−10. The Arnoldi method takes 244 matrix-vector multiplications
to obtain the desired reduction in the absolute error, while IDR(s = 10) executes 324 matrix-
vector multiplications. The execution time for Arnoldi is 0.184 seconds and for IDR(s = 10) is
0.09 seconds.

Figure 5: Experiment 1. Evolution of the absolute error between λ = −10.0581 + 0.27421i and its
approximations λ̂ obtained from Arnoldi and IDR(s = 10).

Experiment 2. As the second example, we consider the Toeplitz tridiagonal matrix

A = gallery(’tridiag’,n,-1,2,-1)

1Using the default values for the random number generator with the command rng(’default’).
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Table 1: Experiment 2. Comparison between IRAM and IDR target: the 15 right most eigenvalues
Method Restarts Time (sec.) Residual bound Max. diff. from the eigs Ritz values
IRAM(k = 15,p = 32) 141 1.19 5.86e− 09 6.70e− 14
IDR(s = 15,m = 32) 91 0.80 3.70e− 09 2.41e− 08
IDR(s = 15,m = 48) 34 0.77 2.49e− 09 1.83e− 08

Time eigs command: 0.72 sec.

Table 2: Experiment 3. Comparison between IRAM and IDR asked for the 24 leftmost eigenvalues
Method Restarts Time (sec.) Residual bound Max. diff. from the eigs Ritz values
IRAM(k = 24,p = 50) 19 0.31 4.83e− 10 5.21e− 15
IDR(s = 24,m = 50) 20 0.35 1.69e− 13 1.62e− 12
IDR(s = 24,m = 75) 8 0.34 1.31e− 09 2.29e− 09
IDR(s = 24,m = 100) 6 0.58 1.13e− 09 9.55e− 13

Time eigs command: 0.17

of order 1000. Table 1 shows the comparison between IRAM and the implicitly restarted IDR to
compute the 15 largest algebraic eigenvalues of this matrix. Figure 6 shows the absolute error of
the methods computing the largest eigenvalue of this matrix λ = 2 + 2 cos( π

1001 ) in 85 implicit
restarting cycles.

Figure 6: Experiment 2. Evolution of the absolute error between λ = 2 + 2 cos( π
1001 ) and its

approximations λ̂ obtained from IRAM and the Implicitly restarted IDR(s = 15).

Experiment 3. We consider the real nonsymmetric matrix CK656 from the collection Non-
Hermitian Eigenvalue Problem [3]. In this example we compute the 24 eigenvalues with largest
module [3]. Table 2 shows the comparison of IRAM and the implicitly restarted IDR.

Experiment 4. In the fourth experiment, we compute 12 of the largest magnitude eigenval-
ues of the matrix AF23560 from the Non-Hermitian Eigenvalue Problem Collection (NEP) [3].
AF23560 is a real nonsymmetric matrix of order 23560. Table 3 presents the comparison between
IRAM and the implicitly restarted IDR with different parameter selection.

Experiment 5. We consider the real unsymmetric matrix HOR131 of dimension 434 × 434.
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Table 3: Experiment 4. Comparison between IRAM and IDR asked for the 12 eigenvalues of
largest magnitude

Method Restarts Time (sec.) Residual bound Max. diff. from the eigs Ritz values
IRAM(k = 12,p = 26) 6 0.64 2.78e− 08 4.74e− 14
IDR(s = 12,m = 26) 7 0.47 7.23e− 08 1.72e− 10
IDR(s = 12,m = 39) 3 0.44 2.23e− 07 9.74e− 09
IDR(s = 12,m = 53) 2 0.54 7.66e− 07 2.48e− 09

Time eigs command: 0.26

Table 4: Experiment 5. Comparison between IRAM and IDR asked for the 8 eigenvalues of largest
real

Method Restarts Time (sec.) Residual bound Max. diff. from the eigs Ritz values
IRAM(k = 8,p = 18) 6 0.03 2.19e− 13 4.54e− 15
IDR(s = 8,m = 18) 13 0.06 4.46e− 11 8.05e− 10
IDR(s = 8,m = 27) 7 0.19 1.38e− 10 2.65e− 10
IDR(s = 8,m = 36) 3 0.04 8.23e− 13 1.70e− 09

Time eigs command: 0.02

We aim to compute the 8 eigenvalues with largest real part. Table 4 shows the results obtained
from IRAM and different parameters of the implicitly restarted IDR.

Experiment 6. In the sixth experiment, we consider the matrix that arises from the finite
difference discretization of the 2D Schrödinger equation. This equation models the energy levels
of the confined hydrogen atom, and is given by

− u′′(x, y)− 2u(x, y)

‖(x, y)‖
= λu(x, y) (x, y) ∈ (−16, 16)× (−16, 16) , (26)

with homogeneous Dirichlet boundary conditions. We use a nonuniform mesh refined near the
origin and obtain a matrix of size 44100×44100. We are interested to approximate the 16 leftmost
eigenvalues. We apply IRAM and the Implicitly Restarted IDR to the matrix (A− σI)−1, where
σ = −2.1. Table 5 shows the comparison between these two methods.

6 Conclusions

This work has introduced an algorithm to compute eigenpairs of large matrices using a Hessenberg
decomposition based on the IDR(s) method. The main advantage of the proposed Hessenberg
decomposition is its low computationally cost since it only uses recurrences of size s + 1. We
have implemented two techniques in order to refine the spectral information obtained. The first
technique is based on the parameter selection for our proposed algorithm and the second technique
is Sorensen’s implicitly restart.

The Krylov subspace basis created by our IDR-Hessenberg decomposition is only locally or-
thogonal, which might has a negative effect on the convergence speed or numerical stability. In the

Table 5: Experiment 6. Comparison between IRAM and IDR asked for the 16 leftmost eigenvalues
Method Restarts Time (sec.) Residual bound Max. diff. from the eigs Ritz values
IRAM(k = 16,p = 34) 10 11.19 2.69e− 11 2.06e− 11
IDR(s = 16,m = 34) 12 11.88 9.73e− 11 6.01e− 08
IDR(s = 16,m = 50) 6 12.6 2.25e− 11 1.72e− 09

Time eigs command: 2.92
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numerical examples presented in this report, however, IDR(s) for eigenvalues shows competitive
performance respect to IRAM. This interesting fact, in conjunction with the computational effi-
ciency to compute the IDR-Hessenberg factorization, can also be exploited in applications when
only the eigenvalues are required.

References

[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quart. Appl. Math., 9:17–29, 1951.

[2] R. Astudillo and M. B van Gijzen. An induced dimension reduction algorithm to approximate
eigenpairs of large nonsymmetric matrices. In 11th International Conference of Numerical
Analysis and Applied Mathematics 2013, volume 1558, pages 2277–2280. AIP Publishing,
2013.

[3] Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix collection for non-hermitian
eigenvalue problems. Technical report, University of Tennessee, 1997.

[4] Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation. IMA J. Numer.
Anal., 14(4):563–581, 1994.
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