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Abstract. Multilevel sequentially semiseparable (MSSS) matrices form a class of structured
matrices that have low-rank off-diagonal structure, which allows the matrix-matrix operations to
be performed in linear computational complexity. MSSS preconditioners are computed by replacing
the Schur complements in the block LU factorization of the global linear system by MSSS matrix
approximations with low off-diagonal rank. In this manuscript, we analyze the convergence properties
of such preconditioners. We show that the spectrum of the preconditioned system is contained in
a circle centered at (1, 0) and give an analytic bound of the radius of this circle. This radius can
be made arbitrarily small by properly setting a parameter in the MSSS preconditioner. Our results
apply to a wide class of linear systems. The system matrix can be either symmetric or unsymmetric,
definite or indefinite. We demonstrate our analysis by numerical experiments.

Key words. multilevel sequentially semiseparable preconditioners, convergence analysis, saddle-
point systems, Helmholtz equation
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1. Introduction. The most time consuming part for many numerical simula-
tions in science and engineering is to solve one or more linear systems of the following
type

(1.1) Kx = b,

where K = [Kij ] is an n×n matrix and b is a given right-hand-side vector of compat-
ible size. For the discretization of partial differential equations (PDEs), the system
matrix K is usually large and sparse. Many efforts have been dedicated to find-
ing efficient numerical solution for such systems. Krylov subspace methods, such as
the conjugate gradient (CG), minimal residual (MINRES), generalized minimal residual
(GMRES) and induced dimension reduction (IDR(s)) methods [18, 26, 36, 39], have
attracted considerable attention over the last decades. When Krylov subspace meth-
ods are applied to solve large linear systems, preconditioning is necessary to improve
the robustness and convergence of such iterative solvers. This manuscript studies
the multilevel sequentially semiseparable (MSSS) preconditioners. The efficiency of
MSSS preconditioners has been shown in [31] for difficult linear systems arising from
PDE-constrained optimization problems. Later, it is extended to solve the general
computational fluid dynamics (CFD) problems in [32]. The computational results
given by [31, 32] demonstrate that the induced dimension reduction (IDR(s)) method
can compute the solution in 2-4 iterations by using the MSSS preconditioner for
saddle-point system of the following type

(1.2)

[
A BT

B −C

]

︸ ︷︷ ︸

A

[
x
y

]

=

[
b
d

]

.
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2 Convergence Analysis of MSSS Preconditioners

Here, A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n has full rank, C ∈ Rm×m

is symmetric positive semidefinite and usually m ≤ n. Such systems arise in PDE-
constrained optimization problems [42, 33], computational fluid fluid dynamics [46,
15], optimal flow control [34, 27] et al., cf. [3] for a general survey of the saddle-point
systems and numerical solutions.

It is shown in [31, 32] that all the sub-matrices of the saddle-point systems (1.2)
have a multilevel sequentially semiseparable (MSSS) structure. This sub-structure
can be exploited to obtain a global MSSS structure of the form (1.1) by performing a
simple permutation. This permutation unites the linear systems from the discretiza-
tion of scalar PDEs such as the Helmholtz equation together with coupled PDEs,
e.g. the Stokes equation and gives a general linear system of the form (1.1) with a
global MSSS structure. In this way, we can obtain a global factorization of the system
by using MSSS matrix computations in linear computation complexity. The global
factorization can be computed with a prescribed accuracy, which gives a flexible and
numerically efficient way to solve a wide class of linear systems. The central concept
for this factorization is that the off-diagonal blocks of the Schur complements are
observed to have numerical low-rank [9, 2]. The low numerical off-diagonal blocks
can be approximated efficiently and accurately by structured matrices, such as the
multilevel sequentially semiseparable (MSSS) matrices, hierarchically semiseparable
(HSS) matrices, hierarchical matrices, et al.

Multilevel sequentially semiseparable (MSSS) matrix generalize the sequentially
semiseparable (SSS) matrices [8] to the multidimensional case. They can be directly
inferred from interconnected systems [35]. Early study of preconditioning by using
SSS matrix computations for symmetric positive definite systems can be found in [19]
while MSSS matrix computations have been extensively studied in [28, 31, 32] for pre-
conditioning unsymmetric and saddle-point systems. The advantage of MSSS matrix
computations is their simplicity and low computational cost, which is O(r3kN). Here,
N is the number of blocks, rk is the rank of the off-diagonal blocks and is usually much
smaller compared with N [8, 45]. Related structured matrices include the hierarchi-
cal matrices (H-matrix) [20], H2-matrices [21, 5], hierarchically semiseparable (HSS)
matrices [7, 48], with computational complexity O(N logα N) for some moderate α.
Here N is the size of the matrix. H-matrices originate from approximating the kernel
of integral equations and have been extended to elliptic PDEs [2, 22]. H2-matrices
and HSS matrices are specific subsets of H-matrices and HSS matrices have been
successfully applied in the multi-frontal solvers [48]. Some recent efforts have been
devoted to preconditioning symmetric positive definite systems by exploiting the HSS
matrix structure [47] and unsymmetric systems by H-matrix computations [22, 6]. To
keep a clear structure of this manuscript, we only focus on the MSSS preconditioning
techniques.

In this manuscript, we present a full convergence analysis of the MSSS precon-
ditioners for a wide class of linear systems. The system matrix can be either sym-
metric or unsymmetric, definite or indefinite, where saddle-point systems, discretized
Helmholtz equations, and discretized convection-diffusion equations are automatically
covered. Our analysis gives an analytic bound for the spectrum of the preconditioned
system. We show that the spectrum of the preconditioned system is contained in a
circle centered at (1, 0) and give an analytic bound for the radius of this circle. This
radius can be made arbitrarily small by properly setting a parameter in the MSSS
preconditioner.

Some related work includes [1] and [24]. Both analyses apply only to symmetric
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positive definite systems. The analysis for MSSS preconditioners in [24] is restricted
to 1-level MSSS matrix computations, while our analysis can be applied to 2-level
MSSS matrix computations. Our work in this manuscript is closely related to [1].
Our contributions include: (1) We extend the work in [1, 24] from the symmetric pos-
itive definite case to the general linear systems; (2) Our analysis can also be applied
to saddle-point systems that are 2× 2 block systems, while the analysis in [1, 24] only
applies to symmetric positive definite linear systems that arise from discretization of
scalar PDEs; (3) We give an analytic bound for the error introduced by the model
order reduction that is necessary for the MSSS preconditioning technique, which has
not been studied before; (4) The analysis for MSSS preconditioning in [24] only con-
cerns 1-level MSSS matrix computations, while our analysis also includes the 2-level
MSSS cases; (5) For the first time, we apply this MSSS preconditioning technique to
the Helmholtz equation.

The structure of our manuscript is as follows. We give a brief introduction of
the MSSS preconditioning technique in Section 2, and analyze its convergence in
Section 3. Section 4 studies the numerical stability of this preconditioning technique
and gives a sufficient condition to avoid breakdown. The underlying condition can
be satisfied by properly setting a parameter. We show how to choose this parameter
in Section 5. Numerical experiments are given in Section 6, while conclusions are
drawn in the final part. A companion technical report [30] is available online and
contains more numerical results to illustrate our analysis for the convergence of MSSS
preconditioners.

2. Multilevel Sequentially Semiseparable Preconditioners. To start with,
we first introduce the sequentially semiseparable matrices and the generators defini-
tion for such matrices is given by Definition 2.1.

Definition 2.1 ([8]). Let A be an N ×N matrix with SSS matrix structure and
let n positive integers m1, m2, · · · mn satisfy N = m1 +m2 + · · ·+mn such that A
can be written in the following block-partitioned form

(2.1) Aij =







UiWi+1 · · ·Wj−1Vj , if i < j;
Di, if i = j;
PiRi−1 · · ·Rj+1Qj , if i > j.

The matrices Ui, Wi, Vi, Di, Pi, Ri, Qi are matrices whose sizes are compatible for
matrix-matrix product when their sizes are not mentioned. They are called generators
of the SSS matrix A.

Basic operations such as addition, multiplication and inversion are closed under
the SSS matrix structure and can be performed in linear computational complex-
ity. Multilevel sequentially semiseparable matrices generalize the SSS matrices to the
multi-dimensional case. Similar to Definition 2.1 for SSS matrices, the generators
representation for MSSS matrices, specifically the k-level SSS matrices, is defined in
Definition 2.2.

Definition 2.2. The matrix A is said to be a k-level SSS matrix if all its
generators are (k − 1)-level SSS matrices. The 1-level SSS matrix is the SSS matrix
that satisfies Definition 2.1.

The MSSS matrix structure can be inferred directly from the discretization of
PDEs, which is studied in [28, 31, 32]. With these definitions, we start to introduce the
MSSS preconditioners for discretized partial differential equations (PDEs). Consider
the following PDE

Lu = f, with u = uD on ΓD,
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on a square domain Ω ∈ Rd with d = 2, or 3, L is a linear differential operator,
and ΓD = ∂Ω. Discretizing the PDE using the finite difference method or the finite
element method and using lexicographical to order the grid points gives the following
linear system,

Kx = b,

where the stiffness matrix K is block tridiagonal of the following type

(2.2) K =












K1,1 K1,2

K2,1 K2,2 K2,3

K3,2 K3,3
. . .

. . .
. . .

. . .

. . . KN,N












.

Here Ki,j is again a tridiagonal matrix for d = 2 and block tridiagonal matrix for
d = 3.

For discretized scalar PDEs using uniform mesh, it is quite natural to infer that
the stiffness matrix K has an MSSS matrix structure, i.e., a 2-level MSSS structure
for d = 2 and a 3-level MSSS structure for d = 3. Discretized coupled PDEs, such as
the Stokes equation, and linearized Navier-Stoke equation yield a saddle-point system
of the form (1.2). It is shown in [32], that all the sub-matrix in (1.2) have an MSSS
structure and can be permuted into a global MSSS structure that has the same form
as (2.2) with Ki,j a 2-level SSS matrix for d = 3 and 1-level SSS matrix for d = 2.

For a strongly regular N × N block matrix K, it admits the block factorization
that is given by K = LSU . Here we say that a matrix is strongly regular if all the
leading principle sub-matrices are nonsingulari. S is a block diagonal matrix with its
i-th diagonal block given by

(2.3) Si =

{

Ki,i if i = 1

Ki,i −Ki,i−1S
−1
i−1Ki−1,i if 2 ≤ i ≤ N

,

where Si is the Schur complement at the i-th step. The matrix L and U are block bidi-
agonal matrix of the lower-triangular form and upper-triangular form, respectively.
They are obtained by computing

Li,j =

{

I if i = j

Ki,jS
−1
j if i = j + 1

, and Ui,j =

{

I if j = i

S−1
i Ki,j if j = i+ 1

.

To compute such a factorization, one needs to compute the Schur complements
via (2.3). This is computationally expensive both in time and memory since the Schur
complement Si is a full matrix. Some earlier papers [10, 23] propose for symmetric
positive definite systems to approximate Si by using the off-diagonal decay property
of the inverse of a symmetric positive definite tridiagonal matrix. Alternatively, an
incompletely factorization can be made to reduce the fill-in within the bandwidth for
such a factorization [36]. However, these methods do not yield satisfactory perfor-
mance. In [2, 9], it is stated that the Schur complement Si from the factorization
of a discretized symmetric positive definite differential operator has low off-diagonal
rank and can be approximated by an H-matrix or SSS matrix. In this manuscript,
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we use SSS matrices to approximate the Schur complements in the above factoriza-
tion for a general class of linear systems. Note that the H-matrix computations have
mainly been applied to approximate the Schur complements that are either symmetric
positive definite [2, 1] or unsymmetric, whose eigenvalues have positive real part [22].
Some recent efforts have been made to solve the symmetric indefinite Helmholtz equa-
tion [16].

For the approximated Schur complement by MSSS matrix computations denoted
by S̃i, (i = 1, 2, · · · , N), we have the MSSS preconditioner K̃ that is given by

(2.4) K̃ = L̃S̃Ũ .

Here

L̃i,j =

{

I if i = j

Ki,jS̃
−1
j if i = j + 1

, Ũi,j =

{

I if j = i

S̃−1
i Ki,j if j = i+ 1

,

and S̃ is a block-diagonal matrix with S̃i, (i = 1, 2, · · · , N) as its diagonal blocks.
The Schur complement always corresponds to a problem that is one dimension

lower than the linear system, i.e., for a 2D system, the Schur complement is of 1D,
and 2D for a 3D system. When applying MSSS preconditioners to 3D problems, one
needs 2-level MSSS matrix computations to approximate the Schur complement. How
to reduce the off-diagonal rank of a 2-level MSSS matrix efficiently is still an open
problem [9, 11, 31]. This makes extending MSSS preconditioning technique from 2D
to 3D nontrival, and some extra efforts need to be devoted, cf. [11, 31]. To keep
consistent of this manuscript, we only focus on the convergence analysis of MSSS
preconditioner for 2D systems.

3. Convergence Analysis. In this section, we analyze the convergence of the
MSSS preconditioner. Some recent work devoted to the analysis of structured pre-
conditioners are in [1, 24]. In [24], the nested dissection method is used to order
the unknowns of the discretized diffusion-reaction equation in 2D and the symmetric
positive definite Schur complements are approximated by SSS matrix and HSS matrix
computations, respectively. Analytic bounds of the spectrum of the preconditioned
system are given. In [1], H-matrix computations are applied to preconditioning the 2D
symmetric positive definite Helmholtz equation. Both studies focus on the symmetric
positive definite case.

In [1], it is stated that the key point for the H-matrix preconditioner for sym-
metric positive definite systems is not how well the approximate Schur complement
denoted by S̃i approximates the exact Schur complement Si, but how small the dis-
tance between S̃i and Ki,i − Ki,i−1S̃

−1
i−1Ki−1,i is. This statement is denoted by the

so-called “condition ε” in [1]. In this manuscript, we also make use of this condition
for convergence analysis, which is given by the following definition.

Definition 3.1 (Condition ε [1]). There exists a constant ε such that
∥
∥
∥S̃1 −K1,1

∥
∥
∥
2
≤ ε,

∥
∥
∥S̃i −

(

Ki,i −Ki,i−1S̃
−1
i−1Ki−1,i

)∥
∥
∥
2
≤ ε,

(3.1)

hold for 2 ≤ i ≤ N .
If condition ε in Definition 3.1 holds, we have the following lemma that gives the

distance between the preconditioner and the original system.
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Lemma 3.2. Let K be a nonsingular matrix that has the form of (2.2), sup-
pose S̃i, i = 1, 2, . . . , N in (3.1) are nonsingular and condition ε holds. The MSSS
preconditioner is given by (2.4), and

∥
∥
∥K − K̃

∥
∥
∥
2
≤ ε.

Proof. For the proof of this lemma, cf. [1].
Next, we introduce how to compute an MSSS preconditioner that satisfies Lemma 3.2.

Here, we assume the exact arithmetic.
Lemma 3.3. Let the lower semiseparable order and upper semiseparable order are

defined as the maximal rank of the lower off-diagonal blocks and upper off-diagonal
blocks, respectively. For a nonsingular SSS matrix A with lower semiseparable order
and upper semiseparable order rl and ru, the exact inverse of A can be computed using
SSS matrix computations in linear computational complexity provided that rl and ru
are much smaller than the size of A. The inverse of A is again an SSS matrix with
rl and ru as its lower and upper semiseparable order, respectively.

Proof. This can be shown by carefully checking the arithmetic for inverting SSS
matrices described in [8, 13].

Lemma 3.4. Let SSS matrices A and B are with compatible sizes and prop-
erly partitioned blocks for matrix-matrix addition and multiplication, then A+B and
AB can be computed exactly using SSS matrix computations in linear computational
complexity if no model order reduction is performed.

Proof. Proof of this lemma is given by checking the algorithms for SSS matrices
introduced in [8, 14].

For the 2D matrix K of the form in (2.2), all its sub-blocks are SSS matrices,
therefore we have the following corollary that shows how the condition ε in Defini-
tion 3.1 can be satisfied.

Corollary 3.5. Suppose S̃i, i = 1, 2, . . . , N in (3.1) are nonsingular, then the
condition ε can be satisfied by applying the following procedure.

1. Invert S̃i−1 using the SSS inversion algorithm.
2. Compute Ki,i−Ki,i−1S̃

−1
i−1Ki−1,i using SSS matrix computations without per-

forming the model order reduction.
3. Perform the model order reduction for Ki,i −Ki,i−1S̃

−1
i−1Ki−1,i by choosing a

proper semiseparable order rk or a proper bound τ for the discarded singular
values, which will be introduced in Section 5, such that the condition

∥
∥
∥S̃i −

(

Ki,i −Ki,i−1S̃
−1
i−1Ki−1,i

)∥
∥
∥
2
≤ ε

is satisfied.
Proof. According to Lemma 3.3 and Lemma 3.4, both step 1 and 2 can be

performed exactly. By applying the Hankel blocks approximation introduced in [8, 31],
Ki,i − Ki,i−1S̃

−1
i−1Ki−1,i can be approximated by an SSS matrix S̃i in a prescribed

accuracy ε measured in the matrix 2-norm by choosing a properly set parameter in
the Hankel block approximations. The details will be introduced in Section 5.

Remark 3.1. To satisfy condition ε, we need to apply Corollary 3.5 to compute
the MSSS preconditioner. This is computationally cheaper and feasible, because the
semiseparable order of Ki,i, S̃i−1, Ki,i−1 and Ki−1,i are small. Performing step 2 in
Corollary 3.5 just increases the semiseparable order slightly. Here, the semiseparable
order is defined as the maximum off-diagonal rank. For details of the increase of the
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semiseparable order, cf. [14]. After performing the model order reduction in step 3,
the semiseparable order is reduced and bounded. This gives the approximate Schur
complements S̃i with small semiseparable order.

Lemma 3.2 gives the distance between the preconditioner and the original system
matrix while Corollary 3.5 illustrates how to satisfy the condition ε. Normally, we do
not consider this distance, but the distance between the preconditioned matrix and
the identity matrix. Next, we give an analytic bound of this distance.

Theorem 3.6. Let a nonsingular matrix K be of the form (2.2) and let the con-
dition ε in Definition 3.1 hold by Corollary 3.5. If S̃i (i = 1, 2, . . . , N) are nonsingular
and ε < ε0, then the MSSS preconditioner is given by (2.4) and

∥
∥
∥I − K̃−1K

∥
∥
∥
2
≤ ε

ε0 − ε
.

Here ε0 is the smallest singular value of K.
Proof. Since S̃i (i = 1, 2, . . . , N) are nonsingular, K̃ is nonsingular. Then,

∥
∥
∥I −K−1K̃

∥
∥
∥
2
=

∥
∥
∥K−1(K − K̃)

∥
∥
∥
2
≤

∥
∥K−1

∥
∥
2

∥
∥
∥K − K̃

∥
∥
∥
2
≤ ε

∥
∥K−1

∥
∥
2
=

ε

ε0
.

Since ε < ε0, we have
ε

ε0
< 1, then the Neumann series

I +
(

I −K−1K̃
)

+
(

I −K−1K̃
)2

+ · · · · · ·

converges to
(

I − (I −K−1K̃)
)−1

= K̃−1K. This in turn gives,

∥
∥
∥K̃−1K

∥
∥
∥
2
=

∥
∥
∥
∥
I +

(

I −K−1K̃
)

+
(

I −K−1K̃
)2

+ · · ·
∥
∥
∥
∥
2

≤ 1 +
∥
∥
∥I −K−1K̃

∥
∥
∥
2
+

∥
∥
∥
∥

(

I −K−1K̃
)2

∥
∥
∥
∥
2

+ · · · · · ·

≤ 1 +
ε

ε0
+

(
ε

ε0

)2

+ · · · · · ·

=
ε0

ε0 − ε
.

Then, we can obtain

∥
∥
∥K̃−1

∥
∥
∥
2
=

∥
∥
∥K̃−1KK−1

∥
∥
∥
2
≤

∥
∥
∥K̃−1K

∥
∥
∥
2

∥
∥K−1

∥
∥
2
≤ ε0

ε0 − ε
× 1

ε0
=

1

ε0 − ε
.

This in turn yields

∥
∥
∥I − K̃−1K

∥
∥
∥
2
=

∥
∥
∥K̃−1(K̃ −K)

∥
∥
∥
2
≤

∥
∥
∥K̃−1

∥
∥
∥
2

∥
∥
∥K̃ −K

∥
∥
∥
2
≤ ε

ε0 − ε
.

According to Theorem 3.6 we have the following proposition that gives the con-
dition number of the preconditioned matrix.

Proposition 3.7. Let a nonsingular matrix K be of the form (2.2) and let
the condition ε in Definition 3.1 hold by Corollary 3.5. If S̃i (i = 1, 2, . . . , N) are
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nonsingular and ε < 1
2ε0, then we have the MSSS preconditioner K̃ is of the form (2.4)

and

κ2(K̃
−1K) ≤ ε0

ε0 − 2ε
.

Here ε0 is the smallest singular value of K.
Proof. According to Theorem 3.6, we have

∥
∥
∥I − K̃−1K

∥
∥
∥
2
≤ ε

ε0 − ε
,

associated with ε < 1
2ε0, we get

ε

ε0 − ε
< 1. Then the Neumann series

I +
(

I − K̃−1K
)

+
(

I − K̃−1K
)2

+ · · · · · ·

converge to
(

I − (I − K̃−1K)
)−1

= K−1K̃. This yields

∥
∥
∥K−1K̃

∥
∥
∥
2
=

∥
∥
∥
∥
I +

(

I − K̃−1K
)

+
(

I − K̃−1K
)2

+ · · · · · ·
∥
∥
∥
∥
2

≤ 1 +
∥
∥
∥I − K̃−1K

∥
∥
∥
2
+

∥
∥
∥
∥

(

I − K̃−1K
)2

∥
∥
∥
∥
2

+ · · · · · ·

≤ 1 +
ε

ε0 − ε
+

(
ε

ε0 − ε

)2

+ · · · · · ·

=
ε0 − ε

ε0 − 2ε
.

According to Theorem 3.6, we have

∥
∥
∥K̃−1K

∥
∥
∥
2
≤ ε0

ε0 − ε
,

then we obtain

κ2(K̃
−1K) =

∥
∥
∥K̃−1K

∥
∥
∥
2

∥
∥
∥K−1K̃

∥
∥
∥
2
≤ ε0

ε0 − 2ε

According to Theorem 3.6, we can also give an analytic bound on the spectrum
of the preconditioned matrix.

Proposition 3.8. Let a nonsingular matrix K be of the form (2.2) and let the
condition ε in Definition 3.1 hold by following Corollary 3.5. If S̃i (i = 1, 2, . . . , N)
are nonsingular, then we have the MSSS preconditioner K̃ is of the form (2.4). Denote
the eigenvalues of the preconditioned matrix by λ(K̃−1K). If ε < ε0, we have

∣
∣
∣λ(K̃−1K)− 1

∣
∣
∣ ≤ ε

ε0 − ε
.

Here ε0 is the smallest singular value of K.
Proof. According to Theorem 3.6, we have

∥
∥
∥I − K̃−1K

∥
∥
∥
2
≤ ε

ε0 − ε
.



Yue Qiu, Martin B. van Gijzen et al. 9

Therefore, we can obtain

∣
∣
∣λ(I − K̃−1K)

∣
∣
∣ ≤ ε

ε0 − ε
,

owing to
∣
∣
∣λ(I − K̃−1K)

∣
∣
∣ ≤

∥
∥
∥I − K̃−1K

∥
∥
∥
2
. Since λ(I − K̃−1K) = 1 − λ(K̃−1K), we

get

∣
∣
∣λ(K̃−1K)− 1

∣
∣
∣ ≤ ε

ε0 − ε
.

Remark 3.2. Proposition 3.8 states that the spectrum of the preconditioned
system is contained in a circle centered at (1, 0) with a maximum radius ε

ε0−ε
. There-

fore, the smaller ε is, the closer the eigenvalues of the preconditioned system are to
(1, 0). This in turn gives better convergence for a wide class of Krylov solvers to solve
the preconditioned system by applying the MSSS preconditioner.

According to Theorem 3.6, Proposition 3.7, and Proposition 3.8, we conclude
that the smaller the ε is, the better-conditioned the preconditioned matrix is. For the
extreme case ε = 0 when there is no approximation of the Schur complement, this
factorization is exact. This is in turn verified by Theorem 3.6, Proposition 3.7, and
Proposition 3.8. In Section 5, we will show that ε can be made arbitrarily small by
setting a parameter in the MSSS preconditioner.

4. Breakdown Free Condition. In the previous section, we have analyzed the
conditioning and spectrum of the preconditioned matrix. In this section, we discuss
how to compute the MSSS preconditioner without breakdown, i.e., how to set the
bound ε to compute the nonsingular S̃i (i = 1, 2, . . . , N). To start with, we give
the following lemmas that are necessary for the analysis.

Lemma 4.1 ([40]). Let A be an m×n matrix with, say, m ≥ n. Sort its singular
values in a non-increasing order by

σ1 ≥ σ2 ≥ · · · ≥ σn.

Let Ã = A+E be a perturbation of A, and sort its singular values in a non-increasing
order by

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n.

Then, we have

|σ̃i − σi| ≤ ‖E‖2 , i = 1, 2, · · · , n.

By applying this lemma, we have the following lemma that gives a sufficient
condition for a nonsingular perturbation, i.e., for a full rank matrix A, its perturbed
analog Ã is still of full rank.

Lemma 4.2. Let A be an m×n full rank matrix with, say, m ≥ n, and Ã = A+E
be a perturbation of A. If

‖E‖2 < σn,

where σn is the smallest singular value of A, then the perturbed matrix Ã is still of
full rank.
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Proof. Denote the smallest singular value of Ã by σ̃n, then according to Lemma 4.1,
we have

|σn − σ̃n| ≤ ‖E‖2 .

Since ‖E‖2 < σn, this yields,

|σn − σ̃n| < σn.

We can obtain

0 < σ̃n < 2σn,

which states that Ã is still of full rank.
With these lemmas, we can give a sufficient condition for ε that guarantees nonsin-

gular approximate Schur complements S̃i(i = 1, 2, . . . , N), which satisfies condition
ε in Definition 3.1.

Theorem 4.3. If ε satisfies the following inequality,

ε < σ0

where

σ0 ,
N

min
p=1

{

min
(

σ(Kp)
)}

,

and Kp is the leading principle sub-matrix of K of size pN×pN for p = 1, 2, · · · , N .
Here min (σ(Kp)) denotes the smallest singular value of Kp. Then the condition ε

can be satisfied and all the approximate Schur complements S̃i (i = 1, 2, . . . , N) are
nonsingular.

Proof. At each step j (j ≥ 2) of the approximate factorization, we use S̃j to ap-

proximate Kj,j −Kj,j−1S̃
−1
j−1Kj−1,j by performing a model order reduction according

to Corollary 3.5 to satisfy the condition ε. This introduces a small perturbation that
is given by

Ej , S̃j −
(

Kj,j −Kj,j−1S̃
−1
j−1Kj−1,j

)

,

and ‖Ej‖2 ≤ ε (j ≥ 2). Since S1 = K1,1 is an SSS matrix with small off-diagonal
rank, no model order reduction is performed, we have E1 = 0.

Denote the (j − 1)-th leading principle sub-matrix of K by K̄j−1, then we have

(4.1) K̄j =

[
K̄j−1 K̄j−1,j

K̄j,j−1 Kj,j

]

, ˜̄Kj =

[
˜̄Kj−1 K̄j−1,j

K̄j,j−1 Kj,j + Ej

]

,

where K̄j is the j-th principle leading sub-matrix of K and ˜̄Kj is its approximation.
˜̄Kj is also the j-th leading principle sub-matrix of K̃, and K̄j,j−1 =

[
0 Kj,j−1

]
,

K̄j−1,j =

[
0

Kj−1,j

]

. Moreover, we have

˜̄Kj − K̄j =








E1

E2

. . .

Ej







,
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where ‖Ei‖2 ≤ ε (1 ≤ i ≤ j). Then we can obtain,

∥
∥
∥

(
˜̄Kj − K̄j

)

x
∥
∥
∥

2

2
= ‖E1x1‖22 + ‖E2x2‖22 + · · ·+ ‖Ejxj‖22
≤ ‖E1‖22 ‖x1‖22 + ‖E2‖22 ‖x2‖22 + · · ·+ ‖Ej‖22 ‖xj‖22

≤ ε2
j

∑

k=1

‖xk‖22 = ε2 ‖x‖22 .

This in turn yields
∥
∥
∥
˜̄Kj − K̄j

∥
∥
∥
2
≤ ε, j = 1, 2, · · · , N.

According to Lemma 4.2, if ǫ <
N

min
j=1

{

min
(

σ(K̄j)
)}

, then ˜̄Kj (j = 1, 2, · · · , N) is

nonsingular.

Since ˜̄Kj and ˜̄Kj−1 are nonsingular, according to (4.1), the Schur complement of
˜̄Kj−1 in ˜̄Kj is also nonsingular and is given by

˜̄Sj = Kj,j + Ej − K̄j,j−1
˜̄K−1
j−1K̄j−1,j ,

which is exactly S̃j for j = 2, · · · , N , while S̃1 = K1,1 is also nonsingular.
Theorem 4.3 gives a sufficient condition for ε to compute nonsingular approximate

Schur complements for a general class of linear systems. For the symmetric positive
definite case, this sufficient condition can be simplified by the following lemma.

Lemma 4.4. Let K be an m × m symmetric positive definite matrix of the
form (2.2) and denote its smallest eigenvalue by λmin(K). If ε < λmin(K), then
all the approximated Schur complements S̃i (i = 1, 2, . . . , N) are nonsingular.

Before giving the proof of Lemma 4.4, we first introduce the following lemma that
is necessary for the proof.

Lemma 4.5 (Corollary 8.4.6 in [4]). Let A be an m×m Hermitian matrix, and
A0 be a k × k principle sub-matrix of A with k < m. Then,

λmin(A) ≤ λmin(A0) ≤ λmax(A0) ≤ λmax(A),

and

λmin(A0) ≤ λk(A).

With Lemma 4.5, we give the proof of Lemma 4.4 as follows.

Proof. According to Theorem 4.3, if ε <
N

min
p=1

{

min
(

σ(Kp)
)}

, the approximate

Schur complements S̃i (i = 1, 2, . . . , N) are nonsingular. For the symmetric positive
definite matrix K, its eigenvalues and singular values are identical. Then the condition
for ε is given by

ε <
N

min
p=1

{

min
(

λ(Kp)
)}

.

According to Lemma 4.5, we have

min (λ(Kp)) ≥ λmin(K),
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this in turn gives the condition for ε, that is

ε < λmin(K).

Theorem 4.3 gives a sufficient condition for ε to obtain nonsingular approximate
Schur complements. Next, we use a simple example to illustrate this condition.

Example 4.1. Consider the 2D stationary SchröÌĹdinger equation

∇2Ψ(x, y) + k2Ψ(x, y) = 0,

with homogeneous Dirichlet boundary condition on a unite square domain Ω = [0, 1]×
[0, 1]. Using 5-point stencil finite difference discretization on a uniform grid with gird
size h = 2−5 gives a linear system that has a 2-level SSS structure, here k2h2 = π2

/16.
Factorize the linear system by using MSSS matrix computations that satisfies condition
ε in Definition 3.1 gives an MSSS preconditioner K̃.

For different settings of ε, the smallest singular value σ0
k of the leading principle

sub-matrix Kk of size kN × kN , the approximation error εk at each step to compute
the approximate Schur complement, the bound of εk which is denoted by εmax, and
the preconditioned spectrum are plotted in Figure 1-3.

We start decreasing ε from 0.5 to 10−3, this corresponds to ε > σ0 for relatively
big ε. For the case ε > σ0, Theorem 4.3 does not hold, which means that we may fail
to get nonsingular approximate Schur complements S̃i. However, we succeed in com-
puting the nonsingular Schur complements S̃i. In fact, the possibility of perturbing a
matrix from nonsingularity to singularity is quite small. Although we get nonsingular
approximate Schur complements for ε > σ0, our analysis is not suited to analyzing
the preconditioned spectrum for such case. This is illustrated by the spectrum of the
preconditioned system in Figure 1(b). The preconditioned spectrum corresponds to
ε = O(0.5) is not well clustered and a portion of the eigenvalues is far away from
(1, 0).

For the cases that ε is slightly bigger than σ0, the preconditioned spectrum is
already contained in a quite small circle, cf. Figure 2(b). When ε is of the same order
as σ0, the circle is even smaller, cf. Figure 2(b) and Figure 3(b). Continue decreasing
ε, the radius of the circle can be made arbitrarily small. At a certain moment, the
MSSS factorization can be used as a direct solver for small enough ε.

0 5 10 15 20 25 30 35

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

k

 

 

εk

σ
0

k

εmax

(a) Smallest singular values and εk

−5 0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

ℜ

ℑ

(b) Preconditioned spectrum

Fig. 1. Condition ε and preconditioned spectrum for ε = O(0.5)
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Fig. 2. Condition ε and preconditioned spectrum for ε = O(10−2)
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Fig. 3. Condition ε and preconditioned spectrum for ε = O(10−3)

Remark 4.1. We observed that for the case ε < σ0 and ε is of the same order as
σ0, if ε decreases by a factor 10, the radius of the circle that contains the precondi-
tioned spectrum is also reduced by a factor of around 10. This verifies the statement
of the radius of the circle in Proposition 3.8.

The results for different ε given by Figure 1-3 verify our analysis of the convergence
property of the MSSS preconditioner and the spectrum of the preconditioned system
in Section 3. Both theoretical analysis and numerical experiments state that a small
ε is preferred. Normally, decreasing ε will increase the computational complexity
to a small extent. It is therefore favorable to choose a moderate ε to compute an
MSSS factorization and use it as a preconditioner. This gives linear computational
complexity and satisfactory convergence for a wide class of Krylov solvers. Details
will be discussed in Section 6.

Both theoretical analysis and numerical experiments indicate that a small ε is pre-
ferred. In the next section, we will discuss how to perform the model order reduction
to make ε up to a prescribed accuracy.

5. Approximation Error of Model Order Reduction. We assume by Corol-
lary 3.5 that the condition ε is satisfied via a model order reduction operation and
the error of the model order reduction should be bounded by ε. To start, we use the
model order reduction algorithm which is called Hankel blocks approximation that is
studied in [8]. In the following part, we will show how to do this model order reduction
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to make the approximation error up to a prescribed accuracy ε. In this section, we
use the algorithm style notation, i.e., by letting a = b, we assign the variable a with
the value of b. To begin this analysis, we recall some concepts that are necessary.

Definition 5.1 ([8]). Hankel blocks denote the off-diagonal blocks that extend
from the diagonal to the northeast corner (for the upper case) or to the southwest
corner (for the lower case).

Take a 4 × 4 block SSS matrix A for example, the Hankel blocks for the strictly
lower-triangular part are shown in Figure 4 by H2, H3 and H4.

Fig. 4. Hankel blocks of a 4× 4 block SSS matrix

For the Hankel blocks Hk of the SSS matrix A, it has the following low-rank
factorization,

Hk = OkCk,

where the low-rank factors Ok and Ck have a backward and forward recursion, respec-
tively. They are given by







Ok = PN , if k = N,

Ok =

[

Pk

Ok+1Rk

]

, if 2 ≤ k < N,

and

{

Ck = Q1, if k = 2,

Ck =
[

Rk−1Ck−1 Qk−1

]

, if 2 < k ≤ N.

The rank rk of the Hankel block Hk has the following equality

rank(Hk) = rank(Ok) = rank(Ck) = rk.

The low-rank factors Ok and Ck are the observability factor and controllability factor
of a linear time-varying (LTV) system that corresponds to the SSS matrix A. More-
over, the Hankel block Hk corresponds to the discrete Hankel map of a LTV system.
SSS matrices and their relations with LTV system are studied in [12].

The basic idea for the model order reduction of SSS matrices is to reduce the
rank of the Hankel blocks Hk from rk to r̃k with r̃k < rk, where r̃k is the rank of the
approximated Hankel map H̃k and

rank(H̃k) = rank(Õk) = rank(C̃k) = r̃k.
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To start the model order reduction, first we need to transform Ci to the form that
has orthonormal rows, which is called the right-proper form in [8]. This is obtained
by performing a singular value decomposition (SVD) on Ci. For i = 2,

C2 = U1Σ1V
T
1 ,

and let C2 = Q1 = V T
1 . To keep the Hankel map (block) H2 unchanged, we let

O2 = O2U1Σ1. This gives

P2 = P2U1Σ1, R2 = R2U1Σ1.

From step i to i+ 1, we have

Ci+1 =
[
RiCi Qi

]
=

[
Ri Qi

]
[
Ci

I

]

.

Since Ci has orthonormal rows,

[
Ci

I

]

also has orthonormal rows. To complete this

procedure for Ci+1, perform the following SVD
[
Ri Qi

]
= UiΣiV

T
i ,

and let
[
Ri Qi

]
= V T

i . To keep the Hankel map at step i + 1 unchanged, we let
Oi+1 = Oi+1UiΣi. After finishing the above procedure, we can make all the factors
Ci have orthonormal rows.

The next step of the model order reduction is to transform the low-rank factors
Oi to the form with orthonormal columns, which is called the left-proper form. Then
we reduce the rank of the Hankel map (blocks). Since the recursion for the factor Oi

is performed backward, we start from i = N .
First we approximate ON by ÕN , this gives the factor Õ1

N−1 for the next step.

Here Õ1
N−1 denotes the approximated factor ON−1 because of the propagation of the

approximation error of ON . Then we compute a low-rank approximation of O1
N−1,

which gives Õ2
N−1. We continue this procedure till step i = 2. At step i, we use Õ2

i

to approximate Õ1
i , this introduces an approximation error that is bounded by τ . We

use Figure 5 to depict this backward recursion of approximation. For the details of
the Hankel blocks approximation algorithm, cf. [8, 31].

Fig. 5. Low-rank approximation of Ok

Here Õ1
k represents the approximation of Ok by considering the propagation of

the error introduced in the previous steps. And Õ1
k is further approximated by Õ2

k

by performing a low-rank approximation. Then we have the following lemma that
underlies the error between the original Hankel map and the approximate Hankel
map.

Lemma 5.2. Let A be a block N × N SSS matrix and its Hankel blocks Hi be
approximated by H̃i using the Hankel blocks approximation described by the above
procedure, then

(5.1)
∥
∥
∥Hi − H̃i

∥
∥
∥
2
≤ (N − i+ 1)τ, 2 ≤ i ≤ N.
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where τ is the upper bound for the discarded singular values that is applied in the
singular value decomposition of the Hankel factors. For the approximated Hankel
factors Oi that are illustrated in Figure 5, we have

(5.2)
∥
∥
∥Oi − Õ1

i

∥
∥
∥
2
≤ (N − i)τ, 2 ≤ i ≤ N − 1.

and

(5.3)
∥
∥
∥Õ2

i Q̃i−1 −OiQi−1

∥
∥
∥
2
≤ (N − i+ 1)τ, 2 ≤ i ≤ N.

Here we use the “ ˜ ” notation to denote a factor or matrix after approximation.
Proof. For the proof of this lemma, cf. Appendix A.

Remark 5.1. To perform the Hankel blocks approximation to reduce the off-
diagonal rank of an SSS matrix, the reduction of the strictly lower-triangular part is
clearly covered by the analysis above. To reduce the off-diagonal rank of the strictly
upper-triangular part, we can first transpose it to the strictly lower-triangular form.
Then perform the Hankel blocks approximation to the strictly lower-triangular part
and transpose back to the strictly upper-triangular form. This gives strictly upper-
triangular part with reduced off-diagonal rank.

In Section 3, we gave an analytic bound of the radius of the circle that contains
the preconditioned spectrum. This analytic bound is closely related to the approxi-
mation error ε by the model order reduction for SSS matrices, cf. Corollary 3.5 and
Proposition 3.8. This model order reduction error ε can be made arbitrarily small by
setting a parameter in the MSSS preconditioner. Now, we have all the ingredients to
help to compute a controllable ε. Next, we will give the main theorem of this section
to show how to compute the controllable ε.

Theorem 5.3. Let the N × N block SSS matrix A be approximated by Ã with
lower off-diagonal rank using the Hankel blocks approximation, then

∥
∥
∥A− Ã

∥
∥
∥
2
≤ 2

√
N(N − 1)τ,

where τ is the upper bound of the discarded singular values for the singular value
decomposition that is performed in approximating the Hankel blocks.

Proof. To prove this theorem, we use Figure 6 to illustrate the column structure
of the off-diagonal blocks for an SSS matrix. Since the strictly upper-triangular part
and the strictly lower-triangular part have similar structure, here we just take the
strictly lower-triangular part for example.

It is not difficult to verify that the i-th off-diagonal column of the strictly lower
triangular part of an SSS matrix, denoted by Ci, can be represented by

Ci = Oi+1Qi, (i = 1, 2, · · · , N − 1).

After performing the Hankel blocks approximation, Ci is approximated by

C̃i = Õ2
i+1Q̃i, (i = 1, 2, · · · , N − 1).
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(a) Hankel columns (b) Approximate
Hankel columns

Fig. 6. Lower-triangular Hankel columns before and after approximation

Denote ∆Ci = Ci − C̃i, then we have

‖∆Ci‖2 =
∥
∥
∥Oi+1Qi − Õ2

i+1Q̃i

∥
∥
∥
2
≤ (N − i)τ. (Lemma 5.2)

We can write the SSS matrix A by using the following form

A = L+D + U,

where L is the strictly lower-triangular part, D is the block diagonal part, and U is
the strictly upper-triangular part of A, respectively. Performing the Hankel blocks
approximation on the strictly lower-triangular part and the strictly upper-triangular
part, we obtain

Ã = L̃+D + Ũ ,

where L̃ and Ũ are approximated independently. Moreover, we have

L̃− L =
[
∆C1 ∆C2 · · · ∆CN−1 0

]
.

And

∥
∥
∥

(

L̃− L
)

x
∥
∥
∥
2
=

∥
∥
∥
∥
∥

N−1∑

i=1

∆Cixi

∥
∥
∥
∥
∥
2

≤
N−1∑

i=1

‖∆Ci‖2 ‖xi‖2 ≤ N−1
max
i=1

‖∆Ci‖2
N−1∑

i=1

‖xi‖2

≤ (N − 1)τ

N−1∑

i=1

‖xi‖2 ≤ (N − 1)τ

N∑

i=1

‖xi‖2

≤ (N − 1)τ

√
√
√
√N

N∑

i=1

‖xi‖22 =
√
N(N − 1)τ ‖x‖2 .

This yields

∥
∥
∥L− L̃

∥
∥
∥
2
, max

x 6=0

∥
∥
∥(L− L̃)x

∥
∥
∥
2

‖x‖2
≤

√
N(N − 1)τ.

Here τ is the upper bound for the discarded singular values for the singular value
decomposition that is performed in the Hankel blocks approximation. Similarly, we

have
∥
∥
∥U − Ũ

∥
∥
∥
2
≤

√
N(N − 1)τ , this gives

∥
∥
∥A− Ã

∥
∥
∥
2
=

∥
∥
∥(L − L̃) + (U − Ũ)

∥
∥
∥
2

≤
∥
∥
∥L− L̃

∥
∥
∥
2
+
∥
∥
∥U − Ũ

∥
∥
∥
2

≤ 2
√
N(N − 1)τ.
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Remark 5.2. Theorem 5.3 gives an analytical bound of the error introduced
by the model order reduction. This error is only related to the maximum discarded
singular value τ for the singular value decomposition that is performed in the Han-
kel blocks approximation. This states that this approximation error can be made
arbitrarily small by setting τ small enough. This in turn gives a relatively bigger
off-diagonal rank compared with moderate τ . A trade-off has to be made between the
computational complexity and accuracy.

Remark 5.3. The model order reduction can be also performed by setting a
fixed reduced off-diagonal rank. This is convenient in practice and makes the compu-
tational complexity and memory consumption easily predictable. The disadvantage,
however, is that the approximation error is unpredictable. In contrast, by setting a
fixed τ for the model order reduction, we can easily control the error bound and get
an adaptive reduced off-diagonal rank. However, the disadvantage is that the com-
putational complexity is difficult to estimate. In practice, we observe that for many
applications, a properly chosen τ also gives small enough off-diagonal rank, which
in turn gives predictable computational complexity. This will be highlighted in the
numerical experiments part.

Remark 5.4. In many applications, the error introduced by the model order
reduction using the Hankel blocks approximation is of O(τ), which is quite small
compared with the bound given by Theorem 5.3. Only in some extreme cases, the
bound given by Theorem 5.3 is sharp. However, it is quite difficult to prove for which
case the error bound given by Theorem 5.3 is sharp. Normally, a small τ still results a
small reduced off-diagonal rank, which yields linear computational complexity. This
will be illustrated by numerical experiments in the next section.

In practice, it would be desirable to estimate the semiseparable order of the Schur
complement that corresponds to a given τ . Normally, this is quite challenging since
the off-diagonal rank depends not only on the differential operator of the PDE, but
also on the coefficients of the PDE. Only some preliminary results can be found in
the literature. These results are summarized by Lemma 5.4.

Lemma 5.4 ([9]). Let the symmetric positive definite block tridiagonal system K
arise from the discretization of PDEs with Laplacian operator, constant coefficients,
and Dirichlet boundary condition everywhere on the boundary. Then the Schur com-
plement Si has a monotonically convergence rate and the limit of Si, i.e., S∞ is also
symmetric positive definite. The τ-rank of the Hankel blocks of S∞ are bounded by

r

(

1 + 8 ln4
(
3 ‖D‖
τ

))

,

where r is the maximal Hankel block rank of Ki,i and Ki,i−1, D is the diagonal block
of K. Here, the τ-rank of a matrix is defined by the number of singular values that
are bigger than or equal to τ .

Lemma 5.4 gives the upper bound of the limit of the Schur complement for the
infinite dimensional symmetric positive definite systems. For finite dimensional sym-
metric positive definite systems with constant coefficients, similar results hold. For
detailed discussion, cf. [9]. Note that this bound is not sharp because the term

ln4
(
3 ‖D‖
τ

)

can be much bigger than the size of K.

Recall Lemma 4.4 states that for the symmetric positive definite system K, τ can
be often chosen as τ < λmin(K). In Example 4.1, it is shown that usually we can
choose τ = O(λmin(K)). If ‖D‖ = O(‖K‖), then we get the bound of the rank of the
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Hankel blocks is of O
(
r ln4 κ2(K)

)
. Even this bound is not sharp, it states that for

ill-conditioned system, a bigger semiseparable order is needed to get a considerably
good approximation, which will be shown in Section 6.

For the symmetric positive definite systems from the discretization of PDEs with
variable coefficients and the indefinite systems, the analytic bound of the rank of the
Hankel blocks of the Schur complement is quite difficult to analyze. Relevant work
on analyzing the off-diagonal rank of the Schur complement of the symmetric positive
definite type by using hierarchical matrix computations is done in [2].

Remark 5.5. The τ rank of the off-diagonal blocks of the Schur complement
for symmetric positive definite systems studied in Lemma 5.4 is not sharp. In many
applications, it can be made quite small and even bounded by a small number for a
wide class of linear systems. This will be illustrated by numerical experiments in the
next section.

6. Numerical Experiments. In this section, we use numerical experiments to
investigate our analysis in the previous sections. We use three types of experiments,
which include unsymmetric systems, symmetric indefinite systems from discretization
of scalar PDEs and saddle-point systems, to demonstrate our results. For all the
numerical experiments performed in this section, the induced dimension reduction
(IDR(s))[44] is used as a Krylov solver. The IDR(s) solver is terminated when the
2-norm of the residual is reduced by a factor of 10−6. The numerical experiments are
implemented in MATLAB 2011b on a desktop of Intel Core i5 CPU of 3.10 GHz and
16 Gb memory with the Debian GNU/Linux 8.0 system.

6.1. Unsymmetric System. In this subsection, we use the convection-diffusion
equation as a numerical example to demonstrate our analysis for the unsymmetric
case. The convection-diffusion problem is described by Example 6.1, which is given as
the example 3.1.4 in [15]. The details of the discretization of the convection-diffusion
equation can be also found in [15]. We generate the linear system in this example using
the Incompressible Flow and Iterative Solver Software [38] (IFISS) ∗. To investigate
the performance of the MSSS preconditioning technique, we consider the case for a
moderate ν and a small ν.

Example 6.1 ([15]). Zero source term, recirculating wind, characteristic bound-
ary layers.

−ν∇2u+−→ω · ∇u = f in Ω

u = uD on ∂Ω
(6.1)

where Ω = {(x, y)| − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1}, −→ω =
(
2y(1− x2), −2x(1− y2)

)
,

f = 0. Homogeneous Dirichlet boundary condition is imposed everywhere and there
are discontinuities at the two corners of the wall, x = 1, y = ±1.

We use the Q1 finite element method to discretize the convection-diffusion equa-
tion. First, we consider a moderate value for the viscosity parameter ν = 1/200.

According to Proposition 3.8, the preconditioned spectrum is contained in a circle
centered at (1, 0) and the radius of this circle is directly related to the approximation
error ε introduced by the model order reduction for SSS matrix computations. In
Section 5, we show that ε can be made arbitrarily small by setting the bound of the

∗IFISS is a computational laboratory for experimenting with state-of-the-art preconditioned it-
erative solvers for the discrete linear equations that arise in incompressible flow modeling, which can
be run under Matlab or Octave.
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discarded singular values τ properly. We give detailed information of the spectrum
of the preconditioned matrix of dimension 1089× 1089, which corresponds to a mesh
size h = 2−4. For different values of τ , the preconditioned spectrum and the adaptive
semiseparable order are plotted in Figure 7-8.

Figure 7(a) and Figure 8(a) illustrate that the error introduced by the model
order reduction at step k in computing the MSSS preconditioner, which is denoted
by εk and measured by the matrix 2-norm, is of the same order as τ . Here εk is
computed by

(6.2) εk =
∥
∥
∥S̃k −

(

Kk,k −Kk,k−1S̃
−1
k−1Kk−1,k

)∥
∥
∥
2
.

It also illustrates that by setting the approximation error of the model order reduction
with the same order as the smallest singular value σ0, we can compute a nonsingular
preconditioner and get satisfactory convergence.
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Fig. 7. Preconditioned spectrum and adaptive semiseparable order for τ = 10−3
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Fig. 8. Preconditioned spectrum and adaptive semiseparable order for τ = 10−4

By decreasing τ , we get a smaller approximation error, which corresponds to
smaller ε. According to our analysis, the circle that contains the preconditioned
spectrum is even smaller. This is depicted by Figure 7(b)-Figure 8(b). Moreover, it
is shown that by decreasing τ by a factor of 10, the radius of the circle that contains
the preconditioned spectrum also decreases by a factor of about 10. This validates
our bound of the radius in Proposition 3.8. In fact, for the preconditioned spectrum
in Figure 7(b), only 4 iterations are needed to compute the solution by the IDR(4)

solver and only 2 iterations are needed to solve the system corresponding to the
preconditioned spectrum in Figure 8(b).

Figure 7(c)-Figure 8(c) give the maximum adaptive rank for the off-diagonal
blocks of the Schur complement at step k to compute the MSSS preconditioner. Since
we have an unsymmetric matrix, the τ -rank for the upper-triangular part and the



Yue Qiu, Martin B. van Gijzen et al. 21

lower-triangular part are different from each other. Here the τ -rank represents the
number of singular values that is bigger than or equal to τ for a matrix. Figure 7(c)-
Figure 8(c) illustrate that the upper semiseparable order ru is bigger than the lower
semiseparable order rl which states that the upper-triangular part is more difficult
to approximate. Both rl and ru are small and this gives small average semiseparable
order, which yields linear computational complexity.

We plot the spectrum of the system without preconditioning in Figure 9 to com-
pare with the preconditioned spectrum in Figure 7(b)-Figure 8(b).
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Fig. 9. Spectrum of the system without preconditioning

The driving force of preconditioning is to push the eigenvalues away from 0 and
make them cluster. We have already seen that moderate or small setting of the model
reduction error give satisfactory results. Next, we use a big model order reduction
error bound by setting τ = 10−1 and test the performance of the MSSS preconditioner.
The approximation error at each step in computing the MSSS preconditioner is plotted
in Figure 10(a), the preconditioned spectrum is given in Figure 10(b), and the adaptive
semiseparable order is given in Figure 10(c).
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Fig. 10. Preconditioned spectrum and adaptive semiseparable order for τ = 10−1

Note that even this setting of the error bound is much bigger than the smallest
singular value of the leading principle sub-matrices, which is used to guarantee to
compute a nonsingular preconditioner, we still compute an MSSS preconditioner.
This is because the possibility of perturbing a nonsingular matrix to singularity is
quite small. Since we have a preconditioner that is less accurate because we use a
relatively big error bound, the radius of the circle that contains the spectrum of the
preconditioned matrix in Figure 10(b) is not as small as the radius in Figure 7(b)-
Figure 8(b). However, the spectrum is away from 0 and only a few eigenvalues are
out of this cluster. IDR(4) computes the solution in just 8 iterations. Moreover, the
semiseparable order for such computations is just 1 as shown in Figure 10(c), which
makes the computational complexity even smaller.
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The performance of MSSS preconditioners for different mesh sizes h and τ are
reported in Table 1. For different settings of τ , the adaptive semiseparable order is
given in Figure 11.
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(a) h = 2−5, τ = 10−3
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Fig. 11. Adaptive semiseparable order for convection-diffusion equation with ν = 1/200

Table 1

Computational results of the MSSS preconditioner for the convection-diffusion equation with
ν = 1/200

h N2 τ # iter.

2−4 1.09e+ 03
5× 10−3 6

10−3 3

2−5 4.23e+ 03
10−3 7

5× 10−4 4

2−6 1.66e+ 04
10−4 5

5× 10−5 4

2−7 6.61e+ 04
5× 10−5 6

10−5 3

2−8 2.63e+ 05
5× 10−5 10

10−5 5
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The results reported in Table 1 and Figure 11 state that by choosing a proper
error bound for the model order reduction, we can compute an MSSS preconditioner
that gives satisfactory convergence. This convergence can be made independent of
the mesh size, while the adaptive semiseparable order only slightly increases with the
problem size. This is demonstrated by Figure 11. The average of the upper and lower
semiseparable order is still quite small and can be almost kept constant. We can
also choose a fixed semiseparable order to compute an MSSS preconditioner. This
is studied in [32]. Both ways to compute the MSSS preconditioner give satisfactory
results.

Next we set ν = 10−4 for the convection-diffusion equation, which corresponds to
the convection-dominated case. For such test case, the finite element discretization is
not stable anymore, an up-wind scheme should be applied to get a stable discretiza-
tion. Due to the ill-conditioning of the system, a bigger semiseparable order is needed
to compute the MSSS preconditioner to get better performance. Note that for this
case, the multigrid methods (both AMG and GMG) fail to solve such system without
up-wind scheme while the MSSS preconditioner can still solve this ill-conditioning
systems [32]. Here we report detailed numerical results for the test case with mesh
size h = 2−4. We first set τ = 10−3 and τ = 10−4, the computational results are
reported in Figure 12 and Figure 13. The preconditioned system can be solved by
IDR(4) using 4 iterations for τ = 10−3 and 2 iterations for τ = 10−4.

Figure 12(b)-Figure 13(b) show that by reducing τ with a factor of 10, the radius of
the circle that contains the preconditioned spectrum is also reduced by a factor around
10. This validates our bound of the radius of circle that contains the preconditioned
spectrum in Proposition 3.8 again.
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Fig. 12. Preconditioned spectrum and adaptive semiseparable order for τ = 10−3
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Fig. 13. Preconditioned spectrum and adaptive semiseparable order for τ = 10−4

Remark 6.1. The MSSS preconditioners computed by setting τ = 10−3 and τ =
10−4 give different clustering of the spectrum, as shown in Figure 12(b)-Figure 13(b).



24 Convergence Analysis of MSSS Preconditioners

However, the adaptive semiseparable order for different τ is almost the same. This is
primarily because the Schur complements in computing the factorization are very ill-
conditioned and difficult to approximate. A slight change of the semiseparable order
results in relatively big difference of the approximation accuracy. This also explains
why a bigger adaptive semiseparable order is needed compared with the test case for
ν = 1/200.

We also test the convergence of the MSSS preconditioned system by setting τ =
10−1 and τ = 10−2. The computational results are given in Figure 14-Figure 15.
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Fig. 14. Preconditioned spectrum and adaptive semiseparable order for τ = 10−1

0 5 10 15 20 25 30 35
10

−20

10
−15

10
−10

10
−5

10
0

k

 

 

σ
0

k

εk

τ

(a) Minimal singular value and
εk

−1 0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

ℜ

ℑ

(b) Preconditioned spectrum

5 10 15 20 25 30
0

2

4

6

8

10

12

14

k

 

 

r
l

k

r
u

k

(c) Adaptive semiseparable
order

Fig. 15. Preconditioned spectrum and adaptive semiseparable order for τ = 10−2

It is shown in Figure 14-Figure 15 that although the MSSS preconditioner is non-
singular by choosing relatively bigger τ compared to σ0, the preconditioned spectrum
is contained in a circle centered at (1, 0) with a much bigger radius and (0, 0) is in-
cluded in the circle. The preconditioned system for τ = 10−2 is solved by IDR(4)

in 61 iterations while IDR(4) fails to solve the preconditioned system for τ = 10−1

within 80 iterations.
To give an impression of how difficult it is to preconditioning this convection-

dominated system, we plot part of the spectrum in Figure 16. It is shown that a big
part of the eigenvalues is close to 0, which makes slow convergence.
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Fig. 16. Part of the non-preconditioned spectrum
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For different mesh sizes h and settings of τ , the computational results are reported
in Table 2. The adaptive semiseparable order for different mesh sizes h and settings
of τ are plotted in Figure 17.

Table 2

Computational results of the MSSS preconditioner for the convection-diffusion equation with
ν = 10−4

h N2 τ # iter.

2−4 1.09e+ 03
5× 10−3 23

10−3 4

2−5 4.23e+ 03
10−3 18

5× 10−4 11

2−6 1.66e+ 04
5× 10−4 20

10−4 6

2−7 6.61e+ 04
10−4 13

5× 10−5 8

2−8 2.63e+ 05
5× 10−5 17

10−5 6
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(a) h = 2−4, τ = 5×10−3
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(b) h = 2−5, τ = 10−3
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(c) h = 2−5, τ = 5×10−4
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Fig. 17. Adaptive semiseparable order for convection-diffusion equation with ν = 10−4

Since this convection-dominated test case is ill-conditioned, it is quite difficult
to compute its factorization (inverse). It takes more effort to compute a good ap-
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proximation compared with the case ν = 1/200. This is illustrated by comparing the
adaptive semiseparable order in Figure 17 with that in Figure 11. For such case, the
average of the upper and lower semiseparable order is considerably bigger. Since the
average semiseparable order may not be bounded by a small constant, this makes
the computational complexity of the MSSS preconditioning technique slightly big-
ger than linear. Details and remarks on the computational complexity for moderate
semiseparable order will be discussed in Section 6.2.

6.2. Symmetric Indefinite Systems from Discretized Helmholtz Equa-

tion. In this subsection, we study the convergence of the MSSS preconditioners for
the symmetric indefinite systems from the discretization of scalar PDEs, where the
Schrödinger equation in Example 4.1 and the Helmholtz equation belong to this type.
In this part, we mainly focus on the performance of the MSSS preconditioner for the
Helmholtz equation that is given by Example 6.2.

Example 6.2 ([25]). Consider the following Helmholtz equation,

−∇2u(x, ω)− ω2

c2(x)
u(x, ω) = g(x, ω), x ∈ [0, 1]× [0, 1],

with homogeneous Dirichlet boundary condition. Here u(x, ω) represents the pressure
field in the frequency domain, ∇2 is the Laplacian operator, ω is the angular frequency,
and c(x), is the acoustic-wave velocity that varies with position x.

Standard five-point stencil finite difference method is used to discretize the Hel-
moltz equation. We use the rule of thumb that at least 10 nodes per wavelength
should be employed, which leads to the restriction

(6.3) κh ≤ π

5
≈ 0.628,

for the standard five-point stencil finite difference discretization [25]. Here κ = ω/c(x)
is the wave number. We apply the MSSS preconditioner to the Helmholtz equation.
The pulse source term g(x, ω) is chosen as the scaled delta function that is located at
(
1/32,

1/2
)
.

To test the performance of the MSSS preconditioner, we first set a moderate value
for kh, say 1/16. The preconditioned spectrum and semiseparable order for mesh size
h = 2−5 and different settings of τ are plotted in Figure 18 and Figure 19.
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Fig. 18. Preconditioned spectrum and adaptive semiseparable order for τ = 10−2 and κh = 1/16

For τ = 10−2, the error introduced by the model order reduction is already smaller
than σ0, we confer that the preconditioned spectrum is contained in a circle that is
small enough according to Proposition 3.8. This is well illustrated by Figure 18(b). If
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we reduce τ to 10−3, then we get even smaller circle that contains the preconditioned
spectrum in Figure 19(b). Figure 18(b)-Figure 19(b) indicate that by reducing τ with
a factor of 10, the radius of the circle that contains the preconditioned spectrum also
decreases by a factor around 10. This again verifies our analysis on the radius of the
circle in Proposition 3.8.
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Fig. 19. Preconditioned spectrum and adaptive semiseparable order for τ = 10−3 and κh = 1/16

Both settings of τ give small enough circle to yield very fast convergence for
Krylov solvers. IDR(4) computes the solution in 4 iterations for τ = 10−2 and 2
iterations for τ = 10−3. For both cases, the semiseparable order is small enough to
yield linear computational complexity of the MSSS preconditioners.

For the settings of different τ and h, the computational results are reported in
Table 3. The adaptive semiseparable order are plotted in Figure 20.

Table 3

Performance of MSSS preconditioner for the Helmholtz equation with κh = 1/16

h κ N2 τ # iter.

2−5 2 1.09e+ 03
10−2 4

10−3 2

2−6 4 4.23e+ 03
10−2 6

10−3 3

2−7 8 1.66e+ 04
10−2 8

10−3 4

2−8 16 6.61e+ 04
10−3 7

10−4 3

2−9 32 2.63e+ 05
10−3 14

10−4 3

The computational results in Table 3 show that the number of iterations can be
kept constant by setting a proper τ . We keep κh constant for numerical experiments.
This makes the Helmholtz equation even more difficult to solve, and results in a slight
increase of the semiseparable order for big κ in Figure 20. However, the semiseparable
order is still bounded by a small number.
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Fig. 20. Adaptive semiseparable order for the Helmholtz equation with kh = 1/16

Next, we set κh = 0.625 that almost reaches the limit of condition (6.3). We
first report the preconditioned spectrum to demonstrate our analysis. By choosing
different settings of τ , the computational results for the mesh size h = 2−5 are given
in Figure 21-Figure 22.

τ is first chosen as 10−2, which is of O(σ0). This gives the computational results
in Figure 21. The preconditioned spectrum in Figure 21(b) is contained in a circle
with very small radius. By decreasing τ , we get a even smaller radius of the circle
in Figure 22(b). It is shown in Figure 21(b)-Figure 22(b) that if τ is decreased by
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a factor of 10, the radius of the circle that contains the preconditioned spectrum is
also reduced by a factor around 10. Both settings give super fast convergence. Here
the Helmholtz problem is solved by IDR(4) in only 3 iterations for τ = 10−2 and 2
iterations for τ = 10−3.
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Fig. 21. Preconditioned spectrum and adaptive semiseparable order for τ = 10−2
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Fig. 22. Preconditioned spectrum and adaptive semiseparable order for τ = 10−3

We can even relax the settings of τ and still compute an efficient MSSS precon-
ditioner. This setting gives us smaller semiseparable order that is preferable. The
computational results are shown in Figure 23. The preconditioned spectrum is con-
tained in a circle with a bigger radius compared with the case τ = 10−2. Compare
Figure 23(b) with Figure 22(b), we see that by increasing τ with a factor of 10, the ra-
dius of the circle that contains the preconditioned spectrum also increases by a factor
around 10. This is stated in Proposition 3.8. The circle that contains the precondi-
tioned spectrum still has a small radius for τ = 10−1. Therefore, IDR(4) computes
the solution in only 9 iterations.
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Fig. 23. Preconditioned spectrum and adaptive semiseparable order for τ = 10−1

We report the computational results of the MSSS preconditioner for different
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mesh sizes h and settings of τ in Table 4. The adaptive semiseparable order for the
MSSS preconditioners are plotted in Figure 24.
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Fig. 24. Adaptive semiseparable order for the Helmholtz equation with κh = 0.625

Results listed in Table 4 illustrate that by properly setting τ , we obtain mesh size
h independent and wave number k independent convergence. The number of iterations
can be kept virtually constant. For the shifted Laplacian preconditioner [17], which is
the state-of-the-art preconditioning technique for the Helmholtz equation, the number
of iterations scales linearly with the wave number κ [43]. Some recent effort dedicated
to reduce the dependency on wave number of the number of iterations is carried out
by making use of the deflation technique, cf. [37].
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With the refinement of the mesh, the wave number κ increases linearly. This
makes the Helmholtz problem difficult to solve for small mesh size, which is illustrated
by the increase of semiseparable order. Figure 24 shows that the semiseparable order
has a considerable increase with the refinement of the mesh and is not bounded
by a small number, but a moderate number of O(

√
N). As stated in [8] that the

computational complexity for the SSS matrix computations is linear with respect to
the problem size with a prefactor r3k provided that rk is small. Next, we analyze the
computational complexity of SSS matrix computations for big rk but rk ≪ N , which
corresponds to the case of the Helmholtz equation for κh = 0.625.

Table 4

Performance of MSSS preconditioner for the Helmholtz equation with κh = 0.625

h κ N2 τ # iter.

2−5 20 1.09e+ 03
10−2 3

10−3 2

2−6 40 4.23e+ 03
10−3 3

10−4 3

2−7 80 1.66e+ 04
10−2 8

10−3 4

2−8 160 6.61e+ 04
10−3 5

10−4 3

2−9 320 2.63e+ 05
10−3 5

10−4 3

2−10 640 1.05e+ 06
10−3 6

10−4 3

For an SSS matrix A of N×N with semiseparable order rk, the size of its diagonal
blocks is denoted by n, then A has N/n blocks. The computational complexity for the
matrix-matrix operations and the model order reduction of SSS matrices is bounded
by

(6.4) O(max
{
n3, n2rk, r2kn, r3k

} N

n
),

which can be obtained by checking the SSS matrix computations in [8]. For small rk,
we also set n small enough. This gives the computational complexity of O(r3kN), i.e.,
linear with respect to the problem size. For moderate rk, the term r3k becomes big.
According to (6.4), the settings of n can be adjusted such that a proper computational
complexity can be reached. Usually, we choose n and rk of the same order, say rk = n.
This in turn gives the computational complexity for SSS matrix computations of
O(r2kN) for moderate rk. Note that the setting of n does not change rk, since rk is
the rank of the off-diagonal blocks, which only depends on the property of the matrix.

For the computations of the MSSS preconditioners with moderate rk, N Schur
complements are computed while each Schur complement is computed in O(r2kN).
This in turn gives the total computational complexity O(r2kN

2), where N2 is the

problem size. For the case κh = 0.625, rk is roughly bounded by O(
√
N), this in turn

results the total computational complexity bounded by O(N2)
3
2 . This is comparable
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with the computational complexity of a multi-frontal solver for 2D problems [16]. We
use Figure 25 to show the growth factor of time to compute the MSSS preconditioner
with the mesh refinement.
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Fig. 25. MSSS preconditioning time for κh = 0.625

Here we set n = 4, 8, 8, 16, 32, 128 with the refinement of the mesh and τ = 10−3

for all the mesh sizes except τ = 10−4 for h = 2−9. All the time are measured in
seconds. The number over the line shows the growth factor of the time to compute
the MSSS preconditioner. It is clear that the growth factor for time is below 4

3
2 = 8.

Note that we use a non-equidistant axis for Figure 25.

6.3. Saddle-Point Systems. We study the convergence property of MSSS pre-
conditioners for the saddle-point systems in this part. Consider the following PDE-
constrained optimization problem given by Example 6.3.

Example 6.3 ([29]). Let Ω = [0, 1]2 and consider the problem

min
u,f

1

2
‖u− û‖+ β

2
‖f‖2

s.t. −∇2u = f in Ω

u = uD on ΓD,

where ΓD = ∂Ω, β > 0, û = 0 is the prescribed system state, and

uD =







− sin(2πy) if x = 1, 0 ≤ y ≤ 1,
sin(2πy) if x = 0, 0 ≤ y ≤ 1,
0 otherwise.

Discretize the cost function and the PDE constraints by using the Galerkin
method and then compute the optimality condition gives the following linear saddle-
point system to solve

(6.5)





2βM 0 −M
0 M KT

−M K 0









x
y
λ



 =





0
b
d



 .

Here M is the mass matrix, K is the stiffness matrix, x and y are the discrete analog
of f and u, λ is the Lagrangian multiplier, b and d are obtained by discretizing the
cost function and boundary conditions, respectively.

All the sub-blocks of the saddle-point system (6.5) have an MSSS structure and
can be exploited to get a global MSSS structure. By exploiting the global MSSS
structure of the saddle-point system, we can compute a global MSSS preconditioner.
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This is discussed in great detail in [31]. Here, we use the numerical experiments of
preconditioning the saddle-point system (6.5) to demonstrate the convergence analysis
in Section 3.

We report the computational results for the mesh size h = 2−4 with a wide range
settings of β and τ . First, we test a moderate set of τ = 10−2 and τ = 10−3 for
β = 10−1. The computational results are given in Figure 26 and Figure 27.
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Fig. 26. Preconditioned spectrum and adaptive semiseparable order for h = 2−4, τ = 10−2,
β = 10−1
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Fig. 27. Preconditioned spectrum and adaptive semiseparable order for h = 2−4, τ = 10−3,
β = 10−1

Figure 26(b) and Figure 27(b) show that a moderate setting of τ gives a small
radius of the circle that contains the preconditioned spectrum, and the smaller τ is, the
smaller the radius is. Both settings give adequately small circle and the decrease of τ
just yields a slightly increase of the semiseparable order, which is shown in Figure 26(c)
and Figure 27(c). The IDR(4) solves the preconditioned system for τ = 10−2 in only
3 iterations and only 2 iterations for τ = 10−3.

We can even set a bigger τ to compute an MSSS preconditioner, the computational
results for τ = 10−1 are plotted in Figure 28. Figure 28(b) illustrates that a bigger τ
gives a bigger radius of the circle that contains the preconditioned spectrum. But the
circle is still small and the IDR(4) solver computes the solution of the preconditioned
system in only 5 iterations. Moreover, this settings of τ gives a smaller semiseparable
order, which is shown in Figure 28(c).

The smallest singular value of the saddle-point system (6.5) scales with β. A
smaller β in turn gives a smaller smallest singular value. This makes the saddle-point
system (6.5) even more ill-conditioned and difficult to solve. Next, we test the case
for a moderate β = 10−2, and a much smaller β = 10−5, the computational results
for τ = 10−2, and τ = 10−3 are reported in Figure 29-Figure 32.
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Fig. 28. Preconditioned spectrum and adaptive semiseparable order for h = 2−4, τ = 10−1,
β = 10−1
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Fig. 29. Preconditioned spectrum and adaptive semiseparable order for h = 2−4, τ = 10−2,
β = 10−2
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Fig. 30. Preconditioned spectrum and adaptive semiseparable order for h = 2−4, τ = 10−3,
β = 10−2
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Fig. 31. Preconditioned spectrum and adaptive semiseparable order for h = 2−4, τ = 10−2,
β = 10−5
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Fig. 32. Preconditioned spectrum and adaptive semiseparable order for h = 2−4, τ = 10−3,
β = 10−5

The computational results in Figure 29-Figure 32 show that a moderate settings of
τ gives satisfactory performance of the MSSS preconditioner. The IDR(4) solver com-
putes the solution in 2 or 3 iterations for all the settings of τ and β that corresponds
to the test cases in Figure 29-Figure 32. Although the smallest singular value of all
the principle leading sub-matrices of the saddle-point system (6.5) is much smaller
for small β, the choice of τ can still be made bigger than the smallest singular value,
which is illustrated by Figure 29(a)-Figure 32(a). The choice of moderate τ in turn
gives an adequately small semiseparable order for a wide range of β.

Table 5

Performance of MSSS preconditioner for the PDE-constrained optimization problem with dif-
ferent β

h N2
β = 10−1 β = 10−2 β = 10−5

τ # iter. τ # iter. τ # iter.

2−5 3.07e+ 03
10−1 6 10−1 6 10−1 4

10−2 3 10−2 4 10−2 3

2−6 1.23e+ 04
10−1 9 10−1 8 10−2 16

10−2 4 10−2 4 10−3 3

2−7 4.92e+ 04
10−1 13 10−1 16 10−3 6

10−2 5 10−2 5 10−4 2

2−8 1.97e+ 05
10−2 10 10−2 10

10−4 3
10−3 4 10−3 4

2−9 7.86e+ 05 10−3 6 10−3 6
10−4 19

10−5 2

The performance of the MSSS preconditioner for different settings of τ , β, and the
mesh size h are given in Table 5. The corresponding semiseparable order are plotted
in Figure 33-Figure 35.

The computational results in Figure 33-Figure 34 for the test case with β = 10−1

and β = 10−2 show that for a constant setting of τ , the semiseparable order is bounded
by a constant 4 for the mesh size h ranges from 2−7 to 2−5. The semiseparable order
is independent of the mesh size h and β. Since the smallest singular value for all
the principle leading sub-matrices of the saddle-point systems also scales with mesh
size h, for a bigger test example with mesh size h = 2−9 and h = 2−8, a smaller τ
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is needed to get a satisfactory radius of the circle that contains the preconditioned
spectrum according to Proposition 3.8. This is verified by the computational results
in Figure 33-Figure 35 and Table 5. The setting of a smaller τ yields a slightly increase
of the semiseparable order from 4 to 6, which is still quite small.
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Fig. 33. Adaptive semiseparable order for β = 10−1
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Fig. 34. Adaptive semiseparable order for β = 10−2

For much smaller β = 10−5, the saddle-point system is even more ill-conditioned.
The smallest singular value for all the principle leading sub-matrices is even more
smaller. To solve such an ill-conditioned system, a smaller τ is necessary to get a
satisfactory radius of the circle that contains the preconditioned spectrum, compared
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with the case for moderate β. This yields a slightly increase of the semiseparable
order and the semiseparable orders for all the test cases are still bounded by a small
constant, which is illustrated by Figure 35.
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Fig. 35. Adaptive semiseparable order for β = 10−5

Remark 6.2. According to the computational results for different regularization
parameter β and mesh size h in Figure 33-Figure 35 and Table 5, we show that by a
properly setting of the parameter τ for the MSSS preconditioner, we can compute an
efficient preconditioner that gives mesh size and regularization parameter independent
convergence. The computational complexity for the MSSS preconditioning technique
can be kept linear with the problem sizes.

7. Conclusions. In this manuscript, we made a convergence analysis of the
multilevel sequentially semiseparable (MSSS) preconditioners for a wide class of lin-
ear systems. This includes unsymmetric systems, symmetric indefinite systems from
discretization of scalar PDEs and saddle-point systems. We showed that the spectrum
of the preconditioned system is contained in a circle centered at (1, 0) and we gave
an analytic bound for the radius. Our analysis shows that the radius of the circle
can be made arbitrarily small by properly setting a parameter in the MSSS precondi-
tioner. We also demonstrated how to select the parameter. We validate our analysis
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by performing numerical experiments.
The next step of our research is to focus on applying the MSSS preconditioning

technique to the wind farm control. This type of application belongs to the in-domain
control problems and yields a linear system of the saddle-point type. Standard block
preconditioners fail to solve this problem since the Schur complement is difficult or
even impossible to approximate. By solving this saddle-point system using our MSSS
preconditioning technique, we can obtain the optimal control to maximize the total
output power of a wind farm.

Appendix A. Proof of Lemma 5.2. Before the proof, we give the following
lemmas and corollaries that are necessary.

Lemma A.1 ([41]). Let A ∈ Cm×n be partitioned in the form

A =

[
A1

A2

]

.

Let the singular values of A be σ1 ≥ σ2 ≥ · · · ≥ σn and those of A1 be τ1 ≥ τ2 ≥ · · · ≥
τn. Then

σi ≥ τi, i = 1, 2, . . . , n.

From Lemma A.1, we can also get the inequality between singular values of A
and A2, which is stated by Proposition A.2.

Proposition A.2. Let the singular values of A2 in Lemma A.1 be ν1 ≥ ν2 ≥
· · · ≥ νn. Then

σi ≥ νi, i = 1, 2, . . . , n.

Proof. It is easy to obtain

[
A2

A1

]

=

[
0 Ip
Iq 0

] [
A1

A2

]

=

[
0 Ip
Iq 0

]

A,

where Ip and Iq are identity matrices with proper sizes. Let Ā =

[
0 Ip
Iq 0

]

A, then

according to Lemma A.1, we have

σi ≥ νi, i = 1, 2, . . . , n.

This is because that Ā and A have the same singular values.
According to Lemma A.1 and Proposition A.2, we have the following corollary.
Corollary A.3. If all the factors Ci are transformed to the form with orthonor-

mal rows, then we have

(A.1) ‖Ri‖2 ≤ 1, and ‖Qi‖2 ≤ 1.

Proof. According to the procedure to transform Ci to the form with orthonormal
rows introduced in Section 5, at step i+ 1, we perform an SVD that gives

[
Ri Qi

]
= UiΣiV

T
i ,
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and let
[
Ri Qi

]
= V T

i . This gives

Vi =

[
RT

i

QT
i

]

.

According to Lemma A.1 and Proposition A.2, we have

σk(Vi) ≥ σk(R
T
i ), σk(Vi) ≥ σk(Q

T
i ).

Since σk(Ri) = σk(R
T
i ), σk(Qi) = σk(Q

T
i ) and σk(Vi) = 1, we have

‖Ri‖2 ≤ 1, ‖Qi‖2 ≤ 1.

With these lemmas and corollaries, we now give the proof of Lemma 5.2 in the
following part.

Proof. Since these inequalities in the lemma start from different steps, we first
give the proof at step N and then start the proof by induction from step N − 1.

For step N , perform an SVD on ON gives

ON = PN =
[
UN ∆UN

]
[
ΣN

∆ΣN

] [
V T
N

∆V T
N

]

,

where ΣN and ∆ΣN are diagonal matrices with diagonal entries σ1, σ2, · · · , σr̃N ,
and σr̃N+1

, · · · , σrN with

σ1 ≥ σ2 ≥ · · · ≥ σr̃N > τ ≥ σr̃N+1
≥ · · · ≥ σrN .

Let ÕN = UN and C̃N = ΣNV T
N CN , we have

∥
∥
∥ONCN − ÕN C̃N

∥
∥
∥
2
=

∥
∥∆UN∆ΣN∆V T

N CN
∥
∥
2

=
∥
∥∆UN∆ΣN∆V T

N

∥
∥
2

(CN has orthonormal rows)

≤ τ.

This is exactly the inequality in (5.1) for i = N , i.e.,

∥
∥
∥H̃N −HN

∥
∥
∥
2
≤ τ.

After this step, the factor ÕN has orthonormal columns.
According to CN =

[
RN−1CN−1 QN−1

]
and C̃N = ΣNV T

N CN , we have

R̃1
N−1 = ΣNV T

N RN−1, Q̃N−1 = ΣNV T
N QN−1.

Then
∥
∥
∥ÕN Q̃N−1 −ONQN−1

∥
∥
∥
2
=

∥
∥∆UN∆ΣN∆V T

N QN−1

∥
∥
2

≤
∥
∥∆UN∆ΣN∆V T

N

∥
∥
2
‖QN−1‖2

≤
∥
∥∆UN∆ΣN∆V T

N

∥
∥
2

(Corollary A.3)

≤ τ,

which gives the inequality (5.3) for i = N .
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Now, we start our proof from the step i = N − 1 by induction. Because of the
approximation of ÕN , we have

Õ1
N−1 =

[
PN−1

ÕN R̃1
N−1

]

and we have the following inequality hold

(A.2)
∥
∥
∥ON−1 − Õ1

N−1

∥
∥
∥
2
≤ τ.

This is by the reason of

∥
∥
∥ON−1 − Õ1

N−1

∥
∥
∥
2
=

∥
∥
∥
∥

[
PN−1

ONRN−1

]

−
[

PN−1

ÕN R̃1
N−1

]∥
∥
∥
∥
2

=

∥
∥
∥
∥

[
0

ONRN−1 − ÕN R̃1
N−1

]∥
∥
∥
∥
2

=
∥
∥
∥ONRN−1 − ÕN R̃1

N−1

∥
∥
∥
2

=
∥
∥∆UN∆ΣN∆V T

N RN−1

∥
∥
2

≤
∥
∥∆UN∆ΣN∆V T

N

∥
∥
2
‖RN−1‖2

≤
∥
∥∆UN∆ΣN∆V T

N

∥
∥
2

(Corollary A.3)

≤ τ.

This proves the inequality (5.2) for i = N − 1.
According to

Õ1
N−1 =

[
PN−1

ÕN R̃1
N−1

]

=

[
I

ÕN

] [
PN−1

R̃1
N−1

]

,

and ÕN has orthonormal columns, we perform an SVD on

[
PN−1

R̃1
N−1

]

and get

[
PN−1

R̃1
N−1

]

=
[
UN−1 ∆UN−1

]
[
ΣN−1

∆ΣN−1

] [
V T
N−1

∆V T
N−1

]

.

Let Õ2
N−1 =

[
I

ÕN

]

UN−1 and C̃N−1 = ΣN−1V
T
N−1CN−2, i.e.,

C̃N−1 = ΣN−1V
T
N−1

[
RN−2CN−2 QN−2

]
,

which yields R̃1
N−2 = ΣN−1V

T
N−1RN−2 and Q̃N−2 = ΣN−1V

T
N−1QN−2. Then, we

obtain

∥
∥
∥Õ2

N−1C̃N−1 − Õ1
N−1CN−1

∥
∥
∥
2
=

∥
∥∆UN−1∆ΣN−1∆V T

N−1CN−1

∥
∥
2

=
∥
∥∆UN−1∆ΣN−1∆V T

N−1

∥
∥
2

(CN−1 has orthonormal rows)

≤ τ.

(A.3)
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This in turn gives
∥
∥
∥ON−1CN−1 − Õ2

N−1C̃N−1

∥
∥
∥
2
≤

∥
∥
∥ON−1CN−1 − Õ1

N−1CN−1

∥
∥
∥
2
+
∥
∥
∥Õ1

N−1CN−1 − Õ2
N−1C̃N−1

∥
∥
∥
2

=
∥
∥
∥ON−1 − Õ1

N−1

∥
∥
∥
2
+
∥
∥
∥Õ1

N−1CN−1 − Õ2
N−1C̃N−1

∥
∥
∥
2

≤ 2τ (CN−1 has orthonormal rows and (A.2) (A.3)),

i.e.,
∥
∥
∥HN−1 − H̃N−1

∥
∥
∥
2
≤ 2τ,

which proves inequality (5.1) for i = N − 1.
Additionally,

∥
∥
∥Õ2

N−1Q̃N−2 − Õ1
N−1QN−2

∥
∥
∥
2
=

∥
∥
∥
∥

[
I

ÕN

]

∆UN−1∆ΣN−1∆V T
N−1QN−2

∥
∥
∥
∥
2

=
∥
∥∆UN−1∆ΣN−1∆V T

N−1QN−2

∥
∥
2
(ÕN has orthonormal columns)

≤
∥
∥∆UN−1∆ΣN−1∆V T

N−1

∥
∥
2
, (Corollary A.3)

≤ τ.

And,
∥
∥
∥Õ1

N−1QN−2 −ON−1QN−2

∥
∥
∥
2
≤

∥
∥
∥Õ1

N−1 −ON−1

∥
∥
∥
2
‖QN−2‖2

≤
∥
∥
∥Õ1

N−1 −ON−1

∥
∥
∥
2

(Corollary A.3)

≤ τ. (Equation (A.2))

This in turn yields

∥
∥
∥Õ2

N−1Q̃N−2 −ON−1QN−2

∥
∥
∥
2
≤

∥
∥
∥Õ2

N−1Q̃N−2 − Õ1
N−1QN−2

∥
∥
∥
2
+
∥
∥
∥Õ1

N−1QN−2 −ON−1QN−2

∥
∥
∥
2

≤ 2τ,

(A.4)

which is exactly inequality (5.3) for i = N − 1.
Till now, we have proven that all the inequalities (5.1) (5.2) (5.3) hold for i =

N−1. Next, we suppose that at step (k+1), 2 ≤ k ≤ N−2, the following inequalities
hold,

∥
∥
∥O1

k+1 − Õ1
k+1

∥
∥
∥
2
≤ (N − k − 1)τ,

∥
∥
∥Õ2

k+1Q̃k −Ok+1Qk

∥
∥
∥
2
≤ (N − k)τ.

Therefore, at step k, we have

∥
∥
∥Õ1

k −Ok

∥
∥
∥
2
=

∥
∥
∥
∥

[
Pk

Õ2
k+1R̃

1
k

]

−
[

Pk

Ok+1Rk

]∥
∥
∥
∥
2

=
∥
∥
∥Õ2

k+1R̃
1
k −Ok+1Rk

∥
∥
∥
2

≤
∥
∥
∥Õ2

k+1R̃
1
k − Õ1

k+1Rk

∥
∥
∥
2
+
∥
∥
∥Õ1

k+1Rk −Ok+1Rk

∥
∥
∥
2
.
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And it is easy to obtain

∥
∥
∥Õ2

k+1R̃
1
k − Õ1

k+1Rk

∥
∥
∥
2
=

∥
∥
∥
∥

[
I

Õ2
k+1

]

∆Uk+1∆Σk+1∆V T
k+1Rk

∥
∥
∥
∥
2

=
∥
∥∆Uk+1∆Σk+1∆V T

k+1Rk

∥
∥
2

(Õ2
k+1 has orthonormal columns)

≤
∥
∥∆Uk+1∆Σk+1∆V T

k+1

∥
∥
2

(Corollary A.3)

≤ τ.

Besides
∥
∥
∥Õ1

k+1Rk −Ok+1Rk

∥
∥
∥
2
≤

∥
∥
∥Õ1

k+1 −Ok+1

∥
∥
∥
2
‖Rk‖2

≤
∥
∥
∥Õ1

k+1 −Ok+1

∥
∥
∥
2

(Corollary A.3)

≤ (N − k − 1)τ.

This gives
∥
∥
∥Õ1

k −Ok

∥
∥
∥
2
≤ τ + (N − k − 1)τ = (N − k)τ,

which is exactly the inequality (5.2) for step k.
Next, we start to approximate Õ1

k. Since

Õ1
k =

[
Pk

Õ2
k+1R̃

1
k

]

=

[
I

Õ2
k+1

] [
Pk

R̃1
k

]

,

and Õ2
k+1 has orthonormal columns, we first perform an SVD on

[
Pk

R̃1
k

]

that gives

[
Pk

R̃1
k

]

=
[
Uk ∆Uk

]
[
Σk

∆Σk

] [
V T
k

∆V T
k

]

.

Let
[
P̃k

R̃k

]

= Uk, and C̃k = ΣkV
T
k Ck.

This yields,
∥
∥
∥Õ2

kC̃k − Õ1
kCk

∥
∥
∥
2
=

∥
∥∆Uk∆Σk∆V T

k Ck
∥
∥
2

=
∥
∥∆Uk∆Σk∆V T

k

∥
∥
2

(Ck has orthonormal rows)

≤ τ.

Therefore,
∥
∥
∥Õ2

kC̃k −OkCk
∥
∥
∥
2
≤

∥
∥
∥Õ2

kC̃k − Õ1
kCk

∥
∥
∥
2
+
∥
∥
∥Õ1

kCk −OkCk
∥
∥
∥
2

≤ τ +
∥
∥
∥Õ1

kCk −OkCk
∥
∥
∥
2

= τ +
∥
∥
∥Õ1

k −Ok

∥
∥
∥
2

(Ck has orthonormal rows)

≤ (N − k + 1)τ,
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i.e.,

∥
∥
∥H̃k −Hk

∥
∥
∥
2
≤ (N − k + 1)τ,

which proves inequality (5.1) for step k.
Besides,

∥
∥
∥Õ2

kQ̃k−1 −OkQk−1

∥
∥
∥
2
≤

∥
∥
∥Õ2

kQ̃k−1 − Õ1
kQk−1

∥
∥
∥
2
+
∥
∥
∥Õ1

kQk−1 −OkQk−1

∥
∥
∥
2

≤
∥
∥
∥Õ2

kQ̃k−1 − Õ1
kQk−1

∥
∥
∥
2
+
∥
∥
∥Õ1

k −Ok

∥
∥
∥
2
. (Corollary A.3)

It is easy to obtain that

∥
∥
∥Õ2

kQ̃k−1 − Õ1
kQk−1

∥
∥
∥
2
=

∥
∥
∥
∥

[
I

Õ2
k+1

]

∆Uk∆Σk∆V T
k Qk−1

∥
∥
∥
∥
2

=
∥
∥∆Uk∆Σk∆V T

k Qk−1

∥
∥
2

(Õ2
k+1 has orthonormal columns)

≤
∥
∥∆Uk∆Σk∆V T

k

∥
∥
2
‖Qk−1‖2

≤
∥
∥∆Uk∆Σk∆V T

k

∥
∥
2

(Corollary A.3)

≤ τ.

Therefore,

∥
∥
∥Õ2

kQ̃k−1 −OkQk−1

∥
∥
∥
2
≤ τ + (N − k)τ = (N − k + 1)τ.

This gives the proof of inequality (5.3) for step k.
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