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Summary

Classical point-mechanics is derived from three principles —called axioms— that are
based on observations of simple kinematical phenomena. Predefined concepts of ‘force’
and ‘mass’ are not required. The concept ‘'mass’ and corresponding concepts of momen-
tum and energy follow from the first and second axiom. Together with the third axiom,
a basic way for constructing equations of motion is derived, more or less equivalent to
Gauss’ principle of least constraint.
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1 Introduction

Although the topic ‘Classical Mechanics’ is completely established since the
beginning of the 20th century, still a lot is written nowadays on the subject.
Also critical remarks have been made, by authors of outstanding reputation,
like C. Lanczos [5], and C.A. Truesdell [7, 8]. Critisism concentrates on, among
other things, ambiguities in the definition of force, Newton’s diffuse definition
of mass, the status of the ‘action and reaction’ law, and the status of the ‘con-
servation of angular momentum’ [7]. Critical remarks have been made (f.i. in
Lanczos [5]) on the almost religious status of what is usually called Newton'’s
laws of mechanics. All this however doesn’t affect the reliability of these laws, at
least as far relativistic and quantum effects may be neglected.

In the opinion of many scientists and engineers (classical) mechanics is mathe-
matics, and indeed, studying and applying mechanics requires a lot of mathe-
matics, where the physical base of the theory is present in the form of axioms.
According to E.A. Desloge [2] there are two possibilities for founding mechan-
ics:

A. The conservation of linear momentum, requiring the pre-assumption of
mass (related to the work of Huygens and Descartes);

B. Newton’s laws, requiring the pre-assumption of force (and mass).

Truesdell [7] ‘advises’ to accept the conservation of linear momentum and an-
gular momentum as two necessary and sufficient ‘axioms’, which, together of
course with proper definitions of mass, inertial systems, and all of geometry,
enables us to build the whole theory.

The idea of establishing a small set of axioms as the basis for a theory probably
stems from Euclid. His theory of geometry is usually considered as a piece of
(pure) mathematics. But it was developed as a model for describing and un-
derstanding ( a part of ) the ‘real world’. He choosed his axioms not only to
be the simplest statements, but also the most self evident ones. His axioms were
meant to be convincing, whereas nowadays in pure mathematics an axiomatic
system only must obey rules like mutual independence, consistency, and com-
pleteness.

Like Euclid’s geometry, classical mechanics is a model for description and un-
derstanding a part of the real world. In fact it is the extension of Euclidean
geometry with the concepts of time, matter and ‘how it works’. Concerning
classical mechanics, the author has never seen a set of basic principles that are
equally self-evident and convincing as Euclid’s axioms for geometry are. H.
Hertz [4] and P. Appell [1] present alternatives for Newton’s approach, based
on Gauss’ principle of least constraint [3], which is based on the principle of
d’Alembert — part of the ‘classical’ theory. Gauss’ principle is not very self
evident, nor are Appel’s and Hertz’ principles. Nevertheless, Gauss’ principle
has an attractive simplicity.

The present study is about founding classical mechanics on first principles,
with kinematics as starting point. There will not be used a predefined concept



Notation and basic linear algebra topics. 3

of mass, nor of force.

The principle of relativity, stating the equivalence of all inertial systems, is cho-
sen as first axiom.

The two new axioms are based on thought experiments !. They describe the
experienced results of two elementary experiments with colliding balls and
with forced motion of a material point respectively.

All axioms are expressed in terms of velocity and acceleration only. Understand-
ing the axioms requires only a notion of these kinematical concepts. The devel-
opment of the theory on the basis of these axioms require knowledge of Eu-
clidian Geometry, linear algebra, and the concepts of time, motion and inertial
systems. And, of course, a little calculus.

The concepts of mass, momentum and energy arise as mathematical consequences
of the first two axioms. The mathematical analysis leading to this result is a
mere excercise in elementary linear algebra.

The third axiom gives rise to a new derivation of Gauss’ principle of least con-
straint [3], from which the general equations of motion for so-called flexible
constructions are derived. No use is made of ‘physical forces’, like elastic, elec-
trical and gravitational forces.

Finally, as a demonstration of the usability of the theory, the second and third
laws of Newtonian mechanics are derived, and also Eulers equations for the
motion of a rigid body.

1.1 Notation and basic linear algebra topics.

Since there are differences in notational conventions between physicists, civil
engineers, mathematicians etc, we (loosely) describe the notation used in this
paper.

R™ denotes the linear space of real n-dimensional vectors, represented by bold-
face lowercase letters: a, b, .. .. A vector a in R™ has n real entries (or elements)
ai,az,...,a, usually displayed as a column of n numbers. The (Euclidean)
norm ||a|| of a vector a, is defined by ||a|| = \/>_, ai.

R™*™ is the space of real matrices with m rows and n columns (m x n matrices),

denoted by boldface capitals: A, B, .... The matrix element on the k-th row and
the I-th column of a matrix A is represented by aj,;. The unit matrix I™ for
R™ is the n x n matrix with ones of the main diagonal, and zeros everywhere
else: iy, = 1, ix,; = 0 whenever k # [. If the size n of the space follows from
the context, the superscript (n) is omitted.

An m x n matrix represents a linear mapping form R" into R"”, such thatif y =
Az, the components yy, are given by yi, = >, ayx;. The product C of anm x r
matrix A and an r x n matrix B is defined by Cxz = A(Bz), which definition
implies the associativity of matrix multiplication. Of course I™ A = A for
every A € R™*". The set of all images y of the mapping A is a linear subspace

!meaning that the author have not done them actually, but many others will have at least expe-

rienced the outcome.
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of R™, the column space of A, and is denoted by R(A). The set of all vectors
x € R" that are mapped to the nullvector in R™ is called the null space of A,
and denoted by NV (A).

The transpose of a matrix, denoted by AT is defined by the rule: if B = AT,
then by, = a; ;. The transpose of a product satisfies (AB)” = A" BT. Since
vectors a € R" can be considered as matrices of one column and n rows, they
also have a transpose a’, a matrix with one row and n columns.

The scalar product or ‘dot product’” of the vectors a and b, notation a-b, is de-
fined as a”'b. Geometrical interpretation: a-b = ||a|| - ||b|| cos(#), where 0 is the
angle between a and b. The vectors a and b are orthogonal (or perpendicular) if
a-b = 0. Notation: @ L b. The Euclidean norm of a satisfies |a||* = a-a = a’ a.

In R?, the vector product or “cross product’ ¢ = a x b of two vectors is defined

by

c1 = agbs —ashy
2 = aszby —aibs 1
Cy3 = (leg — a2b1

Ifc=axb,thenc L a, c L b. Geometrical interpretation: ||a x b|| = ||a| - ||b]| -

sin(#), in which 6 is again the angle between a and b. The vector product a x b
can also be interpreted as a skew symmetric matrix A acting on b:

0 —as as
c=a X b= Ab, where A = as 0 —a 2)
—as aq 0
The following identities are valid:
ab=ba, axb=-bxa,axa=0

a+(bx ¢) =b(cxa)=c(axb), (scalar triple product)
a x (bxc)=(ac)b— (ab)c, (vector triple product)
a x (bxc)=(a’cl — ca’)b, (matrix interpretation)

For the time derivatives of time dependent quantities, we use the ‘dot-notation:

de . d*zx

—, T = —=, etc
dt dt?

;’B =
Finally, for partial derivatives of a function with respect to the components of

a vector « in R" we use the following shorthand expressions:

OF _ 9, _[oF or  oF
dx Ox | 0x Oxy’ T Oz,
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2 Basic properties and definitions

2.1 Axiom 1: Principle of relativity

Homogeneity and isotropy of space. In Euclidean geometry space is consid-
ered as isotropic and homogeneous. That is: geometrical theorems are valid in-
dependent from the orientations and locations in space. Therefore, an elemen-
tary mechanical law must be invariant with respect to translation-, rotation-,
and reflection transformations. In practice this is contradicted continuously by
the fact that in real life, motions in vertical direction certainly differ from mo-
tions in the two horizontal directions. However, we assume that in outer space,
far from heavy matter, space ‘behaves’ isotropically.

Homogeneity of time. Experiments done tomorrow under ‘equal conditions’
will proceed identically to the same experiments done today. So mechanical
formulas are invariant for time shifts.

Isotropy of Space-Time. For a description of this property, we need the con-
cept of inertial systems. These are systems of observation that are moving freely
in space, and in which Newton’s first law is valid: every free moving point de-
scribes a straight line at constant speed. Such motion is called uniform motion.
Formally:

Definition 1 (Inertial system) An inertial system is any reference system in which
each free material point moves uniformly.

Now experience learns that not only the behaviour of free material points, but
also of other physical phenomena, is independent from the inertial system in
which they are observed. This is expressed in the following axiom:

Axiom 1 (Principle of relativity) All inertial systems are equivalent.

This principle is explicitly used by Christiaan Huygens, in his analysis of the
behaviour of colliding balls, although not stated as a ‘principle. Apparently,
Huygens considered it as common knowledge. A strong argument for accept-
ing this principle is the fact that it is clearly impossible to determine whether
an inertial system is moving or not.

We may interprete the principle of relativity as “isotropy of space-time’.

Since Newton’s first axiom — the law of inertia — plays a key role in the
present analysis, it will be stated as a lemma:

Lemma 1 (Law of inertia) In an inertial system, every free material point moves
uniformly.

Proof: This is trivially implied by definition of inertial systems U



6 That’s Why,

Galilei transformations. Any reference system that moves uniformly with
respect to an inertial system, is itself an inertial system. Also, it can be derived
that all inertial systems are related by linear transformations, called Galilei
transformations. Denote a basic inertial frame by G, with coordinates x, and
another by G, with coordinates Z. Then the corresponding transformation can
be written as

T =Ty + aC(x — xo — ut) 3

In this expression, u is the velocity of the frame G with respect to the frame G, «
is a positive scale factor, and C'is a real unitary matrix (an ‘orthogonal matrix’).
We'll often use a special subset of these transforms in which no shifts, no scal-
ing and no rotation occur:

Tr=x— ut (4)

The transformations in this restricted class have the properties
— The coordinate systems « and & use the same units of length and time,
— they have the same orientation ‘in space’,

— the origin of G moves at velocity u along the line @, = ut.

Quantities that are invariant under Galilei transformations are called Galilei-
invariant.

This family of transformations, and their rotated, shifted and rescaled variants,
are based on the assumption that time is a universal scalar parameter. In fact we
have also the equation ¢ = ¢. This is not the case if Einstein’s special relativity
plays a role.

2.2 Material balls.
We initially study the behaviour of rigid material balls.

Definition 2 (Material Ball) A ‘material ball’, or ‘ball” is a rigid piece of matter with
spherical shape. Its geometric properties are completely determined by the location .
of its centre, and its radius R. By the term ‘location of the ball’, we mean the location
of its centre.

A ball is isotropic in the sense that its mechanical behaviour is independent from its
orientation in space.

Two balls are identical, if they behave exactly the same way under the same circum-
stances.

An ideal ball is a material ball with a surface so perfectly smooth, that it cannot be
brought into rotation. Therefore the motion of an ideal ball is completely determined
by the motion of its central point. An ideal ball has only three degrees of freedom.

The velocity and the acceleration of an ideal ball are the velocity and acceleration
of its centre respectively. By a material point is meant an ideal ball of which the
radius is irrelevantly small compared to the size of the events in which it plays a role.
The mechanical behaviour of a material point is described completely by the path of its
‘centre’. A material point cannot have other kinds of motion than translatory motions.
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2.3 Collisions.

A free material ball, observed in an inertial frame of reference, will move uni-
formly, unless it collides with an obstacle. In case of a collision betweenn mov-
ing balls, both balls will change their velocity abruptly, since parts of different
rigid objects cannot fill the same space simultaneously. After a collision, the
balls move on uniformly with new velocities. We call these events transactions
between material balls.

Consider a collision between two balls B; and Bs, with initial velocities v and
vy respectively. We call these velocities primary velocities. After the collision,
the velocities have changed into v} and v, the secondary velocities. At collision
time, the balls touch each other in a common point P on the surfaces of both
balls. Let n be the exterior unit vector normal to the surface of B; in P, the
collision normal. The collision can only take place if the velocity difference v; —
vy has a positive component in the direction n, since otherwise the balls are
moving away from each other.

The primary velocities, and the collision normal together determine the col-
lision completely. Now observe the collision in the inertial frame G(u) with
rotated axes:

Qr =x— ut
where Q is a real unitary matrix. Then n = Qn, and for k = 1, 2 we have

vr = Qup+u
v, = QU,+u

where the tilded quantities refer to G(u)
The velocity jumps are ‘Q-rotated Galilei-invariant’:

&;k = vﬁc — Vi = Q(%;C — 6]6) = Qc%k

Now choose u = vs, then the second ball is initially at rest in G(vs): v2 = 0.
Choose the orthogonal matrix @ such that n = e, v1 = 71 1€;1 + U2,1€, mean-
ing that the collision normal is along the 7-axis, and the velocity difference is
in the 7, y-plane. We call this coordinate system the collision’s own system. This
means that in fact the collision result depends on the scalars v; ; and v 1. These
scalars satisfy
DR T cos(f) | cos(#
B R el B e

where 6 is the angle between v; — v3 and n. So in fact the collision is deter-
mined by ||v1 — v2||, and 6.
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Definition 3 (Collision parameters) For a collision between two balls, with veloc-
ities v1 and vq, and hitting each other with a collision normal n, the collision param-
eters are

1. The impact speed || vy — va|
2. The collision angle § € (0, 5 ), satisfying

cos(f) = (v1 —v3)-m
|[v1 — oo

3 Mechanics of transactions.

3.1 Axiom 2: Law of decrease.

Over the ages, people have attempted to build machinery for doing work at
zero cost. These perpetuum mobile builders can be compared with the al-
chemists, who tried to find an elixir for eternal life, or to transfer lead into
gold. There have been very skilled people amongst them.

But they all share the following experience: It doesn’t work. However: many
of them almost succeeded, a most irritating fact indeed.

Philosophically, this experience is quite satisfactory: One cannot have anything
for free, one has to pay for everything, only sunshine is for free, etc.

It is rather difficult to analyse why a particular perpetuum mobile fails, since
these machines are often very complicated. So usually we say: “It is contra-
dicting the basic laws of mechanics. Period”.

Now let us consider an extremely simple example of a mechanical event: the
collision between two moving balls. Suppose the balls have, before they col-
lide, velocities v1 and v, respectively. After their collision, the velocities are v
and v5. Nearly everyone knows the example of a central collision between two
identical balls, obtaining (nearly) each others velocities: vj = vy, and v = v;.
With non-identical balls, colliding in an arbitrary way, the result of the colli-
sion is not so easy to predict. But never people will observe a collision where
|Vi |l > |lvi|l, and ||v5]] > ||v2]|, meaning an increase of both velocities simulta-
neously.

How can we be so sure of this statement? Because if collisions contradicting
this observation were possible, some ingeneous craftsman would have con-
structed a perpetuum mobile based on this kind of event. How? For instance
by bringing two arbitrary springs S; and S; in appropriate states, launching
two balls with these springs, making them collide in the right way, and catch-
ing the balls with two springs identical to S; and S, respectively. Then in the
end, the similar springs are excited more than the original springs: we have
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won ‘energy’.

By the same argument, also collisions for which ||v}|| = ||v1|| and ||v5] > |lv2]|
are impossible.

This simple example can easily be extended to more complicated transaction
events. We therefore formulate the following axiom

Axiom 2 (Law of decrease) Let N material balls have initial velocities
v1,s,...,vN at time t. Assume the balls are involved in collisions with each
other, and some other material objects. Assume at some moment in time t' > t
the other material objects are in exactly the same state as before, and the balls have
velocities v

Then if for some i ||v;|| > ||vil|, then for some j # i, ||[v}|| < ||lv;]|.

This statement is equivalent to
[vi]| > [Jv] foralli = |vi]| = |Jv;]| foralli (5)

Strictly spoken, the ‘law of non-increase” would be a more correct terminology,
but since in practice (nearly) always losses occur, the term ’decrease’” comes
closer to the practical manifestations of this axiom.

3.2 Collision experiments.

The law of decrease, combined with the principle of relativity, has surprisingly
strong consequences, as the following lemmas will show.

Lemma 2 (Dependency lemma) Let S = {B1, Ba,...,B,} be a system of ideal
balls that are moving freely, apart from some mutual collisions. Let the velocities of By,
at time t and t' be vy, and vj, = vy, + dvy, respectively.

Then the set of vectors dvy, is linearly dependent.

Proof: Observe the development of the system from an arbitrary inertial frame G(u),
moving at velocity u with respect to the basic frame. Denoting the velocities and ve-
locity changes as observed in G(u) by tildered symbols, we have v, = vy — u, and
therefore 69, = dvy for all balls: the velocity changes are Galilei invariant.

The changes in the squared absolute velocities, observed in G (u), satisfy

SlBell” = oo — ull® = dlvw]* - 20vs-u
Suppose we are looking for an inertial system G(w) in which 6||vx||*> = by, then u must
satisfy

20V u = 6||’UkH2 —br, k=1,2,....n

Now the law of decrease prevents this system to have a solution w if bx > 0 for all k.
Hence the rows of its matrix, i.e. the vectors dvy, must be linearly dependent. O

This lemma is not too impressive, since n vectors in R? are linearly dependent
anyway if n > 4. Only the cases n = 2,3 may provide us with some new
information.
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Lemma 3 Let two ideal balls By and By collide, with primary velocities v, and vo,
and secondary velocities v and v} respectively. Then a positive constant 3, the colli-
sion ratio and a non negative number A, the collision defect exist such that in an
arbitrary inertial frame G(u)

BYL+vy = PO+ 0o (6)
BlloylI” + [|v5)? Blloa | + |o2]* — A 7)

where v = v — w for all velocities.

Proof: According to the dependency lemma, the velocity jumps must be linearly de-
pendent: Sévi + dvz = 0 for some nonzero scalar . This is part of (6). Now write for
k=12

8)|okl* = 8l|vkl* — 2vxeu (8
Now for all u
B8\ 01> +6]|w2|* = Bd|[v1[|*+6]|v2]|” —2(Bdv1 +6v2)-u = B6||v:[|*+6[|va||* = C (9)

with C' a constant, independent from .
In (8), we can choose u to give §||Dx||* any prescribed value. If we choose u such that
§||o1||> = 0, then according to the law of decrease we must have §||v2||*> < 0. Therefore

C = Bo|[oa|* + 6][v=* = 8][%2* < 0

which proves (7) with A = —C.
Next choose u such that §||Ds||? > 0, then

Bo|[v1* = —A = d][z:2)* < 0
Because 6||91]|? < 0 by the law of decrease, it follows 8 > 0, completing the proof. u

The non-negativity of the collision defect is a first step in the quantification of
an energy concept. It also enables us to define the concept of an ideal collision:
a collision with zero collision defect.

The collision ratio can be regarded as a ratio of inertia. If 3 > 1, then v; will be
much less influenced by the collision than v,. This ratio depends not only on
the properties of the individual balls, but on the collision conditions as well. For
different collisions between balls By and Bs, we write 5y, ,6’,27 . 51/@/,1 etc

The same collision event could have been described with swapped indices.

1,2

)

1
vy + B210v2 =0, with B21 = 67

Lemma 4 Each collision between two identical ideal balls has ratio 5 = 1
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Proof: Consider two identical balls of radius R, with primary orbits x12(t) = £(x. +
v(t — t.)), that collide at ¢ = ¢.. The origin is chosen such that it coincides with the
contact point of the collision. So R = ||z.||.

The two balls have a completely symmetric history. If we rotate the Carthesian coordi-
nate frame over 7 radians in the plane containing v and x., then the balls simply have
exchanged positions.

So the balls meet each other under equal conditions. Identical balls under identical
circumstances react identically. Therefore the secondary velocities satisfy vy = —wv1,
Hence v1 = —dvs, and fi1,2 = 1.

Next theorem, about the case N = 3 of the dependency lemma, is based on two
thought experiments with colliding balls.

Theorem 1 (Mass-momentum-theorem) To each material ball is associated a pos-
itive number m, it’s mass, such that for each collision between two balls By and By:

m1§’v1 + ’ITLQ(S'UQ =0 (10)
mdvr||* + madllvs? <0 (11)

Proof: Let B;, Bz, and B3 be free ideal balls, moving such way that the following
sequence of collisions occurs:

Bi1& B> 01v1 = a1, O01v2 = —Pi12a1, 6v3=0
B> & Bs : 02v2 = @2, 0203 = —f23a2, O2v1 =0
BQ D B1 . 53’02 = as, 53’01 = *ﬁéylag, 53'1}3 =0

The experiment can be set up in such way that {a1, az,as} is a linearly independent
set of vectors, and that the first and second collisions have arbitrary, but prescribed
collision parameters.

The total velocity change dv;, of By, can be written as Z?:I 0jVk.

This leads to
ov1 =a; — ﬂé$1a3
dv2 = —f1,2a1 + a2 +as
ov3 = —/32,3112

According to the dependency lemma, these velocity jumps are linearly dependent,

3
Z Aove =0
k=1

for A’s not all zero. Working out, this can be written as
(A1 — Br2x2)a1 + (A2 — AsB2,3)az + (—A1Bs1 + A2)as =0
Since the vectors ay, for k = 1,2, 3 are linearly independent, this implies M\ = 0, with

1 —P1,2 0
M= 0 1 —B2.3
—B5,1 1 0
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So M is singular, and therefore det(M) = 82,3 - (1 — B1,283,1) = 0. Hence B1,2851 = 1,
or equivalently

Bia =Pz
It follows that the collision ratio is independent of the collision parameters.

Next let again B, , Bz, and Bs be free moving ideal balls, and consider the following
sequence of collisions:

B1® Bs : dv1 = a1, 6ve = —pfi2a1, 6vs=0
By, ® B3 : 02v2 = a2, 02v3 = —[23a2, 01 =0
Bs @ By : 03v3 = a3, 03v1 = —031a3, d3v2=0

The differences with the first experiment are
(1) There are no restrictions to the collision parameters,
(2) The third collision is now between Bs and B;. In this case we have

dv1 =a1 — f33,10a3
dv2 = —[f1,2a1 + a2
dvs = —f2,3a2 + a3

Similarly, the linear dependence of the velocity jumps, and the linear independence of
the vectors ax, lead to MA = 0, for some nonzero vector A\, where M is defined by

~ 1 —f1,2 0
M = 0 1 —P2,3
—63,1 0 1

So M is singular, and det(% =1 — B3,181,2082,3 = 0. Therefore the following relation
holds for the collision ratios:

1 _ B2,1
B1,2031  Bsa

Define the mass mj, of ball By, by

52,3 =

my = Br1

in which B; is considered as having unit mass. Then 823 = ma/ms, from which (10)
and (11) follow. U

3.3 Mass, momentum and energy.

We now can describe the behaviour of systems of material balls, free moving
except for mutual collisions that may take place 2. For such systems we define:

2Simple (one-atomic) gasses under moderate physical circumstances are examples of these sys-
tems.
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Definition 4 (Energy and momentum ) Let S be any system of N free ideal balls,

with masses my, and velocities vy, for k = 1,2,..., N. The system’s momentum is
defined by
N
b= Z MpUg (12)
k=1

The system’s energy W is defined by

N
1
W = ; §mk||vk||2 (13)

If the same system is observed in G(u), then momentum and energy read

N

5:ka(vk—u):p—Mu (14)
k=1

~— X 1

W = “mu — 2_W — p. —M 2 15
> gl ul put 5 M|l (15)

with M = Y my is the total mass in the system. The direct consequence of the-
orem 1 is that in a system of free material balls, not interacting with anything
but each other, (a so-called closed system)

1. the total momentum is a constant vector (is ‘conserved’).

2. the total energy cannot increase

We next consider what happens with momentum and energy if masses collide
with other objects, such as rigid bodies of arbitrary shape. We select a family
of objects with relatively simple properties.

Definition 5 (State of rest of an object) A material object is in a state of rest if all
points of the object are at rest, and stay at rest.

Definition 6 (Admissible objects) A material object is admissible if

1. it can be in a state of rest,

2. it can always be brought into a state of rest by a sequence of collisions with material
balls.

3. it has zero momentum in a state of rest.
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In this definition ‘momentum’ must be interpreted as: if nothing material moves,
there is zero momentum.

Rigid bodies, mechanisms of rigid bodies, as well as classical mass-spring sys-
tems are admissible objects, which can be verified by inspection of the defini-
tion. We restrict the analysis to admissible objects.

Lemma 5 Let a system of N free material balls interact with each other and with an
admissible object, and let at t = t. this object be in exactly the same state as before all
interactions. Then the total energy of the balls has not increased:

N

oW =3 S (Joute) | ~ fo(to)|?) <0 16
k=1

Proof: Assume (16) doesn’t hold, so W’ > W. We prove that this violates the law of
decrease.

After the transactions, the balls have velocities v},. For some balls |[v}| > ||vk], for
others |[v}|| < ||lvk||, so we cannot verify or falsify the law of decrease directly. Now
arrange extra ideal collisions between the balls and if necessary suitable stand-ins %, such
that in the end ||v|| = ||lvkl, k = 1,2,... N' < N, with N’ is as large as possible. Since
all collisions in this process are ideal, the total energy doesn’t change, and therefore
W' = W' > W, which implies ||v}|| > ||vk|| for k = N’ +1,..., N. This contradicts
the law of decrease, and therefore proves (16). U

With lemma 5, we can extend the energy and momentum properties to admis-
sible objects.

Theorem 2 (Energy and momentum of admissible objects)

i. An admissible object carries energy W, and momentum p,.

ii. In interactions with a system of free mass-points with total momentum p, the fol-
lowing relation holds

0pw +0p =0 (17)

iii. A composition of a finite number of separate admissible objects is an admissible
object, of which the total energy and momentum equals the sum of energies and mo-
mentums of the components.

Proof:

(i) If an admissible object is not at rest, then at least one of it’s mass-points has nonzero
velocity. If such mass collides with a free mass with zero velocity, the free mass will geta
nonzero secondary velocity v’, and therefore nonzero energy. Since no other objects are

3identical balls, with the same velocities, but a more suitable orbit.
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involved, this energy ‘comes from’ the object. So apparently the object carries positive
energy if not in a state of rest.

(ii) Let an admissible object O be initially in some state S. Let it collide with a number
of free mass-points, and let :p and 6: W be the total change of momentum and energy
of these mass-points. Now continue with hitting the object until it is in the state S
again. Let the total change in momentum and energy of the free mass-points due to this
process be d2p and J2 W respectively. Since the state of the object O has not changed
after these transactions, the energy of the free masses may not have increased:

OW =01 W + 6W <0

If the transactions are observed from within the inertial system G(u), with arbitrary u,
then also in G(u) the object O has returned to its original state, so in G(u) the energy of
the free masses may not have increased as well. Applying (15), with 6p = d1p + d2p,
we have

SW = 6W — u-ép < 0, forallu
It follows
dp=6p+dhp=0

The free masses lost —d1 p momentum in the first transaction, and received dop = —d1p
after the next transactions. In between, the lost momentum was apparently held by the
object O. Since O has zero momentum if at rest, we can define its momentum py; as the
total momentum received by a pool of free masses in bringing the object back to a state
of rest:

Dabj = 02 (18)

Obviously, the vector p.; satisfies (17).

(iii) For each component of the compositon, momentum and energy can be transfered
to free masses, together counting for the total energy and momentum, according to
definition 4. (]

3.4 Semi-rigid mass-point constructions.

In theorem 2 the existence of energy and momentum were proved for admis-
sible objects. For a specific class of admissible objects, we can quantify these
properties.

Definition 7 (semi-rigid mass-point construction )
1. An object consisting of N mass-points is a semi-rigid mass-point construction if
some or all of the mutual distances are constant in time:

|k — || = di,; is constant for some k, combinations.

2. If all k, [ combinations have constant distances, then the construction is called rigid.
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The common terminology for this kind of construction in the field of mecha-
nisms is flexible. We choose the term semi-rigid, because the definition must also
cover a rigid body, and it is contra-intuitive to call a rigid body ‘flexible’.

A semi-rigid mass-point construction is at rest if all masses are at rest. Since in
that case the joining bars are not active, the masses are effectively free, and stay
at rest. Therefore a semi-rigid mass-point construction is an admissible object.

In the definition nothing is mentioned about how the distances are kept fixed.
We'll use suggestive terminology like ‘connections” and ‘links’, but all assumed
properties of these concepts may not be used in the analysis. We only use the
requirements ||z, — ;|| is constant in time, regardless the way this is achieved.
For practical implementations of semi-rigid mass-point constructions one can
imagine material pieces like bars and pivots, to keep distances constant. The
pivots must have spherical freedom, such that two free bars, only connected
by such a pivot, can take any relative orientations freely. But we don’t want
bars and pivots to play a role in the dynamics of the semi-rigid mass-point con-
struction . Therefore we imagine the use of extremely lightweight material for
these purposes, and in fact we assume these parts to have ‘zero mass’. We call
such bars and pivots ideal bars and ideal pivots.

Energy and momentum of a semi-rigid mass-point construction must be func-
tions of the individual velocities of the masses in the construction. The obvious
quantification appears to be p = > myv, and W = 3 2my||vi||%, according to
(12) and (13). However, we do not know whether these quantities behave like
energy and momentum if collisions with mass-points are involved. Therefore
we call them ‘formal energy’ and ‘formal momentum’

Definition 8 The formal energy W™ and formal momentum p°™ of a N-point semi-
rigid mass-point construction are given by

N

N
1 > rm >
wem =" §mk||wk”27 P =) madby (19)
k=1 =1

We start the analysis with the simplest non-trivial semi-rigid mass-point con-
struction , the barbell.

Definition 9 (Barbell) A barbell is a semi-rigid mass-point construction consisting
of two mass-points my and ms, connected by an ideal bar of fixed length L. L is called
the length of the barbell.

Lemma 6 A free moving barbell has energy and momentum equal to the formal energy
and momentum respectively.
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Proof: Consider a barbell with masses m; and m2 located in «; and x> respectively. If
the barbell is moving uniformly, that is if it is at rest in some inertial system G(u), the
connecting bar is not active, and could as well be removed. So a uniform moving bar-
bell is equivalent to a system of free moving masses, hence it's momentum and energy
satisfy

1
p=(m1+m2)u, W= 5(m1 + mo)||u?

which correspond with the formal versions.

Consider a free mass m. with velocity v. = w + v, where v. L x> — x;. Let this mass
collide centrally with m1, then the connecting bar is not a constraint for this collision so
the collision is practically free. Assume for simplicity m. = m1, then in G(u) the two
masses m; and m. ‘exchange velocities’, whereas the motion of ms is not affected:

~/ ~ ~/ ~/ ~
V] =Ve, V=0, v =v2=0

Momentum transfer satisfies ép, = m.dv., and according to conservation of momen-
tum, we must have for the barbell:

op = —dp, = m16v:
Therefore the new momentum of the barbell reads
p = (m1 4+ m2)u + midv: = miv] + movh

Similarly for the energy:

(ma 01 1* + ma|[v2]*)

N[ =

1 1
W' = 3 (ma +mo)ull® + gm (o1 * — ul®) =

So energy and momentum equal the formal versions.
Now let the barbel be in any state, with velocities v1 and v2. Because of the rigidity, we
must have

|22 — @1 |” is constant = (z2 — @1)*(v2 —v1) =0

so vz —v1 L @z — x1. Now choose the inertial system G(u) with u = vs. Then v2 = 0,
and v1 = v1 — v2 L @2 — x1. The barbell can be brought into this state by a suitable
collision like described before, from a state of rest in G(v2). Therefore in any state of
motion, the barbell’s momentum and energy equal the formal momentum and formal
energy respectively. 0

For a general semi-rigid mass-point construction , we cannot execute ‘smart’
collisions, for which the affected mass can be considered as momentarily free.
So we need an extra tool for proving a ‘formal = actual” statement for arbitrary
semi-rigid mass-point constructions

Suppose we break the link between the masses of a barbell at time ¢, by apply-
ing a clipping device in a point = fx; + (1 — 6)x,. In general, after the clip-
ping, the masses will move on with velocities v} # v;(t) and v} # va(t), where
these velocity jumps and the corresponding momentum and energy jumps are
due to the clipping. To which extent this happens depends on the velocity dif-
ference between the clipping device and the point Z at the moment of clipping.
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At zero velocity difference, the clipping procedure will not act as a constraint,
and hence no momentum transfer will take place to either part of the clipped bar. So
if the clipping is done carefully, we may expect v] = v1(¢) and v5 = vy(t),
and both masses continue in a uniform motion at the same velocities they had
immediately before the clipping. We describe this procedure formally:

Definition 10 An ideal clipper is an instrument with which an ideal bar can be
“clipped’ in two parts, without transfer of energy or momentum to either part of the
bar.

Theorem 3 A semi-rigid construction of N mass-points my,ma, ..., my, With ve-
locities vy (t), has energy W = W™, and momentum p = p°™

Proof: Denote the actual momentum and energy of construction with b bars by p,, and
Wy. In the formal momentum and energy, the number of bars doesn’t play a role.

A semi-rigid mass-point construction that contains only one bar consists of a barbell
and N — 2 free masses. For the barbell the hypothesis has been proved in lemma 6, and
according to theorem 2 (iii), the theorem holds for b = 1.

Assumption: Suppose there are semi-rigid mass-point constructions not satisfying the
theorem, then there is one with a minimal number bof bars, with b> 1.

For this minimal construction we must have W; # W™ or p; # p®™. After removing
one bar with an ideal clipper, energy and momentum haven’t changed, so W5;_, = W5,
and p; , = p;. On the other hand, W5, = W*™, and p; , = p*™. It follows

form

b, = P
Wb — Wform
contradicting the assumption, which proves the theorem. 0

4 Mechanics of interactions.

4.1 Axiom 3: Law of least frustration.

The law of inertia can also be frustrated in more regular ways, like throwing a
ball, or starting a car by dragging it. We model this kind of actions by dragging
operations. If we consider a mass-point, pulled by a dragging point with a
prescribed motion, then we can see the following behaviour:

Observation 1 The acceleration of the mass-point is always directed to the drag-
ging point, regardless the dragging point’s own motion *.

4Simple explanation in classical mechanics: Assume the mass-point is connected to the dragging
point by an ultra lightweight, infinitely flexible cord (a so called ideal cord). This cord can only transfer
forces in its own direction, that is the direction from mass-point to dragging point. And, by Newton’s
second law, acceleration is proportional to the force. Not usable explanation because we do not yet have
forces, and certainly not Newton's second law.
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The observation can be extended to the case of two or more dragging points
acting on one mass-point:

Observation 2 With two or more dragging points, in one plane with the mass-point,
the acceleration vector of the mass-point is in this plane.

For the case that three or more dragging points are not in one plane with the
mass, the acceleration of the mass is kinematically determined (or overdeter-
mined).

We analyse the thought-experiments in an elementary way. Imagine a mass-
point located at «, dragged by N dragging points x(t), k = 1,2,..., N, such
that ||z (t) — «(t)|| = L. Write r, = x;, — «, then r;, has constant length, and
wehave fork =1,2,...,N

Hrk||2 = L% = T =0 = Tprp + ||’I’k||2 =0 (20)
The mass-point’s acceleration & must satisfy the NV relations
LT =TT + ||T‘kH2 = by, (21)

The righthand sides of these equalities are given quantities, since all positions,
velocities and the accelerations of the dragging points are known.

The equations can be inconsistent. If the vectors r;, are linearly dependent
(which is certainly the case for N > 3), then combinations exist for which
S Ak = 0, with not all \; zero. Then also > A\ybr = 0 must hold. If this
is true for all possible null-combinations, then the configuration is kinematically
consistent.

The outcome of the dragging experiments can be described as

N
&= &y
k=1

Let R = [r;r2 -+ ry], the 3 x N matrix of which 7, are the columns, and let

by = &peri + ||7x]|% for k = 1,2,..., N. We can describe the experiment as
follows

& = RE, (Theobservations) (22)

RT& = b, (The constraints) (23)

RTR¢ = b, (Determination of £) (24)

The expression & = R¢ is trivial if R has rank three, since R(R) = R? in that
case. If rank(R) < 2, the expression & = R really means a special choice out
of all possible vectors. Consider an alternative x:

T=RE+z
then because of the constraints R'z = 0. So z L RE, and hence

2] =l + =]
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Therefore we can interprete the solution given by (24) and (22) as the minimum
norm solution of (23).

So the observatons 1 and 2 lead to the following statement, introduced here as
an axiom.

Axiom 3 (Law of least frustration) If the motion of a mass-point has kinematic re-
strictions, the mass-point responds with minimal change of velocity.

The frustration of the law of inertia can be quantified by any monotonic in-
creasing function of the absolute acceleration. For practical reasons, we choose

Definition 11 (Frustration) The frustration of a mass-point, that is prevented from
moving according to the law of inertia is represented by

F(#) = 5CI141? 25)

in which C'is an arbitrary positive constant. This function will be called the frustration
function for the mass-point.

Axiom 3 can be reformulated as

If a single mass-point m is subject to kinematical constraints, then F'(&)
is minimal within these constraints.

We defined the ‘state of rest” as a state in which material points have velocity
zero, so their positions are fixed. A point that is in a state of rest in an inertial
system G(u), is moving at uniform velocity w in G(0). Conversely: every mass-
point that is moving uniformly with velocity v, is in a state of rest in G(v). We
can interprete the state of uniform motion as a generalized state of rest. If there
are no frustrating events, the position x(¢) and the velocity v(¢) = &(t) at time
t are completely determined by the initial position x () and the initial velocity
v (t() ) :

’U(t) = ’U(t(]), w(t) = w(t()) + (t — t())’U(t()) (26)

For a system of material points, we call the position vectors and the velocities
state variables.

If the motions of the points in a mechanical system are frustrated by external
causes like dragging, or by internal causes, like mutual links, the state vari-
ables will not satisfy (26) anymore. In this section will be shown that, on the
basis of the axioms, the accelerations &(t) are completely determined by the
positions and velocities at time ¢. This results in a system of (coupled) differen-
tial equations, called the equations of motion for the system, from wich the time
evolution of the state variables can be solved.
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4.2 Mathematical prerequisite.

In building a mechanical theory based on axiom 3, we'll use an important tool
from constrained optimization theory, known as Lagrange’s multiplier method. It
is probably well-known, but poorly explained in some elementary texts. There-
fore a derivation of the method is given in the following lemma.

We restrict the analysis to the minimization of quadratic functions in R" under
k linear constraints.

Lemma 7 (Lagrange multiplier method) Let A bean N x N positive definite ma-
trix, C a real N x k matrix, and p and b vectors in RY and R* respectively, and let
F be defined by F(x) = 3a* Ax — pTa. Consider the problem:
Minimize — F(x) (27)
requiring ~ CTx =b (28)

(i) If this problem has a solution, this solution can be found in the following way:

1. Define the augmented function F(x) = F(x) — AT (CTx — b), and minimize this
function formally,

2. Determine the multiplier vector A from the constraint (28), using the formal solu-
tion x.

(ii) The problem has a solution if and only if the constraining equations (28) are con-
sistent.

(iii) If @ is a solution, this solution is unique.

Proof: (i) Assume the problem has a solution . Then F(x + tu) > F(x) for all real ¢,
and all vectors u satisfying C*u = 0. Working out F(x + tu), we get

F(x +tu) = F(x) + tu” (Az — p) + %tQuTAu > F(x),

forall ¢, and for all u € RN satifying C"wu = 0. Since u” Au > 0, this implies
u” (Az — p) = 0, for all vectors u in N(CT) (29)

where N (C™) denotes the nullspace of C”, that is: all vectors satisfying C"u = 0.
According to the projection theorem > each vector in R" can be splitted into a com-
ponent in R(C), the column space of C, and a component perpendicular to R(C), i.e.
a component in N(C"), the null space of C”. For the vector Az — p, this splitting
property then reads

Az —p=CX+2z, with CTz=0
Substitute this in (29)

0=u"(Az —p) =u"CA+u"z =u" 2, forallu e N(CT)

5Let Q be an N x k matrix with orthonormal columns, an let & be any vector in RY, then
v = QQT z in the column space of Q and w = x — v performs such a splitting.
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since uTCA = ATCTu = 0 for all these u. Choose u = z € /\/(CT), we get 2Tz =0,
implying z = 0. It follows that if the constrained minimization problem (27) and (28)
has a solution, this solution satisfies

Az —p=CX\ (30)

Equation (30) can be obtained by setting to zero the partial derivatives of F with respect
to the components of x:

oF

For determining the vector A, we use the constraints.
C"'r=b—C"A'(p+CA\) =b
and we may solve A from
cfa'ex=b-C"A"'p (31)

Practically we can solve the problem by solving A from (31), followed by solving « from
(30), which is in fact the block-Gaussian elimination procedure applied to the (N + k) x
(N + k) linear system

EFIIHHES

(ii) For consistency of this system is required that each u satisfying u” CTA~*C = 07,
also satisfies u” (b — CT A~'p) = 07" Now since A is positive definite, we have

WC'AT'C=0" = u"CTA 'Cu=0=Cu=0

It follows that (31) is consistent if and only if Cu = 0 implies u” b = 0, meaning that
b is in the column space of C”, or in other words if the constraining equations are
consistent.

(iii) Finally let & be another solution of the problem, then write dx = & — «, and we
have

Adz = CsX\, CTA™'Csx =0

Then it follows CéX = 0, and hence éx = 0. So the solution for x is unique. O

Corollary 1 The combined system (32) can also be obtained by puting to zero the
partial derivatives of the augmented frustration function with respect to all variables
& and X:

OF _, OF _

9% O a0
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4.3 Constrained motion of one mass-point.

As a demonstration of the multiplier method, we again derive equations (24)
and (22), for the problem of one mass m, dragged by N dragging points. Let
the mass be located in z, and the dragging points in x;, = = + ry, satisfying
(20), (21). The problem can be described by

Minimize F(x) (33)
requiring Rz =»b (34)

where the frustration function F, the constraint matrix R and the components
of b are given by

y 1.

F(z) = QmIIwII2 (35)
R = [’I"l T2 ’I'N] (36)
b, = rrag+|rl? k=1,2,...,N (37)

The augmented frustration function reads
~ 1 T
F(&) = Sml? - (RT:'i: - b) A

Minimization results in the combined linear system

e o LA 1 ®
Applying block-Gauss elimination on this system produces
R'RA = mb (39)
mE& = RA=) M7y (40)
k

which is equivalent to the former result (24) and (22).

If the constraining equations are consistent, but overdetermined, then the so-
lution for A is not unique. The acceleration however is unique. Different com-
binations of multipliers lead to the same kinematic result.

The multipliers describe the dynamical effect of the forcing. In the case of uniquely
determined \’s, that is if rank(R” R) = N, each term A7) represents a mo-
mentum transfer from the constraining point x;, to the mass m. In all cases the
vectors A,y together provide the change in momentum of the mass m. How-
ever, the dynamical meaning of the individual vectors A7y, is not obvious in
the overdetermined case. If we imagine a case that several people together try
to move a heavy mass by dragging or pushing, then different solutions for the
multipliers can be interpreted as different amounts of effort offerered by the
individual draggers.

Weillustrate this by choosing a specified mechanical principle for the dragging
devices. In a barbell, either mass is dragging the other simply by preventing
the other mass to move accordingly the inertia law. We analyse a generalisation
of the barbell: the spider.
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Definition 12 (Spider) A spider is an semi-rigid mass-point construction con-
sisting of a central mass mg, located in xo, which is connected to N masses
mi, Ma, ..., my located in &1, X2, . .., x N respectively, such that ||z, — x|l is con-
stant for all k.

Lemma 8 (Spider motion) Let the matrices R and D, and the vector b be defined

by
R = [r1 rs ... vy ] (41)
D — diag (" ?) @)
b o= [l#dl? el oo liwl? )" (43)

Then the equations of motion of a spider read

N

moZo = ZHH’kZRN (44)
k=1

mka:k = —UETk (45)

where p satisfies

(D+ R"R)p = mob (46)

Proof: Each mass of a spider is a constrained mass, and therefore its response to the
constraints is determined by minimization of its frustration. This leads to the following
equations.

N
modo = Y Air; (47)
j=1
me&r = —pTE, k=1,2,...,N (48)
with
T (@ — @0) + |iel|* =0, k=1,2,...,N (49)

The conservation of momentum requires

N N
> i = A\ (50)
j=1 j=1

by wich relation equations (47) and (48) reduce to (44) and (45), which is a part of the
lemma.
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To verify (46), we substitute (44) and (45) into (49), which leads to the following equa-
tions for the multipliers px:

N
. r T
#k]1* = ri |:m];/ik +> mjouj] ,k=1,2,...,N 1)

Jj=1
Using the definitions (41), (42) and (43), this can be written as
(D+ R"R)p = mob (52)

In this system are D and R” R positive definite and positive semi-definite respectively,
hence the system is uniquely solvable. So the point-wise minimal frustration argument,
together with the conservation of momentum produce the equations of motion for the

spider 0J

In the spider, the constraints are practically dynamic rather then kinematic. This
is because the kinematical restrictions for mg are related to those of the other
masses, and vice versa. In contrast with the rather abstract multiple dragging
experiment, the individual vectors pj 7 exactly mean the ‘amount’ of momen-
tum that is received by mg from my,.

We next show that also in the original multiple dragging experiment, the vec-
tors A7}, perform momentum input from x;, to the central point x.

Lemma 9 (Substitution lemma) Let the system (38) be consistent, and let A and &
be a solution, then for each k, the constraining action by x;, can be performed by any
positive mass my,, rigidly located in a point &), somewhere on the line through x and
xy, with a suitable velocity such that ﬁkék = —\pTpL.

Proof: Any point x;, on the line through = and xy, is described by
Tp=xz+71(xp —x) = + TP}
Let 7 be constant in time, then
Ty =& + TP, T =@+ TP (53)

As long as (53) is satisfied, the mass in @ is ‘not aware’ of which point & is actually
responsible for the forcing, so the solutions A and & are not affected.
The acceleration of Z satisfies

(@h — &)orri + 72|17 (54)

Assume a mass my is located in &, and performs a constraint on the motion of m,

then similarly the motion of 7y is constrained by «. According to the law of minimal

frustration we have

TUETE
Mg

(55)

METl = —pUkTr = —TURTE = Tk =
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We now find a value for 7 such that 7u; = Aj. Substituting the expression for @y, in
(54), with Tur = Ax we get

<_)\krk - az) e+ 7R =0

mg

from which follows

L (AeTr + Mpd)ors (56)

g || |2
The acceleration & satisfies m& = R, and this can now be written as

me = Z)\j'r‘j — MRy
J#k
So the constraining action of x; can be performed by the mass m, located in @ + 77y,
with 7 satisfying (56).

4.4 General principle of least frustration.

Each point in a semi-rigid mass-point construction is constrained by the mo-
tions of the masses to which it is ‘connected’. Let A, denote the ‘adjancy set’ for
x, that is the set of indices [ for which «; is connected to x;. Then obviously
le A, < k € A;. By k ~ [ we mean zj, and «; are connected.

Let v, = x; — =), then r;; is constant in time whenever [ € A;. Then the
acceleration of the mass m, in x;, satisfies

midy = Y (@ — ) (57)
leAx

where the multipliers yy, ; follow from the requirements 7, ;+rx; + ||75,]|* = 0.
If the semi-rigid mass-point construction is a barbell consisting of points x;
and x5, then the conservation of momentum requires f1 2 = p2,1. We prove
that this also holds for every couple of connected points in an arbitrary semi-
rigid mass-point construction .

Lemma 10 (Local conservation of momentum) If in a free moving semi-rigid
mass-point construction , with masses my, in points xy, the equations (57) hold, then
il = m,kfor all'k ~ 1.

Proof: In a free moving semi-rigid mass-point construction , the (total) momentum
is constant, so > mi&r = 0. Consider two connected points ) and x;. Apply the
substitution lemma on x, and on x;. Then the constraining action by x; on the mass in
xy, is now performed by a moving mass m; in &; = xx + 7%, with momentum change
T, = — ki Tk 1 Similarly, a mass my in Tr = x; + 7,71k, With a momentum change
MRER = — KTk performs the constraint on x;.
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Since nothing else changes, still p = >, m;&; = 0. The modified system with the
replacing masses m, and m; is a free moving semi-rigid mass-point construction as well, so
D + Myxx + mx; = 0. Hence

MEZTy + 1ux; =0 = —p kTik — Mk, Tk =0
Since 7, = —r; . this implies

Bk = [kl (58)
O

We now can prove that the accelerations of the masses in any semi-rigid mass-
point construction can be obtained by constrained minimization of a frustra-
tion function F(&1, &2,...,&N).

Theorem 4 (General principle of minimal frustration.) For all N > 1, the
equations of motion of a semi-rigid mass-point construction of size N can be obtained
by constrained minimization of its frustration function

N
F(:Bl, €Tro, ..., CCN) = 5 ka||$k||2
k=1
taking account of all kinematic constraints.

Proof: We analyse the equations (57) in more detail. Each point in the construction is
constrained by all points in its adjacency set, and the constraints can be described by:

Gk,l(ik,iiz) = (a:k — ﬁ)l)“l"kJ - Hi‘kquZ = O7 for all [ in Ak (59)

where 7; = x; — xx. For each point xx, we can use the minimization of its own
augmented frustration function:

~ . 1 . L
Fr(&x) = §mk|\$k\|2 — Z Wi G (&r, &1) (60)
lEAk

and minimization of this function produces (57):

0G (&, ®
mEEr = Z Lk, M Z [k, 1Tk L (61)
le Ay leAy

where the multipliers pi,; must be determined by the constraints.

If we count all multipliers, then we get twice the total number of constraints, but accord-
ing to lemma 10 the multipliers are symmetric, so the effective number of multipliers
equals the number of constraints, and we have exactly enough equations to determine
all Mkl

Now consider the function

= . . . 1 . .
F(&1,&2,...,&n) = Z imkakHQ - Z,uk,sz,z(iBm &) (62)
k

I~k
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where the summation is taken over all linked pairs, i.e. every connection occurs once.
We'll show that F is the augmented frustration function for the semi-rigid mass-point
construction .

F depends on &, via %mk ||Z HQ, and all links containing «. These links are precisely
the pairs [@x, ;] with [ € Aj. Therefore

oF 8G (Zx, @ ..
T = MEEE — Z Mk, Gk (@x, &1) = mr&r — Z Pk 1Tk L

O 1A, O IEA),
and this is zero because of (61). B
So the partial derivatives of F(&1,&2,...,En) are zero, and hence F is minimized, in
other words: F' is minimized under the constraints represented by G (&, &;) = 0 for
all linked points.
Now finally assume that also external constraints in directions n1, ns, . . ., nx are present.

According to lemma 9, we can replace these by moving mass-points. The resulting sys-
tem is a free semi-rigid mass-point construction , so the solution is obtainable by con-
strained minimization of the frustration function. Later, replace the extra masses by the
original forcings. This leads to the final augmented frustration function:

N

= .. 1 ..

F(ml,mg,...,mN): E §mk||mk||2— E ,u,leklmk,a:l E /\kmk-nk (63)
k=1

kil
Hence F(&1, &2, . ..) is a frustration function for the system. (]

The generalized principle of minimal frustration is similar to a principle for-
mulated by C.E. Gauss in 1829 [3]:

Principle of least constraint. Let a mechanical system consist of N masses my,
located in the points xy,, and let F), denote the force working on my, then for the true
motion of this system the expression

7= Z mk||a:k——||2 (64)

has a minimum value.

Working out the squared norm in (64), we get

1||Fx|?
‘e Z( my||&x|? — Freix +2an” )

k

and apart from the constant last term, this expresssion is equivalent to the aug-
mented frustration function, with A\yny, replaced by the forces Fy.

If the masses are free, we obviously get my&, = F} for all points, which is
Newtons second law. If however the points have restricted freedom, then min-
imizing (64) can be regarded as a least squares approximation for Newtons
second law.

Gauss derived his principle on the basis of d’Alemberts principle, which in
turn is based on the priciple of virtual work in statics.
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4.5 Forces, Newtons laws.

In practice, only simple constraining actions on the motion of a material point
can be described as a proper dragging in which one component of the accelera-
tion is prescribed:

fij"r‘k = ii}c“f‘k — ||’I‘kH2

where &}, is prescribed, and 7, and 7, are state variables and therefore known.
The links between ‘connected” mass-points in a semi-rigid mass-point con-
struction show mutual dragging, but in these cases only the direction vectors
of the constraints are prescribed, whereas the magnitudes follow from the con-
servation of momentum. A similar thing happens in the case of a forcing of
a mass-point’s motion by a lot (say more then three) draggings. We already
saw that such situations may be inconsistent, but in practice it is not unusual
that a lot of persons move a heavy object by pushing and pulling in various
directions. This can be considered as attempts of dragging actions, in which the
directions of the dragging are prescribed.

This results in vectors \;n;, representing the input of momentum in the con-
struction, where n; are the prescribed directions. We call them forces.

Definition 13 (Force) A force F acting in a point « of a mechanical construction is
the input of momentum into the system via the point x.

Equation (40) can be interpreted as ‘the momentum change of a mass-point equals
the sum of forces acting on this mass-point’.

Since all semi-rigid mass-point constructions satisfy theorem 4.4, the acceler-
ations of the masses follow from minimization of the augmented frustration
function, leading to the equations of motion

N
M = D AT + Y Hia(@ — ) (65)
j 1

J

in which the multipliers A ; and p; can be determined from the external and
internal constraints respectively. Using the terminology with forces, we call
Ak jnk; = Fr; external forces, and pi (¢ — xx) = Fi,; = —F;} internal
forces

Resultant of forces. In equation (65), obviously the forces Fj ; = A jng,;
could be replaced by one single force F, = }_, Fy j, the resultant force. So
a combination of forces, acting in one point, is equivalent with the resultant
force, acting in this point.
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Total momentum transfer, Newton’s second and third laws. Since the inter-
nal multipliers y; in (65) are symmetric, the sum of the corresponding terms
is zero:

p= kafi;k = Z(Z )\k’jnk,j) + Z,Uk,l(wl - 1’1@) = ZFk
k ] k

kil

which can be interpreted as Newton’s second law. According to definition 13, the
vector py 7Tk, can be considered as the force that is applied to «;, by ;. The
symmetry iy = fu,, can be interpreted as Newton’s third law, of action and
reaction.

Energy and work. The change of energy of the mass m;, satisfies:

d (1 N
T <2mk||5ﬂk||2) = T+ (Fk + ZFk,l>

=1

In which Fy; = pgi(x; — k). Hence, after summation over k, the internal
terms vanish, and we have the transfer of total energy:

aw
= Z i F),
dt -
The righthand side is the work per time unit, done by the external forces.

Moment of momentum, force moment. There is a third global quantity which
can be calculated without knowledge of the internal forces. In this relation,
vector products play a role. Consider for any time-dependent vector « the
product x x &

mxi:%(mxd:)—(:bx:b):%(mxdz)
Apply this to the equations (65):
—(mkwk X :I:k) = Mgy X :Bk =X X Fk + X X Z,uk,l(:cl — :l’:k)

dt ;

Summation over all £ yields

% [ka-’l)k X :bk] :ka X FkJFZZHk,ll‘k x (21 — )
k k kool

The last term can be written as

1
;Mk,lwk X (x; —xg) = 3 ;Mk,l(wk —x) X (kg —x)| =0
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and we get
N d N N
kaxkxwk_dt( mkmkxwk>—2mk><Fk (66)
k=1 k=1 k=1

Define the force moments Ly, and the system’s moment of momentum b by

N
LkZ:BkXFk, b= E mk.a:kx:bk
k=1

then we can interprete (66) as ‘the change of the moment of momentum of a system
equals the total force moment acting upon the system’:

N N
k=1 k=1

Moving a force to another point of action. Suppose we change the point of
action z of a force F to a point «’. This has no influence on the momentum
transfer, but in the balance of moment of momentum with the external force
moments, there may be changes. In order to avoid these changes, we must
require

LI'=L=a xF=xxF
Hence (¢’ —x) x F =0, or ' = « + 7F for some 7. This implies an important
property of forces:

A force may, and may only be transported along its line of action.

5 Rigid bodies, Euler equations, and the remains of
statics.

5.1 Description of rigidity.

A finite rigid body is a semi-rigid mass-point construction in which all masses
have fixed mutual distances. For N mass-points, this implies the occurrence
of £N(N — 1) constraints (of which a lot may be removable). Therefore the
internal forces are not at all defined uniquely. However, a body is an example
of the possibility to resolve the constraints implicitly, such that the use of an
augmented frustration function is no longer required.

Suppose z. is some fixed ‘central point’ of the body, then every point x;, of the
body can be written as

T = T+ Tk
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where ||ry|| is constant in time for all k. The position and orientation of the
body is determined by the momentary central vector x.(¢), and by an orthog-
onal matrix Q(¢):

() = Q(t)74(0)

Now
d . . . .
QQ" =I— 2(QQ")=QQ"+QQ" =QQ" +(QQ")" =0

Therefore QQT = Q is a skew symmetric matrix:

0 —Ww3 (095)
Q= Wws 0 —W1
—W9 w1 0

and by right multiplication with Q, we get:

Q =0Q, 7, = Qri(0) = 2Qri(0) = Qr), = w x ), (See (2))

The velocity of a particular point z;, of the body is completely determined by
the velocity v. and the angular velocity w:

T = T+ wW X T (68)
The acceleration is similarly expressed by

L = Lo+ T =T +WXTEL+wWX Ty (69)

5.2 Derivation of Euler’s equations.

From now on, we choose the mass centre x. as central point:

_ Zk mETg _ Zk MmETg
25 Mk M

in which M is the total mass of the body. This implies ), myr, = 0, which is
useful for working out the formulas.

L

The frustration of the body is a function of &., w, and w. Since w is a state
variable, it won’t vary in the minimization of the frustration. So effectively

N
F(&y,&,...,&N5) = 3 E ml|@k]? = B (&, w)
k=0

Without calculating the explicit formula for ®, we can calculate its variation:

N N

0d = kaQ}k'&Bk = ka$k°(5$c + dw X 'r'k)
k=1 k=1



Derivation of Euler’s equations. 33

Using the scalar triple product identity a+(b x ¢) = b+(c x a), we can rearrange
the second term in the righthandside,

N N
0d = (Z mk:'i:k> O, + <Z MmgTE X ii‘k> Ow
k=1

k=1
= pedi, + b-dw

Minimization of ® then yields

0 )
% = p=0 (70)
0P .
ow b=0 7y

For rigid bodies, the moment of momentum b is also called angular momentum,
and denoted by H.

H= Z’I‘k X mk.’i}k (72)

This can be expressed in terms of x. and w:

H:Zrk X ML :kark X (T +w X Ty) :kark X (w X Ty)

since ) myr, = 0. With help of the matrix iterpretation of the vector triple
product this can be written as H = Jw where

T=Y"my (lrell*T = rerf)

is the tensor of inertia
Next assume constraints are working in points «; of the body

ngr; =o; j=12,....m
We translate these constraints to &, and w:

nj&; =nj(Ec+wXxXrj+wXr;)=aq

=n,&.+ (1; X nj)w +nj(w x ;)

The variation with respect to &. and w reads

d(nj&;) =n;d&. + (r; X n;)-dw
Now consider the augmented frustration function for the constrained rigid
body:

m

(i, 0) = e, @) = YAy (nlde + (rj x )T )
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Putting to zero the partial derivatives with respect to &. and w we get

o L
55, = P2 Nm=0
Jj=1
o R
% = H—;T‘jX()\jnj):O

Putting A;n; = F, the force acting in x;, these equations become Euler’s equa-
tions for the motion of a rigid body:

N

p = Y F;=F (73)
j=1

] N

H = > rjxF;=L (74)
j=1

So the change of linear momentum and angular momentum equal the total
applied force F'and the total applied force moment L respectively.

6 Discussion and acknowledgements.

Classical point mechanics can be founded on the principle of relativity, together
with two rather obvious kinematic principles, based on everyday experience.
A striking side-effect of this set-up is the way in which mass and momentum
enter the theory.

The present analysis follows initially more ore less method A in E.A. Desloge’s
paper [2]. In fact, we do one step before the start of method A, namely proving
the existence of mass and momentum, with their properties.

C. Truesdell [7] criticises the fact that according to many physicists the law of
moment of momentum follows from Newton’s laws. In derivations of this law,
one assumes that internal forces in a rigid body are directed centrally from point
to point. Whether or not this is true, there is not much knowledge on these
internal forces in general.

Truesdell’s remedy: Choose the conservation of linear momentum and of mo-
ment of momentum as basic axioms. The disadvantage is that these axioms are
not really ‘Euclid-like” from the self-evidenceness point of view.

In the present analysis, the internal forces uy 7%, occur as multipliers in a
mathematical problem; the direction of these vectors is a consequence of the
constraining direction, their (skew) symmetry is required by the conservation
of linear momentum. So apparently, the mutual ‘forces’ are ‘central’, but may
have nothing to do with the way how points act upon other points physically.
So in the present analysis, this property of the mutual forces is not an assump-
tion about physical forces.
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One can imagine that the true equations of motion of a semi-rigid mass-point
construction depend on the actual multipliers (say the actual internal forces).
In lemma 7 however is proved that the solution of a consistently linearly con-
strained minimization problem is unique, even if the multipliers are not. In the
analysis of the rigid body, the multipliers are completely absent: the internal
forces ore not relevant.

So our approach doesn’t suffer from the shortcomings of the ‘central force’
assumption, and is based on a really simple axiom, the law of minimal frustra-
tion.

A remark can be made on the derivation of the momentum and energy proper-
ties of semi-rigid mass-point constructions . Probably many mechanists would
accept actual-formal equality for momentum and energy without lemma 3. The
author has been a bit scrupulous because of the pretention of trying to be ‘Eu-
clidean’.

Finally, the present axioms may certainly be considered as self-evident, because
they reflect common experience of many people not trained in mechanics. They
also are attractive from philosophic point of view. The law of decrease reflects
the common feeling that nothing can be obtained from nothing. The law of
minimal frustration reflects another common principle, not only in physics,
but also in dayly life: ‘Do not more than strictly necessary’.
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