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Extending the BEM for elastic contact problems beyond

the half-space approach

Jing Zhao ∗, Edwin A. H. Vollebregt∗†, Cornelis W. Oosterlee∗‡

Abstract

In this paper we extend the range of applicability of the boundary element method
(BEM) for concentrated elastic contact problems by computing the influence coeffi-
cients (ICs) numerically. These ICs represent the Green’s function of the problem, i.e.
the surface deformation due to unit loads. For the half-space they are analytically
available. An elastic model is proposed to compute these coefficients numerically, by
the finite element method (FEM). We recommend proper strategies of FEM meshing
and element types, considering accuracy and computational cost. The effects of com-
puted ICs to contact solutions are examined for a Cattaneo shift problem. The work in
this paper aims at providing a reference to study fast solvers for the conformal contact
problem where ICs are not analytically known.

Keywords: Influence coefficients, concentrated contact, the finite element method, error
propagation, conformal contact.

1 Introduction

Contact problems have a broad range of applications in engineering fields, such as wheel-
rail contact in railway industry [16], investigation of friction and wear [6, 25], rolling fa-
tigue [9], ball bearing [10], etc. Such problems consider elastic contact between two bodies.
When they are pressed together, an elastic field of stress, strain and displacement arises in
each body. A contact area is formed where the two body surfaces coincide with each other.
The stresses exerted on each body consists of normal stress and tangential stress. In the
so-called normal contact problems, we solve for the contact area and the normal stress on it.
When the two bodies are brought into relative motion and the relative velocity of the two
surfaces is small, a creeping motion could be observed which is largely caused by the elastic
deformation at the contact patch. In those parts of the contact area where the tangential
stress is small, the surfaces of the two bodies stick to each other. Otherwise, local relative
sliding may occur. This is studied in the so called tangential contact problems, where the
research question is to find the adhesion and slip areas, and the distribution of tangential
stresses.

Solving contact problems has been a continuous research topic. Classical solutions were
provided by Hertz (1882) [11], Carter (1926) [3], Fromm (1927) [8], Cattaneo (1938) [4]
and Mindlin (1949) [23], etc, for different model problems. In the recent fifty years, John-
son [13] and Kalker [14] contributed the most important work for three-dimensional contact
problems. For more introduction of modern development, we refer to [24].

Numerical approaches for contact problems have also been developed, typically in two
classifications. One is the finite element method (FEM) [15, 17, 33], which is widely used,
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especially for problems involving large deformation and nonlinear materials. The other is
the boundary element method (BEM) [1, 13, 14, 21], which is applied for homogeneous
material, with assumption of small deformation and deformation gradients. This method
particularly suits the concentrated contact problem, since the influence coefficients (ICs),
which represent the corresponding Green’s function, are analytically available with the use
of a half-space approach [14].

1.1 Strategies for solving concentrated contact problems

In concentrated contact problems, the contact area is considered flat since it is small
compared to the dimensions of the contacting bodies. Examples can be found in Figs. 1(a)
and (b), where we depict the contact between the wheel tread and rail crown, and between
wheel flange and rail gauge face. The half-space approach is used, which approximates the
contacting bodies as two semi-infinite solids bounded by the contacting plane [14]. The
BEM transforms the three-dimensional (3D) boundary value problem to a two-dimensional
(2D) boundary integral problem. The integral gives the relation between displacements and
tractions. In the half-space approach, the corresponding Green’s function is based on a
solution by Boussinesq and Cerruti (see [13]). It is the so-called influence function, which
expresses the displacements at one point caused by a load at another point on the half-space.

Solving such problems starts with the definition of the potential contact area, which
contains the true contact region. Usually rectangular elements are placed in this 2D region,
and piecewise constant functions are used to represent the tractions to be solved. This
results in ICs from the influence function. Analytic coefficients are available [14], and have
been incorporated with solvers for concentrated contact, e.g. [14, 29, 34].

1.2 Strategies for solving conformal contact problems

Conformal contact occurs when the rail and wheel are seriously worn so that a curved
and much larger surface comes into contact, as seen in Fig. 1(c). Other applications can
be found, for instance, journal-bearing contact [32], microcontact printing [22], etc. The
half-space approach is prohibited, since its assumptions of a flat and small contact area are
not valid in these cases. The FEM is usually employed for such problems, e.g. in [7, 20, 27],
due to its generally applicability.

However, since discretization by FEM covers whole contacting bodies, this method can
be computationally slow and memory intensive. Moreover, focusing on the contact region,
FEM often employs coarser meshes than BEM, which implies less detailed information in
the region of interest.

Figure 1: Two types of contact problems in wheel-rail contact [19]: concentrated contact in
(a) and (b) with “flat contact areas”, and conformal contact in (c) with a “curved contact
area”.

One idea of fast solvers for conformal contact problems is to apply the BEM, which
means to only discretise the contact surface, and work on the surface integral similar as in
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concentrated contact [19, 31]. Those fast solvers for concentrated contact can then also be
applied. A difficulty is that the influence function (and further the influence coefficients) is
not theoretically known in this case.

Therefore, the influence function may need to be computed numerically, resulting in
numerical influence coefficients. The first question is how we can compute these coefficients
efficiently, considering the accuracy and computational cost. This requires to build a model,
to choose good strategies of FEM meshing and element types, and to find the accuracy of
the resulting coefficients. The second question is about how these influence coefficients affect
the final solution of the conformal contact problem.

This approach has been developed by Li in [19], where the rail was approximated by
a quasi-quarter space with a distributed load and the FEM was applied. However, this
work did not present detailed strategies for the mesh or element types. Moreover, there
was no discussion of the error propagation from influence coefficients to contact solutions.
The approach was extended by Vollebregt [31], who presented initial results on meshing
strategies and error propagation. In the present work, this research is continued, such that
more detailed guidance can be provided.

1.3 Content and structure of this paper

We investigate the influence coefficients in a concentrated contact setting, where ana-
lytic influence coefficients are known when a piecewise constant approximation is used as
discretization of the tractions [13, 14]. Secondly, there are analytic solutions such as the
Hertz theory for normal contact [11] and the Cattaneo theory for the tangential shift prob-
lem [4]. The corresponding BEM results can provide a reference for studying conformal
contact problems, for which there are no analytic influence coefficients, neither analytic
contact solutions.

For conformal contact seen in Fig. 1(c), one solves the displacements on the curved
contact region of the rail. The FEM is then employed. Prismatic elements are generally
applicable with their triangular faces on the curved boundaries of the cross section of the
rail. Regarding such application, prismatic elements are also investigated for the model in
this paper, which solves the displacements on a half-space.

In the model a unit load is applied on the region of one element, which brings a jump
at the edge of this element to its neighbors. This implies a significant discontinuity in the
traction boundary condition for the model as well, and may disturb the FEM solution. An
alternative is to impose a bilinear load, which equals a “tent” shape at this region. Analytic
investigation for this test setting can be found in [5], however, the implicit expressions
for influence coefficients are difficult to process directly. A closed form solution is given
in [18], however, on a triangular mesh. This is not useful for our work, which mainly focuses
on rectangular meshes since these result in matrices of Toeplitz 1 structure so that the
fast Fourier transform (FFT) can be applied to accelerate the corresponding matrix-vector
products [29]. Therefore, numerical influence coefficients computed with a bilinear load on
rectangular meshes are of interest.

The structure of this paper is as follows. In Section 2, an elastic model is built to compute
influence coefficients. The results of this model are discussed in Section 3 with three different
FEM mesh settings, from which insight is provided on the choice of meshing and element
types, in view of accuracy and computational cost. In Section 4, a specific contact problem is
solved, with numerical influence coefficients obtained by the recommended strategies. Error
propagation is investigated separately in normal and tangential contact problems. The last
section concludes this paper.

1A Toeplitz matrix is the matrix with constant diagonals.
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2 An elastic model for computing influence coefficients

2.1 Influence coefficients on half-space

Influence coefficients are equivalent to displacements caused by a specific load. Evalu-
ating the displacements under a given load is a basic problem in elasticity. It can be done
by solving three elastic equations with some boundary conditions. These equations, in a
quasi-static case, read [12]:

1. Equilibrium equation:
σij,j + Fi = 0. (1)

2. Strain-displacement equation:

εi,j =
ui,j + uj,i

2
. (2)

3. Stress-strain equation (constitutive equation, or Hooke’s law):

σij = cijklεkl. (3)

In the above equations, subscripts i, j, k, l take on values x, y, z. The Einstein summation
convention is used when repeated subscripts occur. Notations σ, ε, F, u denote stress, strain,
body force per volume, and displacement, respectively. Subscript (, j) means differentiating
w.r.t. the corresponding coordinate direction j.

In the case of concentrated contact problems, an alternative way can be used to obtain
displacements. It is based on four assumptions. First of all, the contacting region should
be small compared to the dimensions of the contacting bodies. Secondly, these contacting
bodies should be of homogenous linear elastic material. The third is small displacements
and displacement gradients. Fourthly, inertial effects are ignored, which is a quasi-static
case.

These assumptions allow for the use of the half-space approach, which approximates the
two contacting bodies by two semi-infinite elastic bodies, bounded by the contacting plane.
Usually a Cartesian coordinate system (O;x, y, z) is placed, with the origin at the center of
the contact region, and the z-direction pointing to the outward normal of one contacting
body. A half-space is at one side of the bounding plane and can be denoted by, for instance,
{(x, y, z)|z ≤ 0}.

We only consider one half-space here. Displacements at one point on this half-space
caused by a point load at another point were given as a function of relative distance between
these two points by Boussinesq and Cerruti (see [13]). For instance, normal displacement uz
at surface point (x, y) resulting from a normal point load P at another surface point (ξ, η)
is given by [14]:

uz(x, y) =
P

2πG
· (1− ν)

ρ
, (4)

where G is shear modulus and ν is Poisson’s ratio. ρ =
√

(x− ξ)2 + (y − η)2 is the distance
between points (x, y) and (ξ, η). We drop the z-component for point coordinates here since
all points of interest are on the surface of the half-space, i.e. z = 0.

This equation has a singularity point when ρ = 0, at the point where the load is applied.
This is not a serious problem since in practice the load is often distributed on a finite
region [2]. The displacement caused by a distributed load can be obtained by integration of
the displacement by the point load. Replacing normal load P by pz(ξ, η)dξdη in Eq. (4) and
integrating on a certain contact area C, we obtain the relation between normal displacement
and pressure (normal traction):

uz(x, y) =

∫∫
C

Azz(x, y, ξ, η)pz(ξ, η)dξdη, (5)
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where the kernel

Azz(x, y, ξ, η) =
(1− ν)

2πG
· 1

ρ
(6)

is called the influence function. It describes the influence of a unit normal load at point
(ξ, η) on the normal displacement at point (x, y). The value of Azz(x, y, ξ, η) depends on
the relative distance of these two points, rather than their own locations. This means that:

Azz(x, y, ξ, η) = Azz(x− ξ, y − η). (7)

Discretization is done by placing n := nx ·ny rectangular elements on a potential contact
area which contains the real contact region. The corresponding element sizes are δx and δy,
respectively. A cell-centered mesh arrangement is chosen. Using I, J ≤ n as element indices,
a widely used approximation for pressure pz is by piecewise constant function fJ(ξ, η):

pz(ξ, η) =

n∑
J=1

pJ · fJ(ξ, η), (8)

where fJ(ξ, η) = 1 for (ξ, η) on element J and fJ(ξ, η) = 0 elsewhere. Plugging Eq. (8) into
integral (5), we arrive at:

uz(xI , yI) =

n∑
J=1

[
pJ

∫∫
eJ

Azz(xI , yI , ξ, η)fJ(ξ, η)dξdη
]
, I = 1, ..., n, (9)

where eJ denotes element J . Eq. (9) leads to a linear relationship:

uz = Azzpz, pz,uz ∈ Rn, Azz ∈ Rn×n, (10)

where matrix Azz stores all the influence coefficients (ICs) AzzIJ . Each of them is defined by:

AzzIJ =

∫∫
eJ

Azz(xI , yI , ξ, η)fJ(ξ, η)dξdη, (11)

which results from integrating Eq. (5) on a single element eJ w.r.t. an observation on element
I. It indicates the physical meaning of the IC: AzzIJ is the normal displacement on element
I, caused by a load fJ on element J . In this case, the applied (normal) load fJ is a unit
piecewise constant function, and analytic solutions of integral (11) can be found in [14]. 2

Moreover, Eq. (11) also implies that the value of the IC is related to the area of element eJ
and material parameters G, ν.

A similar derivation can be done for other ICs, such as Ayx, the y-component of dis-
placement caused by a unit load in the x-direction.

2.2 Model

The model for computing the ICs is based on the contact problem to be solved. Assume
that the contact problem considers two bodies of homogeneous linearly elastic materials,
with shear modulus G and Poisson’s ratio ν. Recall that n = nx · ny rectangular elements
are placed in the potential contact area, with corresponding mesh sizes δx and δy.

This model is inspired by the fact that an IC is equivalent to the displacement at one
surface point resulting from a unit load at another surface point. We have to deal with
two issues. One is to approximate the semi-infinite half-space, and the other is to provide a
proper boundary value problem.

To approximate the half-space which represents one contacting body, we consider a block
of size [−L,L] × [−L,L] × [−L, 0] mm3 in 3D space [31] (see Fig. 2(a)). This block is of

2The analytic ICs are displacement differences of the two contacting bodies. When the same material is
adopted for the bodies, the IC divided by 2 leads to the displacement of one body.
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Figure 2: (a) The original 3D block for approximating the half-space. It occupies space of
[−L,L]× [−L,L]× [−L, 0] mm3. Due to the symmetry and anti-symmetry of displacements
on the top surface, we consider the left upper quarter (blue shadow), which is shown in (b).

the same material as the contacting body, and L → ∞ gives the half-space model. A unit
load is applied at the center of the top surface, and we solve for the resulting displacements
on this surface, which are the corresponding ICs. Due to the symmetry and anti-symmetry
of the displacements, the computational domain can be reduced to a quarter of the block,
[−L, 0]× [−L, 0]× [−L, 0], which is shown in Fig. 2(b).

ICs
Front surface

(x = 0)
Right surface

(y = 0)
Top surface

(z = 0)

Axz, Ayz, Azz
ux = 0,
∂uy

∂x = 0,
∂uz

∂x = 0.

∂ux

∂y = 0,

uy = 0,
∂uz

∂y = 0.

σz = 1, (x, y) ∈ [−δx2 , 0]× [−δy2 ]
= 0, otherwise.

Axx, Ayx, Azx
∂ux

∂x = 0,
uy = 0,
uz = 0.

∂ux

∂y = 0,

uy = 0,
∂uz

∂y = 0.

σx = 1, (x, y) ∈ [−δx2 , 0]× [−δy2 ]
= 0, otherwise.

Ayy, Axy, Azy
ux = 0,
∂uy

∂x = 0,
∂uz

∂x = 0.

ux = 0,
∂uy

∂y = 0,

uz = 0.

σy = 1, (x, y) ∈ [−δx2 , 0]× [−δy2 ]
= 0, otherwise.

Table 1: Boundary conditions at the front surface (x = 0), at the right surface (y = 0) and
at the top surface (z = 0) for different ICs. On other three surfaces the boundary condition
is given by u = 0.

Governing equations for this model are the basic equations in elasticity, as given by
Eqs. (1)-(3). Boundary conditions can be different for different ICs. Define displacement by
u = (ux, uy, uz)

T , and stress by σ = [σx, σy, σz]
T , then Table 1 gives boundary conditions

at the front, right and top surfaces of the block. At the other three surfaces the boundary
condition is given by u = 0.

We explain the boundary conditions on the top surface in Table 1. The top surface of
the block is shown in Fig. 3. A 2×2 grid with hc = δx = δy is used for the contact problem.
Due to the cell-centered mesh, the ICs for the center points of these four elements need
to be computed. Since the value of the IC depends only on the relative distance of a pair
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of points, we can place the right-bottom element of the contact grid centered at the origin
and compute displacements for these four points w.r.t. the origin. Moreover, a piecewise
constant representation of tractions is employed, which implies that a unit load is applied
on the region of the center element (the shaded area in Fig. 3). Since we only consider a
quarter of the block, the load in the model is only given on a quarter of the center element.

(0,0)

(-L,0)(-L,-L)

(0,-L)

L

hc

x

y

Figure 3: The top surface of the block in the model. In the contact problem a 2× 2 grid with
mesh size hc = δx = δy is used. The center of the right-bottom element is at the origin. A
unit load is applied on the shaded element region. When solving the resulting displacements
by FEM, different meshes can be applied.

With governing equations (1)-(3) and boundary conditions, we can employ the finite
element method (FEM) to solve for the displacements. In Fig. 3, differently from the 2× 2
contact grid, other meshes can be used when solving this model by the FEM. (Be aware
that the meshes for the contact problem, and for the FEM model are different.) A linear
interpolation technique is applied to convert the resulting displacements to the center points
of the contact mesh, which leads to the required coefficients.

Remark 1. When using a bilinear approximation of pressures, i.e. the applied load is
bilinear in the model, boundary conditions on the top surface z = 0 are different. For
instance, for the IC caused by a normal load, i.e. Axz, Ayz, Azz, the condition reads [28]:

σz(x, y, 0) =

{
(1− |x|/δx)(1− |y|/δy), (x, y) ∈ [−δx, 0]× [−δy, 0],
0, otherwise.

For the IC caused by a load in x- or y-direction, one needs to replace the left-hand side of
this condition by σx(x, y, 0) or σy(x, y, 0), respectively.

3 Influence coefficients Azz by a piecewise constant load

We know the analytic ICs when pressures are represented by piecewise constant func-
tions [13, 14]. In this section, the model proposed in Section 2 is used to compute the IC
Azz, which is the normal displacement caused by a unit normal load. The resulting IC value
can be compared with the analytic IC. Tests in this section aim at providing insight on mesh
strategies and element types, considering the accuracy and computational cost.

The contact problem which requires the numerical IC is defined as follows. Consider a
sphere pressed on a plane. Both bodies are of the same material, with shear modulus and
Poisson’s ratio G = 82000 N/mm2, ν = 0.28, respectively. In this case, the analytic ICs
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divided by 2 is the displacement on one of the bodies. The potential contact area is [−4, 4]×
[−4, 4] mm2. On this area, four nc × nc grids are placed: 10× 10, 20× 20, 40× 40, 80× 80,
with mesh sizes hc = 0.8, 0.4, 0.2, 0.1, respectively.

As a reminder, subscript c refers to the contact problem, subscript s in the following refers
to the model, which is solved by finite element package SEPRAN [26]. For the solution of the
FEM discretization, a preconditioned conjugate gradients method is employed with stopping

criterion ||uk+1−uk||
||uk+1|| ≤ 10−6, where u is displacement and the superscripts are iteration

indices. To compare with the analytic IC on a certain contact grid, linear interpolation is
used. We define our target of approximation by:

|Azz0 − F zz0 |
|Azz0 |

< 0.01, (12)

where Azz0 is the analytic coefficient (divided by 2) at the origin, and its approximation by
the FEM is F zz0 .

3.1 Mesh strategies

Remember that our FEM model needs to approximate the semi-infinite half-space.
Hence, the FEM mesh should be easily extended to a very large block without involv-
ing too many elements. Since the displacements decrease outside the loaded region, more
elements can be used near the origin, and much fewer elements far away from it.

Figure 4: Meshes generated by SEPRAN: (a) hexahedron Mesh1. (b) prismatic Mesh2 (where
diagonal edges on top and right surfaces are a plotting artefact).

Regarding the type of elements, we first use the hexahedron element which is easy to
be generated for a 3D block. The corresponding mesh strategy is called “Mesh1”, shown in
Fig. 4(a). The loaded region is covered by a small cube [−l, 0]× [−l, 0]× [−l, 0]. Within this
cube, a uniform mesh is used with element size hs = l/m, where m is the number of elements
in each direction. Outside this cube, the element size increases by a factor f leaving the
loaded area. Moreover, edges that do not contain the small cube are divided uniformly into
m intervals. In this mesh, stretching factor f , cube size l and its element size hs are to be
determined, so that accurate numerical ICs result.

Another employed element is the prismatic element. As mentioned in Section 1, in
conformal contact, one computes ICs considering a load on the curved contact surface of the
rail, see Fig. 1(c). The cross section of the rail has curved boundaries, and it is well fitted
by triangles. Moreover, the rail can be regarded as infinitely long, so rectangles are used for
the other surfaces. This yields the prismatic elements.

Assuming that the front and back surfaces of the 3D block correspond to the cross
section of the rail in Fig. 1(c), these two surfaces should consist of the triangular faces of
the prismatic elements, as shown in Fig. 4(b). (One may see that the top and right surfaces
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in this figure also show triangles. In fact the diagonal line in each rectangle does not exist.
This is just a plotting issue.)

This prismatic mesh is called “Mesh2”, which also has the small cube configuration with
a uniform mesh to cover the loaded region. The mesh strategy for the front and back surfaces
is the same as the front surface of hexahedron Mesh1, except for using triangles instead of
rectangles. The top surface can be divided into four parts. One corresponds to the small
cube. The second is a rectangle along the x-direction, with its width equal to cube size l. Its
element size, along the x-direction, increases by a factor f outside the cube, but the element
size in the y-direction is always hs. This will result in extremely stretched elements when
the block size L gets large. The rectangle along the y-direction has similar structure. In
the fourth part of the top surface, the element size increases in both directions. The right
surface has a similar structure.

Next, we will test different mesh parameters on Mesh1 and Mesh2. Three tests are
defined in Table 2, w.r.t. hc, the element size of the grid for the contact problem. TESTs 2
and 3 are based on a smaller cube near the origin than TEST 1. Moreover, TEST 3 has a
smaller stretching factor f than TEST 2.

Mesh parameters Cube size l Cube element size hs Stretching factor f

TEST 1 l/hc = 2.5 hc/hs = 4 f = 1.5

TEST 2 l/hc = 1 hc/hs = 4 f = 1.5

TEST 3 l/hc = 1 hc/hs = 4 f = 1.2

Table 2: Settings of three tests.

3.2 Azz on hexahedron Mesh1

We start by approximating the IC Azz for the 10×10 contact grid. Fig. 5 shows results for
TEST 1 using linear and quadratic elements, as block size L increases. Linear elements fail
to achieve the target accuracy (12), denoted by the dashed line. However, quadratic elements
exhibit very satisfactory convergence. Therefore, quadratic elements will be employed in the
subsequent tests.

8 16 32 64 128 256 512 1024
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10
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10
−1
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z
z

0
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F
z
z

0
|/
|A

z
z

0
|

 

 

linear

quadratic

Figure 5: TEST 1 on hexahedron Mesh1: relative errors at the origin, using linear and
quadratic elements. The dashed line is the target accuracy defined by Eq. (12).
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Focusing on quadratic elements, the corresponding errors decrease as L is doubled, and
they stabilize for L ≥ 512. The reason for this is that the error consists of two parts. One
is the error of the continuous model, which approximates the infinite domain, i.e. block size
L approximates ∞. The other is the FEM discretization approximating the true solution of
the model on the finite domain. The former is dominant when L is small, until L ≥ 512,
when the latter error is remaining.
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Figure 6: TEST 2 and TEST 3 on hexahedron Mesh1 for a 10×10 contact grid. (a) Relative
error at the origin for different domain sizes L. The dashed line indicates the target accuracy
defined by Eq. (12). (b) Numbers of elements. (c) CPU time in seconds.

TEST 2 and TEST 3 use a smaller uniform cube, and the latter has a smaller stretching
factor than the former. Fig. 6 shows the results of these two tests. Since TEST 3 employs
a finer mesh, it results in smaller errors than TEST 2. At the same time, it requires more
elements and thus CPU time. But the cost is acceptable. Comparing with TEST 1, we
observe that TEST 3 can achieve similar errors, however at a lower cost (since it has a
coarser mesh).

We need to balance the accuracy and the computational cost. On the one hand, a coarser
grid yields cheaper solutions, for instance, using larger stretching factors such as f = 2 and
f = 2.5, or a smaller uniform cube l/hc = 0.5. However, the corresponding accuracy may
be unsatisfactory. A finer grid gives rise to a better accuracy but is more expensive.
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Figure 7: TEST 3 on hexahedron Mesh1, for 20 × 20, 40 × 40 and 80 × 80 contact grids.
(a) Relative error at the origin for different domain sizes L. The dashed line indicates the
target accuracy defined by Eq. (12). (b) Numbers of elements. (c) CPU time in seconds.

Fig. 7 gives the results using TEST 3 on the 20 × 20, 40 × 40 and 80 × 80 grids with
hc halved. It can be seen from Fig. 7(a) that all computations reach the target accuracy
when L/hc ≥ 80 is satisfied. Moreover, when L/hc is the same for these three grids, the
corresponding errors are also similar. In other words, by shifting the line with red circles

10



to the right, it will coincide with the line with black stars. The same observation can be
found in Figs. 7(b) and (c). The reason is that the parameters are determined based on the
scaling factors w.r.t. the mesh size of the contact problem hc.

3.3 Azz on prismatic Mesh2

We only show results with prismatic elements for a 10 × 10 contact problem in Fig. 8.
It can be found that TEST 3 leads to the smallest errors when L increases. However, the
corresponding cost is the highest (the CPU time with L = 1024 is so high that we do not
show it in this figure). The errors by TEST 1 and TEST 2 are comparable. Since the latter
requires fewer elements and less CPU time, it is the better choice for prismatic elements on
Mesh2.
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Figure 8: Three tests on prismatic Mesh2 for 10× 10 contact grid. (a) Relative error at the
origin for different domain sizes L. The dashed line indicates the target accuracy defined by
Eq. (12). (b) Numbers of elements. (c) CPU time in seconds.

A difference with the behavior for the hexahedron mesh observed in Fig. 6 is that the
errors at the origin with prismatic elements are decreasing less regularly when L increases,
and stagnate at a higher level than when hexahedron elements are used. This is attributed
to the large stretching of the prismatic elements when a large L value is used, which yields
an ill-conditioned matrix from the FEM discretization, and hence the results are spoiled to
some extent.

3.4 Discussion on mesh strategies

Based on the above results, we conclude regarding the choices of the mesh parameters
in Table 3 for hexahedron Mesh1 and prismatic Mesh2. With these parameters, target
accuracy (12) can be achieved. We can see that the same ranges apply for domain size L,
cube size l and cube element size hs between the hexahedron and the prismatic meshes.
Stretching factor f is optimal in different ranges. The optimal choices for Mesh1 and Mesh2
are TEST 3 and TEST 2, respectively, as defined in Table 2.

Parameters Domain size L Cube size l Cube element size hs Stretching factor f Optimal
Mesh1 L/hc ≥ 80 1 ≤ l/hc ≤ 1.25 hc/hs ≥ 4 1 ≥ f ≥ 1.5 TEST 3
Mesh2 L/hc ≥ 80 1 ≤ l/hc ≤ 1.25 hc/hs ≥ 4 1.5 ≥ f ≥ 2 TEST 2

Table 3: Recommended mesh parameters for hexahedron Mesh1 and prismatic Mesh2.

Other conclusions are as follows:

• Quadratic elements are preferable on both Mesh1 and Mesh2.
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• The mesh parameters in Table 3 are also satisfactory for other contact grids, such as
the 20× 20, 40× 40, 80× 80 meshes.

• The errors become stable when L/hc ≥ 640 on Mesh1, and when L/hc ≥ 160 on
Mesh2.

• The same mesh strategies can be used to compute other ICs such as Axx, Ayy, and Axy,
using the corresponding boundary conditions as defined in Table 1. Similar results are
found for the numerical accuracy and the computational time.

• The same mesh strategies are also applicable to compute ICs when prescribing a unit
bilinear load.

• Smaller errors can be attained with Mesh1 than with Mesh2, as described in Sec-
tion 3.3. A proper value of domain size L needs to be chosen for the prismatic Mesh2.

4 Error propagation in a Cattaneo shift problem

Errors in influence coefficients (ICs) can disturb the final solution of a contact problem.
To investigate this, a Cattaneo shift contact problem [4] is solved, which is based on a
sphere pressed on a plane and then shifted tangentially. This problem was specified in
Section 5.2.1.1 of [14] and in Section 5.1 of [30]. Both sphere and plane are of the same
elastic material, a quasi-identical case. In this case, the problem can be decoupled into a
normal and tangential problem, since the results of the latter do not influence the former [14].

We solve these two subproblems separately in this section. Analytic and numerical ICs
are used in the solution procedure, and the contact solutions are compared.

4.1 The normal problem

The normal problem is based on a normal force applied to the sphere on the plane so that
a contact area is formed due to the deformation. The sphere and plane have the same shear
modulus and Poisson’s ratio, G = 200 N/mm2 and µ = 0.42, respectively. The radii of the
sphere are Rx = Ry = 50 mm. The contact area is a circle with radius 1 mm. According to
the Hertz theory [13], the normal force is Fz = 9.1954 N , the approach, i.e., the maximal
penetration, is δ = 0.02 mm, and the maximal pressure is pmax = 4.3905 N .

In the numerical implementation, approach δ = 0.02 mm is prescribed. The contact
area and pressure on it are solved for. We show the results for the normal force Fz, which
is the integral of the pressure on the contact area. Moreover, the errors in the maximal
pressure pmax and in the contact area are also analyzed. The potential contact area is
set to [−1.2, 1.2] × [−1.2, 1.2] mm2. The undeformed distance function reads h(x, y) =

1
2Rx

x2 + 1
2Ry

y2 − δ. The algorithm NORM [14] is used, with stopping criterion chosen as

‖ d ‖rms
‖ h ‖rms

≤ 10−6, (13)

where d is defect of governing equation Azzpz + h = 0, and the root-mean square norm is
used.

Only IC Azz is required in this normal problem. Both analytic and numerical ICs based
on our model are employed in the numerical experiment. Relative errors w.r.t. the Hertzian

solutions are shown. For example, the error in the normal force is defined by |F̄z−Fz|
Fz

, where

F̄z and Fz are forces provided by the numerical method and analytic solution, respectively.
We firstly examine the IC obtained by a unit piecewise constant load, then the ICs by a

bilinear load. The results are also compared.
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4.1.1 Analytic ICs

First of all, we use the analytic ICs in this normal problem. Relative errors in the normal
force Fz, in the maximal pressure pmax and in the area of contact region are presented in
Fig. 9. It is found that the errors in the normal force are already quite small. Errors in
the maximal pressure show a linear reduction when the grid is refined. The errors in the
contact area are the largest, which can be explained by the addition or removal of complete
elements in the numerical treatment where the contact area changes.
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Figure 9: Normal problem with analytic ICs: relative errors in the normal force Fz, in the
maximal pressure pmax and in the contact area. The x-axis shows the number of element in
each direction of contact grid nc × nc.

4.1.2 ICs by a piecewise constant load on hexahedron Mesh1

In this experiment numerically computed ICs on Mesh1 are used. Fig. 10(a) shows
relative errors in the resulting normal force for three different discretizations of the contact
problems: 10× 10, 40× 40 and 160× 160 grids. It can be seen that these errors decrease as
domain size L increases on the three grids. Moreover, the errors using 40×40 and 160×160
grids are very similar, and they are smaller than using the 10× 10 grid when L increases.
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Figure 10: Normal problem with ICs by a piecewise constant load on hexahedron Mesh1: (a)
errors in the normal force, (b) errors in the maximal pressure, (c) errors in the contact area.

Fig. 10(b) presents the relative errors in the maximal pressure pmax. As L increases,
the error for the 10× 10 decreases until it stagnates, then it increases and stabilizes. Such
stagnation also occurs with the errors related to the 40× 40 and 160× 160 grids (the latter
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is not clearly shown since stagnation is at L = 1024. If L is larger, the curve will increase
again). However, it is difficult to know beforehand the value of L for which the maximal
pressure stagnates. Moreover, when L reaches the largest value, i.e. L = 1024, the finer the
grid is, the smaller the resulting error.

Errors in the contact area are presented in Fig. 10(c), where the finest grid always yields
the smallest errors for different values of L. Moreover, as L increases, errors on these three
grids reduce and then stagnate.

Based on the above discussion, we come to the conclusion that it is optimal to choose L
as large as possible on this mesh.

4.1.3 ICs by a piecewise constant load on prismatic Mesh2

ICs computed on prismatic Mesh2 are employed here. In Fig. 11(a), errors decrease as
L increases, and then they increase a bit when L gets larger. Using 40× 40 and 160× 160
grids results in smaller errors than the 10× 10 grid. Moreover, these two fine grids exhibit
the same errors. This situation is the same as when using the IC on Mesh1 in Fig. 10(a).
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Figure 11: Normal problem with ICs by a piecewise constant load on prismatic Mesh2: (a)
errors in the normal force, (b) errors in the maximal pressure, (c) errors in the contact area.

Fig. 11(b) presents a stagnation in each curve for the error in the maximal pressure pmax.
Errors in the contact area in Fig. 11(c) indicate that for a fixed value of L, the finer the
discretization, the smaller the error will be.

Notice that in Fig. 11, the results on 40 × 40 and 160 × 160 grids are lacking when L
gets very large. The reason is that the ICs are not computed in this case. In fact, highly
distorted elements occur on Mesh2. As mentioned in Section 3.3, large L values give rise
to over-stretched elements and ill-conditioned FEM matrices. Therefore, it is important to
carefully find a proper value for L on Mesh2, neither too large nor too small.

4.1.4 ICs by a bilinear load

Here, the ICs have been computed also with the bilinear load as described in Remark 1.
Since the analytic values cannot be accessed easily, no comparison was made in Section 3
between analytic ICs and numerical ICs. However, it is possible to use these ICs in the
contact model and study the propagation of errors, as the above discussion for the ICs
computed using the piecewise constant load. The resulting figures are very similar to Figs. 10
and 11, and are therefore omitted for brevity.

4.1.5 Discussion on the normal problem

We compare the influence of all ICs on the normal contact problem. Numerical ICs
are obtained on Mesh1 with L = 1024 and on Mesh2 with L = 128. Relative errors in the
normal force are shown in Fig. 12(a). We find that, on the one hand, both piecewise constant

14



10 20 40 80 160
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

number of elements in each direction: n
c

re
la

ti
v
e

 e
rr

o
rs

 i
n

 F
z

(a)

 

 

Analytic IC

PC: Mesh1

PC: Mesh2

Bi: Mesh1

Bi: Mesh2

10 20 40 80 160
10

−5

10
−4

10
−3

10
−2

10
−1

number of elements in each direction: n
c

re
la

ti
v
e

 e
rr

o
rs

 i
n

 p
m

a
x

(b)

 

 

Analytic IC

PC: Mesh1

PC: Mesh2

Bi: Mesh1

Bi: Mesh2

10 20 40 80 160
10

−3

10
−2

10
−1

number of elements in each direction: n
c

re
la

ti
v
e

 e
rr

o
rs

 i
n

 t
h

e
 c

o
n

ta
c
t 

a
re

a

(c)

 

 

Analytic IC

PC: Mesh1

PC: Mesh2

Bi: Mesh1

Bi: Mesh2

Figure 12: Normal problem with different ICs: (a) errors in the normal force, (b) errors in
the maximal pressure, (c) errors in the contact area. Here, “PC” and “Bi” denote piecewise
constant and bilinear loads, respectively.

and bilinear loads result in similar errors on a very fine discretization. On the other hand,
errors on Mesh1 are smaller than those on Mesh2. For instance, on the finest 160×160 grid,
the former reaches a relative error of 0.1% and the latter around 0.8%. Moreover, these
numerical ICs cannot yield normal forces as accurate as the analytic ICs, which results in
errors smaller than 10−6.

Fig. 12(b) gives the errors in pmax, where the Mesh1 results in a similar accuracy as using
analytic ICs. These errors are again smaller than those on Mesh2. Errors in the contact
area are presented in Fig. 12(c), where we notice that the ICs based on a bilinear load on
Mesh2 can even result in better accuracy than the analytic ICs.

4.2 The tangential problem

In the tangential problem, the contacting sphere is shifted in the x-direction by a tan-
gential force Fx = (7/8)µFz. Here, µ = 0.4 is the friction coefficient of Coulomb’s frictional
law. The sphere sticks to the plane where the tangential traction is small. Local sliding
occurs when the traction reaches the frictional traction bound. According to Cattaneo’s
theory [4, 14, 30], the adhesion area is a circle with radius θ = 0.5. In this case, the rigid
shift of the sphere is given by wx = 0.00817 mm.

In the implementation, we have prescribed the rigid shift wx = 0.00817 mm and friction
coefficient µ = 0.4. The tangential traction, the adhesion and slip areas are to be solved.
Integration of the tangential traction over the contact area yields tangential forces Fx, Fy.
The required ICs are Axx, Ayx, Ayy, Axy, where Ayx = (Axy)T . The solver is the TangCG

algorithm, proposed in [34]. The iterations of TangCG terminate when
||pk+1

t −pk
t ||

||pk+1
t ||

< 10−6,

where pt is the tangential traction consisting of x- and y-components. The solution pro-
cedure starts with the computed contact area and the corresponding pressures resulting
from the normal problem where the same strategies are used to compute the ICs for both
the normal and tangential problems. This means that, for instance, if Azz for the normal
problem is obtained by a bilinear load on Mesh1, this strategy is also employed to compute
Axx, Axy, Ayy for the tangential problem.

We only compare tangential force Fx in this case. The analytic Cattaneo solution for Fx
is not completely relevant here, since it does not involve the force in the lateral direction
w.r.t. the shift direction. Therefore, rather than using this solution as the reference for
comparison, we use Fx = 3.2216 N , which is obtained by the TangCG algorithm with
analytic ICs when hc → 0.
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Figure 13: Tangential problem: errors in tangential force Fx, with ICs by a piecewise con-
stant load on (a) hexahedron Mesh1 and on (b) prismatic Mesh2.

First, we use the ICs computed by a unit constant load on hexahedron Mesh1, and the
resulting errors in tangential force Fx are shown in Fig. 13(a). These errors decrease as
domain size L increases. Errors on the 10 × 10 grid sometimes are smaller than those on
finer grids. This may due to the fact that a finer grid requires a larger number of ICs and
hence errors may accumulate in the evaluation. Fig. 13(b) presents errors when the ICs are
computed on prismatic Mesh2. As the domain size increases, these errors first are reduced,
and then increase somewhat again. The same observation can be found when the ICs are
obtained by a bilinear load, so we do not show the corresponding results here.
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Figure 14: Tangential problem: errors in tangential force Fx with different ICs. Here, “PC”
and “Bi” denote piecewise constant and bilinear loads, respectively.

To compare these ICs, again we choose L = 1024 for Mesh1 and L = 128 for Mesh2.
A piecewise constant load as well as a bilinear load are used. Fig. 14 shows the errors in
tangential force Fx with the resulting ICs. Using analytic IC yields a linear reduction of
errors, and the numerical ICs obtained by hexahedron Mesh1 give rise to smaller errors than
those by prismatic Mesh2. For instance, the former achieves around 0.03% and the latter
possesses 0.17% on the 160× 160 grid. The piecewise constant load and bilinear load yield
similar results. However, we conclude that “engineering accuracy” can also be achieved on
the prismatic Mesh2.
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5 Conclusion

In this paper, we studied the numerical calculation of the influence coefficients (ICs)
that are used in fast solvers for concentrated contact problems. These ICs are displacements
caused by a unit load, either a piecewise constant load or a bilinear load, depending on
the representation of the unknown tractions. To compute these ICs, an elastic model was
provided, including governing equations and boundary conditions for different ICs. The
finite element method is employed via package SEPRAN [26]. Considering the accuracy and
computational cost, we recommend hexahedron Mesh1 and prismatic Mesh2, with their own
specific mesh parameters after several numerical tests. The former is easily extended to a
large computational domain that approximates the half-space. The latter is more generally
applicable, while a proper domain size needs to be chosen carefully in order to prevent
over-stretched elements.

The numerically computed ICs are incorporated into the solution procedure of a Cattaneo
shift problem, which is decoupled into a normal and a tangential problem. The effects
of these ICs on the contact solutions are discussed. ICs obtained on hexahedron Mesh1
show better performance than those on prismatic Mesh2. However, the prismatic mesh is
favorable for engineering applications. The performance does not differ much between ICs
that are computed by a piecewise constant load or a bilinear load. This means that using
piecewise constant and bilinear representations for unknowns results in the same accuracy,
in agreement with the corresponding statements in [14, 28].

The work in this paper provided a guidance for developing fast solvers for conformal
contact problems. Similar model and meshing strategies can be used there to compute ICs
on curved domains. Similar errors in the ICs and similar error propagation may be expected,
such that meshing parameters may be chosen along the lines of the results presented here.
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