
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 16-01

OPTIMAL CONFIGURATION OF FUTURE ELECTRICITY GRID

M. DE BEURS, P. DE GRAAF, P. HANSLER, S. HERMANS, K. VAN

WALSTIJN, J. DE WINTER AND D.J.P. LAHAYE

ISSN 1389-6520

Reports of the Department of Applied Mathematical

Analysis

Delft 2016

Copyright 2016 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted,

in any form or by any means, electronic, mechanical, photocopying, recording, or oth-

erwise, without the prior written permission from Department of Applied Mathematical

Analysis, Delft University of Technology, The Netherlands.

TU Delft
Faculty of Electrical Engineering

1

Case study Evolvingphysics2

3

Optimal configuration of future4

electricity grid5

6

Authors:7

Marc de Beurs 15290488

Paul de Graaf 40019909

Perry Hansler 400966510

Sophie Hermans 417247711

Koen van Walstijn 416889512

Jules de Winter 416608613

Supervisor and examiner:14

Dr. D.J.P. Lahaye15

May 1, 201416

Abstract17

This paper considers the scenario of a big new energy source connecting to an existing network of generators18

and loads. To be able to maintain such a network at the correct settings, the well known load flow equations19

have to be solved. Since existing software has trouble with solving the load flow equations in the scenario20

of a very large generator, new software was created using Matlab’s inherent fsolve function. This software21

was consequently used in combination with existing software of the MATPOWER package to calculate the22

optimal way of connecting a new large generator to an existing network. This was done for a relatively small23

case using a brute force method which iterated over all possible options.24

1

Contents25

Abstract 126

1 Introduction 327

2 Load Flow Computation 428

2.1 Bustypes . 429

2.2 Deriving the load flow equations . 530

3 Solving the loadflow equations using Fsolve 731

3.1 Solving a load flow problem . 732

3.2 MATPOWER’s way of solving a load flow problem . 833

3.3 Problems with MATPOWER’s convergence . 1034

3.3.1 Using ’Fsolve’: a trust region method . 1035

3.4 Calculating the Jacobian . 1136

3.4.1 Analytical calculating the Jacobian with the load flow equations 1137

3.4.2 Fast decoupled method . 1138

3.4.3 The Jacobian in MATPOWER . 1239

3.5 An analysis of Residual plots for fsolve and MATPOWER’s Newton Method 1240

3.5.1 Conclusions . 1541

4 Implementation of an extra source 1642

4.1 The characteristics of an optimal configuration . 1643

4.2 Optimal power flow computation in MATPOWER . 1644

4.3 Adding a generator to an existing case . 1845

4.4 Possible variations in adding a generator . 1846

4.5 Input data . 1947

4.6 Results . 2048

4.6.1 Connecting the generator to the system . 2049

4.6.2 Interconnecting buses within the existing network . 2350

4.6.3 Break-even analysis . 2451

5 Conclusion and recommendations 2652

Bibliography 2853

2

Chapter 154

Introduction55

More renewable sources of energy have to be used in the future. One speculated method of generating such56

sustainable energy is the use of solar energy generated in the desert. The goal of this study is to model57

the addition of such a resource to the current power grid and to compute the optimal configuration of this58

combination. Rather than using actual data of a potential new energy source and the actual European power59

grid, this report uses a model of a smaller network and a fictional extra generator to look at the methods of60

finding the optimal connection points. Given detailed actual data, the methods explored in this paper can61

then be applied to finding the optimal configuration of a real power grid.62

63

The goals of adding such an energy source to the grid can vary. Reducing costs by adding a cheap energy64

source could be one objective, for example, but investing in cleaner energy could be another, which might be65

more expensive. Both of these scenarios are discussed, as the optimal connections to the grid are the same66

in both cases.67

This study uses Matlab as computational software and the publicly available MATPOWER package to68

model the electrical network. The network that will be used is based on case118, an existing case in the69

MATPOWER package.70

71

This report is structured as follows. First we will briefly discuss the theory of load flow computations72

and the implementation in Matlab in the form of the MATPOWER package. In chapter 3, we will discuss73

a way of solving the load flow problem using a fsolve function in Matlab. In chapter 4, the implementation74

of the extra source in MATPOWER and the computation of the optimal configuration will be discussed.75

3

Chapter 276

Load Flow Computation77

In real life power distribution one is confronted with multiple users and multiple generators connected in a78

network. All these users have real time power needs and want their power right away. It is important for the79

generators to supply the exact amount of required power given certain loads. A load flow problem consists80

of a network of generators and loads connected through branches. A node in the network of branches that81

hosts a generator or load is called a bus. In Figure 2.1 a very easy example is shown with a generator bus82

on the left connected by one branch to a load bus on the right.83

84

Figure 2.1: Very easy example of a load flow problem with one generator bus and one load bus. [1]

2.1 Bustypes85

In a load flow problem the load buses have certain power needs and the generators supply a given amount86

of power. The goal is to find the correct voltage settings at each bus, such that the generators supply the87

right power. To accomplish this, the voltage angle and magnitude at each bus has to be determined.88

89

Each bus is fully described by four parameters, namely: voltage magnitude |V |, voltage angle δ, real90

power P and reactive power Q. For each load bus the real and reactive power needs are specified, whilst the91

voltage angle and magnitude are unknown. These buses are also referred to as PQ-buses.92

93

A generator bus has a known voltage magnitude and real power, but the voltage angle and reactive power94

are unknown. Generator buses are thus referred to as PV-buses.95

To be able to cope with power losses and fluctuating loads one generator is designated as a slack generator.96

This generator has unspecified power, so it is able to fill in the gaps where this is needed. This slack bus97

does have a specified voltage magnitude and angle. The details of a buses have been combined in Table 2.1.98

4

Known parameters Unknown parameters Bus-Type
Slack generator |V |, δ P, Q Slack-bus
Generator P, |V | δ, Q PV-bus
Load P, Q |V |, δ PQ-bus

Table 2.1: Summary of bustypes

2.2 Deriving the load flow equations99

When a voltage difference is created across a branch a current starts to flow. Each branch has its own100

characteristics that have an effect on the caused current. These effects can be expressed in the impedance101

Z, which is the sum of the resistance R and reactance X:102

Z = R+ jX

In the load flow equations it is more convenient to work with the admittance Y , which is the inverse of103

the impedance:104

Y =
1

Z
= G+ jB

Here G is the inductance and B the susceptance. Loosely spoken: the bigger the admittance, the larger105

the current under a certain voltage difference.106

The admittances for all the branches in a network consisting of N-buses can be conveniently collected in an107

[N x N] admittance matrix, which has the following form:108

Yij = Gij + jBij = |Yij | e
jθij

The voltage magnitude and angle at a node find their origin in a complex representation of the voltage:109

Vi = |Vi| e
jδi = |Vi| (cos δi + j sin δi)

The current at a given node can be calculated by summing the voltages of all the nodes multiplied by110

the admittances of the branches between them:111

Ii =

N
∑

n=1

YinV n

When nodes i and j are not connected with each other the admittance Yij is equal to 0. Thus the current112

at a node is only dependent on the voltages of the nodes it is connected with.113

The complex power S is the sum of the real power P and the complex reactive power Q. It can be calculated114

for a node by multiplying the current at this node with the corresponding voltage.115

Si = Vi (Ii)
∗
= Pi + jQi

We now can create an expression for the real and reactive power in terms of the admittance matrixes116

(which can be created from knowledge of the network) and the yet unknown voltage magnitude and angles.117

Si = Vi

N
∑

n=1

(Yin)
∗
(V n)

∗
=

N
∑

n=1

|Vi| |Yin| |Vn| e
j(δi−δn−θin) =

N
∑

n=1

|Vi| |Yin| |Vn| (cos (δi − δn − θin) + j sin (δi − δn − θin))

By separating the real and complex part and making use of basic trigonometry we get the well known118

load flow equations[1]:119

5

Pi =

N
∑

n=1

|Vi| |Yin| |Vn| cos (θin + δn − δi)

Qi =−

N
∑

n=1

|Vi| |Yin| |Vn| sin (θin + δn − δi)

6

Chapter 3120

Solving the loadflow equations using121

Fsolve122

One way to solve the load flow equations is using MATPOWER, a package for Matlab. However for certain123

problems MATPOWER does not produce a solution or takes too long to solve a problem. For example:124

problems with convergence arise when a generator with a big power production is connected to a system.125

This directly translates to the scenario of a big power source in the desert which is connected to the current126

european network. It is therefore of quite some importance to have a different method capable of solving127

the load flow equations in such a scenario.128

It was our goal to write a function using Matlab’s standard function fsolve that can solve the problems129

where MATPOWER fails. We strived to make this program compatible with MATPOWER case structure130

and to make as much use of existing MATPOWER codes as possible. In this section we first provide131

the mathematical basis behind solving a load flow problem, then show how MATPOWER’s operates and132

where this goes wrong. Finally we present our solution and explain how it intertwines with MATPOWER’s133

structure.134

3.1 Solving a load flow problem135

When confronted by a load flow problem, one is given a system of generator and load buses. The load flow136

problem is considered solved when for each bus the voltage angle and magnitude is known, such that at each137

bus the (real and reactive) power calculated with the load flow equations is equal to the specified power.138

Mathematically:139

Pi, calc = Pi, spec →

N
∑

n=1

|Vi| |Yin| |Vn| cos (θin + δn − δi)− Pi, spec = 0

Qi, calc = Qi, spec → −

N
∑

n=1

|Vi| |Yin| |Vn| sin (θin + δn − δi)−Qi, spec = 0

As explained in chapter 2 a load bus provide us with two unknowns, |Vi| and δi and has a specified real140

power Pi, spec and a specified reactive power Qi, spec. Since both Pi, spec and Qi, spec are known we can use141

both of the two equations shown above to find the two unknowns.142

143

A generator bus has a known voltage magnitude, so the only unknown is the voltage angle: δi. At this144

bus only the specified real power Pi, spec is given, so now we can use only one equation to find one unknown.145

7

The voltage magnitude and angle of the slack bus are known and do not need to be calculated.146

147

For each load bus we have two equations and two unknowns and for each generator bus we have one148

equation and one unknown. We are thus dealing with a square system of nonlinear equations: for n unknowns149

in the system we have an equal number of nonlinear equations. This implies we have a well-defined problem.150

151

We now have the daunting task to solve this system of nonlinear equations by finding a set of voltage152

magnitude and angles such that the above equations are equal to zero. This can only be done iteratively153

and there are many different methods for this task.154

155

The main principle behind all these methods is to start with an initial guess for the unknowns. The real156

and reactive powers (of the nodes where these are specified) are then calculated with the load flow equations157

and the specified powers are then subtracted from the corresponding calculated powers.158

159

If the calculated powers of all nodes match the specified powers, the difference of all equations is zero160

and our initial guess was the solution. However this is most likely not the case and we have to improve our161

guess. After improvement, the powers are recalculated and the difference is checked again. This process is162

repeated until the norm of the difference between specified and calculated power is below a certain threshold,163

also called tolerance. The lower the tolerance, the more precise the solution of our system. Depending on164

the accuracy wanted by the user, the tolerance can thus be made smaller or larger. The main difference165

between the different methods of solving nonlinear systems is the way of improving the initial guess.166

3.2 MATPOWER’s way of solving a load flow problem167

The MATPOWER-package uses a Newton-Raphson method to solve the load flow equations. This is an168

iterative method that makes use of derivatives to find a root of a function. A root is the coordinate where169

the function has value 0. The key is to use the direction of the derivative to make successive estimates of170

the location of the root.171

172

It is most easily explained with a function of a single variable as illustrated in figure 3.1. Here a function173

h(x) is sketched and the iterative steps towards the roots are graphed as well.174

175

An initial (nonzero) point x0 is supplied to the method. The tangent at this point is then calculated and176

the intersection of the tangent with the x-axis is the new estimate for the root. The value of h with this new177

estimate, h(x1), is then calculated. If |h(x1)| > ǫ, where ǫ is the tolerance, the procedure is repeated and a178

new estimate is retrieved that should be closer to the root. If all goes well, an x is found after n steps which179

satisfies |h(xn)| < ǫ and the root is found with the desired accuracy.180

8

Figure 3.1: Example of the Newton-Raphson method. [1]

This method can be applied to a load flow problem by using a generalization to more equations. This181

algorithm makes use of a Jacobian, which is a matrix of all equations differentiated to all unknowns. The182

mathematical algorithm is for the next estimate is:183

J∆x =

P2, spec − P2(x)
...

PN, spec − PN (x)
QNg+2, spec −QNq+2(x)

...
QN, spec −QN (x)

with x =

δ2
...
δN

|VNg+2|
...

|VN |

In this equation there are N buses of which 1 is the slack bus and Ng are other generators. The slack bus184

is numbered one, and the buses are order such that the generators are on buses 2 to Ng + 1. All unknowns185

are gathered in a vector x and the correction of this vector for the next estimate is noted as ∆x. The power186

calculated with the load flow equations are functions of the unknowns and are thus denoted as Pi(x) and187

Qi(x). J is the Jacobian and has the form:188

J =

∂P2(x)
∂δ2

. . .
∂P2(x)
∂|VN |

...
. . .

...
∂QN (x)

∂δ2
. . .

∂QN (x)
∂|VN |

Since both J and the vector of specified power minus the calculated power can be calculated the correction189

the estimate can be obtained by factorization or the inversion of the Jacobian. The new guess is then obtained190

by adding ∆x to x. The mathematical derivation of this method depends on a Taylor expansion and we191

direct the interested reader to [1].192

9

3.3 Problems with MATPOWER’s convergence193

Although the Newton-Raphson method works pretty well in most cases, it sometimes fails to converge. Again194

this is most easily shown with a function of one variable.195

Figure 3.2: A function where the Newton-Raphson method has trouble converging.

As usual we start with an initial guess x0. The tangent line overshoots the solution and we end up196

overcorrecting our initial guess and get x1. This isn’t a big problem if it happens just once, however our197

next guess also overshoots our solution and we end up with an estimate x2 that is worse than our initial198

guess x0. It is obvious that this iteration scheme is not going as planned.199

3.3.1 Using ’Fsolve’: a trust region method200

A possible solution to this problem is to implement a trust region. A trust region limits the maximum201

correction of the estimate and may thus eliminate the possibility of overcorrecting the estimate. Intelligent202

trust region algorithms exist that allow for larger trust regions when it is ”safe” to make big corrections, but203

that limit the trust region when this is not the case.204

205

Matlab’s fsolve function is able to solve a system on nonlinear equations, such as the load flow problem.206

It has three different algorithms to solve such systems, of which two use a trust region. Our goal was to207

use such a trust region algorithm that is built into Matlab by applying the fsolve function to the load flow208

equations.209

210

To maximize efficiency and complementarity we tried to keep our program as closely related to MAT-211

POWER as possible. Therefore we use the same structure for the input and we use a lot of functions that212

are part of the MATPOWER package. A schematic overview of how the program works is shown in Figure213

3.3214

10

Figure 3.3: A schematic overview of the written program. Squares with rounded corners imply that the task
was achieved using MATPOWER functions.

Here squares with rounded corners indicate that the task was achieved using a function that was part of215

the MATPOWER package.216

3.4 Calculating the Jacobian217

3.4.1 Analytical calculating the Jacobian with the load flow equations218

The Jacobian for solving the problem can be calculated with the load flow equations. The active and reactive219

power are given by:220

Pi =

N
∑

n=1

|Vi| |Yin| |Vn| cos (θin + δn − δi)

Qi =−

N
∑

n=1

|Vi| |Yin| |Vn| sin (θin + δn − δi)

By deriving these with respect to V and δ, one can obtain the Jacobian:221

J =

∂P
∂δ

∂P
∂V

∂Q
∂δ

∂Q
∂V

3.4.2 Fast decoupled method222

The fast decoupled method makes use of a simplified Jacobian. The assumption is made that for small values223

of δ the values of ∂P
∂V

and ∂Q
∂δ

are so small that they are assumed to be zero, because there is a weak coupling.224

Consequently less computations are needed per iteration. When the result converges, it converges to the225

correct solution. However, the simplification can invoke more iterations. The simplified Jacobian takes the226

following form.227

J =

∂P
∂δ

0

0 ∂Q
∂V

When the derivatives are taken, the simplified Jacobian becomes:228

11

∂Pi

∂δi
=

N
∑

n=1

|Vi| |Yin| |Vn| sin (θin + δn − δi)

∂Qi

∂Vi

=−

N
∑

n=1

ViV
2
n Y

2
in

|Vi| |Yin| |Vn|
sin (θin + δn − δi)

3.4.3 The Jacobian in MATPOWER229

In MATPOWER the Jacobian is not calculated numerically. The Jacobian is calculated as a matrix with230

real and imaginary elements of the following equations.231

232

∂S

∂Vm

= diag(V) · conj

(

Ybus · diag

(

V

|V |

))

+ conj (diag (Ibus)) · diag

(

V

|V |

)

∂S

∂Va

= j · diag(V) · conj (diag (Ibus)− Ybus · diag(V))

233

234

With S being the Sbus, Vm and Va the voltage magnitude and angle, respectively. The Ybus is the admit-235

tance matrix and the Ibus is defined as Ibus = YbusV .236

237

When fsolve is not supplied with a Jacobian it generates a Jacobian after each iteration by finite differ-238

encing. This is computationally expensive, therefore we have chosen to supply the Jacobian calculated using239

the method mentioned in this subparagraph.240

3.5 An analysis of Residual plots for fsolve and MATPOWER’s241

Newton Method242

This section depicts a comparison of the solving power of Matpower’s Newton method and our fsolve program243

described in the previous subsection for a variety of cases. It has been found that even though our fsolve244

program does not make up in speed in terms of residual reduction per iteration, it does solve a larger or245

different subset of problems. Note that all results shown below were interpreted with a required residual246

minimum of 10−15.247

12

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Iterations

R
es

id
ua

ls

Residuals as a function of iterations for two different solving methods

MATPOWER
fsolve

Figure 3.4: Plot of the residuals versus iterations for both Newton and fsolve solvers for the often-mentioned
’case118’ as given by MATPOWER. It can be seen and confirmed that there is no difference between solvers
for this particular size.

0 1 2 3 4 5 6 7 8 9
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Iterations

R
es

id
ua

ls

Residuals as a function of iterations for two different solving methods

MATPOWER
fsolve

Figure 3.5: Plot of the residuals versus iterations for both Newton and fsolve solvers for ’case2383wp’ as
given by MATPOWER. One can see that MATPOWER’s Newton method converges more quickly in terms
of residual reduction per iteration than our Fsolve program. In absolute time MATPOWER won by about
0.2 seconds. One can argue that since this case is ’safe’, fsolve’s trust region is working against itself in terms
of speed, leaving Newton’s method to be the winner.

With the knowledge that fsolve will not have an advantage in terms of speed, cases included with the248

13

MATPOWER package have been edited to make them more extreme; increasing generator output or load249

demand. This to see if fsolve could cope with a wider range of scenarios than MATPOWER. The results250

are shown in the figures below. Having tested far more cases than shown in these results, the difference in251

speed started to appear in cases involving approximately 2000 or more nodes.252

0 10 20 30 40 50
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Iterations

R
es

id
ua

ls

Residuals as a function of iterations for two different solving methods

MATPOWER
fsolve

Figure 3.6: Plot of the residuals versus iterations for both Newton and fsolve solvers for an edited version of
’case2383wp’, known as ’case2383wpcrash’. The difference is that one of the load buses has had their active
load demand significantly increased, however the number to make Fsolve work and MATPOWER fail was
rather specific and hints towards a significant sensitivity. Once again, one can argue that MATPOWER wins
in terms of speed, but has problems dipping below a residual of roughly 10−10, starting to oscillate. The
fsolve program described in the previous subsection does not show a problem to reach the residual limit of
10−15.

With these results, it has been attempted to ’break’ one of the cases involving less nodes, to see if fsolve253

can handle more extreme cases in that regime as well.254

14

0 10 20 30 40 50
10

0

10
2

10
4

10
6

10
8

10
10

Iterations

R
es

id
ua

ls

Residuals as a function of iterations for two different solving methods

MATPOWER
fsolve

Figure 3.7: Plot of the residuals versus iterations for both Newton and fsolve solvers for an edited version of
’case9’, known as ’case9crash’. The difference is made by making one bus require much more reactive load
than usual (factor 10). Here one can see that while both solvers experience severe issues while solving, fsolve
seems to converge slowly towards a certain limit while MATPOWER’s solver experiences extremely volatile
behaviour in a higher regime of residuals

3.5.1 Conclusions255

This section will summarize the results found above. The main point is that fsolve does indeed solve a256

different set of problems than MATPOWER’s Newton method does. The size of fsolve’s set hints at being257

bigger than MATPOWER’s Newton method, however the boundaries of these different subsets are difficult258

to probe due to the high amount of variables, especially in high-node configurations. Further research for259

probing these boundaries is therefore encouraged.260

Few other points can be made, when both solvers don’t seem to converge to an acceptable threshold, MAT-261

POWER’s residual behaviour per iterations shows extremely volatile behaviour whereas fsolve converges to262

a certain unacceptable threshold. Another point which can be made is that fsolve does not show signs of263

beating MATPOWER’s speed in terms of residual reduction per iteration, but sometimes wins in terms in264

absolute time. This means that in those cases fsolve requires less time per iteration.265

15

Chapter 4266

Implementation of an extra source267

We now have a method of solving the load flow equations when we connect a huge generator to an existing268

network. This means we can solve the proposed scenario of a large generator in the desert that is connected269

to the European network. Even though it is practical, and most likely imperative, to be able to calculate270

the right settings for all the generators in such a situation, it is also important to consider other facets of271

this scenario. One important question that needs to be answered is where you will connect said generator272

to the existing network. With the large number of buses, there is an even larger number of possible ways to273

connect the ”desert-generator” to the network. This section explores a way of finding the optimal network274

in terms of cost reduction. By using the MATPOWER function runopf for particular case (case118), all275

possible scenarios of adding a generator have been compared.276

4.1 The characteristics of an optimal configuration277

A network is optimal when the costs of the generator are the lowest of all possible configurations. Costs278

associated with power generation and maintenance have to be taken into account. These are modeled as the279

cost functions of the generators. Energy losses of the cables make that the generators need to work harder:280

the costs associated with this are therefore taken into account indirectly.281

282

Also, the stability of the system has to be guaranteed. A system is stable when the voltage is between283

0.9 and 1.1 p.u. [2]. This condition has to be met, so possibly the configuration with lowest costs will not284

be a good option.285

4.2 Optimal power flow computation in MATPOWER286

Optimal power flow (runopf) is the main function that is used to handle a case. The input of the runopf func-287

tion is a network in the format suited to MATPOWER. It calculates the optimal configuration by changing288

generator outputs and voltages. The input of runopf can be any case (in the right format). The calculation289

of an optimal configuration is done by minimizing four conditions to calculate the optimal power flow of a290

given system: feasibility (equality), cost, gradient and complementarity condition (inequality) [3]. Especially291

the cost condition is interesting for this case study. However, the other three conditions have to be met as292

well to get the right results for a specific configuration. The tolerance for these conditions is 10−6.293

294

Both the DC and AC problem are solved with the CCV approach (Constrained Cost Variable). The295

cost function is then replaced by a helper variable and a set of linear constraints. These constraints form a296

convex set, as a consequence the cost variable have to lie in the epigraph of the cost function. [3].297

In the vector mpoption the options for the MATPOWER problem are set. One of these options is the solver298

type (which solver is used to solve the problem). A specific solver can be set or the default solver is used.299

16

Figure 4.1: The purple area in the graph indicates the epigraph of the cost function in which the cost variable
has to lie.

Table 4.1: Order of preference for the default solver for solving a DC or AC optimization problem. In the
last column the MATPOWER codes for the different solver in the mpoptions vector.

Order of preference Type of Solver Code in the mpoptions vector
1 CPLEX 500
2 MOSEK 600
3 Gurobi 700
4 BPMPD MEX 100
5 Tbx 300
6 MIPS 200

17

When the default solver is used its availability is checked. There is an order of preference for the different300

solvers.301

302

4.3 Adding a generator to an existing case303

To check which design is best, a brute force technique is used. An extra function is created that computes304

every possible design. It adds a generator (and branch) to every node of a given case in the right format.305

The characteristics of this generator and branch can be adjusted to match the existing model. The function306

added to check various configurations is built up as follows.307

308

An iteration loop is created in which the generator is connected each time to a different node and the309

runopf function is ran. In each iteration the total cost of this new configuration is saved, in which the310

minimum cost is located. Therefore, the optimal configuration is found.311

312

Unfortunately, some computations will not converge with the existing solving method used by runopf,313

this is where the fsolve technique from chapter 3 might come in. Even though runopf fails to converge, its314

still presents its calculated values. These values must not be considered as a possible outcome for the most315

optimal bus. An option is added to know whether a system has converged or not and to show a plot of the316

residue of the convergence (of all four conditons). This way, it can be seen with which setup the computation317

has failed and the result can be neglected as a possible outcome.318

4.4 Possible variations in adding a generator319

Connecting the generator through one branch to the network causes a huge load on a specific part of the320

network. Therefore, the created function can be adjusted to connect the generator through more than one321

branch. However, the computation time becomes even larger when a design is checked with a generator322

coupled with more than one branch. If a system contains N nodes and a generator will be added through323

number of branches (nc), the number of possible designs is N(N − 1)(N − 2) · · · =
∏N−1

nc=0(N − nc). The324

computation time becomes sky high when this option is used in large cases (with many nodes and branches).325

326

To overcome this problem, the program is ran once to check for the best configurations. The best design327

is then fixed and the program is ran again to check every other possible connection with a second branch.328

Then the second branch is also fixed and so on. This can be repeated to reduce the costs even further. Using329

this technique, the assumption is made that the most optimum node from the first run, is also one of the330

nodes in the best configuration with more than one connection. This has been validated with small cases331

using the brute force method (iterating every possibility) upto 3 cables. But the assumption stays for larger332

cases and adding more cables. Lets call this technique from now on: ”The fixed node iteration method”.333

334

Another possibility is to interconnect nodes within the existing network. The philosophy behind this335

technique is to distribute the extra power (from the added generator) more equally over the network. The336

larger the case, the more possible interconnections there are. So another assumption is made in order to337

minimize the computation time: from the above mentioned technique (fixed node), a list of optimal node338

connections is obtained. Interconnecting branches between these nodes might reduce the costs further then339

interconnecting nodes not on this list.340

341

18

4.5 Input data342

Case118 is used to test the optimization model mentioned above. The case is based on a part of the American343

Electrical Power System and consists of 118 nodes; from which 54 are generators and 64 are load buses. All344

these buses are connected with a total of 186 branches. Below a schematic is shown of this network. Note345

however that this schematic gives no information about the distances between buses. It is not the topology,346

it merely gives an overview.347

Figure 4.2: Schematic of case118, not the topology [7].

One note has to be made using this existing case118: the branch data are corrected. This is due to a lack348

of actual values, the power limits (rateA, rateB and rateC) are set to 300 MVA, which is a typical value for349

cables like those in the case [4].350

351

Besides the existing case, the MATPOWER program also requires the information of the added generator352

and branch(es). For the generator, the maximum real output power generated is set to 2000 MW, and the353

maximum and minimum reactive power output to 100 and -20 MVAr respectively. The voltage magnitude354

setpoint is 1 p.u. The other data is the same as other generators in case118. In order to find the optimal355

connections, the impact of adding the generator should be large. Therefore, the linear cost coefficient of the356

generator is set to 10 $/MWh, which is significantly lower than the other generators. The small quadratic357

cost component is typical for most cases analysed with MATPOWER.358

359

The branch data is based on the data as follows:360

19

Nominal Voltage 500 kV
R (Ω/km) 0.0128
xL = ω L (Ω/km) 0.2454
bC = ω C (µ s/km) 96.5

Table 4.2: Model of the resistance (R), reactance (X) and total line charging susceptance (B) for a 500 kV
branch [6].

The length of the branch is estimated on 1000 km, which is roughly the distance between Tunisia (North361

Africa) and Southern Europe. The adaptation of the nominal values to the per-unit system is based on a362

baseMVA of 100 MVA and a basekV of 500 kV. The format of MATPOWER also requires the MVA rating,363

which is set to 900 MVA [4]. The ratio, angle, status, angle minimum and angle maximum are the same as364

the rest of the case branches.365

366

For the interconnecting cables it is difficult to assign corresponding values, this because no information367

on the topology of the case is present: no distances between buses are known. Therefore the average is368

calculated from all the cables present in the case, which are then used as the values for the interconnecting369

cables added to the system.370

4.6 Results371

In this result section first the optimum connection of the generator to the network is analyzed, starting372

with 1 cable and looking at the responses when adding more cables. Second, the cost reduction due to the373

addition of interconnecting cables to the network is checked. Finally a break-even analysis is done to look374

at thresholds for when this added generator will turn out economically, or purely evironmentally.375

4.6.1 Connecting the generator to the system376

Using the brute force method on case118, adding the generator through bus 54 is most optimal. With costs377

after the added generator of 1.1735 · 105 $/hour, this offers a cost reduction of 0.12693 · 105 $/hour. Below378

is the table with the first 10 connections shown with the corresponding costs and reduction:379

Connected bus Costs $/hour Reduction $/hour
54 1.1735 · 105 0.12693 · 105

17 1.1748 · 105 0.12558 · 105

56 1.1766 · 105 0.12380 · 105

49 1.1766 · 105 0.12380 · 105

5 1.1776 · 105 0.12280 · 105

61 1.1778 · 105 0.12263 · 105

40 1.1778 · 105 0.12258 · 105

80 1.1783 · 105 0.12211 · 105

37 1.1783 · 105 0.12205 · 105

66 1.1799 · 105 0.12050 · 105

Table 4.3: First 10 best bus connections with their corresponding costs and cost reduction, using the brute
force method: iterating one cable over all buses

When adding more branches from the generator to the system, costs are further reduced as can be seen380

in figure 4.3. However, the cost reduction becomes smaller with every extra connection.381

20

1 2 3 4 5 6 7 8 9 10
1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19
Costs vs number of connected branches

Number of connections

C
o
s
ts

 [
1
0

5
 $

 /
 h

o
u
r]

Figure 4.3: Cost reduction due to the addition of branches from the generator to the system.

The figure above (4.3)is generated by using the brute foce method (iterating over all possible buses) to382

obtain the optimal bus connection. The first branch from the new generator is then pinned on the found383

bus, following with again the brute force iteration to find the optimal bus for the second branch, and so384

on (fixed node iteration method). In the figure shown a total of 10 branches have been connected from the385

generator to the network, in the following order:386

Number of connections Successive branch connected to bus number Costs $/hour
1 54 1.1735 · 105

2 17 1.1295 · 105

3 105 1.1185 · 105

4 40 1.1121 · 105

5 75 1.1087 · 105

6 12 1.1065 · 105

7 112 1.1052 · 105

8 32 1.1042 · 105

9 56 1.1033 · 105

10 76 1.1025 · 105

Table 4.4: First 10 optimal branch connections with their corresponding bus and costs. As can be seen
adding an extra branch reduces the costs.

It can be observed that in fact the first branch in table 4.4 corresponds to the first one found in table 4.3387

with the corresponding costs, as would be expected. The second found connection also corresponds to the388

second best option with the brute force technique (using 1 cable). Obiously now both costs are no longer389

the same since in table 4.3 only 1 cable is connected to bus 17, where as in the table 4.4 a cable is connected390

to 54 as well as 17. Looking at the third bus connection, it is observed that this one not even appears in the391

21

best 10 buses with the single connection. This can be understood since connecting a generator this size to392

the network changes the entire system, resulting in other optimum connection buses.393

394

Since MATPOWER minimalizes the costs by adjusting the available generators output, adding more395

branches causes an extra parameter for minimization. Explaining the continued reduction in the costs when396

more branches are connected. To amplify this theory the next figure shows the result when the added397

generator is connected to the entire network (each bus in case118)398

0 20 40 60 80 100 120
1.09

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19
Costs vs number of connected branches

Number of connections

C
o
s
ts

 [
1
0

5
 $

 /
 h

o
u
r]

Figure 4.4: Added generator is connected to all buses in the network. A continud decrease in operating costs
is observed.

Note that in generating this figure a different order of adding the branch to the next bus is used as in399

figure 4.3. Here the sorted list of optimal buses is used optained by the brute force iteration with 1 cable,400

where the first 10 buses are shown in table 4.3. The reason for this is simple, a huge reduction of computation401

time compared to the fixed node technique.402

403

Obviously, it is not realistic to connect the generator to all the existing buses. Geographically, this would404

be impractical, and the costs of construction and maintenance would rise substantially. At a certain point405

the extra investment of another cable is expected to be economically undesirable, even though it reduces406

the overall cost/hour calculated by MATPOWER. A scenario is chosen where 4 connections are made to the407

generator, thereby reducing the costs as far as can be seen in figure 4.3. This is due to a lack of information408

about the construction and maintenance costs of cables. Investiging these costs is beyond the scope of this409

paper. The connections will be made to the top 4 buses found with the fixed node technique, which are 54,410

17, 105 and 40.411

22

4.6.2 Interconnecting buses within the existing network412

With the network connected to the generator, optimization concerning interconnecting branches (within the413

network itself) is analysed.414

415

Minimizing the computation time, only the top 10 nodes found by fixed node (see table 4.4), are inter-416

connected. From all these possible configurations the top 10 is listed below, with the corresponding costs417

and the reduction due to the interconnection (compared with the generator connected with 4 branches):418

Node from Node to Costs $/hour Reduction $/hour
40 76 1.1108 · 105

105 76 1.1108 · 105

40 75 1.1110 · 105

105 75 1.1110 · 105

54 76 1.1112 · 105

105 112 1.1113 · 105

17 76 1.1113 · 105

40 12 1.1113 · 105

56 76 1.1114 · 105

105 12 1.1114 · 105

Table 4.5: First 10 optimal interconnection branches looking at the optimum 10 nodes found in table 4.4,
with the corresponding costs and reduction compared to the network with the generator connected (with 4
branches).

As can be observed the reduction is minimal, only about 0.11% compared to merely the generator con-419

nected. As mentioned before, investigation on the breakeven point for an investment in an extra cable vs420

costs reduction per hour, is beyond the scope of this paper.421

422

To compare the outcome of the assumption used above (to minimize computation time), all possible423

interconnections have been calculated (merely by brute force technique) in the following table:424

Node from Node to Costs $/hour Reduction $/hour
10 76 1.1106 · 105

10 118 1.1106 · 105

66 76 1.1107 · 105

10 74 1.1107 · 105

66 118 1.1107 · 105

25 76 1.1107 · 105

69 76 1.1107 · 105

25 118 1.1107 · 105

76 89 1.1108 · 105

69 118 1.1108 · 105

Table 4.6: First 10 optimal interconnecting branches iterating over all buses.

Comparing both tables a couple of things can be observed. At first only a small difference is seen between425

both optimum interconnections (only an improvement of 0.018%). Another observation can be made that426

the top 10 nodes (for table 4.5) do not even enter the overall top 10 list (table 4.6). To be exact they427

can be found just outside the top list, as can be understood due to the simular operation costs. This im-428

plies that the assumption used to minimize computation time does not reveal the optimum results. However429

23

the variations are small, these could be of any significance when the number of buses in the network increases.430

431

4.6.3 Break-even analysis432

A break-even analysis for the situation of adding the 2000 MW generator to case118 with four cables to433

buses 54, 17, 105 and 40 is shown in 4.5 below:434

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14
x 10

4 Break−even analysis

Extra generator cost ($/MWh)

C
o
s
ts

 o
f
o
p
e
ra

ti
o
n
 (

$
/h

)

Costs of old situation

Costs of new situation

Cost reduction

Figure 4.5: Break-even analysis of adding the 2000 MW generator to case118 with three cables to buses 54,
17 and 105.

In this analysis, only the linear cost coefficcient of the extra generator is taken into account, and it is435

varied from 0 to 100 $/MWh. The costs of the old situation are plotted in blue. As can be seen in figure436

4.5, for low costs of the extra generator, the cost reduction is reasonably big. As much power as possible is437

now generated at the new generator. As this generator becomes more expensive, the costs converge to the438

old situation: the optimal power flow algorithm now generates no power at the new generator as it is too439

expensive, and the situation is the same as before.440

441

This analysis shows that, in the scenario of case118 with the extra generator as specified, the latter is442

able to lower the total costs of operation if its own costs of generation are below 38 $/MWh. Note that in443

a break-even analysis like this, an assumption is made that lowering the total costs of operation is the goal444

of adding the generator. If this is not the goal, for example lowering the use of fossil fuels is, the costs of445

24

operation are allowed to be higher to achieve this.446

447

Therefore, a scenario is considered where the generator is connected to the same four optimal buses, but448

the output is set to a fixed output level of 2000 MW. The same linear cost model is used, and the results can449

be seen in figure 4.6 below:450

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

5 Break−even analysis

Extra generator cost ($/MWh)

C
o
s
ts

 o
f
o
p
e
ra

ti
o
n
 (

$
/h

)

Costs of old situation

Costs of new situation

Cost reduction

Figure 4.6: Break-even analysis of adding the 2000 MW generator to case118 with three cables to buses 54,
17 and 105.

Naturally, the break-even point is the same. However, the total costs now keep rising after the costs of451

the new generator pass the break-even point, and the cost reduction will become negative. Reading the costs452

from this figure merely demonstrates a method of weighing the benefits and costs of a using such a generator453

in possible situations.454

25

Chapter 5455

Conclusion and recommendations456

When an extra generator of this size (2000 MW) is connected to any existing network, the whole system457

changes. Starting with a brute force iteration technique, a first impression of suitable optimum connections458

are obtained. This impression however does not lead to correct predictions for chosing successive buses when459

adding more branches (from the generator to the network).460

461

It has been found, starting from the brute force analysis, that only for the first 2 optimum connections462

(in the case of 118 buses) correct predictions could be made. After that the system has changed as such463

that the most optimum third connection could not be predicted anymore, see section 4.6.1. This is highly464

unfortunate since with these predictions, computation time for finding the optimum connection buses could465

have been reduced enormously. Especially when systems with thousands of buses, for example the European466

network, are examined. This analysis cannot be used directly for other cases.467

468

Next, a trend of decreasing costs has been observed when more and more branches (from the generator469

to the network) are added to the system. It is found that the operation costs per hour keep decreasing with470

every added generator branch, as can be seen in figure 4.4. This reduction can be clarified by looking at471

the optimising algorithm. Here all available parameters are tweaked until a most optimal configuration has472

been established. Adding more and more cables directly implies more and more parameters (of freedom),473

therefore a lower optimum can be found. At a certain point the investment for building another cable (prob-474

abaly a long distant one) cannot compete with the reduction the the operation costs. To be able to find this475

break-even point, more knowledge of the manufacting costs of these branches same as the distances between476

buses in the network, is required.477

478

Furthermore the influence of adding interconnecting branches, within the network itself, have been exam-479

ined. Here only a slight reduction of merely 0.11 %, compared to the network with the generator connected480

with 4 branches (see section 4.6.2), was found. Again an assumption for saving computation time has been481

tested. Here the top ten list, found with the fixed node iteration method (see section 4.4), is assumed to482

give the most optimum interconnection. Unfortunately again this prediction has been found to not predict483

the most optimum configuration, however the difference is only small (about 0.018% 4.6.2). Overall the484

reduction of interconnecting branches are of such small size that their investment is probabaly not realistic.485

486

An important note has to be made concerning the usage of branches in this analysis:487

As has been stated frequently, no real information is present for the topology of the network. Modeling the488

connecting branches from the generator to the network, with the correct data is therefore realistically not489

achievable. Resulting in the fact the branch data is not changing with every connection. Physically, this490

means that the same branch is used for coupling the generator to the network. Making no distinction for491

different positions of the connection, say southern Europe or northern Europe.492

Same holds for the usage of interconnecting branches. Here an overall average branch from the case is used.493

26

494

Translating the results and conclusions to cases with an increased number of buses, no consistent theory495

can be drawn. Assuming that a system does not change significantly with an extra generator (of this size),496

leads to non optimized connections in the network with 118 buses. For now it is not known how a larger497

system would react. With 118 buses, the first 2 optimization branches have been predicted correctly, mean-498

ing that the system does not change significantly after the first connection. This analysis has to be repeated499

with a (slightly) bigger case in order to predict how the size of a system influences the responce, when a500

generator is attached. If in these cases (with increased number of buses), the number of correctly predicted501

connections increases. Predictions using the brute force method could lead to sufficient branch connec-502

tions, meaning a huge decrease in computation time. With sufficient branch connections the breakeven point503

is meant where the investment of an extra connection does not compete with the reduction in operation costs.504

505

However from this research no such conclusions can be made. Another aspect that could lead to a direct506

decrease in computation time, is a precisely known topology of the system. Then immedate nodes can be507

disregarded from the iteration process, when their distances are unrealistic.508

509

From the costs breakeven analysis is concluded that in order for the generator to be economically desir-510

able, the operation costs have to be lower then 38 $/MWh (in the case with 118 branches). If economics is511

not the only criteria, a certain trade-off can be made using the plots shown in 4.6.3.512

513

It has been found that the MATPOWER program is an easy accesable package for computing electrical514

power systems. Also codes has been manufactured in order to generate all the outcomes of this paper, which515

are not bound to a special case. They can therefore be reused and updated as desired (taking the note516

concerning the usage of branches into account!). A recommendation for further users is to verify how larger517

cases react to the added generator. If better predictions are the outcome, a huge amount of computation518

time can be speared using the brute force technique with a single cable translated to the number of breakeven519

connections. Compared to the fixed node iteration method for all the breakeven connections.520

521

27

Bibliography522

[1] Electrical power system essentials523

Authors: P. Schavemaker & L. Van der Sluis524

John Wiley & Sons 2008525

[2] A Case Study in the Future Challenges in Electricity Grid Infrastructure526

Authors: van den Akker et al.527

March 12, 2012528

[3] MATPOWER 4.1 User’s Manual529

Authors: Zimmerman & Murillo-Snchez530

December 14, 2011531

[4] NKT Cables 2014: High Voltage Cable Systems532

http://www.nktcables.com/support/download/catalogues-and-brochures/high-voltage-and-533

offshore/~/media/Files/NktCables/download%20files/com/HighVolt_e_200309.ashx534

viewed 28 April 2014535

[5] Load Flow Computations in Hybrid Transmission - Distribution Power Systems536

Authors: L.Wobbes & D. Lahaye537

Februari 13, 2012538

[6] AC Transmission in Power system stability and control539

Author: P. Kundur540

McGraw-hill 1994541

[7] University of Washington: Electrical Engineering542

http://www.ee.washington.edu/research/pstca/543

viewed 29 April 2014544

28

http://www.nktcables.com/support/download/catalogues-and-brochures/high-voltage-and-offshore/~/media/Files/NktCables/download%20files/com/HighVolt_e_200309.ashx
http://www.nktcables.com/support/download/catalogues-and-brochures/high-voltage-and-offshore/~/media/Files/NktCables/download%20files/com/HighVolt_e_200309.ashx
http://www.nktcables.com/support/download/catalogues-and-brochures/high-voltage-and-offshore/~/media/Files/NktCables/download%20files/com/HighVolt_e_200309.ashx
http://www.ee.washington.edu/research/pstca/

	Abstract
	Introduction
	Load Flow Computation
	Bustypes
	Deriving the load flow equations

	Solving the loadflow equations using Fsolve
	Solving a load flow problem
	MATPOWER's way of solving a load flow problem
	Problems with MATPOWER's convergence
	Using 'Fsolve': a trust region method

	Calculating the Jacobian
	Analytical calculating the Jacobian with the load flow equations
	Fast decoupled method
	The Jacobian in MATPOWER

	An analysis of Residual plots for fsolve and MATPOWER's Newton Method
	Conclusions

	Implementation of an extra source
	The characteristics of an optimal configuration
	Optimal power flow computation in MATPOWER
	Adding a generator to an existing case
	Possible variations in adding a generator
	Input data
	Results
	Connecting the generator to the system
	Interconnecting buses within the existing network
	Break-even analysis

	Conclusion and recommendations
	Bibliography

