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The Induced Dimension Reduction method
applied to convection-diffusion-reaction
problems

Reinaldo Astudillo and Martin B. van Gijzen

Delft Institute of Applied Mathematics, Technical Report 16-02

Abstract. Discretization of (linearized) convection-diffusion-reaction problems yields
a large and sparse non symmetric linear system of equations,

Ax = b. (1)

In this work, we compare the computational behavior of the Induced Dimension
Reduction method (IDR(s)) [10], with other short-recurrences Krylov methods,
specifically the Bi-Conjugate Gradient Method (Bi-CG) [1], restarted Generalized
Minimal Residual (GMRES(m)) [4], and Bi-Conjugate Gradient Stabilized method
(Bi-CGSTAB) [11].

1 Introduction

In this paper we consider the following simple convection-diffusion-reaction
model problem

−ε4u+ vT∇u+ ρu = f, in Ω = [0, 1]d (2)

with d = 2 or d = 3, and Dirichlet boundary conditions u = 0 on ∂Ω. In Eq.
(2), u represents the concentration of solute, v ∈ Rd is the velocity of the
medium or convection vector, ε > 0 represents the diffusion coefficient, ρ the
reaction coefficient, and f represents the source-term function.

Discretization of the Eq. (2) yields a non-symmetric system of linear equa-
tions,

Ax = b, (3)

where x is the unknown vector in RN , b ∈ RN , and A ∈ RN×N is typically
large, and sparse. Krylov subspace methods are a popular choice to solve
such systems. However, the convergence ratio of these methods are strongly
influenced by the numerical properties of the coefficient matrix A, which
internally depend on the physical parameters of Eq. (2). For example, in
the convection-dominated case, i.e. ‖v‖ >> ε, the coefficient matrix A has
almost purely imaginary eigenvalues and this can slow down the convergence
of Krylov methods.

GMRES is an optimal method, it obtains the best approximation in a
subspace of dimension j performing j matrix-vector products. Nevertheless,
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due the large and ill-conditioned linear systems obtained from the discretiza-
tion of the convection-diffusion-reaction equation, one can expect that many
iterations need to be performed to compute the solution accurately. For this
reason and taking into account that the computational cost of GMRES in-
creases per iteration, it is preferable to use a preconditioned short-recurrences
Krylov method that keeps the computational work and memory consumption
fixed per iteration. Bi-CGSTAB is the most widely used method of this kind.
However, IDR(s) outperforms Bi-CGSTAB in the experiments presented in
[10] and [2]. In this work we continue this comparison. We compare the nu-
merical behavior of Bi-CG, GMRES(m), Bi-CGSTAB, and IDR(s) to solve
the linear systems arising from the discretization of (2).

2 Krylov methods for solving systems of linear
equations

A projection method onto m-dimensional subspace K̂ and orthogonal to the
m-dimensional subspace L, is an iterative method to solve (3) which finds the
approximate solution xm in the affine subspace x0 + K̂ imposing the Petrov-
Galerkin condition, i.e., rm = b− Axm orthogonal to L. The subspace K̂ is
called search space, while L is called restriction space.

The Krylov subspace methods are projection methods for which the search
space is the Krylov subspaceKm(A, r0) = span{r0, Ar0, . . . , Am−1r0}, where
r0 = b − Ax0 with x0 as initial guess in CN . The different Krylov methods
are obtained from the different choices of the restriction space. For a com-
prehensive description of the Bi-CG, GMRES(m) and Bi-CGSTAB, we refer
the reader to [3].

2.1 The Induction Dimension Reduction method (IDR(s))

IDR(s) was introduced in 2008 [10]. This method can also be described as
a Krylov projection method (see [5]), however, the original formulation and
implementation of IDR(s) is based on the following theorem.

Theorem 1 (IDR theorem). Let A be any matrix in CN×N , and let P =
[p1, p2, . . . ,ps] be an N × s matrix with s linear independent columns. Let
{µj} be a sequence in C. With G0 ≡ CN , define

Gj+1 ≡ (A− µj+1I)(Gj ∩ P⊥) j = 0, 1, 2 . . . ,

where P⊥ represents the orthogonal complement of P . If P⊥ does not contain
an eigenvector of A, then, for all j = 0, 1, 2 . . . , the following hold

1. Gj+1 ⊂ Gj, and
2. dimension(Gj+1) < dimension(Gj) unless Gj = {0}.
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Proof. See [10].

Assuming that s + 1 approximations are available with their corresponding
residuals belonging to Gj−1, IDR(s) constructs the new approximation xk at
the iteration k, imposing the condition that the vector rk = b−Axk should
be in the subspace Gj . Moreover, using the fact that Gj ⊂ Gj−1, IDR(s)
creates inductively s+1 residuals in the subspace Gj . After this, it is possible
to create new residuals in Gj+1.

IDR(s) has three attractive numerical properties. First, IDR(s) uses re-
currences of size s + 1, and the parameter s is normally selected between 2
and 8. Second, the subspaces Gj with j = 1, 2, , . . . are nested and shrinking,
and for this reason, IDR(s) has guarantee convergence in at most N + N

s
matrix-vector multiplication in exact arithmetic (see Corollary 3.2 in [10]).
Third, IDR(1) and Bi-CGSTAB are mathematically equivalent (see [8]); and
IDR(s) is commonly faster than Bi-CGSTAB for s > 1. The details of the
implementation of IDR(s) can be found in [2].

3 Numerical experiments

All the experiment presented in this section are the discretization of Eq.
(2) with homogeneous Dirichlet boundary conditions over the unit cube, The
right-hand-side function f is defined by the solution u(x, y, z) = x(1−x)y(1−
y)z(1− z). We use as stopping criteria that,

‖b−Axk‖2
‖b‖2

< 10−8.

The discretization of Eq. (2) using central finite differences may produce
unphysical oscillations in the numerical solution of convection or reaction
dominated problems. This problem can be solved discretizing the convection
term using upwind schemes. However, we use central finite differences rather
than upwind dicretization in this set of problems, in order to illustrate the
effect of unfavorable numerical conditions over the Krylov subspace solvers.

Experiment 1: In this example, we consider the parameters ε = 1.0 and v =
(1.0, 1.0, 1.0)T /

√
3. We want to illustrate the effect of non-negative reaction

parameter over the Krylov solver, then, we select ρ ∈ {0, 50, . . . , 300}. Figure
1 (a) shows the number of matrix-vector multiplication required for each
Krylov method as a function of the reaction parameter ρ. In these problems,
the increment of the reaction parameter produces a reduction in the number
of matrix-vector products required for each Krylov method. All the methods
perform very efficiently for these examples. Figure 1 (b) shows the evolution
of the residual norm for ρ = 0.0. The execution times are: IDR(4) 0.62s,
Bi-CGSTAB 0.64s, Bi-CG 0.92s, and GMRES 2.83s.
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Fig. 1. Example 1: (a) Number of matrix-vector products required to converge as a
function of the parameter ρ for a diffusion-dominated problem. (b) Comparison of
the residual norms, the physical parameters are ε = 1.0, v = (1.0, 1.0, 1.0)T /

√
3,

and ρ = 0.0.

Experiment 2: In order to illustrate the effect of the magnitude of the con-
vection velocity, we consider ε = 1.0, ρ = −50.0, and v = β(1.0, 1.0, 1.0)T /

√
3

with β ∈ {100.0, 200.0, . . . , 800.0}. As the parameter β grows we obtain a
more convection-dominated problem. Figure 2 (a) shows how many matrix-
vector products are required for each Krylov method as function of the con-
vection speed. The problem is more convection-dominated as ‖v‖2 grows. It
is interesting to remark the linear of the number of matrix-vector product
for Bi-CGSTAB. Figure 1 (b) shows the evolution of the residual norm for
β = 800.0. Execution time IDR(4) 1.24s, Bi-CGSTAB 5.64s, Bi-CG 1.01s,
and GMRES 3.26s.

Experiment 3: Here we use the same set of problems presented in ex-
periment 1, but selecting negative reaction parameters, we consider ρ ∈
{−300, 250, . . . , −50}. In Figure 3 (a), one can see how the negative of the
reaction parameter generates a considerable increment of the matrix-vector
needed for solving the corresponding linear system. Bi-CGSTAB perform
poorly for large negative reaction parameter. Figure 1 (b) shows the evolu-
tion of the residual norm for ε = 1 and ρ = 300.0. The execution time are:
IDR(4) 4.02s, Bi-CGSTAB 15.38s, Bi-CG 3.52 s, and GMRES 28.57s.

3.1 IDR(s) and Bi-CG

Despite being a method that is not drastically affected by the increment
of the reaction parameter or the convection speed, Bi-CG is not the faster
method in terms matrix-vector products required. Bi-CG requires two matrix-
vector multiplications to produce one new approximation. IDR(4) in most of
the experiments requires less matrix-vector multiplication to get the desired
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Fig. 2. Example 2: (a) Number of matrix-vector products required to converge as a
function of the convection speed. (b) Comparison of the residual norms, the physical
parameters are ε = 1.0, v = 800.0× (1.0, 1.0, 1.0)T /

√
3, and ρ = −50.0.

residual tolerance. Only in the highly convection-dominated examples pre-
sented in the experiment 2, Bi-CG presents a similar behavior as IDR(4). A
discussion of the phenomena is presented in section 3.3.

3.2 IDR(s), GMRES, and restarted GMRES

In the numerical experiments presented in the previous section, Full GMRES
is the methods that uses less matrix-vector products to obtain the desired
residual reduction. This result is expected due the optimal residual condition
of GMRES. Nevertheless, the computational requirements of full GMRES
grow in every iteration. Restarting GMRES or GMRES(m) is an option to
overcome this issue. The idea of GMRES(m) is to limit to a maximum of
m matrix-vector products, and then restart the process using the last ap-
proximation as initial vector. The optimal residual property is lost in this
restarting scheme.

In terms of memory consumption, GMRES(m) is equivalent to IDR(s)
when m = 3(s + 1). In order to compare the behavior of GMRES(m) and
IDR(4), we consider the discretization of Eq. (2) with this parameters: ε = 1,
v = (1.0, 1.0, 1.0)T /

√
3 and ρ = 40.0, and we take as restarting parameter

m = 15, 16, . . . , 170. Figure 4 shows the number of matrix-vector multipli-
cation required for GMRES(m) for different values of m. GMRES(160) and
IDR(4) solve this system using the same number of matrix-vector products
(262), however, GMRES(160) consumes approximately ten times more mem-
ory than IDR(4). Moreover, CPU time for GMRES(160) is 4.60s while IDR(4)
runs in only 0.79s.
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Fig. 3. Example 3: (a) Number of matrix-vector products required to converge as
a function of the parameter ρ. (b) Comparison of the residual norms. The physical
parameters ε = 1, v = (1.0, 1.0, 1.0)T /

√
3, and ρ = −300.0.

20 40 60 80 100 120 140 160

262

1000

3000

6000

IDR(4)

m

M
at
ri
x
-v
ec
to
r
p
ro
d
u
ct
s GMRES(m)

Fig. 4. (GMRES(m) and IDR(s) comparison) Number of matrix-vector products
required for GMRES(m) as a function of the parameter m.

3.3 IDR(s) and Bi-CGSTAB

One can see in the experiments that Bi-CGSTAB performs poorly for convection-
dominated problems. This can be explained throughout the study of the
residual formulas for Bi-CGSTAB. The residual vector in Bi-CGSTAB can
be written in the form,

r
(B)
k = Ωk(A)φk(A)r0,

where φk(t) is residual associated with Bi-CG and Ωk(t) is the Minimal Resid-
ual (MR) polynomial defined as,

Ωk(t) = (1− ωkt)Ωk−1(t).

The parameter ωk are selected such that ‖r(B)
k ‖2 is minimized. However, for

indefinite matrices or real matrices that have non-real eigenvalues with an
imaginary part that is large relative to the real part, the parameter ωk is
close to zero (see [9]), and the MR-polynomial suffers from slow convergence
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Fig. 5. (a) Behavior of the norm of the MR-polynomial Ωk(A). (b) Values of the
parameter ωk.

or numerical instability. To illustrate this we show the behavior of the poly-
nomial Ωk(A) applied to two different matrices from the second set of experi-
ments. We consider β = 100.0 and β = 800.0 labeled in Figure 5 as moderate
convection-dominated and highly convection-dominated respectively.

IDR(s) and Bi-CGSTAB are closely related, in fact, Bi-CGSTAB and
IDR(1) are mathematically equivalent for the same parameter choice (see
[8]). The convergence of IDR is also affected by the convection speed for
a similar reason. The IDR(s) residual vector rk in the subspace Gj can be
written as,

r
(I)
k = Ωj(A)ψk−j(A)r0,

where ψk−j(t) is a block Lanczos polynomial. For IDR(s) the degree of the
polynomial Ωk(t) increases by one every s+ 1 matrix-vector products, while
in Bi-CGSTAB this degree grows by one every two matrix vector products.
For this reason, IDR(s) controls the negative effects of the MR-polynomial
when A has complex spectrum or is an indefinite matrix.

The bad convergence for strongly convection-dominated problems of Bi-
CGSTAB has been observed by several authors and has given rise to BiCGstab(`)
[6]. This method uses polynomial factors of degree `, instead of MR-polynomial.
A similar strategy has been implemented in IDR(s) which led to the method
IDRstab [7]. For the comparison of the convergence of BiCGstab(`) and
IDRstab with IDR(s) we refer the reader to [7].

4 Conclusions

Throughout the numerical experiment, we have shown that IDR(s) is a com-
petitive option to solve system of linear equation arising in the discretization
of the convection-diffusion-reaction equation.
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GMRES, Bi-CG, and IDR(s) exhibit a stable behavior in the most nu-
merically difficult examples conducted in this work. Despite performing more
matrix-vector products to obtain convergence, IDR(s) consumes less CPU
time than GMRES. We show that for diffusion-dominated problems with a
positive reaction term the convergence of the Bi-CGSTAB and IDR(s) are
very similar, and for this kind of problems it is often preferable to simply
choose s = 1. However, for the more difficult to solve convection dominated
problems, or problems with a negative reaction term, IDR(s), with s > 1
greatly outperform Bi-CGSTAB.
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