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Introduction.

In this report, we study fast and robust iterative solvers for large systems of linear equa-
tions resulting from reservoir simulation trough porous media. We propose the use of
preconditioning and deflation techniques based on information obtained from the system
to reduce the time spent in the solution of the linear system.
We consider incompressible single-phase flow in a layered model with large variations in
the permeability coefficients and the SPE10 benchmark model.
In the first section, we present the problem definition, together with a description of the
theory and governing equations of reservoir simulation. We also present the numerical
methods implemented for the solution of this system of equations.
In Section 2 we give some theory about the linear solver used for this report and we intro-
duce preconditioning and deflation techniques. We also demonstrate two lemmas that will
help us in the choice of good deflation vectors, necessary for the deflation techniques.
In Section 3 we present numerical experiments. We describe the problem that is stud-
ied, the solver that is used and the preconditioning and deflation techniques used for the
speedup of the solver. The results are also presented in this section.
Finally, we end with the conclusions.

1 Reservoir simulation

In this section, we present the theory and the finite differences discretization scheme used
for reservoir simulation, a list of the symbols used in this section is given in appendix A.
Petroleum reservoirs are layers of sedimentary rock, which vary in terms of their grain
size, mineral and clay contents. These rocks contain grains and empty space, the void is
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called pore space. The pore space allows the rock to store and transmit fluid. The volume
fraction of the rock that is void is called rock porosity (φ).
Some rocks are compressible, and their porosity depends on the pressure, the dependence
is called rock compressibility (cr). The ability of the rock to transmit a single fluid when
the void space is completely filled with fluid is known as rock permeability (K) which is,
generally, a tensor.

1.1 Flow through porous media

The equations describing single phase flow through porous media are the mass balance
equation and Darcy’s law, corresponding to momentum conservation [1].
Darcy’s law is given by:

v = −K

µ
(∇p− ρg∇d),

for the 3-dimensional case we have:

vx = −Kx

µ

(
∂p

∂x
− ρg ∂d

∂x

)
,

vy = −Ky

µ

(
∂p

∂y
− ρg∂d

∂y

)
,

vz = −Kz

µ

(
∂p

∂z
− ρg∂d

∂z

)
.

The mass balance equation is:

∇ · (αρv) + α
∂ρφ

∂t
− αρq = 0, (1)

where α is the cross-sectional area A for 1D, the reservoir height h for 2D, and 1 for 3D,
ρ, µ are the fluid density and viscosity, p is the pressure, K is the rock permeability, g
is the constant of gravity, d is the reservoir depth, φ is the rock porosity, cl is the liquid
compressibility and q are the sources. For the 3-dimensional case α = 1, and Equation (1)
is: (

∂

∂x
,
∂

∂y
,
∂

∂z

)
· ρ(vx, vy, vz) +

∂ρφ

∂t
− ρq = 0,

which is equivalent to:

∂(ρvx)

∂x
+
∂(ρvy)

∂y
+
∂(ρvz)

∂z
+
∂(ρφ)

∂t
− ρq = 0.

Combining the previous equations we get:

−∇ ·
[
αρ

µ
K(∇p− ρg∇d)

]
+ α

∂(ρφ)

∂t
− αρq = 0. (2)
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In 3D:

−
∂
(
ρKx

µ

[
∂p
∂x
− ρg ∂d

∂x

])
∂x

−
∂
(
ρKy

µ

[
∂p
∂y
− ρg ∂d

∂y

])
∂y

−
∂
(
ρKz

µ

[
∂p
∂z
− ρg ∂d

∂z

])
∂z

+
∂(ρφ)

∂t
− ρq = 0.

The variables ρ, φ, µ and K may be functions of the pressure p. Usually the dependence
of µ and K on p is small enough that they can be assumed to be pressure independent
parameters.
The relation between φ and p is given by the rock compressibility:

cr =
1

φ

∂φ

∂p
. (3)

If the compressibility is constant we obtain:

φ(p) = φ0e
cr(p−p0),

for p close to p0 we have:

φ0e
cr(p−p0) ≈ φ0[1 + cr(p− p0)].

The relationship between ρ and p is called the liquid compressibility, it follows from the
equation of state of a liquid, and can be written as:

cl(p) = − 1

V

∂V

∂p
|T0 =

1

ρ

∂ρ

∂p
|T0 , (4)

with T0 a constant reference temperature.
The accumulation term ∂(ρφ)

∂t
of Equation (2) can be rewritten as:

∂(ρφ)

∂t
= ρ

∂φ

∂t
+ φ

∂ρ

∂t
= ρ

∂φ

∂p

∂p

∂t
+ φ

∂ρ

∂p

∂p

∂t
= φρ

[
1

φ

∂φ

∂p
+

1

ρ

∂ρ

∂p

]
∂p

∂t
,

combining the equation above with Equation (3) and (4) we have:

∂(ρφ)

∂t
= φρ [cr + cl]

∂p

∂t
= φρct

∂p

∂t
, (5)

where ct = cl + cr.
Substituting (5) into (2) we obtain:

−∇ ·
[
α

µ
~K(∇p− g∇d)

]
+ αφct

∂p

∂t
− αq = 0, (6)
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which is a nonlinear partial differential equation (PDE) for the variable p as function of
the independent variables x, y and t.
For the 3D case:

−
∂
(
ρKx

µ

[
∂p
∂x
− ρg ∂d

∂x

])
∂x

−
∂
(
ρKy

µ

[
∂p
∂y
− ρg ∂d

∂y

])
∂y

−
∂
(
ρKz

µ

[
∂p
∂z
− ρg ∂d

∂z

])
∂z

+ φρct
∂p

∂t
− hρq = 0. (7)

Assuming isotropic permeability (k = Kx = Ky = Kz), small rock and fluid compressibili-
ties, uniform reservoir thickness and absence of gravity forces Equation (7) can be rewritten
as:

−h
µ

∂

∂x

(
k
∂p

∂x

)
− h

µ

∂

∂y

(
k
∂p

∂y

)
− h

µ

∂

∂y

(
k
∂p

∂z

)
+ φ0ct

∂p

∂t
− hq = 0, (8)

which is a non homogeneous parabolic equation. To solve this equation, we need to specify
the boundary and initial conditions. For the boundary conditions we can have Dirichlet
or Neumann conditions. The Dirichlet conditions specify the value of the pressure on the
boundary Γ. If we have a cubic domain Ω of size (L,L,L), the Dirichlet conditions are:

p(0, y, z, t) = c1, p(L, y, z, t) = c2, p(x, 0, z, t) = c3,

p(x, L, z, t) = c4, p(x, y, 0, t) = c5, p(x, y, L, t) = c6.

For the Neumann conditions we have:

∂p(0, y, z, t)

∂x
= ν1,

∂p(L, y, z, t)

∂x
= ν2,

∂p(x, 0, z, t)

∂y
= ν3,

∂p(x, L, z, t)

∂y
= ν4,

∂p(x, y, 0, t)

∂z
= ν5,

∂p(x, y, L, t)

∂z
= ν6.

We also need to specify the initial conditions in the domain Ω:

p(x, y, z, 0)|Ω = p0.

1.2 Well Model

In reservoirs, wells are typically drilled to extract or inject fluids. If the injection or
production rates are known it is necessary to know the well pressure. Meanwhile, if the
well pressure is known, the objective will be to compute the flow rate in or out of the
reservoir. Fluids are injected into a well at constant surface rate or constant bottom-hole
pressure, and are produced at constant bottom-hole pressure or a constant surface rate.
Close to a well, the pressure presents nonlinear gradients in the radial direction. In reservoir
simulation, it is possible to capture this effect with a very fine grid. It is also possible to
use models that take into account an additional pressure drop based on analytical or semi-
analytical solutions for the flow around the well. A widely used model is Peacemans’s
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model, that takes into account the above-mentioned pressure drop. This is a logarithmic
relationship, where the pressure drop is due to a steady-state radial flow towards a well
in the center of a cell. Taking the radial distance from a production well as r operating
at bottom-hole pressure in an homogeneous reservoir with permeability K, and a fluid
viscosity µ, the pressure drop between the cell pressure p and the well bottom-hole pressure
pwell in a cell of height h is given by [1, 2]:

p− pwell = − µq

2πKh
ln

(
r

rwell

)
= − q

Jwell
, (9)

that is obtained from Darcy’s law. The negative value of the flow rate q indicates produc-
tion, while, a positive value is for injection. Jwell is known as the well index or productivity
index (PI) for a producer, and well injectivity index (WI) for injectors. The model pre-
sented in Equation (11) is valid only for a restricted set of assumptions, but it has proven
to be very useful basis model for simple vertical wells. An equivalent radius can be used
for the two-point approximation, assuming isotropic permeabilities, square grid blocks,
single-phase flow and a well at the center of an interior block,

re ≈ 0.2
√

(∆x∆y). (10)

For anisotropic permeabilities and horizontal wells, the equivalent radius is:

re = 0.28
(
√

(Ky/Kx)∆x
2 +

√
(Kx/Ky)∆y

2)1/2

(Ky/Kx)1/4 + (Kx/Ky)1/4
. (11)

Gravity forces can be included, and the model becomes:

q = −Jwell(p− pwell − ρg∆z) (12)

Where ∆z is the vertical distance from the cell to the perforation and ρ the fluid density.

1.3 Numerical Methods

To simulate the flow through a porous medium, we use numerical methods to approximate
the equations that describe the phenomena, Darcy’s law and mass balance equations.
After combination of the equations mentioned above, we arrive to an equation (see Equation
(8)) that contains spatial and temporal derivatives. Using a finite difference scheme, we
approximate the spatial differentials with cell central derivatives. Taking a mesh with a
uniform grid size ∆x, ∆y, ∆z where (i, j, l) is the center of the cell in the position i in the
x direction and j in the y direction and l in the z direction (xi, yj, zl), pi,j,l = p(xi, yj, zl) is
the pressure at this point.
For the x direction, we have (see [1], pag 14):

∂

∂x

(
k
∂p

∂x

)
=

∆

∆x

(
k

∆p

∆x

)
+ O(∆x2)

=
ki+ 1

2
,j(pi+1,j,l − pi,j,l)− ki− 1

2
,j,l(pi,j,l − pi−1,j,l)

(∆x)2 + O(∆x2),
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where ki− 1
2
,j,l is the harmonic average of the permeability for the cells (i−1, j, l) and (i, j, l):

ki− 1
2
,j,l =

1
1

ki−1,j,l
+ 1

ki,j,l

. (13)

A similar approach is used in the y and z directions. With these approximations, Equation
(8) becomes (see [1], pag 15):

V ct(φ0)i,j,l

(
∂p

∂t

)
i,j,l

− Ti− 1
2
,j,lpi−1,j,l − Ti,j− 1

2
,lpi,j−1,l + Ti,j,l− 1

2
pi,j,l−1 (14)

+
(
Ti− 1

2
,j,l − Ti,j− 1

2
,l + Ti,j,l− 1

2
+ Ti+ 1

2
,j,l + Ti,j,l+ 1

2
+ Ti,j,l+ 1

2

)
pi,j,l

−Ti+ 1
2
,j,lpi+1,j,l − Ti,j+ 1

2
,lpi,j+1,l − Ti,j,l+ 1

2
pi,j,l+1 = V qi,j,l,

where the transmissibility between grid cell (i− 1, j, l) and (i, j, l) is defined as:

Ti− 1
2
,j,l =

∆y

∆x

h

µ
ki− 1

2
,j,l. (15)

Equation (14) is rewritten in matrix form as:

Vṗ + Tp = q. (16)

Where the dot represents differentiation with respect to time, T and V are known as the
transmissibility and accumulation matrices and the ith row of these matrices is given by:

Vi = [0 . . . 0 V ct(φ0)i,j,l 0 . . . 0] ,

Ti =[0 − Ti,j,l− 1
2

. . . 0 − Ti,j− 1
2
,l 0 . . . − Ti− 1

2
,j,l

Ti− 1
2
,j,l + Ti,j− 1

2
,l + Ti,j,l− 1

2
+ Ti+ 1

2
,j,l + Ti,j+ 1

2
,l + Ti,j,l+ 1

2

− Ti+ 1
2
,j,l . . . 0 − Ti,j+ 1

2
,l 0 . . . − Ti,j,l+ 1

2
0].

Incompressible flow.

If the fluid and rock compressibilities are small enough, they can be ignored and equation
(16) becomes:

Tp = q. (17)

Compressible flow.

If the fluid is compressible, the accumulation term is present in Equation (16), and we need
to discretize the derivative of the pressure with respect to time. We use Euler Backwards
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differentiation scheme to approximate the temporal derivative. For the cell (i, j, l) we
approximate the derivative with respect to time of Equation (16) as:(

∂p

∂t

)
i,j,l

=
pn+1
i,j,l − pni,j,l

∆tn
+ O(∆t),

where pn+1
i,j is the pressure for the n+ 1 time step, and ∆tn is the time step that can vary

with time. Using the previous discretization scheme for the accumulation term we have:

V (φ0)i,j,lct

(
∂p

∂t

)
i,j,l

≈ V ct(φ0)i,j,l
pn+1
i,j,l − pni,j,l

∆tn

taking the porosity φ constant in the whole domain (φ0)i,j,l = φ0, we rewrite Equation (14)
as:

V ctφ0

pn+1
i,j,l − pni,j,l

∆tn
− Ti− 1

2
,j,lpi−1,j,l − Ti,j− 1

2
,lpi,j−1,l,

+

(
Ti− 1

2
,j,l − Ti,j,l +

1

2
+ Ti+ 1

2
,j,l + Ti,j+ 1

2
,l

)
pi,j,l,

−Ti,j+ 1
2
,lpi,j+1,l − Ti+ 1

2
,j,lpi+1,j,l = V qi,j,l.

Rearranging terms we arrive at:

V ctφ0p
n+1
i,j,l + [−Ti− 1

2
,j,lp

n+1
i−1,j,l − Ti,j− 1

2
,lp

n+1
i,j−1,l

+
(
Ti− 1

2
,j,l − Ti,j+ 1

2
,l + Ti+ 1

2
,j,l + Ti,j+ 1

2
,l

)
pn+1
i,j,l

−Ti,j+ 1
2
pn+1
i,j+1,l − Ti+ 1

2
,j,lp

n+1
i+1,j,l]∆t

n = V qn+1
i,j,l ∆tn + V ctφ0p

n
i,j,l. (18)

The last equation is rewritten as:

Vpn+1 + Tpn+1∆tn = qn+1∆tn + Vpn. (19)

In this section we have only considered single-phase flow. However, reservoir simulation
usually considers multiphase flow. The corresponding pressure equation becomes nonlinear
and requires an iterative solution using Newton Raphson (NR) iteration. The ”residual
equations” resulting from the NR procedure are linear systems of equations.
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2 Iterative solution methods

The solution of partial differential equations PDE’s can be performed with numerical meth-
ods. Some of these methods, as the finite differences method, transform our equations into
a linear system of the form:

a11x1 + · · ·+ a1nxn = b1,

. . .

an1x1 + ....+ annxn = bn,

which is written in matrix form as:
Ax = b. (20)

Matrix A can have a structure that might be useful while solving the linear system, ex-
amples of structure are:

Symmetry: AT = A.

Band: aij 6= 0 if i −ml ≤ j ≤ i + mu, with ml,mu two non-negative integers, and
aij = 0 elsewhere.

Positive Definiteness: (Ax,x) > 0, ∀x ∈ Rn, x 6= 0.

Symmetric Positive Definiteness SPD. If A is symmetric and Positive Definite.

System (20) can be solved with direct or iterative methods. Direct methods achieve a final
solution, while the iterative ones are stopped if the error is less than a given value. The
convergence of an iterative method is not always guaranteed.
Some of the iterative methods that can be used are: Jacobi, Gauss Seidel, and if the
matrix is SPD we can use the Conjugate Gradient (CG) method. This section is devoted
to iterative methods, in particular CG, that is the method that we are going to use in our
experiments (see Section 3).
In this section, we also describe the Preconditioning and Deflation techniques for the
acceleration of the CG method.

Krylov subspace Methods

If we have two subspaces Kk, Lk of Rn and we want to solve the Equation (20), with
A ∈ Rn×n we can use a projection method onto Kk. This method allows us to find an
approximate solution xk from an arbitrary initial guess solution x0. This approximate
solution lies in the Krylov subspace of dimension k of the matrix A and residual r0,

xk ∈ x0 +Kk(A, r0),

with Kk(A, r0) defined as:

Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0}.
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Where the residual rk = b−Axk is orthogonal to the subspace Lk, with

xk+1 = xk + B−1rk, rk = b−Axk.

The subspace Lk is chosen depending on the Krylov subspace method that is used.

2.1 Conjugate Gradient Method

The Conjugate Gradient (CG) method is a Krylov subspace method for Symmetric Positive
Definite SPD matrices, such that

||x− xk||A, 1 (21)

is minimal, with x the solution of the system and xk the k − th iteration.
Given an initial guess x0 the next approximations can be computed following the search
directions pi

xk+1 = xk + αkpk.

For the CG method, the search directions pk are orthogonal with respect to the A inner
product, i.e.

(Apk,pj) = 0, k 6= j,

and the residuals form an orthogonal set, i.e.

(rk, rj) = 0, k 6= j.

The constant αk that satisfies (21) is given by:

αk =
(rk, rk)

(Apk,pk)
,

and the new search directions can be computed via the residuals,

pk+1 = rk+1 + βkp
k,

where

βk =
(rk+1, rk+1)

(rk, rk)
.

After k + 1 iterations of the CG method, the error of the iteration will be bounded by:

||x− xk+1||A ≤ 2||x− x0||A

(√
κ2(A)− 1√
κ2(A) + 1

)k+1

2. (22)

1||x||A =
√

(x,x)A =
√
xTAx.

2The condition number κ2(A) is defined as κ2(A) =

√
λmax(ATA)√
λmin(ATA)

. If A is SPD, κ2(A) = λmax(A)
λmin(A) .
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2.2 Preconditioning

If we want to accelerate the convergence of an iterative method, we can transform the
system into another one containing a better spectrum. This can be done by multiplying
the original system (20) by a matrix M−1.

M−1Ax = M−1b. (23)

The new system has the same solution but provides a substantial improvement on the
spectrum. For this preconditioned system, the convergence is given by:

||x− xk+1||A ≤ 2||x− x0||A

(√
κ(M−1A)− 1√
κ(M−1A) + 1

)k+1

. (24)

M is a SPD matrix chosen such that κ(M−1A) ≤ κ(A), and M−1b is easy to compute.

2.3 Deflation

Deflation is used to annihilate the effect of extreme eigenvalues on the convergence of an
iterative method [3].
Given an SPD matrix A ∈ Rn×n, the deflation matrix P is defined as follows [4]:

P = I−AQ, P ∈ Rn×n, Q ∈ Rn×n,

where
Q = ZE−1ZT , Z ∈ Rn×m, E ∈ Rm×m,

with
E = ZTAZ.

The matrix E is known as the Galerkin or coarse matrix that has to be invertible, in
this case A is SPD and if Z is full rank then E is invertible. The full rank matrix Z is
called the deflation − subspace matrix, and it’s l < n columns are the deflation vectors
or projection vectors.
Some properties of the previous matrices are [4, pag. 27]:

a) ET = E, symmetric.

b) QT = Q = QAQ, symmetric.

c) QAZ = Z.

d) PAQ = 0n×n.

e) P2 = P.

f) APT = PA.
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g) (I−PT )x = Qb.

h) PAZ = 0n×m.

i) PTZ = 0n×m.

j) PA is SPSD3.

We can split the vector x as:

x = Ix−PTx + PTx = (I−PT )x + PTx. (25)

Multiplying the expression above by A, using the properties above, we have:

Ax = A(I−PT )b + APTx, P roperty :

Ax = AQb + APTx, g)

b = AQb + PAx, f),

multiplying by P and using the properties PAQ = 0n×n and P2 = P, properties d) and
e), we have:

Pb = PAQb + P2Ax,

Pb = PAx, (26)

where Pb = PAx is the deflated system. Since PA is singular, the solution x can contain
components of the null space of PA. A solution of this system, called deflated solution, is
denoted by x̂. The equation to solve to obtain x̂ is:

Pb = PAx̂. (27)

As mentioned above, solution of Equation (26) can contain components of N (PA). There-
after, the solution of Equation (27), x̂ can be decompose as:

x̂ = x + y, (28)

with y ∈ R(Z) ⊂ N (PA), and x solution of Equation (20).
Note. If y ∈ R(Z), then

y =
m∑
i=1

αizi,

PAy = PA(z1α1 + ...+ zmαm) = PAZα, (29)

from 2.3 h) PAZ = 0n×l, then
PAy = 0. (30)

3Symmetric Positive Semi-Definite, (Ax,x) ≥ 0, for all x.
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Therefore R(Z) ⊂ N (PA).
Multiplying Equation 28 by PT we obtain:

PT x̂ = PTx + PTy,

combining Equation (30) with 2.3 f), we have:

PAy = APTy = 0.

Therefore
PT x̂ = PTx. (31)

Substitution of Equation (31) and 2.3 g) in Equation (25) leads to:

x = Qb + PT x̂, (32)

that give us a relation between x̂ and x.

2.3.1 Deflated CG Method

To obtain the solution of the linear system (20), we solve the deflated system:

PAx̂ = Pb. (33)

with the CG method, for a deflated solution x̂. Thereafter, the solution x of the original
system is obtained from (32):

x = Qb + PT x̂.

Deflated PCG Method

The deflated linear system can also be preconditioned by an SPD matrix M.
The deflated preconditioned system that will be solved with CG is [4, pag. 30]:

P̃Ãˆ̃x = P̃b̃,

where:
Ã = M− 1

2 AM− 1
2 , ˆ̃x = M

1
2 x̂, b̃ = M− 1

2 b

This method is called the Deflated Preconditioned Conjugate Gradient DPCG method,
and the error is bounded by:

||x− xi+1||A ≤ 2||x− x0||A

(√
κeff (M−1PA)− 1√
κeff (M−1PA) + 1

)i+1

,

with κeff = λmax(M−1PA)
λmin(M−1PA)

, the effective condition number and λmin(M−1PA) the smallest

non-zero eigenvalue of M−1PA.
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2.3.2 Choices of Deflation Vectors

The deflation method is used to treat the most unfavorable eigenvalues of A. If the matrix
Z contains eigenvectors corresponding to the unfavorable eigenvalues, the convergence of
the iterative method is achieved faster. However, to obtain and to apply the eigenvectors is
costly in most of the cases. Therefore, a good choice of the matrix Z that does not contain
the eigenvectors is essential for the acceleration of the convergence.
A good choice of the deflation vectors is usually problem dependent. Available information
on the system is, in general, used to obtain these vectors. Most of the techniques used
to choose deflation vectors are based on approximating eigenvectors, recycling [5], subdo-
main deflation vectors [6] or multigrid and multilevel based deflation techniques [7, 8]. A
summary of these techniques is given below.

Recycling Deflation. A set of vectors previously used is reused to build the deflation-
subspace matrix [5]. The vectors could be, for example, q− 1 solution vectors of the
linear system with different right-hand sides or of different time steps. The matrix
Z containing this solutions will be:

Z = [x(1),x(2), ...,x(q−1)].

Subdomain Deflation. The domain is divided into several subdomains, each correspond-
ing to one or more deflation vectors. For each subdomain, there is a deflation vector
that has ones for points in the subdomain and zeros for points outside [6].

Multi Grid and Multilevel Deflation. For the multigrid and multilevel methods, there
are matrices called prolongation and restriction matrices that allow us to pass from
one level or grid to another. These matrices are used as the deflation-subspace ma-
trices (Z) [7].

2.4 Analysis of the snapshots

As mentioned in the previous section, it is important to choose ’good’ deflation vectors if
we want to obtain a speedup of an iterative method.
We can use solutions of a system slightly different from the original (snapshots) as deflation
vectors. For this, we need to choose the way of selecting these snapshots wisely. The idea
behind this selection is to obtain a small number of snapshots and at the same time obtain
the largest amount of information from the system.
In this section two lemmas are proved. The lemmas could help us to select the systems
that we are going to solve for the snapshots.

Lemma 1. Let A ∈ Rn×n be a non-singular matrix, such that

Ax = b, (34)
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and xi,bi ∈ Rn, i = 1, ...,m, where the vectors bi are linearly independent (l.i.) such that:

Axi = bi, (35)

The following equivalence holds

x =
m∑
i=1

cixi ⇔ b =
m∑
i=1

cibi. (36)

Proof ⇒

x =
m∑
i=1

cixi ⇒ b =
m∑
i=1

cibi. (37)

Substituting x from (37) into Ax = b leads to:

Ax =
m∑
i=1

Acixi = A(c1x1 + ...+ cmxm).

Using the linearity of A the equation above can be rewritten as:

Ac1x1 + ...+ Acmxm = c1b1 + ...+ cmbm = Bc. (38)

where B ∈ Rn×m, c ∈ Rm, and the columns of B are the vectors bi.
From (34) and (38) we get:

Ax = b = c1b1 + ...+ cmbm =
m∑
i=1

cibi.

Proof ⇐

x =
m∑
i=1

cixi ⇐ b =
m∑
i=1

cibi. (39)

Substituting b from (39) into Ax = b leads to:

Ax =
m∑
i=1

cibi. (40)

Since A is non-singular, multiplying (35) and (39) by A−1 we obtain:

xi = A−1bi, (41)

x = A−1

m∑
i=1

cibi =
m∑
i=1

ciA
−1bi =

m∑
i=1

cixi. (42)
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Q.E.D.

Lemma 2. If the the deflation matrix Z is constructed with a set of m vectors

Z =
[
x1 ... ... xm

]
, (43)

such that x =
∑m

i=1 cixi, with xi l.i., then the solution of system Ax = b is achieved
within one iteration of DCG.
Proof.
The relation between x̂ and x is given in Equation (32):

x = Qb + PT x̂.

For the first term Qb, taking b =
∑m

i=1 cibi we have:

Qb = ZE−1ZT

(
m∑
i=1

cibi

)

= Z(ZTAZ)−1ZT

(
m∑
i=1

ciAxi

)
using Lemma 1

= Z(ZTAZ)−1ZT (Ax1c1 + ...+ Axmcm)

= Z(ZTAZ)−1ZT (AZc)

= Z(ZTAZ)−1(ZTAZ)c

= Zc = c1x1 + c2x2 + c3x3 + c4x4 + c5x5

=
m∑
i=1

cixi = x,

which is the solution of the original system.
For the second term of Equation (32), PT x̂, we compute x̂ from Equation (33):

PAx̂ = Pb

APT x̂ = (I−AQ)b using 2.3 f) and definition of P,

APT x̂ = b−AQb

APT x̂ = b−Ax = 0 taking Qb = x from above,

PT x̂ = 0 as A is invertible.

Then we have achieve the solution x in one step of DICCG.
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3 Numerical experiments.

These experiments are performed in order to understand the behavior of the deflation
method and to find good deflation vectors for the given problems.
In the present section, we give a general overview of the experiments that we performed,
but the specifications are presented below for each problem separately.
The reference solution is obtained with a direct solution method and plotted. This solution
is visually compared with the results obtained with DICCG to see if the approximation is
similar.
The experiments are performed to simulate flow through porous media with a porosity of
0.2. A single-phase model is studied for a fluid with the following properties:

• µ = 1cpoise

• ρ = 1014kg/m3

The rock permeability varies in each case. For the first set of problems, homogeneous
permeability is used. Then, we use layers with different permeabilities. Finally, we use the
SPE 10 model, which has large permeability variations (7-12 orders of magnitude). For our
experiments, first we take the 2nd layer of this model, where the variation of permeabilities
is of 7 orders of magnitude. Then we used the complete model that consists of 85 layers.
For the wells, we use the Peaceman model, described in Section 1.2.

The model

This part is devoted to incompressible flow model Tp = q (see Section 1).
In these experiments a Cartesian grid with different grid sizes is used. Wells or sources are
added to the system. Neumann and Dirichlet boundary conditions are imposed. For some
problems, a pressure drop is imposed in the y direction (Dirichlet boundary condition),
and for others, the no-flux(Neumann) boundary condition is used. More specifications are
presented below for each problem. The matrices corresponding to the linear systems A and
right-hand sides b are obtained with the Matlab Reservoir Simulation Toolbox (MRST)
[2].

The solver

The solution of the system is approximated with ICCG (Conjugate Gradient preconditioned
with Incomplete Cholesky) and DICCG (Deflated Conjugate Gradient preconditioned with
Incomplete Cholesky).
For the DICCG method, the deflation vectors are chosen as solutions of the system with
various well configurations and boundary conditions. For each configuration, we solve
the system with ICCG and we use these solutions as deflation vectors. The tolerance or
stopping criterium is taken as the 2-norm of the residual for the kth iteration divided by
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the 2-norm of the right-hand side of the preconditioned system:

||M−1rk||2
||M−1b||2

≤ ε.

The stopping criterium is varied for each problem. In particular, for the SPE10 problem
with one layer, the dependence on the accuracy of the snapshots for the DICCG method
is studied.

Snapshots

As mentioned above, for the DICCG method we need a set of deflation vectors, that in our
case are solutions of the system with various well configurations and boundary conditions.
This solutions called snapshots are obtained with ICCG method, the tolerance used is
given for each problem. For all the experiments we perform, we use one of the following
configuration of wells and the snapshots described below.

Configuration 1

For the Configuration 1, four wells are positioned one-third apart from each other and from
the boundaries. The first four snapshots (z1−z4) are obtained setting only one well different
from zero and taking no flux conditions in the right and left boundaries and homogeneous
Dirichlet conditions in the other boundaries. A fifth snapshot is obtained setting all the
wells to zero and setting a drop pressure in the vertical direction. The system to solve
will be the system containing all the wells with values different from zero and the Dirichlet
conditions as used for the fifth snapshot. A summary of the snapshots is presented below.

Configuration 1:

Boundary conditions for the first 4 snapshots:
P (y = 1) = P (y = ny) = 0 bars, ∂P (x=1)

∂n
= ∂P (x=nx)

∂n
= 0.

z1: W1 = -5 bars, W2 = W3 = W4 = 0,

z2: W2 = -5 bars, W1 = W3 = W4 = 0.

z3: W3 = +5 bars, W1 = W3 = W4 = 0.

z4: W4 = +5 bars, W1 = W2 = W3 = 0.

Boundary conditions for the 5th snapshot:
P(y=1) = 0 bars, P(y=ny) = 3 bars, ∂P (x=1)

∂n
= ∂P (x=nx)

∂n
= 0.

z5: W1 = W2 = W3 = W4 = 0.

System configuration
Boundary conditions:
P (y = 1) = 0bars, P (y = ny) = 3 bars, ∂P (x=1)

∂n
= ∂P (x=nx)

∂n
= 0.

W1 = -5 bars, W2 = +5 bars, W3 = +5 bar, W4 = -5 bar.
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Configuration 2

Four wells are positioned in the corners and one in the center of the domain (see Figure 4).
The snapshots (z1− z5) are obtained solving the problem with various well configurations.
The first four snapshots (z1 − z4) are obtained giving a value of zero to one well and non
zero values to the other wells. The last snapshot (z5) has the same configuration as the
system that we want to solve. For this configuration we use Neumann boundary conditions,
thereafter the sum of the values of the wells must be equal to zero for each snapshot. The
set of snapshots is presented below.

Configuration 2:

z1: W1 = 0 bars, W2 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.

z2: W2 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.

z3: W3 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.

z4: W4 = 0 bars, W1 = W2 = W3 = -1 bars, W5 = b5 = +3 bars.

System configuration

z5: W1 = W2 = W3 = W4 = -1 bars, W5 = b5 = +4 bars.

Homogeneous permeability

For the first set of experiments, flow through porous medium with a homogeneous perme-
ability is studied. The permeability is σ = 1mD in the whole domain.
The snapshots are obtained with ICCG method and the stopping criteria or tolerance is
given for each problem. For Case 1, the snapshots are obtained as described in Configura-
tion 1 and for Case 2 as presented in Configuration 2.

Case 1

Figure 1: Homogeneous permeability,
Configuration 1 for the wells.

We impose no-flux boundary conditions for the ver-
tical boundaries and a pressure difference at the
horizontal boundaries. The size of the grid is
nx = ny = 32, 64 and 128 (see Figure 1). The
snapshots are obtained as presented in Configura-
tion 2, with ICCG and a tolerance of 10−8. The
original system is also solved with a tolerance of
10−8.
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Permeability 1 mD.

Grid size nx × ny grid cells, nx = ny = 32, 64
and 128.

W1 = W4= -5 bars.

W2 = W3 = +5 bars.

Boundary conditions:
P (y = 1) = 0 bars, P (y = ny) = 3 bars,
∂P (x=1)

∂n
= ∂P (x=nx)

∂n
= 0 .

Results
The condition number is computed in Table 1 for the matrix A, the preconditioned matrix
(M−1A) and the deflated and preconditioned matrix (M−1PA) for the smallest problem
(32 x 32 grid cells). We observe, for the preconditioned and the preconditioned and deflated
systems, a significant reduction in the condition number with respect to the original system.
Table 2 shows the number of iterations necessary to achieve convergence for the ICCG and

κ2(A) 931.6
κ2(M−1A) 37.9
κeff (M

−1PA) 22.9

Table 1: Table with the condition number for the smallest problem (32 x 32 cells).

DICCG methods for problems with various grid sizes. The plot of the residual
(
||M−1rk||2
||M−1b||2

)
is presented in Figure 2 and the solution in Figure 3.
We observe from Table 2 an increment in the number of iterations necessary to achieve
convergence for the ICCG method when the grid size increases. On the contrary, we note
that the number of iterations remains unchanged for the DICCG method. Moreover, the
convergence is achieved in one iteration for this method, as expected from Lemma 2. The

plot of residual
(
||M−1rk||2
||M−1b||2

)
is presented in Figure 2, we observe that the residual reaches

a value in the order of 10−8 after the first iteration for the DICCG method, whereas the
residual is diminishing from a value close to 10−2 until the desired value of 10−8 for ICCG.

Grid size 32 x 32 64 x 64 128 x 128
Iterations Iterations Iterations

ICCG 22 41 77
DICCG 1 1 1

Table 2: Table with the number of iterations for different grid sizes for the ICCG and DICCG methods.
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Figure 2: Convergence for the homoge-
neous problem, 32 x 32 grid cells.

Figure 3: Solution of the homogeneous problem,
32 x 32 grid cells.

Case 2

Figure 4: Homogeneous perme-
ability, Configuration 2 for the
wells.

We impose no-flux boundary conditions in all boundaries
(Neumann). The snapshots are obtained solving the prob-
lem with various well configurations as presented in Con-
figuration 2. The value of the wells is presented below. The
tolerance used is 10−8 for the snapshots and the original prob-
lem.

Grid size nx×ny grid cells, nx = ny = 32, 64 and 128.

Permeability 1 mD.

W1 = W2 = W3 = W4 = -1 bars.

W5 = +4 bars.

Neumann boundary conditions.

Results
Table 3 shows the number of iterations necessary to achieve convergence for the ICCG and
DICCG methods, with a tolerance of 10−8.
We observe that using solutions of the problem with various well configurations as deflation
vectors (Configuration 2 ), the convergence is achieved in only one iteration with the DICCG
method, as expected from theory (Lemma 2). As in the previous case we note that the
number of iterations increases with the size of the problem for the ICCG method. For the
smallest case (32 x 32 grid cells) the plot of the residual and the solution of the problem
are presented in Figure 5 and 6.
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Grid size 32 x 32 64 x 64 128 x 128
Method Iterations Iterations Iterations
ICCG 26 45 77
DICCG 1 1 1

Table 3: Table with the number of iterations for different grid sizes for the ICCG and DICCG methods.

Figure 5: Convergence for the homoge-
neous problem, 32 x 32 grid cells.

Figure 6: Solution of the homogeneous
problem, 32 x 32 grid cells.

Heterogeneous permeability

Figure 7: Heterogeneous perme-
ability.

In the second set of experiments, we studied flow through
porous media with heterogeneous permeability. We use 8 lay-
ers of the same size, 4 layers with one value of permeability
σ1, followed by a layer with a different permeability value σ2.
The permeability of one set of layers is set to σ1 = 1mD,
the permeability of the other set σ2 is changed. Therefore,
the contrast in permeability between the layers (σ2

σ1
= σ2

1mD
),

depends on the value of σ2.
We investigate the dependence on the contrast in perme-
ability value between the layers for the ICCG and DICCG
methods. The permeability of one set of layers is σ1 = 1mD
in all cases, whereas the permeability of the other set of layers varies from σ2 = 10−1mD to
σ2 = 10−7mD. Figure 7 shows these layers. The tolerance is set as 10−11 for the snapshots
as well as for the original problem.

Case 1
The conditions are the same as in Case 1 in the homogeneous permeability problem. In
this section, only a grid of nx = ny = 64 elements is studied. Table 4 shows the condition
number for the matrix A, the preconditioned matrix (M−1A) and the deflated and precon-
ditioned matrix (M−1PA) for various permeability contrasts between the layers.

Results
Table 5 shows the number of iterations necessary to achieve convergence for ICCG and
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σ2 (mD) 10−1 10−3 10−5 10−7

κ(A) 2.6×103 2.4×105 2.4×107 2.4×109

κ(M−1A) 206.7 8.3×103 8.3×105 8.3×107

κeff (M
−1PA) 83.27 6× 103 1× 106 6× 107

Table 4: Table with the condition number for various permeability contrasts between the layers, grid size
of 32 x 32, σ1 = 1mD.

DICCG, for various permeability contrasts between the layers4.
The solution is not reached when the value of permeability is greater that σ2 = 10−3 for both
methods (ICCG and DICCG). For the ICCG method the solution is completely different
from the solution obtained with a linear solver, whereas for the DICCG the solution is
similar, but not the same. The plot of the residual and the solution of the problem are
presented in Figure 8 and 9 for a value of permeability σ2 = 10−3.
As long as the correct solution is achieved (σ2 = 10−1, 10−3), we note that the number of
iterations increases when the contrast between the permeability layers increases for ICCG.
For DICCG, we observe that we only need one iteration despite the change of permeability
contrast between the layers, as expected from theory (Lemma 2).

σ2 (mD) 10−1 10−3 10−5 10−7

ICCG 75 110 22* 22*
DICCG 1 1 10 4**

Table 5: Table with the number of iterations for different contrasts in the permeability of the layers for
the ICCG and DICCG methods.

Figure 8: Convergence for the heteroge-
neous problem, 64 x 64 grid cells, σ2 =
10−3mD.

Figure 9: Solution of the heterogeneous
problem, 64 x 64 grid cells,σ2 = 10−3mD.

4The * means that the solution is not achieved (from the plot of the solution), see Figure 13 for an
example. Meanwhile, ** means that the solution is close to the solution obtained with a direct solver.
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To better understand the cases when the solution is not reached, we study the error

of the approximations. If we want the relative error e = ||x−xk||2
||x||2 , with x the true solution

and xk the approximation, to be less than 10−7, we need to choose a stopping criteria (tol)
such that tol = e/κ2(M−1A) for the preconditioned system, and tol = e/κeff (M

−1PA) for
the deflated and preconditoned system (see Apendix A).
The tolerance is presented in Table 6 for the ICCG and DICCG methods. We observe
that the needed tolerance (tol) when σ2 = 10−5mD, 10−7mD is smaller than our choice
(tol = 10−11). As a consequence, we cannot expect to find a correct solution for these
cases.

σ2 (mD) 10−1 10−3 10−5 10−7

tol = e
κ(M−1A)

5× 10−9 1×10−10 1×10−12 1×10−14

tol =
e

κeff (M−1PA)

1× 10−8 2×10−10 1×10−12 2×10−14

Table 6: Table with the tolerance for various permeability contrast between the layers, grid size of 32 x
32, σ1 = 1mD.

As we see from Table 6, the tolerance needed when σ2 = 10−5mD is of the order of
10−12. Therefore, if we use this tolerance we can reach the solution. Table 7 shows the
number of iterations necessary to achieve convergence for the ICCG, DICCG and DICCGd

for a given tolerance (Tol solver). For the first deflation method (DICCG), the deflation
vectors are the snapshots obtained with ICCG using the tolerance showed in the table
(Tol. snapshots). For the second deflation method (DICCGd), the deflation vectors are
the snapshots obtained with a direct solver. The solution obtained with all the methods
is visually compared with the solution obtained with a direct solver.
For ICCG, the solution obtained in the first two cases is similar to the expected solution
but is not the same. For DICCG, in the first case, the solution is reached after eleven
iterations, whereas for the DICCGd it is reached within one iteration. If we increase the
accuracy of the snapshots (Case 2) we reach the correct solution for DICCG in one iteration
(the dependence on the accuracy of the snapshots for the DICCG method is studied for
the SPE10 model in the next section). If we increase the accuracy of the solvers (Case
3), the solution is also reached, but we note that for the deflation methods the number of
iterations increases.
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Case 1 2 3
Tol snapshots 1×10−12 1×10−14 1×10−14

Tol solver 1×10−12 1×10−12 1×10−13

ICCG 55∗∗ 55∗∗ 94
DICCG 11 1 2
DICCGd 1 1 2

Table 7: Number of iterations for ICCG, DICCG for a layered problem, σ1 = 1mD, σ2 = 10−5mD, grid
size of 64x 64, .

Case 2

Figure 10: Heterogeneous per-
meability.

The conditions are the same as in the Case 2 for ho-
mogeneous permeability. For this problem only a grid
of nx = ny = 64 elements is investigated. The defla-
tion vectors used in this case are 4 (z1-z4) and 5 (z1-
z5).
The snapshots and the solutions are obtained with a toler-
ance of 10−11.

Results
Table 8 shows the number of iterations necessary to achieve
convergence for ICCG and DICCG with 4 and 5 deflation
vectors. The tolerance is 10−11 for the snapshots for the
original problem. The plot of the residual and the solution of the problem are presented in
Figure 11 and 12 for the ICCG and DICCG methods, the last one with 4 deflation vectors.
Figure 13 shows an example when the solution is not the same with ICCG or DICCG and
a direct solver.
As in the Case 1, we note that the solution is not achieved when the permeability coeffi-
cient σ2 is smaller than 10−3. Studying solely the correct solutions, for the ICCG method,
the number of iterations increases as the contrast in the permeability increases. For the
DICCG method, with for deflation vectors, the convergence is achieved in one iteration as
expected from theory (Lemma 2). If we use 5 deflation vectors, although the convergence is
achieve in 1 iteration when the permeability coefficient is σ2 = 10−1, it is not the case when
it is σ2 = 10−3, as expected. This might be caused by some errors related to the choice
of deflation vectors. Therefore is important to use only the correct number of deflation
vectors. Techniques such as Proper Orthogonal Decomposition (POD) [9, 10] could help
us to chose the correct set of deflation vectors.
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σ2 10−1 10−3 10−5 10−7

ICCG 90 131 65* 64*
DICCG4 1 1 1* 1*
DICCG5 1 500* 500* 500*

Table 8: Table with the number of iterations for different contrast in the permeability of the layers for the
ICCG and DICCG methods, tolerance of 10−11, snapshots 10−11. DICCG4 is the solution with 4 deflation
vectors and DICCG5 is the solution with 5 deflation vectors.

Figure 11: Convergence for the heterogeneous prob-
lem, 64 x 64 grid cells, σ2 = 10−3.

Figure 12: Solution of the heterogeneous prob-
lem, 64 x 64 grid cells, σ2 = 10−3.

Figure 13: Example of solution not reached, heterogeneous problem σ2 = 10−7, left direct solver, right
ICCG and DICCG, 64 x 64 grid cells.

26



SPE 10 model (1 layer)

This model has large variations in the permeability coefficients. It contains 60 x 220 x 85
cells, for these studies only one layer (2nd) is used (60 x 220 x 1 cells).
This model has 5 sources or wells, four producers in the corners (negative) and one injector
in the center (positive).
The snapshots are obtained solving the system with different well configurations (Config-
uration 2 ). The first 4 snapshots are used as deflation vectors. The dependence of the
DICCG method on the accuracy of the snapshots is investigated. Snapshots are obtained
with different accuracy, the values of tolerance used are 10−1, 10−3, 10−5, and 10−7. The
original system is solved with an accuracy of 10−7.
Different grid sizes are studied: 16 x 56, 30 x 110, 46 x 166 and 60 x 220.
The permeability is upscaled averaging the permeability in each grid using the function
sampleFromBox from MRST. The permeability of the coarser grid (16 x 56 cells) is shown
in Figure 14. The permeability contrast for the diverse grid size problems is shown in Table
9. From this table, we observe that the contrast in the permeability for different grid sizes
varies slightly, moreover, the order of magnitude remains the same for all the cases.
The condition number for the coarse grid problem (16 x 56) is studied in Table 10. We
observe an important reduction in the condition number for the preconditioned the system,
and a further reduction when the system is deflated.

(a) 16 x 56 grid
cells

(b) 60 x 220 grid
cells

Figure 14: Permeability field, 16 x 56 and 60 x 220 grid cells.

The number of iterations neccesary to achieve convergence with the ICCG and DICCG
methods for different grid sizes and different accuracy for the snapshots are presented in
Table 11. The convergence and the solution for the ICCG and DICCG methods with a
tolerance for the snapshots of 10−7 are presented in Figure 15 and Figure 16.
For the ICCG method, the necessary iterations to reach convergence increases as the size
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Grid size 16 x 56 30 x 110 46 x 166 60 x 220
Contrast
(×107)

1.04 2.52 2.6 2.8

Table 9: Table with the contrast of permeabilities for different grid sizes.

Condition
number

value

κ(A) 2.2× 106

κ(M−1A) 377
κeff (M

−1PA) 82.7

Table 10: Table with the condition number of the SPE10 model, grid size of 16 x 56.

of the grid increases. We note that the accuracy of the snapshots is important for the
DICCG method. When the accuracy is low, the DICCG method beahaves almost as the
ICCG method, as the accuracy increases, the number of iterations diminishes. We observe
that, if we use the same accuracy for the snapshotts and the solver, 10−7, the solution is
reached within one iteration, as expected from theory (Lemma 2).

Tol Method 16 x 56 30 x 110 46 x 166 60 x 220
ICCG 34 73 126 159

10−1 DICCG4 33 72 125 158
10−3 DICCG4 18 38 123 151
10−5 DICCG4 11 21 27 55
10−7 DICCG4 1 1 1 1

Table 11: Table with the number of iterations for ICCG and DICCG, various tolerance for the snapshots,
various grid sizes.

28



Figure 15: Convergence for the SPE10 problem, 16 x
56 grid cells, accuracy of the snapshots 10−7. Figure 16: Solution of the SPE10 benchmark,

16 x 56 grid cells, 2nd layer, accuracy of the
snapshots 10−7.

SPE 10 complete

We approximate the solution for the complete SPE10 benchmark (60 x 220 x 65) with the
ICCG and DICCG methods (see Figure 17). We use four deflation vectors, z1 − z4 from
the Configuration 2. The accuracy for the snapshots and the solution is 10−11.
Convergence is achieved within one iteration for DICCG (see Table 12), as expected from
theory (Lemma 2). We note a significant improvement with respect to ICCG that needs
1029 iterations to achieve the solution.
The convergence plot is presented in Figure 18 and the solution in 19.

Method Iterations
ICCG 1029
DICCG4 1

Table 12: Number of iterations for the SPE10 model (85 layers) for the ICCG and DICCG methods,
tolerance of the snapshots and solvers 10−11.
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Figure 17: SPE10 benchmark, permeability.
Figure 18: Convergence for the SPE10 model,
85 layers, accuracy of the snapshots 10−11.

Figure 19: Solution of the SPE10 model (85 layers) with ICCG
and DICCG, tolerance of the snapshots and solvers 10−11.

Conclusions

A proposal to select physics-based deflation vectors for the Deflated Conjugated Gradient
preconditioned with Incomplete Cholesky (DICCG) method was studied. Results show
that the choice of deflation vectors is important for a good performance of the method.
They also show that the accuracy of the snapshots used as deflation vectors is essential for
the correct performance of the DICCG method. For the layered problem, we note that the
contrast between the layers modifies the condition number and demands a higher accuracy
for the solvers. When the desired accuracy is not satisfied, the solution is not reached.
For the cases when the correct accuracy is used, the DICCG method reaches the solution
within one iteration. Results also expose that the behaviour of the solver does not depend
on the grid size (SPE 10 example) or the contrast (Heterogeneous permeability example).
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A List of notation

Symbol Quantity Unit

φ Rock porosity
K Rock permeability Darcy (D)
cr Rock compressibility Pa−1

v Darcy’s velocity m/d
α Geometric factor
ρ Fluid density kg/m3

µ Fluid viscosity Pa · s
p Pressure Pa
g Gravity m/s2

d Reservoir depth m
cl Liquid compressibility Pa−1

q Sources
Jwell Well index
T Transmissibility matrix
V Accumulation matrix

Table 13: Notation
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B Stopping criteria

When we use an iterative method, we always want that our approximation is close enough
to the exact solution. In other words, we want that the error [11, pag. 42]:

||ek||2 = ||x− xk||2,

or the relative error:
||x− xk||2
||x||2

,

is small.
When we want to chose a stopping criteria, we could think that the relative error is a good
candidate, but is has the disadvantage that we need to know the exact solution to compute
it. What we have instead is the residual

rk = b−Axk,

that is actually computed in each iteration of the CG method. There is a relationship
between the error and the residual that can help us with the choice of the stopping criteria.

||x− xk||2
||x||2

≤ κ2(A)
||rk||2
||b||2

.

With this relationship in mind, we can choose the stopping criteria as an ε for which

||rk||2
||b||2

≤ ε.

But we should keep to have in mind the condition number of the matrix A, because the
relative error will be bounded by:

||x− xk||2
||x||2

≤ κ2(A)ε.
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