DELFT UNIVERSITY OF TECHNOLOGY

REPORT 17-05

A HISTORY OF KRYLOV PRODUCT METHODS
- A CASE OF SERENDIPITY -

PETER SONNEVELD

ISSN 1389-6520
Reports of the Delft Institute of Applied Mathematics

Delft 2017

Copyright © 2017 by Delft Institute of Applied Mathematics, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission from Delft Insti-
tute of Applied Mathematics, Delft University of Technology, The Netherlands.

A history of Krylov Product Methods
- a case of serendipity -

Peter Sonneveld *
p.sonneveld@tudelft.nl

June 2017

Abstract

In about 1976, the author was preparing a renovation of the elementary
course on numerical analysis in Delft University. In relation to the problem
of solving a single non-linear equation iteratively, he wondered whether
the so-called ‘secant method” could be generalized to systems of N non-
linear equations with N unknowns.

Before starting to read everything on the subject, the author normally
tries to think about it unbiased, and so he did this time, and started with
(probably) re-inventing the wheel. Would he have seen the book by Ortega
and Rheinboldt at that time, he wouldn’t have discovered the ‘new wheel’
IDR, and also CGS and BiCGSTAB probably wouldn’t exist today.

Serendipity means something like ‘finding the unsought’, and the strange
history of the so-called "Krylov Product methods” shows some examples of
this phenomenon.

Keywords: Iterative methods, IDR, Krylov-subspace methods, Bi-CGSTAB,
CGS, nonsymmetric linear systems.

AMS Subject Classification 65F10, 65F50

1 The beginning.

1.1 Trying to set-up a multidimensional secant method.

The classical secant method is a quasi Newton procedure for solving one non-
linear equation with one unknown f(x) = 0, in which the derivative f'(x,) is
replaced by the divided difference

f(xn) = f(xn1)

Xn — Xn—1

f,(x”) ~ f[xnflz Xn| =

*Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft, The Netherlands,

The method is of order (1 + \/5) /2 =~ 1.6, and effectively more efficient than
Newton’s method, since the latter requires each step an evaluation of both f(x)
and f'(x).

In order to set up a variant for a system f(x) = 0 of N nonlinear equations
with N unknowns, assume we have N + 1 estimates x,,_n, X;—_N+1,.-.,Xn Of
the solution. Let the matrices X}, and F,, be defined as

Xo = [Xn-NXn-Nt1 - Xul, Fo=[f(xn-nN), f(xn-ng1) - f(xn)]
Then an N-dimensional secant method could be defined by

Solve Fic=0 (1)

X
Calculate Xyl = 27"; 2)
7]

The new approximation x, 1 can be calculated if }_ ¢ # 0, and this is the case
if the columns of F,, are not in one N — 1 dimensional linear manifold.

It can easily be derived that x,, 1 is the exact solution for f(x) = 0if this system
is linear. Whether this procedure converges in the non-linear case depends not
only on the accuracy of the estimates in X;;, but also on the ‘degree of linear
independence’ of at least N of the N + 1 columns of F,;. And this is a problem:
at increasing 1, the vectors f(x;,_;) become more and more ‘dependent’.

So the author experimented with different kinds of strategies for choosing an
old column of X, to be replaced by x;,11. It turned out that a lot of columns of
the matrices X, remained unchanged during many steps. To make things easy,
he decided to analyse the behaviour of a variant in which only the vectors x,,_;
and x, were allowed to be replaced. (Only varying x, wouldn’t be interesting,
since this is a simple method of false position, which is only of first order).

So choose

Xi’l = [xO/xl/' < s XN-2, xl’l—llxn]

We call this ‘quasi one-dimensional secant method’.

1.2 Quasi one-dimensional secant method.

An iteration step of this process can be written as

Solve Fie+anf, +puf, =0 ©)
Xic _
Calculate Xy = LCN“T‘Nl"nxn 1+ BnXn @
ec + ai’l + ﬁn

where X, and F, have been splitted into fixed N x (N — 1) submatrices X; and
F; respectively, followed by two “variable’ columns x,,_; and x;, c.q. f,_; and
f,- The vector € represents the all-ones vector in RN~1.

Some simple experiments indicated superlinear convergence indeed, but not
very impressive.

In order to monitor the limiting behaviour of the process, a linear system f(x) =
Ax = 0 was chosen, with an imitated non-linearity via F; = AXy + E, with
E # O. For the size of the system N = 11 was chosen. In the following tables
some results are shown.

Ll Al n A n Al
2.9481e+00 1.0877e+00 14 85673e-02 21 9.9293¢-08

n

7
3.2656e+00 8 1.8072e+00 15 3.5577e-03 22 2.5199e-15
2.1400e+00 9 4.7870e-01 16 1.9406e-03 23 2.3340e-16
2.6949e+00 10 2.4484e-01 17 1.0996e-03 24 9.0617e-16
2.3372e+00 11 1.8856e-01 18 3.1076e-05 25 89141e-17
1.0998e+01 12 1.3929e-01 19 5.8016e-06 26 7.0092e-18
1.1215e+00 13 2.1758e-01 20 2.8276e-07

ANCT ke WDN- O

Idealized secant method, N=11

If we inspect the table, we see that at entry 22, || f, || drops to machine preci-
sion. If we choose a different but not too large value for N, we also observe
such a drop at entry 2N. At the time that these experiments were done by the
author in 1976, this phenomenon was more difficult to recognize, because 8
digits arithmetic was used at the time. So he considers himself lucky to have
observed this norm-dropping property anyway.

1.3 An analysis of the 2N-reduction behaviour.

A careful analysis of the process (3), (4) leads to the following result. The resid-
uals f, are related to each other by

fopn = p"B(fn_F'Y(fn_fnfl))' 6)
where v satisfies p” (fu+7(fn—Fu1)) =0 (6)

Here Bis a fixed matrix depending of Fj, and E. p, are O(1) scale factors.
Carrying out the process (5) and (6) with random matrix B, and all p, chosen
unity, shows a similar norm dropping at n = 2N. Obviously this behaviour is
structural. Why does this happen?

Apart from f,and f;, all vectors f, are in the Bimage of p*. Especially f, and
f5 are in that subspace. But: a special combination is made of these vectors,

that is perpendicular to p. So f, is in the B?> image of p* as well, and so will
all f, withn > 4.

Going on like this, after 2k steps, we have f, € Bf(p'), for all n > 2k. So in
particular

k
fo € ﬂBI’(PL)

j=1

The intersection of subsets in the righthand side is probably ‘shrinking’, as can
be shown by the following formalization.

Let Gy = span({f,, Bfy,---, Bffo, ...}), so Gy is the Krylov space correspond-
ing to Band f,,. Let S be a proper subspace of RY, and let the sequence of
spaces {Gy } be generated by G, = B(Gx_1NS) fork = 1,2,3,.... Then it can
easily be shown that G C Gy_1. This process continues until Gy41 = Gy for
some M. In that case G, = Gy for all n > M.

Now Gp1 = Gum implies Gy is an invariant subspace for B, and Gy C S.
Therefore, if dim(Gy;) > 0, B has an eigenvector in S. In our experiment,
S = p*, so B has one eigenvector perpendicular to p. Since a Krylov space
contains at most one eigen direction for each distinct eigenvalue, this is a non-
generic case. Hence, for ‘almost every choice for p we have Gy = {0} for some
M < N.

This property is called the IDR principle (Induced Dimension Reduction)

2 IDR-based finite solvers.

The process (5) and (6), with p, = 1 for all i, is an implementation of the
IDR principle: it produces vectors f, that are forced to be in the space g; for
n > 2j. It could be used as a finite solver for a linear system Ax = b if we could
interprete f, as the residual r, = b — Ax; for a sequence of approximations
Xn.

Now residual differences satisfy r,,11 —rn = —A(xn41 — x»), and using this
we can write the IDR-recursion as

tpi1 — 1ty = —A(xys1 —xy) = (B— vy — yuBA(xy — x,_1)

Now choosing B = I — A, and observing that A and B commute consequently,
we can ‘divide A out”:

Xp4+1 — Xn =¥n + 'YnB(xn - xn,l)

An extra multiplication with B seems to be necessary, but of course we can use
B(xn - xn—l) =Xp —Xp-1+ ¥y —Ty-1.

Write the system Ax = b as x = Bx + b, then the above primitive algorithm can
be regarded as an ‘accelerator’ for a ‘classical’ iteration process x,, .1 = Bx, +b.
The very first operational IDR-algorithm, in 1976 was based on the Gauss-
Seidel iteration procedure, thus using the splitting A = L+ D + U, where L,
U and D are strictly lower triangular, strictly upper triangular and diagonal
matrices respectively. We then have B = —(L+ D)~ 'U, and solve the system
x = Bx+ (L+ D)~ 'b. Of course the matrix Bis not required explicitly: solving
a triangular system is enough. Since 2008 this procedure is called Accelerated
Gauss Seidel (AGS), and has actually been a research object. The acceleration
effect is shown in figure 1.

If tested on a discretized Poisson equation on 25 x 25 grid, (529 equations),
it required about 160 steps (matvecs) to obtain a residual reduction of 10714,

Discrete Poisson equation on (25 * 25) grid, random rhs, 529 equations
10 T T T T T T T T

—— Gauss Seidel
0 —— IDR acceleration

10 I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

matvecs

Figure 1: First IDR method (Accelerated Gauss-Seidel)

whereas plain Gauss Seidel requires about 1850 steps. But also 160 < 2 x 529,
and the method turns out to be much more successful than might be expected
from the theoretical ‘2N steps’.

The variant of IDR that was presented in [10], the proceedings of the Paderborn
conference in 1979! is the first that doesn’t require a suitable splitting for A. It
uses a variable splitting By = I — w;A, where the w value could be changed
each even-numbered iteration step, in a suitable way. For instance in such
way that the smallest residual norm is created for that step. The algorithm
has the same finite termination property, because in the analysis of the IDR-
phenomenon, the matrix B may be replaced each dimension reduction step by
(another) linear combination of the type aI 4+ BB. This method worked well
in some mildly unsymmetric cases, especially if a good preconditioner was
used. Later, after more elaborate tests, the method sometimes suffered from
numerical instability.

3 The polynomial connection.

Like Gauss Seidel, AGS and IDR are Krylov subspace methods as well, and
this suggests a convergence analysis by means of polynomials. The residuals

IThis rather obscure paper is present on the world wide web, as
www.springerlink.com/index/r26754052u272286 . pdf

produced by the primitive IDR method are in a Krylov space based on A and
1o, and therefore

gy = q)n (A)TO

foralln > 0, where ®, denotes a polynomial of degree , satisfying @, (0)=1.
Let polynomials () be defined by

Qo) =1, O(t) = (1 —wet) Y1 (8), k=1,2,...

Then inspection of the precise recurrence relations in the IDR-algorithm shows
a more specific property

ror = U (A) @k (A)ro, rop1 = O (A)Pyi1(A)ro

where ¢, and ¢ are polynomials of degree k. Now the following property is
not extremely difficult to prove:

p"Qi(A)gr(A)ro = (Qj(AT)p) T gr(A)ro =0, j=0,1,2,... k=1 (7

In the case that A is symmetric and positive definite, and p = ry, the polyno-
mials @ can be identified with (scaled) Lanczos polynomials.

There is another solver, for symmetric positive definite systems, where the
residuals are generated by Lanczos polynomials, namely the Conjugate Gra-
dients algorithm. This CG algorithm can be considered as a computational
variant of the Lanczos eigenvalue process [3], but dedicated to solving linear
systems instead. This is also a finite termination algorithm that most of the time
converges quickly as an iterative procedure.

So IDR appears to be related to CG, but with the difference that the latter only
applies for symmetric positive definite linear systems.

For CG, there exist a beautiful convergence analysis, based on properties of the
CG-polynomials. It was the author’s hope that the ‘polynomial connection’
between IDR and CG could be helpful for a convergence analysis of IDR.

3.1 CG for polynomials.

In the classical CG method, the residuals r,, and search directions p,, can be
written as

th = gu(A)ro, p, = ¥u(A)ro

The inner products rlr, and pl Ap,,, required for the calculation of the coeffi-
cients in the algorithm, can be expressed as polynomial inner products:

(x1,x2) = [x1(A)r0] " [x2(A)ro]

For real symmetric matrices A, this bilinear form is an innerproduct on the
space of polynomials of maximal degree d — 1, where d is the dimension of the
full Krylov space.

The CG algorithm can now be interpreted as an algorithm for the construction
of the set orthogonal polynomials corresponding to the (., .) innerproduct:

CG algorithm for orthogonal polynomials:

(PO:L l/)fl =0, -1 =1

for n=0,1,2,...
Pon = <(Pn1 §9n>1 ,Bn = Pn/Pn—l
Pn(t) = @n(t) + Butpn-1(t),
On = <1Pn/ tl,bn>/ Ky = Pn/Un
Pny1(t) = @u(t) — anthu(t)
n=n+1

end

An interesting feature of this polynomial algorithm is the possibility of using
an alternative innerproduct definition for the polynomials. One could define

(X1, x2) = u' x1(A)x2(A)o 8)

Although this bilinear form isn’t necessarily positive (semi-)definite, the al-
gorithm still produces polynomials that are ‘orthogonal” with respect to this
bilinear form. Consequently, the vectors u, = ¢,(AT)u and v, = @,(A)v,
form a bi-orthogonal system, just as is the case of the Lanczos algorithm for
the eigenvalue problem 2 as described in [3]. The actual calculation of the vec-
tors u, and v, however would require ‘shadow’ operations like AT u, together
with Av,,.

3.2 Squaring the polynomials.

In the IDR process, the Lanczos polynomials are ‘hidden” in expressions like
Dy, (t) = Qu(t)@n(t). Furthermore, no shadow operations with AT are re-
quired to generate the coefficients in the algorithm. This can be understood by
a remarkable property of polynomial innerproducts:

(X1 x2) = (L xixe)

where 1> denotes the ordinary product of two polynomials. The quantities
pn and oy in the polynomial algorithm can therefore be obtained in an alterna-
tive way.

on = (1L ¢%), ow= (L ty3) = (t, ¥3)

In order to do this, the polynomials ¢? and 12 must be known explicitly. An al-
gorithm to calculate these polynomials requires one cross-product polynomial
PntPn—1.

2Similar to the original Lanczos method which was meant for general matrices, CG can be

reformulated by carrying out a left ‘shadow process’ as well. This I called bi-CG, not knowing at
the time that Fletcher already had defined that method, and named it just so.

So define

D, = q)i, 0, = PnPu_1, Y, = lP%

then these polynomials can be produced by simply squaring and multiplying
the recursion steps of the polynomial CG-algorithm. This way we get:

u(t) = @u(t) +2B:Ou(t) + Br¥u 1(t)

Ous1(t) = Pult) + PuOu(t) — ant¥u(t)

D, 1(t) = Pu(t) — 2unt[@p(t) + Bu®y(t)] + a2t2F, (1)
In these recursion formulas, the &, and B, satisfy

On Pn
= _, 14 = — 9

fo= =t ©)
where p,, and 0y, can be calculated by

on=(1,®,), oy =(t¥,) (10)

3.3 Back to the vectors: CGS.

The standard BiCG residuals satisfy r, = ¢, (A)ro. If things are converging, the
matrix polynomial ¢, (A) may be regarded as a contracting operator, at least
if it acts on rp. But then we could take advantage from applying this operator
twice: ¢, (A)r, = P, (A)rg. Therefore it may be a good idea to translate the
squared polynomial algorithm to vectors again.

Let the polynomial innerproduct be defined by (8), with v = ry, and u = 7y,
where 7 is a more or less arbitrary ‘shadow-residual’. Define 7, = ®,(A)ro,
p, = ¥u(A)ry, and g, = ©,(A)ry. Now substitute A for ¢ in the ‘squared
polynomial algorithm’, and apply the obtained operators to ry, then we get

/ﬁn = ?n+2ﬁn;]\n+,8%ﬁn_1

ﬁn-}-l = [/f" + :Bnﬁn] - [“”A/ﬁn]
Tup1 = Tn—anA{2[F0 + Bud,] — [0nAP,]}

in which «;, and B, satisfy (9), where p,, and o;, are calculated by
on = (L, ®y) =FFn, 0u = (t,'¥n) =T AP,

The expressions in square brackets are to be stored in temporary vectors, to
reduce the number of matrix vector operations to 2, the minimum.

It is easily seen that 7,1 — 7, is ‘divisible by A’, so an update line for the
solution is easily made. If extended with a proper initialization, this procedure
is (a prototype of) the Conjugate Gradients Squared algorithm [5]

The fact that in the CGS algorithm no AT operations are required, is an advan-
tage that is generally regarded as important. For that matter: CGS shares this
property with IDR. Nevertheless, because of a connection with the main stream
— generalized CG variants for non-symmetric linear systems —, and also for
esthetical reasons, CGS took over the control of the author’s mind completely,
and gradually the IDR idea ‘fell asleep’.

3.4 (Bi-)CGStab against squaring the misery.

The second expected advantage of CGS over BiCG is the double use of the
contractors ¢, (A). For problems where BiCG converges, CGS converges con-
siderable faster indeed, see figure 2. However, if BiCG has a difficult job, for

) Convection - Diffusion eq; Peclet=[0.00, 0.00], 2304 equations
10 T T T T T

—— BICG

—— CGS |
BiCGSTAB

—— AGS

\

I I I I
0 50 100 150 200 250 300

Figure 2: The advantage of squaring

CGS the job is even more difficult. Not only contraction is ‘squared’, but also
expansion! (figure 3)

To overcome this disadvantage Henk van der Vorst suggested to replace one
of the polynomials ¢, in the square ¢ by a polynomial that could be used
for damping out unwished behaviour of CGS. This lead to the development
of BiCGSTAB [9], a method meant as a stable variant of CGS, although many
people consider it as a stabilization of BiCG.

In fact BiICGSTAB was mathematically equivalent to IDR, only the recurrence
formulae differ completely, since they stem from the a’s and ’s in the (Bi)-CG
method. Both the author and Van der Vorst were well aware of that. But ap-
parently the BiCGSTAB algorithm had a significantly better numerical stability,
for which reason the IDR-interpretation was buried!?

Of course also BICGSTAB sometimes suffered from instability problems. This
led to the development of modifications and generalizations of BiCGSTAB.

3This, after all, appears to be wrong. It wasn’t the theoretical basis (IDR versus BiCG) that
caused IDR’s instability, but a not so lucky implementation of the old IDR algorithm.

Convection - Diffusion eq; Peclet=[10.00, 0.00], 2304 equations
10 T T T T T T

“\/ ‘ BiCG
10* b i CGS E

V | BICGSTAB| |
o2 \ v AGS

I I I I I
0 50 100 150 200 250 300 350

Figure 3: The price of squaring

Very clever generalizations have been developed by Martin Gutknecht, [2],
Gerard Sleijpen, [4] and others.

The author had other things on his mind, and went on with a not specifically
Krylov-subspace-related life.

4 Waking up

In the summer of 2006, just when the author was retiring from Delft University,
he got an email by Jens Peter Zemke, from Hamburg-Harburg University, in
which he asked to tell what happened to the (old) IDR method. It took a couple
of weeks to reconstruct the way things went 30 years ago. Due to moving to
another building, and later moving several times to different floors, some old
work couldn’t be found anymore. So the author started an archeological expe-
dition in his mind, and replayed the old experiments that led to the discovery
of IDR. Then he saw, that in the IDR-theorem as published in [10], page 550,
the crucial recurrence relation between the spaces §; was described as

where S denoted any proper subspace of RV, and not merely p=.

10

And then he wondered Why didn’t I try something with a subspace S that
is significantly smaller than p, or equivalently, use more vectors p? Some
possible reasons:

1. It costs more computer time and memory, and these were expensive those
days.

2. The author’s intuition made him expect nothing positive from making a
simple method complicated: each iteration step would require the solution of
a full system of linear equations.

My thoughts today about these considerations:

1. "‘More work’ might produce more profit, f.i. a larger dimension reduction per
step. The memory problem is wiped away by Moore’s law during 25 years.

2. Intuition may never be the only argument for rejecting an idea. Besides that,
today we have Matlab, so it is easy to do an experiment with more vectors p,.

The experiment required one afternoon Matlab programming, and in figure 4
the result is shown for a one dimensional diffusion equation on a 60 points
grid: That experiment was the start of IDR(s), [7], a useful extension of the
‘sparse Krylov subspace toolbox’.

1-D convection diffusion, Peclet: 0.00; grid: 60
basic convergence

@
o
[=} |
5
g
S 6| —— FULL GMRES .
= —— IDR(1)
£ IDR(2)
8F | —— IDR@) .
IDR(8)
10+ i
_12+ i
14 ! L
0 20 40 140

matvecs

Figure 4: First IDR(s) experiment

11

4.1 The (simple) principle of IDR(s)

In the IDR-theorem, as published in [10], the spaces Qj, as defined in (11) are

proved to have decreasing dimension. Choosing S = N (P'), where P is a
N x s matrix, it can be proved that ‘almost always’ dim(G;,1) = dim(G;) —s.
Construction of a sequence of vectors that are in G; with increasing j is not
really difficult.

Suppose we have s + 1 vectors g, g1,.--,8;, in G;, and let G = [g(8 --- &,
then if ¢ is a vector satisfying (PTG)c = 0, the vector h = Gjcbelongsto G;NS.
Then the vector § = (1 — w;A)h is in G; ;1. It is also in G; because of the nest
property Gj 1 C G;. So we may repeat the procedure with one of the g vectors
replaced by g.

After s + 1 of these steps, all the vectors g are in Q]-+1, and we can start with
building (vectors in) Gj ...

The construction of iterates x;,, for which r, = b — Ax,, requires a careful scaling
of the appropriate vectors

In IDR(s), we obtain a dimension reduction of s, at the cost of (s + 1) N matrix
vector operations. So in exact arithmetic, after about N(s + 1) /s matvecs, we
have obtained the exact solution of Ax = b. In practice however, for a quite
broad category of sparse systems, a fairly good approximation is obtained after
much less steps of the process, as is shown in figure 5. The increasing loss of

2-D convection diffusion; Peclet: (0.30,0.00); grid: 30*35; size: 1050
basic convergence
2 r\ T T

I
\ | e — FULL GMRES

[\) A A —— IDR()
\ IDR(2)
R — o -

IDR(32)

ot

4l

-6

log(reduction) (DIGS)

1
50 100 150 200 250
matvecs

Figure 5: IDR(s) iteration for different s

12

digits at increasing s are only present in the first IDR(s) implementation. In a
later implementation in [8], the important causes of numerical instability have
been eliminated.

4.2 A convergence analysis at last

If the convergence behaviour of IDR(s) is observed for different values of s,
then it can be seen that the convergence plots are shifting to the left at in-
creasing s. The rightmost curve (the slowest) is IDR(1), which is comparable
to BiCGSTAB). At the higher values of s, the convergence plot is close to the
curve of GMRES. This last method is the fastest, theoretically, but due to an in-
creasing number of vector updates and inner products, GMRES becomes very
expensive at high iteration numbers.
So experiments suggest that IDR(s) could be “sold” as poor man’s GMRES.
A convergence analysis based on contracting properties related to the spectrum
of A seems to be not possible, we could try to link the convergence of IDR(s)
to GMRES, which converges according to a different principle. So we try to
piggyback on GMRES.
In all practical experiments, the ‘shadow vectors’ (the columns of P), were cho-
sen randomly (Sonneveld, [6]). Recent analysis of the convergence behaviour
with respect to this choice, has produced an interesting theoretical result for
not too small values of s.
As in all Krylov subspace methods, the residuals satisfy r, = ®,(A)rg. If we
concentrate on the first residual in each space g]-, we can write

Pjs+1) = - ¥js
where Q;(A) is a damping factor, and ¥ s a kind of Lanczos factor. Now the
reduced residuals ¥j; = ‘I’js(A)rO, can be associated with a Galerkin procedure,
with a Krylov space as search space, and with almost completely random test

vectors. The residual 7 of such Galerkin approximation can be related to the
GMRES residual 7 by

T — T = Py

where P is the oblique projection matrix, with R(P) = span{ro, Ary, ..., Afry}
as search space, and R(P7) as test space.

Now if the test space is spanned by stochastically independent standard nor-
mally distributed vectors, the quantity { = ||r —7|| /||7|| is a stochastic variable
with the same distribution as

z=||B""ul|

in which Bis a k x k random matrix, and u a random vector in R¥. Random
means here: all entries are stochastically independent standard normally distributed
stochastic variables.

13

In [6] the probability distribution for z is derived:

wk-1 2 r(kil)
=C—=> _ _ withC=-"2—"2"
fk(x) (l+x2)(k+1)/2 w1 ﬁ F(%)

The distributions for different k are such that the normalized stochastic vari-
ables z = % have asymptotically the same distribution for large k. See figures

6 and 7. After working out, we find for the expected number of digits that

pdf for x=||B™'b]|, pdf for x=||B™'b||/sqrt(k)

T T
— k=25
— k= 50

= x x|

N = rn e

— k=200

1.2 — k=100 [

= L 0 i I I I I L L L
3 35 -1 -0.5 0 0.5 15 25 3 35

15 2 1 2
Iogm(x) (decimal digits) Iogm(x‘k’ ') (decimal digits)

Figure 6: Probability density Figure 7: Normalized density
7 = Y (A)rg is behind the GMRES residual 7:

& (logyo([I7x —7ill) —logyo([[7kll)) ~ ¢ + 10810(\/%) (12)

with ¢ close to 0.3. This means that at iteration steps 100 resp. 1000, we may
expect to be about 1.3 resp. 1.8 decimal digits behind the GMRES procedure.
If the factors (3;(A) in the IDR(s) residuals are contracting, (convection diffu-
sion equations), the convergence will be (a bit) better than shown in (12). But
if A has eigenvalues in both half planes of the complex plane (Helmholz equa-
tion), IDR(s) still converges, albeit considerably slower because of the expanding
character of (3;(A). These results agree with our IDR(s) experiments.

4.3 Final remarks

At least two serendipity moments can be marked in the development just de-
scribed. The first was recognizing the 2N norm drop in the experimental secant
method. Another, less obvious, was the discovery of IDR(s) when searching the
history of the completely abandoned method IDR. Finally, there was the recog-
nition of a possibly fruitful relation with GMRES in the convergence pictures
of IDR(s) that triggered the convergence analysis.

The author thinks that serendipity is an important part of scientific research,
and at least it is an extremely satisfying part.

14

According to Peter Wynn [1], ‘numerical analysis is much of an experimental
science’, and in the IDR-CGS-IDR(s) development, the experimental part was
the main source of serendipity.

So the numerical mathematician should never hesitate to do numerical exper-
iments, nor hesitate to look not only his/her results, but also the non-results.
There may be something in it!

References

[1] CLAUDE BREZINSKI AND LUC WUYTACK, Numerical analysis in the twen-
tieth century, Numerical analysis : historical developments in the 20th
century, pp. 1-40, Elsevier, Amsterdam. 2001

[2] M.H. GUTKNECHT, Variants of BICGSTAB for Matrices with Complex Spec-
trum, SIAMJ. Sci. Comp., 14(5), pp. 1020-1033, 1993.

[3] CORNELIUS LANCZOS, An Iteration Method for the Solution of the Eigenvalues
Problem of Linear Differential and Integral Operators, Journal of Research of
the National Bureau of Standards, 45, pp. 255-282, 1950.

[4] G.L.G. SLEJPEN AND D.R. FOKKEMA, BiCGstab(¥¢) for linear equations in-
volving matrices with complex spectrum, ETNA, 1, pp. 11-32, 1994.

[5] P. SONNEVELD, CGS: a fast Lanczos-type solver for nonsymmetric linear sys-
tems, SIAM J. Sci. and Statist. Comput., 10, pp. 36-52, 1989.

[6] PETER SONNEVELD, On the Convergence Behavior of IDR(s) and Related
Methods, SIAM J. Sci. Comput., 34:5, pp. A2576-A2598, 2012.

[7] PETER SONNEVELD AND MARTIN B. VAN GIJZEN, IDR(s): a family of sim-
ple and fast algorithms for solving large nonsymmetric systems of linear equa-
tions , SIAM J. Sci. and Statist. Comput. , 31:2, pp. 1035-1062, 2008.

[8] MARTIN B. VAN GIJZEN AND PETER SONNEVELD, Algorithm 913: An Ele-
gant IDR(s) Variant that Efficiently Exploits Bi-orthogonality Properties, ACM
Transactions on Mathematical Software, 38, pp. 5:1-5:19, 2011.

[9] H.A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Comp.,
13, pp. 631-644,1992. .

[10] P. WESSELING AND P. SONNEVELD, Numerical Experiments with a Multiple
Grid- and a Preconditioned Lanczos Type Method, Lecture Notes in Mathe-
matics 771, Springer-Verlag, Berlin, Heidelberg, New York, pp. 543-562,
1980.

15

