
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 17-09

Newton Power Flow Methods for Unbalanced Three-Phase
Distribution Networks

B. Sereeter, C. Vuik, and C. Witteveen

ISSN 1389-6520

Reports of the Delft Institute of Applied Mathematics

Delft 2017



Copyright c© 2017 by Delft Institute of Applied Mathematics, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands.



Newton Power Flow Methods for Unbalanced
Three-Phase Distribution Networks

B. Sereeter†, C. Vuik† and C. Witteveen†

†Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Abstract

Two mismatch functions (power or current) and three coordinates (polar, Cartesian and
complex form) result in six versions of the Newton–Raphson method for the solution of
power flow problems. In this paper, five new versions of the Newton power flow method de-
veloped for single-phase problems in our previous paper are extended to three-phase power
flow problems. Mathematical models of the load, load connection, transformer, and dis-
tributed generation (DG) are presented. A three-phase power flow formulation is described
for both power and current mismatch functions. Extended versions of the Newton power
flow method are compared with the backward-forward sweep-based algorithm. Furthermore,
the convergence behavior for different loading conditions, R/X ratios, and load models, is
investigated by numerical experiments on balanced and unbalanced distribution networks.
On the basis of these experiments, we conclude that two versions using the current mis-
match function in polar and Cartesian coordinates perform the best for both balanced and
unbalanced distribution networks.

1 Introduction

The electrical power system is one of the most complex system types built by engineers [1].
Traditionally, electricity was generated by a small number of large bulk power plants that use
coal, oil, or nuclear fission and was delivered to consumers through the power system in a one-way
direction. Due to the modernization of the existing grid, a large number of new grid elements
and functions including smart meters, smart appliances, renewable energy resources, and storage
devices are being integrated into the grid. Thus, the existing electrical grid is changing rapidly
and becoming more and more complex to control. A smart grid (SG) is offered as the solution
to this problem [2–4].

In a smart grid, most of the new grid elements are directly connected to the distribution
network which requires new types of operation and maintenance. The distribution network
has been considered as a passive network that totally depends on the transmission network for
control and regulation of system parameters. Conventionally, the power flow in the distribution
system was one-way traffic (vertical) from the substation (only source) to the end of the feeders.
However, the utilization of distributed generation (DG) made the distribution network active in
the sense that the distribution network can generate electrical power in the network and transfer
the extra power to the transmission network. This changes the direction of the power flow in
networks into two-way traffic (horizontal). Therefore, central grid operators or transmission
system operators (TSOs) of the power system must have different approaches for maintaining
and operating the electrical grid because in this case, the main purpose of the operator has been
adjusted to interconnect the various active distribution networks. As the distribution network
becomes more active, there is an increasing role of distribution system operators (DSOs). For
efficient operation and planning of the power system, it is essential to know the system steady
state conditions for various load demands.
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A power flow computation that determines the steady state behavior of the network is one
of the most important tools for grid operators. The solution of power flow computation can
be used to assess whether the power system can function properly for the given generation and
consumption. Traditionally, power flow computations were calculated only in the transmission
network and the distribution networks were aggregated as buses in the power system model.
However, in the new operation and maintenance of the distribution network, the power flow
problem computation must be done on the distribution network as well.

A reliable distribution power flow solution method will be required to solve a three-phase
power flow problem in unbalanced distribution networks integrated with distributed generations
and active resources (i.e., renewable power generations, storage devices, and electric vehicles
etc.) [5,6]. There are conventional power flow solution techniques for transmission networks, such
as Gauss–Seidel (GS), Newton power flow (NR), and fast decoupled load flow (FDLF) [7–9] which
are widely used for power system operation, control and planning. However, these conventional
power flow methods do not always converge when they are applied to the distribution power flow
problem due to some special features of the distribution network:

• Radial or weakly meshed (radial network with a few simple loops) structure:
In general, a transmission network is operated in a meshed structure, whereas a distribution
network is operated in a radial structure where there are no loops in the network and each
bus is connected to the source via exactly one path.

• High R/X ratio:
Transmission lines of the distribution network have a wide range of resistance R and re-
actance X values. Therefore, R/X ratios in the distribution network are relatively high
compared to the transmission network.

• Multi-phase power flow and unbalanced loads:
A single-phase representation is used for power flow analysis on transmission network which
is assumed to be a balanced network. Unlike the transmission network, a distribution
network must use a three-phase power flow analysis due to the unbalanced loads.

• Distributed generations:
Unlike conventional power plants connected to the transmission network, DGs have fluc-
tuating power output that is difficult to predict and control since it is strongly dependent
on weather conditions.

Systems with the above features create ill-conditioned systems of nonlinear algebraic equa-
tions that cause numerical problems for the conventional methods [10–12]. Many methods have
been developed on distribution power flow analysis and generally they can be divided into two
main categories as:

• Modification of conventional power flow solution methods [13–33]:
Methods in this category are generally a proper modification of existing methods such as
GS, NR and FDLF.

• Backward–forward sweep (BFS)-based algorithms [34–61]:
BFS-based algorithms generally take an advantage of the radial network topology. The
method is an iterative process in which at each iteration two computational steps are
performed, a forward and a backward sweep. The forward sweep is mainly the node voltage
calculation and the backward sweep is the branch current or power, or the admittance
summation.
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Several reviews on distribution power flow solution methods can be found in [5, 6, 62–64].
In this paper, we focus on the Newton based power flow methods for balanced and unbalanced

distribution networks with a general topology. Depending on the problem formulation (power
or current mismatch) and specification of the coordinates (polar, Cartesian and complex form),
the Newton–Raphson method can be applied in six different ways as a solution method for power
flow problems. We refer to [65] for more details on all six versions of the Newton power flow
method. In [65], the existing versions of the Newton power flow method [8,18,66] are compared
with the newly developed/improved versions of the Newton power flow method (Cartesian power
mismatch, complex power mismatch, polar current mismatch, Cartesian current mismatch, and
complex current mismatch) for single-phase power flow problems in balanced transmission and
distribution networks. It is concluded in [65] that the newly developed/improved versions have
better performance than the existing versions of the Newton power flow method.

Therefore, we want to extend the Newton power flow methods developed for a single-phase
problem in [65] to three-phase power flow problems. In this paper, only the polar current
mismatch version is explained in detail for a three-phase power flow problem and the remaining
versions can be derived similarly. Moreover, all six versions are implemented and compared with
the BFS algorithm [43] for both balanced and unbalanced distribution networks. Different load
models, loading conditions, and R/X ratios are considered in order to analyze the convergence
ability of all extended versions. The key contribution of this work is new formulations of the
Newton power flow method. Compared to existing versions of the Newton power flow method,
our versions use different equations for PV buses in the Jacobian matrix that result in better
convergence and robust performance. We present how these versions can be applied to unbalanced
distribution networks by studying loads, three-phase load connections, three-phase transformers,
and DGs.

This paper is structured as follows. In Section 2, mathematical models of the power system,
load, three-phase load connection, three-phase transformer, and DG are introduced. Section 3
mathematically describes the three-phase power flow problem. The Newton power flow method,
the polar and the current mismatch formulations, and the polar current mismatch version are
explained for the three-phase power flow problem in Section 4. The comparison result of all
the versions of the Newton power flow method with BFS algorithm in balanced and unbalanced
distribution networks is presented in Section 5. Finally, the conclusions are given in Section 6.

2 Power System Model

Power systems are modeled as a network of buses (nodes) and branches (transmission lines),
whereas a network bus represents a system component such as a generator, load, and transmission
substation, etc. There are three types of network buses such as a slack bus, a generator bus (PV
bus) and a load bus (PQ bus). Each bus in the power network is fully described by the following
four electrical quantities:

• |Vi| : the voltage magnitude

• δi : the voltage phase angle

• Pi : the active power

• Qi : the reactive power

Depending on the type of the bus, two of the four electrical quantities are specified as shown in
Table 1.
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Bus type Number of buses Known Unknown
slack node or swing bus 1 |Vi|, δi Pi, Qi
generator node or PV-bus Ng Pi, |Vi| Qi, δi
load node or PQ-bus N −Ng − 1 Pi, Qi |Vi|, δi

Table 1: Network bus type. i: index of the bus; Ng: number of generator buses; N : total number
of buses in the network.

For more details on the power system model we refer to [1].

2.1 Load Model

For load buses (PQ buses) in the network, active P and reactive Q power loads must be known
in advance. In the power flow analysis, these loads (P and Q) can be modeled as a static or
dynamic load. For the power flow computation, the static load models are used, so that active P
and reactive Q powers are expressed as a function of the voltages. The following are commonly
used models [67]:

• Constant power (PQ):
The powers (P and Q) are independent of variations in the voltage magnitude |V |:

P

P0
= 1,

Q

Q0
= 1

• Constant current (I):
The powers (P and Q) vary directly with the voltage magnitude |V |:

P

P0
=
|V |
|V0|

,
Q

Q0
=
|V |
|V0|

• Constant impedance (Z):
The powers (P and Q) vary with the square of the voltage magnitude |V |:

P

P0
=
( |V |
|V0|

)2

,
Q

Q0
=
( |V |
|V0|

)2

• Polynomial (Po):
The relation between powers and voltage magnitudes |V | is described by a polynomial equa-
tion:

P

P0
= a0 + a1

|V |
|V0|

+ a2

( |V |
|V0|

)2

,
Q

Q0
= b0 + b1

|V |
|V0|

+ b2

( |V |
|V0|

)2

where a0, a1, a2 and b0, b1, b2 are constant parameters of the model and satisfy the
following equations:

a0 + a1 + a2 = 1, b0 + b1 + b2 = 1

• Exponential:
The relation between powers and voltage magnitudes |V | is described by an exponen-
tial equation:

P

P0
=
( |V |
|V0|

)n
,

Q

Q0
=
( |V |
|V0|

)n
where n is a constant parameter of the model.

Here P0, Q0, and V0 are the specified parameters of the each bus in the network.
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2.2 Load Connection

Three-phase loads can be connected in a grounded Wye (Y) configuration or an ungrounded
delta (∆) configuration as shown in Figure 1. Loads are connected phase-to-neutral or phase-
to-phase in a four-wire Wye configuration. Similarly, loads are connected phase-to-phase in a
three-wire delta configuration.

Figure 1: Wye and delta connections for three-phase loads [68].

Let us assume that (P pi )L and (Qpi )
L are the active and reactive power loads, respectively,

at bus i for a given phase p and modeled as the exponential load model described in Section
2.1. Then, in the case the Y connection is applied, three-phase loads and currents are given as
follows:

(Sai )L

(Sbi )
L

(Sci )
L

 =

(P ai )L + ı(Qai )L

(P bi )L + ı(Qbi )
L

(P ci )L + ı(Qci )
L

 =


(

(P ai0)L + ı(Qai0)L
)(
|V a

i |
|V a

0 |

)n(
(P bi0)L + ı(Qbi0)L

)(
|V b

i |
|V b

0 |

)n(
(P ci0)L + ı(Qci0)L

)(
|V c

i |
|V c

0 |

)n
 ,

IaiIbi
Ici

 =


(

(Sa
i )L

V a
i

)∗(
(Sb

i )L

V b
i

)∗(
(Sc

i )L

V c
i

)∗
 . (1)

In the case that the ∆ connection is considered, three-phase loads and currents are given as
follows:

(Sabi )L

(Sbci )L

(Scai )L

 =


(

(P abi0 )L + ı(Qabi0 )L
)(
|V ab

i |
|V ab

0 |

)n(
(P bci0 )L + ı(Qbci0)L

)(
|V bc

i |
|V bc

0 |

)n(
(P cai0 )L + ı(Qcai0 )L

)(
|V ca

i |
|V ca

0 |

)n
 ,

IaiIbi
Ici

 =


(

(Sab
i )L

V ab
i

)∗
−
(

(Sca
i )L

V ca
i

)∗(
(Sbc

i )L

V bc
i

)∗
−
(

(Sab
i )L

V ab
i

)∗(
(Sca

i )L

V ca
i

)∗
−
(

(Sbc
i )L

V bc
i

)∗
 . (2)

2.3 Generator Model

Since conventional power plants have controls for the active power P and the voltage magnitude
|V |, they are modeled as a PV bus in the power flow analysis. However, most of the DGs do
not have both P and |V | controls and therefore they cannot be modeled as a PV bus. Figure
2 shows which type of power converter is employed to which types of renewable energy sources
(DGs).
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Figure 2: Combination of power converters and energy sources [69].

Depending on the types of energy sources and energy converters, the DGs are modeled as
follows:

• The constant power factor model (PQ bus):
The active power P output and power factor pf are specified and the reactive power Q is
determined by these two variables.

• The variable reactive power model (PQ bus):
The active power P output is specified and the reactive power Q is determined by applying
a predetermined polynomial function.

• The constant voltage model (PV bus):
The active power P output and voltage magnitude |V | are specified.

The DGs modeled as PQ buses can be treated as negative PQ loads in power flow analysis.

2.4 Transformer Model

Three-phase transformers are modeled by an admittance matrix Y abcT which depends upon the
connection of the primary and secondary taps, and the leakage admittance.

Y abcT =

[
Y abcpp Y abcps

Y abcsp Y abcss

]
(3)

where Y abcps , Y abcsp are a mutual admittance and Y abcpp , Y abcss are a self admittance of the primary
and the secondary taps, respectively. The submatrices of the admittance matrix for different
transformer connections are given in Table 2.
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Transformer Connection Self admittance Mutual admittance
Bus P Bus S Y abcpp Y abcss Y abcps Y abcsp

Wye-G Wye-G YI YI −YI −YI
Wye-G Wye YII YII −YII −YII
Wye-G Delta YI YII YIII Y TIII

Wye Wye-G YII YII −YII −YII
Wye Wye YII YII −YII −YII
Wye Delta YII YII YIII Y TIII
Delta Wye-G YII YI Y TIII YIII
Delta Wye YII YII Y TIII YIII
Delta Delta YII YII −YII −YII

Table 2: Characteristic submatrices of admittance matrices for different transformer connections.

In this table, submatrices are given as:

YI =

 yt 0 0
0 yt 0
0 0 yt

 , YII =
1

3

 2yt −yt −yt
−yt 2yt −yt
−yt −yt 2yt

 , YIII =
1√
3

 −yt yt 0
0 −yt yt
yt 0 −yt

 (4)

and yt is the leakage admittance of the transformer. If the transformer has an off-nominal tap
ratio α:β where α and β are tappings on the primary and secondary sides respectively, then the
submatrices must be modified as follows:

• Divide the self admittance matrix of the primary by α2:
Y abc
pp

α2

• Divide the self admittance matrix of the secondary by β2:
Y abc
ss

β2

• Divide the mutual admittance matrices by αβ:
Y abc
ps

αβ ,
Y abc
sp

αβ

The admittance matrix (3) for the transformer can be added to the general admittance matrix
in (5). For more detailed information, we refer to [15].

3 Power Flow Problem

The power flow, or load flow problem is the problem of computing the voltage magnitude |Vi|
and angle δi in each bus of a power system where the power generation and consumption are
given. According to Kirchoff’s Current Law (KCL), the relation between the injected current I
and the bus voltages V , is described by the admittance matrix Y:

I = YV ↔

I
abc
1
...

IabcN

 =

Y
abc
11 · · · Y abc1N
...

. . .
...

Y abcN1 · · · Y abcNN


V

abc
1
...

V abcN

 . (5)

In Equation (5), Iabci , V abcj , and Y abcij are given as:

Iabci =

IaiIbi
Ici

 , V abcj =

V ajV bj
V cj

 , Y abcij =

 Y aaij Y abij Y acij
Y baij Y bbij Y bcij
Y caij Y cbij Y ccij

 (6)
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where Ipi is the injected current, V pi is the complex voltage at bus i for a given phase p, and Y pqij
is the element of the admittance matrix. The injected current Ipi at bus i for a given phase p
can be computed from Equation (5) as follows:

Ipi =

N∑
k=1

∑
q=a,b,c

Y pqik V
q
k . (7)

The mathematical equations for the three-phase power flow problem are given by:

Spi = V pi (Ipi )∗ = V pi

N∑
k=1

∑
q=a,b,c

(Y pqik )∗(V qk )∗ (8)

where Spi is the injected complex power. Mathematically, the power flow problem is a nonlinear
system of equations.

4 Newton Power Flow Solution Methods

The Newton based power flow methods use the Newton–Raphson method which is used to solve
a nonlinear system of equations F (~x) = 0. The linearized problem is constructed as the Jacobian
matrix equation

− J(~x)∆~x = F (~x) (9)

where J(~x) is the square Jacobian matrix and ∆~x is the correction vector. The Jacobian matrix

is obtained by Jik = ∂Fi(~x)
∂xk

and is highly sparse in power flow applications [8,62]. Newton power

flow methods (NRs) formulate F (~x) as power or current-mismatch functions and designate the
unknown bus voltages as the problem variables ~x.

4.1 The Power Mismatch Function

The power flow problem (8) is formulated as the power mismatch function F (~x) as follows:

Fi(~x) = ∆Spi = (Spi )sp − V pi
N∑
k=1

∑
q=a,b,c

(Y pqik )∗(V qk )∗ (10)

where (Spi )sp is the specified complex power at bus i for a given phase p. In general, the specified
complex power (Spi )sp injection at bus i is given by following equation:

(Spi )sp = (Spi )G − (Spi )L

where (Spi )G is the specified complex power generation, whereas (Spi )L = (P pi )L + ı(Qpi )
L is

specified complex power load at bus i for a given phase p. Here, (P pi )L and (Qpi )
L can be

modeled as one of the load models described in Section 2.1.

4.2 The Current Mismatch Function

The power flow problem (8) is formulated as the current-mismatch function F (~x) as follows:

Fi(~x) = ∆Ipi =
( (Spi )sp

V pi

)∗
−

N∑
k=1

∑
q=a,b,c

Y pqik V
q
k (11)
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where (Spi )sp is the specified complex power at bus i for a given phase p.
The power mismatch (10) and current mismatch (11) functions given in complex form can be

reformulated into real equations and variables using polar and Cartesian coordinates. These two
mismatch functions (power and current) and three coordinates (polar, Cartesian and complex
form), result in six versions of the Newton–Raphson method for the solution of power flow
problems. The detailed explanations of all six versions can be found in [65]. Only the version
using the current mismatch functions in polar coordinates is explained in the following section.
The remaining versions can be derived similarly.

4.2.1 Polar Current Mismatch Version (NR-c-pol)

In this version, the current mismatch function (11) is rewritten for real and imaginary parts
using polar coordinates as follows:

∆(Iri )p(~x) =
(P spi )p cos δpi + (Qspi )p sin δpi

|V pi |
−

N∑
k=1

∑
q=a,b,c

|V qk |(G
pq
ik cos δqk −B

pq
ik sin δqk) (12)

∆(Imi )p(~x) =
(P spi )p sin δpi − (Qspi )p cos δpi

|V pi |
−

N∑
k=1

∑
q=a,b,c

|V qk |(G
pq
ik sin δqk +Bpqik cos δqk). (13)

The current mismatch function can be written in vector form as follows:

F (~x) =



∆(Ir1 )abc

...
∆(IrN )abc

∆(Im1 )abc

...
∆(ImN )abc


(14)

where

∆(Iri )abc =

∆(Iri )a(~x)
∆(Iri )b(~x)
∆(Iri )c(~x)

 , ∆(Imi )abc =

∆(Imi )a(~x)
∆(Imi )b(~x)
∆(Imi )c(~x)

 (15)

and we look for the solution where the current mismatch function (14) is equal to zero:

F (~x) = 0. (16)

Application of a first-order Taylor approximation to the current mismatch function (14)
results in a linear system of equations that is solved in every Newton iteration:

J(~x)∆~x = F (~x) (17)

where ∆~x is the correction and J(~x) is the Jacobian matrix of the current mismatch function.
Here, the Jacobian matrix is obtained by taking all first-order partial derivatives of the current
mismatch function with respect to the voltage angles δp and magnitudes |V |p as:
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if i 6= k

∂∆(Iri )p(~x)

∂|V pk |
= −(Gppik cos δpk −B

pp
ik sin δpk)

∂∆(Iri )p(~x)

∂δpk
= |V pk |(G

pp
ik sin δpk +Bppik cos δpk)

∂∆(Imi )p(~x)

∂|V pk |
= −(Gppik sin δpk +Bppik cos δpk)

∂∆(Imi )p(~x)

∂δpk
= −|V pk |(G

pp
ik cos δpk −B

pp
ik sin δpk)

if i = k

∂∆(Iri )p(~x)

∂|V pi |
= −(Gppii cos δpi −B

pp
ii sin δpi )− (P spi )p cos δpi + (Qspi )p sin δpi

|V pi |2

∂∆(Iri )p(~x)

∂δpi
= |V pi |(G

pp
ii sin δpi +Bppii cos δpi )− (P spi )p sin δpi − (Qspi )p cos δpi

|V pi |
∂∆(Imi )p(~x)

∂|V pi |
= −(Gppii sin δpi +Bppii cos δpi )− (P spi )p sin δpi − (Qspi )p cos δpi

|V pi |2

∂∆(Imi )p(~x)

∂δpi
= −|V pi |(G

pp
ii cos δpi −B

pp
ii sin δpi ) +

(P spi )p cos δpi + (Qspi )p sin δpi
|V pi |

The linear system of Equation (17) that is solved in every Newton iteration can be written
in matrix form as follows:

−



∂∆(Ir1 )abc

∂δabc
1

· · · ∂∆(Ir1 )abc

∂δabc
N

∂∆(Ir1 )abc

∂|V abc
1 | · · · ∂∆(Ir1 )abc

∂|V abc
N |

...
. . .

...
...

. . .
...

∂∆(IrN )abc

∂δabc
1

· · · ∂∆(IrN )abc

∂δabc
N

∂∆(IrN )abc

∂|V abc
1 | · · · ∂∆(IrN )abc

∂|V abc
N |

∂∆(Im1 )abc

∂δabc
1

· · · ∂∆(Im1 )abc

∂δabc
N

∂∆(Im1 )abc

∂|V abc
1 | · · · ∂∆(Im1 )abc

∂|V abc
N |

...
. . .

...
...

. . .
...

∂∆(ImN )abc

∂δabc
1

· · · ∂∆(ImN )abc

∂δabc
N

∂∆(ImN )abc

∂|V abc
1 | · · · ∂∆(ImN )abc

∂|V abc
N |





∆δabc1
...

∆δabcN

∆|V abc1 |
...

∆|V abcN |


=



∆(Ir1 )abc

...
∆(IrN )abc

∆(Im1 )abc

...
∆(ImN )abc


(18)

where

∆δabci =

∆δai
∆δbi
∆δci

 , ∂∆(Iri )abc

∂δabcj

=


∂∆(Iri )a

∂δaj

∂∆(Iri )a

∂δbj

∂∆(Iri )a

∂δcj
∂∆(Iri )b

∂δaj

∂∆(Iri )b

∂δbj

∂∆(Iri )b

∂δcj
∂∆(Iri )c

∂δaj

∂∆(Iri )c

∂δbj

∂∆(Iri )c

∂δcj

 , (19)

∆|V abci | =

∆|V ai |
∆|V bi |
∆|V ci |

 , ∂∆(Imi )abc

∂|V abcj |
=


∂∆(Imi )a

∂|V a
j |

∂∆(Imi )a

∂|V b
j |

∂∆(Imi )a

∂|V c
j |

∂∆(Imi )b

∂|V a
j |

∂∆(Imi )b

∂|V b
j |

∂∆(Imi )b

∂|V c
j |

∂∆(Imi )c

∂|V a
j |

∂∆(Imi )c

∂|V b
j |

∂∆(Imi )c

∂|V c
j |

 . (20)

The bus voltage correction in polar coordinate is given by:

|V pi |
(h+1) = |V pi |

(h) + ∆|V pi |
(h) (21)

(δpi )(h+1) = (δpi )(h) + ∆(δpi )(h) (22)
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where h is the iteration counter. Then the complex voltage at bus i can be computed by:

(V pi )(h+1) = |V pi |
(h+1)eı(δ

p
i )(h+1)

. (23)

4.2.2 Representation of PV Buses for NR-c-pol

In case of a PV bus j, a voltage magnitude |V abcj | is specified instead of reactive power Qabcj
where

|V abcj | =

|V aj ||V bj |
|V cj |

 , Qabcj =

QajQbj
Qcj

 . (24)

In the current mismatch formulation, it is possible to choose the reactive power Qpj at the bus
j for a given phase p as an unknown variable as a voltage magnitude |V | or an angle δ. Since

Qabcj is an unknown variable, all the first-order partial derivatives
∂∆(Iri )abc

∂Qabc
j

and
∂(∆Imi )abc

∂Qabc
j

must

be computed as:

∂∆(Iri )abc

∂Qabcj
=


∂∆(Iri )a

∂Qa
j

∂∆(Iri )a

∂Qb
j

∂∆(Iri )a

∂Qc
j

∂∆(Iri )b

∂Qa
j

∂∆(Iri )b

∂Qb
j

∂∆(Iri )b

∂Qc
j

∂∆(Iri )c

∂Qa
j

∂∆(Iri )c

∂Qb
j

∂∆(Iri )c

∂Qc
j

 , ∂∆(Imi )abc

∂Qabcj
=


∂∆(Imi )a

∂Qa
j

∂∆(Imi )a

∂Qb
j

∂∆(Imi )a

∂Qc
j

∂∆(Imi )b

∂Qa
j

∂∆(Imi )b

∂Qb
j

∂∆(Imi )b

∂Qc
j

∂∆(Imi )c

∂Qa
j

∂∆(Imi )c

∂Qb
j

∂∆(Imi )c

∂Qc
j


(25)

where if i 6= j

∂∆(Iri )abc(~x)

∂Qabcj
=

 0 0 0
0 0 0
0 0 0

 , ∂∆(Imi )abc(~x)

∂Qabcj
=

 0 0 0
0 0 0
0 0 0

 (26)

if i = j

∂∆(Irj )abc(~x)

∂Qabcj
=


sin δaj
|V a

j |sp
0 0

0
sin δbj
|V b

j |sp
0

0 0
sin δcj
|V c

j |sp

 , ∂∆(Irj )abc(~x)

∂Qabcj
= −


cos δaj
|V a

j |sp
0 0

0
cos δbj
|V b

j |sp
0

0 0
cos δcj
|V c

j |sp


(27)

When the derivatives
∂∆(Iri )abc

∂Qabc
j

and
∂∆(Imi )abc

∂Qabc
j

are added into the Jacobian matrix J(~x), the

Jacobian matrix becomes a rectangular matrix. However, all derivatives of real ∆(Iri )abc and
reactive ∆(Imi )abc current mismatch functions with respect to |V abcj | cannot be taken since |V abcj |
is not an unknown variable. Therefore, we can remove all the

∂∆(Iri )abc

∂|V abc
j | and

∂∆(Imi )abc

∂|V abc
j | from the

Jacobian matrix J(~x) and the correction ∆|V abcj | can be replaced by ∆Qabcj . Thus, the Jacobian
matrix J(~x) is again square and therefore we will have a unique solution. The initial reactive
power (Qpj )

0 at PV bus j for a given phase p is computed as follows:

(Qpj )
0 =

N∑
k=1

∑
q=a,b,c

|V pj ||V
q
k |(G

pq
jk sin δqjk −B

pq
jk cos δqjk). (28)
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The reactive power is updated at each iteration use.

(Qpj )
(h+1) = (Qpj )

(h) + ∆(Qpj )
(h). (29)

The flow chart of the polar current mismatch version (NR-c-pol) is given in Figure 3. The
remaining versions of the Newton power flow method (NR) such as Cartesian current mismatch
(NR-c-car), complex current mismatch (NR-c-com), Cartesian power mismatch (NR-p-car), and
complex power mismatch (NR-p-com) which are newly developed for a single-phase power flow
problem in [65], can be extended to a three-phase power flow problem analogously.

let h = 0 and ~xh =

[
~δh

|~V |h

]
the initial iterate

compute the current-mismatches F (~xh) using (12) and (13)

||F (~xh)||∞ ≤ ε ?

solve the correction ∆~xh =

[
∆~δh

∆|~V |h

]
using (18)

Stop

update iterate ~xh+1 using (21) and (22)

yes

no

h = h+ 1

Figure 3: Flow chart of the polar current mismatch version.

5 Numerical Experiment

We have shown how all versions of the Newton power flow method, originally developed for
single-phase power flow problems in [65], can be extended to three-phase power flow problems
with unbalanced distribution networks. Depending on the properties of a given network, one
version can work better than the other versions. Therefore, it is crucial to study which version
is more suitable for which kind of a power network. We use different load models, transformer
connections, loading conditions, and R/X ratios in order to analyze the convergence ability
and scalability of all versions. Different loading conditions are considered by multiplying each
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bus’s power S by a constant k as S = k ∗ S. Similarly, different R/X ratios are obtained by
multiplying each branch resistance by a constant k as Z = k ∗R+ ıX. Finally, the performance
of the solution methods is evaluated for constant power and constant polynomial load models as
defined in Section 2.1. The most widely used version using power mismatch function in polar
coordinates (NR-p-pol [8]) of the Newton power flow method and backward–forward sweep-based
algorithm (BFS [43]) are applied for comparison purposes.

Two balanced distribution networks (33-bus [70] and 69-bus [71]) and two unbalanced distri-
bution networks (IEEE 13-bus [72] and IEEE 37-bus [72]) are used for the numerical experiment.
All methods are implemented in Matlab and the relative convergence tolerance ε is set to 10−5.
The maximum number of iterations is set to 50. Experiments are performed on an Intel computer
i5-4690 3.5 GHz CPU with four cores and 64 Gb memory, running a Debian 64-bit Linux 8.7
distribution.

5.1 Single-Phase Problems

The convergence results of all solution methods for balanced distribution networks (DCase33 [70]
and DCase69 [71]) are shown in Table 3.

Methods
Test cases

DCase33 DCase69
iter time ||F (~x)||∞ iter time ||F (~x)||∞

NR-p-pol [8] 3 0.0123 7.4675× 10−6 4 0.0131 5.5875× 10−9

NR-p-car 3 0.0067 1.0433× 10−6 3 0.0069 8.1777× 10−6

NR-p-com 6 0.0058 6.4610× 10−6 7 0.0060 4.0138× 10−6

NR-c-pol 3 0.0087 1.4291× 10−9 3 0.0090 8.5226× 10−9

NR-c-car 3 0.0073 1.3954× 10−9 3 0.0077 1.9503× 10−8

NR-c-com 7 0.0068 5.3792× 10−6 10 0.0084 2.7697× 10−6

BFS [43] 7 0.0102 1.0454× 10−6 7 0.0104 7.7770× 10−6

Table 3: Balanced distribution networks: DCase33 and DCase69.

From Table 3, we see that NR-c-pol and NR-c-car versions have better performance in terms
of a number of iterations and the norm of the residual of the mismatch function. Although
NR-p-pol [8] and NR-p-car versions converged after the same number of iterations, the value
of the residual norm is larger than for the NR-c-pol and NR-c-car versions. This means that
if we set the tolerance to 10−7, these versions will need extra iterations to converge, whereas
NR-c-pol and NR-c-car versions still converge after three iterations. We also see that NR-p-com,
NR-c-com and BFS [43] methods need more iterations and have a linear convergence compared
to other versions which have a quadratic convergence. These three methods solve the power flow
problem in complex form, whereas other versions (NR-p-car, NR-p-pol, NR-c-car, and NR-c-pol)
reformulate the problem into real equations using Cartesian and polar coordinates. Figure 4a
shows the comparison of the results obtained by proposed solution methods with the well-known
result of the existing method [48] for the computed voltage magnitude of DCase69. All the
results of the proposed solution methods match the well-known result well with accuracy of 10−5

as shown in Figure 4b.
A convergence result of all solution methods for the balanced distribution network DCase69

with different loading conditions and different R/X ratios, is shown in Figures 5 and 6, respec-
tively. We see that NR-p-com, NR-c-com, and BFS [43] are more sensitive to the change of loads
and R/X ratios compared to other versions that use real variables and values for the problem
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formulation using polar and Cartesian coordinates. Figure 7 shows the convergence of all solu-
tion methods for different load models. It is clear that for all methods, a constant power (PQ)
model is more suitable to use on a balanced distribution network.

Thus, we can conclude that NR-c-pol and NR-c-car versions developed in [65] are more
suitable for balanced distribution networks than versions using power mismatch functions (NR-
p-pol [8], NR-p-car). Furthermore, NR-p-com and NR-c-com versions, as well as BFS [43] are
the least preferable methods for balanced distribution networks in terms of convergence and
robustness.

0 10 20 30 40 50 60 70

0.95

1

buses

|V
|

NR-p-pol [8]
NR-p-rec
NR-p-com
NR-c-pol
NR-c-rec
NR-c-com

BFS [43]

Method [48]

(a)

0 10 20 30 40 50 60 70

0

1

2

·10−5

buses

∆
|V
|

NR-p-pol [8]
NR-p-rec
NR-p-com
NR-c-pol
NR-c-rec
NR-c-com

BFS [43]

(b)

Figure 4: Computed voltage magnitude of DCase69. (a) Computed voltage magnitude |V |;
(b) Difference between proposed methods and existing method [48] for the computed voltage
magnitude.
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Figure 5: Convergence results for different loading conditions (S = k ∗ S) in DCase69.
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Figure 6: Convergence results for different R/X ratios (Z = k ∗R+ ıX) in DCase69.
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Figure 7: Convergence result for different load models: (PQ) and (Po) in DCase69.
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5.2 Three-Phase Problems

For IEEE 13-bus (DCase13) and IEEE 37-bus (DCase37) test networks, regulators are removed
and all three-phase loads are chosen to be connected in a grounded Wye configuration as defined
in Section 2.2. For the unbalanced distribution network DCase13, the transformer is connected
in Wye-G, whereas DCase37 has the delta–delta transformer connection as defined in Section
2.4. The BFS method [43] is not implemented for three-phase power flow problems since it is not
explained in sufficient detail how the three-phase transformer is handled for this method. The
convergence result of all solution methods for unbalanced distribution networks (DCase13 and
DCase37) is shown in Table 4.

From Table 4, we see that except for the NR-p-com and NR-c-com versions, all methods con-
verged after the same number of iterations for both unbalanced distribution networks. However,
NR-c-pol and NR-c-car versions have better performance in terms of both number of iterations
and residual norm of the mismatch function, as we had the same result for balanced distribution
networks. Again, NR-p-com and NR-c-com versions need more iterations to converge compared
to other versions.

Methods
Test cases

DCase13 DCase37
iter time ||F (~x)||∞ iter time ||F (~x)||∞

NR-p-pol [8] 3 0.0116 1.5571× 10−9 2 0.0134 3.4150× 10−7

NR-p-car 3 0.0067 6.7018× 10−9 2 0.0069 1.1627× 10−7

NR-p-com 5 0.0055 5.0957× 10−7 3 0.0055 5.3394× 10−7

NR-c-pol 3 0.0087 6.9974× 10−11 2 0.0094 3.9750× 10−8

NR-c-car 3 0.0073 8.1499× 10−11 2 0.0079 4.0339× 10−8

NR-c-com 5 0.0067 3.5585× 10−7 3 0.0065 7.4985× 10−7

Table 4: Unbalanced distribution networks: DCase13 and DCase37.

A convergence result of all solution methods for the unbalanced distribution network DCase13
with different loading conditions and different R/X ratios is shown in Figures 8 and 9, respec-
tively. As in single-phase cases, NR-p-com and NR-c-com versions are more sensitive to the
change of loads and R/X ratios compared to other versions. Moreover, NR-c-pol and NR-c-car
versions were more stable for the changes and therefore they can be applied to any unbalanced
distribution networks with high R/X ratios and loading conditions. All methods performed
better when a constant power (PQ) model was applied to three-phase problems as shown in
Figure 10. We can conclude that versions using the current mismatch functions (NR-c-pol and
NR-c-car) are more suitable than versions using the power-mismatch functions (NR-p-pol [8] and
NR-p-car) for unbalanced distribution networks.
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Figure 8: Convergence results for different loading conditions (S = k ∗ S) in DCase13.
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Figure 9: Convergence results for different R/X ratios (Z = k ∗R+ ıX) in DCase13.
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6 Conclusions

In this paper, the Newton power flow methods developed for single-phase problems in [65] are
extended to three-phase power flow problems. Mathematical models of the load, three-phase load
connection, and three-phase transformer connection are studied and applied in the numerical
experiments. The power flow problem is mathematically described for the three-phase problem.
The Newton power flow method and its six possible versions are introduced for three-phase power
flow problems. As one of the newly developed versions of the Newton power flow method, the
polar current mismatch version (NR-c-pol) is explained in detail for a three-phase power flow
problem. The existing version (NR-p-pol [8]) and the backward–forward sweep-based algorithm
(BFS [43]) are applied for comparison purposes. As a result of the numerical experiment, the
polar current mismatch (NR-c-pol) and the Cartesian current mismatch (NR-c-car) versions
developed in [65] and extended in this paper perform the best for both balanced and unbalanced
distribution networks. We also investigate which version can be applied to what kind of a power
network by comparing all versions for distribution networks with different loading conditions,
R/X ratios, and load models. We observe that NR-c-pol and NR-c-car versions are more stable
to the change of loading conditions and R/X ratios for both balanced and unbalanced networks,
whereas the performance of other methods is highly sensitive to them. Therefore, these two
versions are the fastest and the most robust methods of other versions that can be applied to
single or three-phase power flow problems in any balanced or unbalanced networks. For the
subsequent research, these newly developed versions (NR-c-pol and NR-c-car) will be applied
to the optimal power flow problem in hybrid networks including DGs as they result in new
formulations for equality constraints.
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