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Abstract

We generalize the CGME (Conjugate Gradient Minimal Error) algo-
rithm to the weighted and regularized least squares problem. Analysis of
the convergence of generalized CGME and CGLS shows that CGME can
be expected to perform better for ill-conditioned regularization matrices.

Two different types of regularization are considered: an ℓ1 penalty and
an ℓ2 penalty. The ℓ1 problem is solved using Iterative Reweighted Least
Squares, which leads to an ill-conditioned regularization matrix. The two
methods are applied in a low-field MRI framework. The MRI physics in
a low-field scanner are simulated to generate a noisy signal.

When an ℓ1 penalty is used and iterative reweighted least squares is
employed, GCGLS needs significantly more iterations to converge than
GCGME. GCGME has a regularizing effect that leads to fewer artifacts
in our simulations. This effect seems to be stronger when a lower number
of CG iterations is used. These two observations indicate that GCGME
is a very promising alternative to GCGLS.

1 Introduction

In the natural sciences, inverse problems are often ill-posed, and their solutions
are very sensitive to perturbations in the data. An example of such an ill-
posed problem is the reconstruction of an image based on a magnetic resonance
imaging (MRI) signal in a low-field setting. In this case, the signal-to-noise ratio
(SNR) is low and the noise has a severe impact on the solution. Regularization is
required to limit the influence of the noise as much as possible. We are interested
in developing algorithms that can be used in this low-field MRI setting.

The model is described by the following linear system:

b = Ax+ n, (1)

where, in our case, A is a known matrix, x is the unknown image and b is the
measured MRI signal, which is contamined by noise n. We can attempt to solve
for x by finding a solution to the least squares problem

min
x

1

2
‖Ax− b‖22. (2)

This can be done by applying the conjugate gradient method introduced by
Hestenes and Stiefel in 1952 [12] to the normal equations

AHAx = AHb. (3)
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Here AH denotes the Hermitian transpose of A.
The conjugate gradient method tailored to equation (3) was proposed in [12]

and is usually denoted by CGLS (Conjugate Gradient for Least Squares). The
difference with the standard conjugate gradient method lies in the increased
stability of the CGLS method. A review of the literature reveals that this
method is known by other names as well. In [16], Saad calls it CGNR (Conjugate
Gradient Normal Residual), while Hanke [8] and Engl [6] use the term CGNE
(Conjugate Gradient for the Normal Equations).

On the other hand, the second normal equations

AAHy = b, x = AHy (4)

can be solved using the conjugate gradient method as well. In literature, this
is usually called CGME (Conjugate Gradient Minimal Error). However, in
[2] it is called CGNE (Conjugate Gradient Normal Error), while [17] uses the
term Craig’s method. It was introduced by Craig in 1955 [5]. CGLS and
CGME are discussed by Björck in [3], Hanke in [8] and Saad in [16]. While
CGLS minimizes the residual r = b − Ax in the ℓ2 norm over the Krylov
subspace x0+Kk(A

HA,AHb−AHAx0), CGME minimizes the error (over the
same subspace). The main drawback of this method is that it only works for
consistent problems b ∈ R(A). This means that the method is of limited use
for most problems in practice, because the presence of noise renders the system
inconsistent. In [13], this problem is circumvented by defining an operator Q

that projects b onto the column space of A. Subsequently, Ax = Qb can be
solved using CGME. The obvious disadvantage of this method is that Qb has
to be calculated and stored.

1.1 Regularization of the problem

Regularization of an ill-posed problem aims to make the problem less sensitive
to noise by taking into account additional information. Many iterative meth-
ods have a regularizing effect if the iterating procedure is stopped early. The
regularizing properties of CGLS are well known. They were established by Ne-
mirovskii in [15] and are discussed in [3], [6] and [8], among others. CGME’s
regularizing effect was shown by Hanke in [9]. However, we are interested in
what Hansen [11] calls general-form Tikhonov regularization, i.e. by adding a
regularization term to minimization problem (2).

It is straightforward to generalize CGLS to regularized and weighted least
squares problems of the form

min
x

1

2
‖Ax− b‖2

W
+

1

2
τ‖x‖2

R
(5)

where W, a weighting matrix, and R are Hermitian positive definite matrices.
In this paper we will use W = C−1, where C is the covariance matrix of the
noise. The optimal value of the regularization parameter τ is usually unknown.
An approach that is often used to find a suitable value is the L-curve method
[10]. By taking the gradient and setting it equal to 0, the normal equations are
obtained:

(AHC−1A+ τR)x = AHC−1b. (6)

4



Again, the conjugate gradient method can be used to solve equation (6). We
will use the term GCGLS (Generalized CGLS) to refer to the conjugate gradient
method applied to the normal equations (6).

Saunders [17] extended CGME to the regularized least squares problem with
R = I before. He introduces an additional variable s and considers the con-
strained minimization problem

min
x,s

1

2

∥

∥

∥

∥

(

x

s

)∥

∥

∥

∥

2

(7)

subject to
(

A
√
τI
)

(

x

s

)

= b.

By defining r =
√
τs = b − Ax, he shows that this constrained minimization

problem is equivalent to

min
x

1

2
‖Ax− b‖2 + 1

2
τ‖x‖2. (8)

For every τ > 0,
(

A
√
τI
)

(

x

s

)

= b is consistent and hence, equation (8)

can be solved using CGME. Unfortunately, no advantages to using CGME were
found. Note that such a reformulization is necessary because the standard way
of including the regularization matrix R = I, by simply solving the so-called
damped least squares problem

(

A√
τI

)

x =

(

b

0

)

(9)

using CGME, is not possible, due to the inconsistency of the system.
In this paper, we reformulate the weighted and regularized least squares

problem such that CGME can be used to solve it for nontrivial covariance and
regularization matrices, filling a gap in existing literature as far as we know. We
do this by deriving the Schur complement equation for the residual. A similar
approach is taken by Arioli and Orban [1] to derive generalizations of the Golub-
Kahan algorithm. Using these algorithms, they formulate generalizations of
LSQR, Craig’s method and LSMR for the general regularization problem. We
explain in what cases Generalized CGME (GCGME) may have an advantage
over GCGLS. Additionally, we apply GCGME to MRI data with different types
of regularization.

1.2 Application to low-field MRI

This research is part of a project that aims towards creating an inexpensive
MRI scanner using a Halbach cylinder that can be used for medical purposes.
A Halbach cylinder is a configuration of permanent magnets that, combined,
generate a magnetic field inside the cylinder and a very weak, or in the ideal
case, no magnetic field outside of it. Imaging can be done by making use of the
variations in the magnetic field. However, the resulting reconstruction problem
is very ill-posed: if the variations are too small, the signal contains little spatial
information, whereas if the variations are too high, the signal-to-noise ratio is
the limiting factor. Nevertheless, in a similar project, Cooley et al. [4] have
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shown that it is possible to reconstruct magnetic resonance images given signals
obtained using a device based on a Halbach cylinder. The present paper results
from our effort to address the challenges of low-field MRI using advanced image
processing.

1.3 Structure

In section 2, a second set of normal equations is derived for the regularized
and weighted least squares problem. The conjugate gradient method is tailored
specifically to these equations, leading to the generalized CGME algorithm. In
section 3, two different types of regularization are discussed and in section 4,
we describe the application and the model that will be used to compare the
performance of the two algorithms. In section 5, we describe how we obtained
our dataset and results are given in section 6. Section 7 contains the conclusion.

2 GCGLS and GCGME

Minimization problem (5) can be formulated as a constrained minimization
problem:

min
r,x

1

2
||r||2C +

1

2
τ ||x||2R (10)

s.t. r = C−1(b−Ax).

Using the technique of Lagrange multipliers, we find that

r = C−1(b−Ax) and τRx = AHr. (11)

2.1 GCGLS

If we eliminate r from equation (11), the original normal equations (6) are ob-
tained. By applying the conjugate gradient method to equation (6) and making
some adjustments to increase stability (see [3] for details), the GCGLS algorithm
is obtained:
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Algorithm 1 GCGLS

Require: A ∈ CM×N ,C ∈ CM×M ,R ∈ CN×N ,x0,∈ CN ,b ∈ CM , τ ∈ R≥0;
Ensure: Approximate solution xk such that ‖AHrk − τRxk‖ 6 TOL.
1: r0 = C−1(b−Ax0), s0 = AHr0 − τRx0, p0 = s0; q0 = AHp0, γ0 = sH0 s0,

k = 0
2: while

√
γk > TOL and k < kmax do

3: ξk = qH
k C−1qk + τpH

k Rpk

4: αk = γk

ξk
5: xk+1 = xk + αkpk

6: Rxk+1 = Rxk + αkRpk

7: rk+1 = rk − αkC
−1qk

8: sk+1 = AHrk+1 − τRxk+1

9: γk+1 = sHk+1sk+1

10: βk =
γk+1

γk

11: pk+1 = sk+1 + βkpk

12: qk+1 = Apk+1

13: k = k + 1
14: end while

Here, sk denotes the residual of the normal equations (6). We remark that
the vectors on the left side can be overwritten by the vectors on the right.
Only 8 vectors have to be stored: x, r, s, p, q, Rx, Rp and C−1q. Note
that the recursion for Rxk+1 is included to avoid an extra multiplication with
R. It can be ignored in case R = I. In this algorithm, only three matrix-
vector multiplications are carried out per iteration: Apk+1, A

Hrk and Rpk.
Additionally, one system with C has to be solved (if C 6= I). A slightly different
formulation of the GCGLS algorithm can be found in [18].

2.2 GCGME

If τR is invertible, x can be eliminated from equation (11), yielding

(

1

τ
AR−1AH +C

)

r = b. (12)

Subsequently, x can be obtained from r:

x =
1

τ
R−1AHr. (13)

In [1], Arioli and Orban derive a generalization of Craig’s method [5] based
on Schur complement (12). Below we formulate a similar generalization of the
CGME method applied to this system. We are not aware this generalization of
CGME has been formulated elsewhere.
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Algorithm 2 GCGME

Require: A ∈ CM×N ,C ∈ CM×M ,R ∈ CN×N , r0 ∈ CM ,b ∈ CM , τ ∈ R>0;
Ensure: Approximate solution xk such that ‖b−Axk −Crk‖ 6 TOL.
1: x0 = 1

τR
−1AHr0

2: s0 = b−Ax0 −Cr0, p0 = s0, q0 = AHp0, γ0 = sH0 s0, k = 0
3: while

√
γk > TOL and k < kmax do

4: ξk = 1
τ q

H
k R−1qk + pH

k Cpk

5: αk = γk

ξk
6: rk+1 = rk + αkpk

7: xk+1 = xk + αk

τ R−1qk

8: sk+1 = sk − αk(
1
τAR−1qk +Cpk)

9: γk+1 = sHk+1sk+1

10: βk = γk+1

γk

11: pk+1 = sk+1 + βkpk

12: qk+1 = AHpk+1

13: k = k + 1
14: end while

Here, sk is the residual of the normal equations (12). Note that the original
CGME algorithm can be recovered from the generalized CGME algorithm given
above by taking 1

τR = I and C = O. Only 7 vectors have to be stored: x, r, s,
p, q, R−1q and Cp. Like GCGLS, GCGME needs four matrix operations per
iteration: Cpk, A

Hpk, R
−1qk and AR−1qk.

We remark that there is an essential difference between GCGLS and GCGME.
GCGLS iterates for the solution vector x and the equality rk = C−1(b−Axk) is
explicitly imposed. The equality xk = 1

τR
−1AHrk is not enforced, and is only

(approximately) satisfied after convergence. GCGME, on the other hand, iter-
ates for rk. The equality xk = 1

τR
−1AHrk is enforced, while rk = C−1(b−Axk)

is only satisfied approximately after convergence.

2.3 Analysis of GCGLS and GCGME

2.3.1 Optimality property

The conjugate gradient method minimizes the error in the norm induced by the
system matrix. This means that, in every iteration, GCGLS minimizes

min
xk

(xk − x)H(AHC−1A+ τR)(xk − x) ⇔ (14)

min
xk

(r− rk)
HC(r− rk) + τ(xk − x)HR(xk − x) , rk = C−1(b−Axk) ⇔

min
xk

‖r− rk‖2C + τ‖x− xk‖2R , rk = C−1(b−Axk)

for xk − x0 ∈ Kk(A
HC−1A + τR,AHC−1r0 + τRx0). For every iteration of

GCGME, the following holds:

min
rk

(r− rk)
H(

1

τ
AR−1AH +C)(r− rk) ⇔ (15)

min
rk

τ(x − xk)
HR(x− xk) + (r− rk)

HC(r− rk), xk =
1

τ
R−1AHrk

min
rk

‖r− rk‖2C + τ‖x− xk‖2R , xk =
1

τ
R−1AHrk
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with rk − r0 ∈ Kk(r0,
1
τAR−1AH +C). Note that GCGLS and GCGME min-

imize the same weighted combination of the errors in the residual and in the
solution, but over different subspaces and under different constraints.

2.3.2 Convergence

The convergence of the conjugate gradient method depends on the condition
number of the system matrix. Suppose CG is used to solve the system Ku = f

for the unknown vector u, where K is a Hermitian positive definite (HPD)
matrix and f is a known vector. Then the following classical convergence bound
holds [3]:

‖u− uk‖K ≤ 2

(

√

κ2(K)− 1
√

κ2(K) + 1

)k

‖u− u0‖K, (16)

where κ2(K) is the ℓ2 norm condition number of K, which, for HPD matrices,
is equal to

κ2(K) =
λmax(K)

λmin(K)
(17)

in which λmax(K) and λmin(K) are the largest and smallest eigenvalue of K, re-
spectively. In this section we bound the condition numbers of the two Schur com-
plement matrices in equations (6) and (12) to gain insight into when GCGME
can be expected to perform better than GCGLS, and vice versa. Given two
HPD matrices K and M, the following bound on the condition number holds:

λmax(K) + λmin(M)

λmin(K) + λmax(M)
≤ κ2(K+M) ≤ λmax(K) + λmax(M)

λmin(K) + λmin(M)
. (18)

This inequality can be proved using Weyl’s theorem [21], which states that for
eigenvalues of Hermitian matrices K and M the following holds:

λi(K) + λmin(M) ≤ λi(K+M) ≤ λi(K) + λmax(M). (19)

Here λi(K) denotes any eigenvalue of the matrix K. For GCGLS we have that

K = τR , M = AHC−1A (20)

and, using the following inequalities

λmax(A
HC−1A) ≤ σmax(A)2

λmin(C)
, λmin(A

HC−1A) ≥ 0, (21)

with σmax(A) the largest singular value of A, we get that

κ2(A
HC−1A+ τR) ≥ τλmax(R)λmin(C)

τλmin(R)λmin(C) + σmax(A)2
(22)

Analogously we get for GCGME that

κ2(AR−1AH + τC) ≥ τλmax(C)λmin(R)

τλmin(R)λmin(C) + σmax(A)2
. (23)
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These inequalities indicate that if

λmax(C)λmin(R) ≫ λmax(R)λmin(C) ⇔ κ2(C) ≫ κ2(R) (24)

GCGLS can be expected to perform best, and vice versa that if

κ2(R) ≫ κ2(C) (25)

GCGME should be preferred.

3 Types of regularization

In this research, we focus on ℓ1 and ℓ2 penalty terms for regularization. When
an ℓ2 penalty is used, the resulting minimization problem is

min
x

1

2
||Ax− b||22 +

1

2
τ ||Fx||22. (26)

This is simply equation (5) with R = FHF. We can solve it using either
GCGLS or GCGME. More generally speaking, in the case of an ℓp penalty, the
minimization problem becomes

min
x

1

2
||Ax− b||22 +

1

2
τ ||Fx||pp, (27)

with p ∈ (0, 2]. In both cases, F is some regularizing matrix. Note that equation
(27) can be rewritten as

min
x

1

2
||Ax− b||22 +

1

2
τ ||x||2

FHDF
, (28)

where

D := diag

(

1

|Fx|2−p

)

, (29)

where |Fx| is simply the vector Fx in absolute value. Minimization problem
(28) can be solved using Iterative Reweighted Least Squares (IRLS), see for
example [3]. So, when the kth iterate xk is known, xk+1 is found as follows:

xk+1 = argmin
x

1

2
||Ax− b||22 +

1

2
τ ||x||2

FHDkF
, (30)

where

Dk = diag

(

1

|Fxk|2−p + ǫ

)

. (31)

This is repeated until convergence. Furthermore, ǫ is a small number that is
added to the denumerator to prevent division by zero. We will use ǫ = 10−6.
When carrying out calculations with D−1

k , we will use

D−1
k = diag

(

|Fxk|2−p
)

. (32)

Due to the sparsity-inducing property of the ℓ1 penalty, D−1
k = diag (|Fxk|)

will contain an increasing amount of entries that are equal to zero. In case F is
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an invertible matrix, R−1
k = F−1D−1

k (FH)−1. When GCGME is used, we can
take advantage of this structure, instead of calculating Rk and working with
its inverse. When F is an orthogonal matrix, no additional computations are
necessary to compute inverses.

The regularization matrix R = FHDkF will become ill-conditioned when
elements of Fxk become small (and p < 2). Therefore, we expect that, when
combined with IRLS, GCGME will perform better than GCGLS. Numerical
experiments are carried out to investigate this.

4 Application: MRI

4.1 Modeling the signal

In magnetic resonance imaging (MRI), the internal structure of the body is
made visible by measuring a voltage signal that is induced by time variations
of the transverse magnetization within a body part of interest. Based on this
measured signal, an image of the spin density ρ of different tissue types may be
obtained.

To be specific, first the body part of interest is placed in a static magnetic
field

#»

B = B0(
#»r )

#»

i x that is oriented in the x-direction in our Halbach measure-
ment setup (see figure 1) with a position dependent x-component B0 = B0(

#»r ).
A net magnetization

# »

Meq = M0(
#»r )

#»

i x with M0(
#»r ) =

γ2
~
2

4kBT
ρ( #»r )B0(

#»r ) (33)

will be induced that is oriented in the same direction as the static magnetic field.
In the above expression, γ = 267 · 106 rad s−1 T−1 is the proton gyromagnetic
ratio, ~ = 1.055 · 10−34 m2 kg s−1 is Planck’s constant divided by 2π, kB =
1.381 · 10−23 m2 kg s−2 K−1 is Boltzmann’s constant, and T is the temperature
in kelvin.

Subsequently, a radiofrequency pulse is emitted to tip the magnetization
towards the transverse yz-plane. After this pulse has been switched off (in our
model at t = 0), the magnetization rotates about the static magnetic field with
a precessional frequency (or Larmor frequency)

ω( #»r ) = γB0(
#»r ) (34)

and will relax back to its equilibrium given by equation (33). During this pro-
cess, an electromagnetic field is generated that can be locally measured outside
the body using a receive coil. This measured signal is amplified, demodulated,
and low-pass filtered and for the resulting signal we have the signal model [14]:

S(t) =

∫

#»r ∈D

c( #»r )ω( #»r )e−t/T2(
#»r )M⊥(

#»r , 0)e−iγ∆ωt d #»r , (35)

where D is the domain occupied by the body part of interest, T2(
#»r ) is the

transverse relaxation time, c( #»r ) is the so-called coil sensitivity with amplifica-
tion included, M⊥(

#»r , 0) is the transverse magnetization at t = 0, and ∆ω is
the difference between the Larmor frequency and the demodulation frequency
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that is used. We will set this demodulation frequency to be equal to the fre-
quency that corresponds to the static magnetic field at the center of our imaging
domain.

Furthermore, using equation (34) in the expression for M0, we have

M0(
#»r ) =

γ~2

4kBT
ρ( #»r )ω( #»r ) (36)

and since the initial transverse magnetizationM⊥(
#»r , 0) is proportional toM0(

#»r ),
we can also write our signal model as

S(t) =

∫

#»r ∈D

c( #»r )ω2( #»r )e−t/T2(
#»r )ρ( #»r )e−iγ∆ωt d #»r , (37)

where it is understood that all remaining proportionality constants have been
incorporated in the coil sensitivity c( #»r ). Finally, we note that in low-field MRI,
signal decay is dominated by spatial variations in the static background field
and transverse T2 signal decay may be ignored. Taking this observation into
account, our final signal model becomes

S(t) =

∫

#»r ∈D

c( #»r )ω2( #»r )ρ( #»r )e−iγ∆ωt d #»r . (38)

The measurements carried out in an MRI scanner consist of noisy samples
of the signal given by equation (38):

bi = S(ti) + ei, i = 1, ..., L, (39)

where bi denotes the ith sample of the signal, measured at time ti. L is the
number of time samples, ei is the measurement error. In high-field MRI, the
magnetic field is manipulated in such a way that equation (38) constitutes a
Fourier Transform. The resulting linear problem is well posed, and the image
can be efficiently obtained using an inverse FFT. However, in low-field MRI, the
magnetic field is very inhomogeneous. This is an example of a growing number
of instances where the FFT is inadequate. Model-based image reconstruction
can be applied instead [7].

In order to estimate ρ(~r), a finite series expansion is used:

ρ(~r) =

N
∑

j=1

xjφ(~r − ~rj), (40)

where φ(·) denotes the object basis function and ~rj is the center of the jth basis
function. xj are the coefficients. Usually, rectangular basis functions are used.
In that case, N is the number of pixels. Combining equations (38) and (40)
yields

S(ti) =

N
∑

j=1

aijxj , (41)

where

aij =

∫

object

φ(~r − ~rj)c(~r)ω(~r)
2e−i∆ω(~r)ti d~r. (42)

12



When the basis functions are highly localized, a “center of pixel” approximation
can be used:

aij = c(~rj)ω(~rj)
2e−i∆ω(~rj)ti∆x∆y∆z. (43)

Here, ∆x∆y is the pixel size and ∆z is the thickness of the slice that is being
imaged. Combining equations (39) and (40) yields one system of equations:

b = Ax+ e, (44)

where the elements of A are described by equation (43). This problem is ill-
posed due to the nature of the magnetic field that is used. As can be seen in
figure 2, the field has a high degree of symmetry. The precessional frequency
depends linearly on the magnitude of the field, which means that several pix-
els will correspond to the same frequency. Therefore, using only one measured
signal, it is impossible to determine the contribution of each pixel to the signal.
By rotating the object to be imaged and hence obtaining a multitude of differ-
ent signals corresponding to different rotations of the same object, we plan to
mitigate this problem. The same approach was taken by Cooley et al. [4].

4.2 Different choices for F

We will minimize the following two expressions to obtain approximations to the
optimal solution x:

min
x

1

2
||Ax − b||22 +

1

2
τ ||Fx||22 (45)

and

min
x

1

2
||Ax− b||22 +

1

2
τ ||Fx||1. (46)

Two different cases will be considered.

4.2.1 The identity as the regularization operator

First, we set F = I. When the penalty term is of the ℓ2 form, this is standard
Tikhonov regularization [20]. In case the ℓ1 penalty is used, this is known as
LASSO regularization which was first introduced by Tibshirani in [19]. If the
regularization parameter is set to a sufficiently high value, the resulting solution
will be sparse. The rationale behind choosing this type of regularization is the
fact that the intensity of many pixels in MRI images is equal to 0. Since F is
square, we do not have to explicitly calculate R to carry out calculations with
R−1 when using GCGME.

4.2.2 Regularizing using first order differences

Additionally, we consider the case where F is a first-order difference matrix that
calculates the values of the jumps between each pair of neighboring pixels:

||Fx||1 =

n
∑

k=1

m−1
∑

l=1

|Xl,k −Xl+1,k|+
n
∑

k=1

|Xm,k|

+

m
∑

l=1

n−1
∑

k=1

|Xl,k −Xl,k+1|+
m
∑

l=1

|Xl,n|. (47)
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The first term and the third sum over all jumps in the image. The other two
terms sum over all pixels in the final row and the final column of the image. By
doing this, we impose a Neumann boundary condition. We do this because we
need FHF to be invertible. Here, X is the image, consisting of m× n pixels. x
is X in vector form. This is known as total variation regularization. A reason
for defining F like this is that neighboring pixels are very likely to have the
same values in MR images. This is due to the fact that neighboring pixels tend
to represent the same tissue. However, F is not a square matrix, which means
that, in the ℓ1 case, Rk has to be calculated explicitly and then inverted when
GCGME is used. Although this makes regularization with first order differences
in combination with GCGME less attractive than with GCGLS, we do include
this technique to investigate the relative reconstruction quality of this widely
used regularization method.

5 Experiments

The signal generation inside a Halbach cylinder is simulated using equations
(43) and (44). Beforehand, the magnetic field inside a Halbach cylinder was
simulated. Figure 1 shows the Halbach cylinder.

yyy

xxxzzz

Figure 1: The Halbach cylinder.

The Field of View (FoV) is set to 14 cm in both directions. The field within
the FoV at z = 0 is shown in figure 2. We assume a slice thickness of ∆z = 5mm.
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Figure 2: The magnetic field (in T) within the FoV.
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The time step is set to ∆t = 5 · 10−6, the number of time steps to L = 101
so for each pulse, the duration is 0.5 ms. Additionally, the field is rotated by
5° after each pulse. 72 different angles are considered. As a result, the system
consists of 7272 equations.

The phantom is shown in figure 3. We are interested in finding a 32x32 pixel
approximation of this phantom. However, we use a phantom of 128x128 pixels
to generate the signal in order to obtain a more realistic signal.

(a) Phantom used to generate the signal. (b) Model solution.

Figure 3: The phantom.

The coil sensitivity c is assumed to be constant. Hence, it is left out of
the calculations. White Gaussian noise with standard deviation 0.001 is added.
Therefore, C = I.

6 Results

The numerical experiments were carried out using MATLAB version 2015a.

6.1 ℓ2 penalty

6.1.1 R = I

GCGLS and GCGME are applied to minimization problem (45). We first con-
sider standard Tikhonov regularization, soR = I. The regularization parameter
is chosen heuristically and is set to τ = 5 ·10−5. The number of CG iterations is
100 for both GCGLS and GCGME. The resulting images are shown in figures
4a and 4b. Both types of CG lead to the same result, as expected and the time
per iteration is the same (0.023 seconds). However, when using GCGME, more
iterations are required before convergence is attained, as can be seen in figure
4c.
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Figure 4: Results obtained using the GCGLS and GCGME algorithms. Here,
standard Tikhonov regularization is used with τ = 5 · 10−5. The value of
objective function (5) and the error are measured in the ℓ2 norm.

6.1.2 R = FHF

Now, R is defined as R = FHF, where F is the total variation operator. τ is set
to 5 · 10−5. Again, this value is chosen heuristically. The results are shown in
figure 5. As expected, the two algorithms yield the same image. It is clear that
GCGLS converges more rapidly than GCGME. One iteration of GCGLS is only
slightly faster than a GCGME iteration (0.023 vs 0.024 seconds on average).
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Figure 5: Results obtained using the GCGLS and GCGME algorithms. Here,
Tikhonov regularization with R = FHF is used with τ = 5 · 10−5. The value of
objective function (5) and the error are measured in the ℓ2 norm.

6.2 ℓ1 penalty

6.2.1 LASSO

Next, we solve minimization problem (46) with F = I. The regularization
parameter is set to τ = 3 · 10−5. The number of IRLS iterations is set to
10. In each of the IRLS iterations, minimization problem (30) is solved using
GCGLS or GCGME. In each IRLS iteration, the CG method is initialized with
a different starting vector: the final iterate of the previous fixed-point iteration.
The number of CG iterations is set to 10. As for the ℓ2 case, both GCGLS and
GCGME need 0.023 seconds per iteration. Figures 6a and 6b show the resulting
images. Clearly, the GCGME result resembles the model solution much more
than the GCGLS result does. This is reflected in figures 6c and 6d, which
contain the plots showing the objective value and the error as a function of the
iteration number.
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Figure 6: Results obtained using the GCGLS and GCGME algorithms when
LASSO regularization is used. The regularization parameter is set to τ = 3 ·
10−5. The value of the objective function (46) and the error are measured in
the ℓ2 norm. The number of CG iterations is set to 10. In the plots, the vertical
black lines indicate the start of a new fixed-point iteration.

Increasing the number of CG iterations to 100 changes the results, see figure
7. We see that the GCGME image has not changed much (interestingly, it seems
to look slightly worse than before), whereas the GCGLS one has. It is starting
to resemble the GCGME result more, but it is still of inferior quality. Increasing
the number of CG iterations to 1000 does not change the results significantly,
see the appendix.
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Figure 7: Results obtained using the GCGLS and GCGME algorithms when
LASSO regularization is used. The regularization parameter is set to τ = 3 ·
10−5. The value of objective function (46) and the error are measured in the
ℓ2 norm. The number of CG iterations is increased to 100. In the plots, the
vertical black lines indicate the start of a new fixed-point iteration.

6.2.2 Total variation

Still using the ℓ1 penalty, we now define F as the total variation operator.
Again, 10 IRLS iterations and 10 CG iterations per IRLS iteration are used.
The regularization parameter is set to 10−5. As in the ℓ2 case, on average,
GCGLS and GCGME need 0.023 and 0.024 seconds per iteration respectively.
Figure 8 shows the results. The GCGME solution has a smaller error, as can be
seen in figure 8d. This is consistent with the images that are obtained using the
two different methods. The GCGME image resembles the original much more
than the GCGLS image does.
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Figure 8: Results obtained using the GCGLS and GCGME algorithms when
total variation regularization is used. The regularization parameter is set to
τ = 10−5. The value of objective function (46) and the error are measured in
the ℓ2 norm. The number of CG iterations is set to 10. In the plots, the vertical
black lines indicate the start of a new fixed-point iteration.

Increasing the number of CG iterations to 100 yields the results in figure 9.
Again, the GCGME image looks about the same as before, whereas the GCGLS
one looks different and is now almost the same as the GCGME image.
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Figure 9: Results obtained using the GCGLS and GCGME algorithms when
total variation regularization is used. The regularization parameter is set to
τ = 10−5. The value of objective function (46) and the error are measured in
the ℓ2 norm. The number of CG iterations is increased to 100. In the plots, the
vertical black lines indicate the start of a new fixed-point iteration.

7 Conclusion

We considered the weighted and regularized least squares problem. A second set
of normal equations was derived, which allowed us to generalize the Conjugate
Gradient Minimal Error (CGME) method to include nontrivial weighting and
regularization matrices.

We compared our GCGME method to the well-known GCGLS method by
applying both to data simulated in a low-field MRI setting. We considered
different regularization operators F. First, we set F = I. Then, we defined F

as a first order difference matrix that determines the size of the jumps between
neighboring pixels. In both cases, the GCGME algorithm was outperformed by
GCGLS; GCGLS needs a much lower number of iterations to converge.

Alternatively, we considered an ℓ1 penalty, with the same regularization
operators as before, the identity matrix and the total variation matrix. We
used IRLS to solve the ℓ1 case. GCGLS needs a high number of CG iterations
to converge, while for GCGME, this number is low (10 is sufficient). It is
interesting to note that when the number of CG iterations for GCGLS is set to
10 as well, GCGLS appears to have reached convergence after 10 IRLS iterations.
GCGLS yields an image with artifacts in the form of three additional shapes in
the lower half of the image, as well as regions of nonzeros in the corners of the
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image. However, convergence is not actually attained.
While increasing the number of CG iterations leads to GCGLS images of

higher quality, it actually seems to lead to images of poorer quality in the
GCGME case. Increasing the number of CG iterations leads to more visible
artifacts in the form of three shapes in the lower half of the image for GCGME.
The reason these shapes appear is because the magnetic field is almost sym-
metrical, which means that it is very difficult to distinguish one frequency in
the upper half of the image from its counterpart in the lower half of the im-
age. Interestingly, GCGME seems to have a regularizing effect that prevents
(to some extent) this symmetry from corrupting the image. This effect is more
pronounced when the number of CG iterations is low.

GCGME outperforming GCGLS in the ℓ1 case can be explained by the fact
that as we get closer to the solution, many elements of the vector |Fxk| will
converge to zero, due to the sparsity-enforcing properties of the ℓ1 penalty.
This means that, after a few fixed-point iterations, the condition number of Rk

will be much larger than the condition number of C = I, making GCGME the
preferred algorithm.
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9 Appendix
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Figure 10: Results obtained using the GCGLS and GCGME algorithms when
LASSO regularization is used. The regularization parameter is set to τ = 3 ·
10−5. The value of objective function (46) and the error are measured in the
ℓ2 norm. The number of CG iterations is increased to 1000. In the plots, the
vertical black lines indicate the start of a new fixed-point iteration.
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Figure 11: Results obtained using the GCGLS and GCGME algorithms when
total variation regularization is used. The regularization parameter is set to
τ = 10−5. The value of objective function (46) and the error are measured in
the ℓ2 norm. The number of CG iterations is increased to 1000. In the plots,
the vertical black lines indicate the start of a new fixed-point iteration.
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