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Abstract

Within the standard Material Point Method (MPM), the spatial errors are partially caused
by the direct mapping of material-point data to the background grid. In order to reduce
these errors, we introduced a novel technique that combines the Least Squares method with
the Taylor basis functions, called Taylor Least Squares (TLS), to reconstruct functions
from scattered data. The TLS technique locally approximates quantities of interest, such
as stress and density, and when used with a suitable quadrature rule, conserves the total
mass and linear momentum after transferring the material-point information to the grid.
For one-dimensional examples, applying the TLS approximation significantly improves
the results of MPM, Dual Domain Material Point Method (DDMPM), and B-spline MPM
(BSMPM). Due to its outstanding conservation properties, the TLS technique outperforms
the nonconservative reconstruction techniques, such as spline reconstruction. For example,
in contrast to the solution generated using the global cubic-spline interpolation, the TLS
solution satisfies the boundary conditions of a two-phase benchmark. Therefore, the TLS
reconstruction increases the accuracy of the material point methods, while preserving the
fundamental physical properties of the standard algorithm.
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1 Introduction

The Material Point Method (MPM) [1, 2] is a continuum-based numerical tool to simulate
problems that involve large deformations. In MPM, the material is represented by a set
of Lagrangian particles (material points) that move through a fixed Eulerian background
grid. The material points carry the physical properties of the continuum such as the mass,
strain, and stress. At the beginning of each time step, this information is projected from
the particles to the degrees of freedom (DOFs) of the background grid, where similarly to
the Finite Element Method [3] (FEM), the discretised governing equations are assembled
and subsequently solved. The obtained information is then mapped back to update the
material points. This conjunction of Lagrangian and Eulerian approaches makes MPM
well-suited for challenging problems involving large strains.

Despite its impressive performance for many engineering problems [4, 5], standard MPM
still suffers from several shortcomings. For example, when large deformations are consid-
ered, the particular case of Shepard interpolation [6] used by the method to project the
scattered material-point data to the DOFs can introduce significant numerical inaccuracies
[7, 8]. In addition, when material points travel from one cell to another, they generate un-
physical oscillations in the forces, frequently referred to as grid-crossing error [9]. This is
due to the use of piecewise-linear basis functions, whose gradients are discontinuous on ele-
ment boundaries. Finally, MPM contains FEM-type errors originating from mass-lumping
and interpolation, as well as time-stepping errors [10].

Much research has been conducted to overcome these shortcomings. On the one hand,
methods such as the Generalized Interpolation Material Point (GIMP) method [9], the
Convected Particle Domain Interpolation (CPDI) method [11], the Dual Domain Material
Point method (DDMPM)[12], and the B-Spline Material Point Method (BSMPM) [13, 14]
have been designed to overcome the grid-crossing error. On the other hand, Sulsky and
Gong [7, 8] have shown that the shortcomings resulting from the mapping of particle infor-
mation can be decreased by reconstructing functions with a higher-order technique, such as
a Moving Least Squares approximation, and evaluating these functions at the desired po-
sitions. Furthermore, Tielen et al. [14] have pointed out that the use of global cubic-spline
function reconstruction technique substantially improves the performance of BSMPM. Al-
though modified mapping generally improves the accuracy of the solution, the standard
reconstruction techniques might lead to the loss of physical properties of the material
point methods. In fact, while MPM projection conserves the mass and linear momentum
of the system, most standard mapping techniques do not guarantee that. Therefore, more
advanced solutions are required for function reconstruction.

In this paper, we propose a novel Taylor Least Squares (TLS) reconstruction technique,
which is based on the Least Squares [15] approximation constructed from a set of Taylor
basis functions [16]. This technique reconstructs quantities of interest such as stress, pore
pressure, and density locally, within each active cell, and evaluates them at the integration
points. After that, a Gauss quadrature is applied to determine the internal forces and ve-
locities. If a sufficient number of Gauss points is defined within each element, the proposed
mapping technique preserves the physical qualities of the standard MPM by conserving
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the mass and linear momentum of the system.
While the TLS reconstruction can be used autonomously, it can also be combined with

methods like GIMP or BSMPM in order to further reduce the spatial errors. Since pre-
vious studies have indicated that DDMPM and BSMPM are viable alternatives not only
for MPM, but also for GIMP and CPDI [12, 17, 18], we have applied the TLS recon-
struction technique within MPM, DDMPM, and BSMPM. The methods are tested on two
benchmarks describing the deformation of a one-phase vibrating bar and consolidation of
a two-phase porous material in one spatial dimension. The quality of the TLS conservative
properties are verified by computing the total mass and momentum before and after pro-
jecting the particle information to the background grid. Depending on the availability of
the analytical solution, the accuracy of the material point methods with TLS approxima-
tion is investigated either qualitatively or based on the spatial errors and convergence rates.
In addition, the obtained results are compared to those computed with the cubic-spline
reconstruction technique [14].

We observe that when grid crossing does not occur, the TLS reconstruction technique
has little influence on MPM, but can significantly improve the convergence of DDMP and
BSMPM. When particles start to cross element boundaries, the effect of the advanced
reconstruction technique becomes clearly evident for all considered methods. In fact, the
TLS technique smoothens their solutions and ensures that the boundary conditions are
satisfied. Moreover, the TLS approximation outperforms the global spline interpolation in
terms of conservation of the mass and momentum and the preservation of the boundary
conditions. Therefore, the TLS reconstruction leads to a conservative projection of the
particle data and increases the accuracy of the material point methods.

This paper is structured as follows. Section 2 introduces the governing equations captur-
ing the one-dimensional deformation of one- and two-phase continua. Section 3 summarises
the MPM algorithm to numerically discretise and solve these equations and outlines the
modifications required to obtain DDMPM. Section 4 focuses on the use of B-splines in
MPM. Section 5 describes the main concepts of the TLS reconstruction and proves that
its use with a sufficiently accurate Gauss quadrature leads to a conservative data projec-
tion. Section 6 discusses the numerical results obtained for vibrating bar and consolidation
problems. Finally, Section 7 provides the conclusions.

2 Governing equations

2.1 One-phase continuum

In this paper, it is assumed that the considered continuum occupies a domain Ω0 ⊆ R at
time t0 and a domain Ω ⊆ R at time t > t0. The material does not undergo irreversible
deformations. One-dimensional deformations of such a continuum can be described for
small strains by a closed coupled system of partial differential equations for velocity and
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stress in the following manner [19]:

ρ
∂v

∂t
=
∂σ

∂x
− ρg, (1)

∂σ

∂t
= E

∂v

∂x
. (2)

The coordinate x refers to the spatial direction, while t denotes the time. Moreover, ρ is
the density, v is the velocity, σ is the stress tensor, g is the gravitational acceleration, and
E is Young’s modulus.

Equation (1) is obtained from the momentum balance equation, whereas Equation (2)
describes the linear elastic constitutive relation for small strains. For large deformations,
Equation (2) needs to be replaced by [20]

∂σ

∂t
= (E − σ)

∂v

∂x
. (3)

This system can be extended by a relation between the velocity v and displacement u given
by

v =
∂u

∂t
. (4)

In order to obtain a unique solution to the above system of equations, initial and
boundary conditions have to be prescribed. Therefore, the following initial conditions are
required:

u(x, 0) = u0(x), v(x, 0) = v0(x), σ(x, 0) = σ0(x) ∀ x ∈ Ω0.

In addition, two types of boundary conditions are considered:

• Dirichlet boundary conditions (i.e., u(x, t) = û(t) for x ∈ ∂Ωu);

• Neumann boundary conditions (i.e., σ(x, t) = τ(t) for x ∈ ∂Ωτ ).

2.2 Two-phase continuum

According to the v−w formulation [21], one-dimensional deformations of a saturated two-
phase continuum are described for small strains by the following closed coupled system of
equations:

ρw
∂vw
∂t

=
∂p

∂x
− nγw

k
(vw − vs)− ρw g, (5)

(1− n)ρs
∂vs
∂t

= −nρw
∂vw
∂t

+
∂σ

∂x
− ρsatg, (6)

∂p

∂t
=
Kw

n

(
(1− n)

∂vs
∂x

+ n
∂vw
∂x

)
, (7)

∂σ′

∂t
= Ec∂vs

∂x
, (8)

σ = σ′ + p. (9)
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In the above, ρw is the density of the liquid phase, vw is the velocity of the liquid phase,
p is the pore pressure, n is the porosity, γw is the unit weight of the liquid phase, k is the
Darcy permeability, vs is the velocity of the solid phase, g is the gravitational acceleration,
ρs is the velocity of the solid state, σ is the total stress, ρsat is the saturated density, Kw is
the bulk modulus of the liquid phase, Ec is the constrained modulus, and σ′ is the effective
stress [22].

The equations are based on the conservation of momentum for the liquid phase, the
conservation of momentum and mass for the mixture of the solid and liquid phase, the
constitutive equation, and the definition of effective stress. For large strains, Equation (8)
is replaced by [20]

∂σ′

∂t
= (Ec − σ′) ∂vs

∂x
. (10)

The displacement of the solid phase us can be included in the formulation using the fol-
lowing relation:

vs =
∂us
∂t

. (11)

This system of equations needs to satisfy the initial and boundary conditions. The
initial conditions read

us(x, 0) = us,0(x), vs(x, 0) = vs,0(x), σ(x, 0) = σ0(x) ∀ x ∈ Ω0;

vw(x, 0) = vw,0(x), p(x, 0) = p0(x) ∀ x ∈ Ω0.

For both phases, Dirichlet and Neumann boundary conditions are considered. The Dirichlet
boundary conditions are given by

us(x, t) = ûs(t) for x ∈ ∂Ωus ,

vw(x, t) = v̂w(t) for x ∈ ∂Ωvw ,

whereas the Neumann boundary conditions can be written as

σ(x, t) = τ(t) for x ∈ ∂Ωτ ,

p(x, t) = p̂(t) for x ∈ ∂Ωp.

3 Low-order material point methods

3.1 Discretisation

The momentum balance equation of a one-phase continuum (Equation 1 ) is solved by
MPM [7, 8] in its weak formulation:∫

Ω

δvρ
∂v

∂t
dΩ = δvσ

∣∣∣
∂Ω
−
∫

Ω

(∇δv)σdΩ−
∫

Ω

δvρgdΩ,

where δv denotes a test function.
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We introduce vector notation for quantities defined at the DOFs to simplify the de-
scription. If the domain discretisation generates Nn DOFs, we denote the velocity vec-
tor by v(t) = [v1(t) v2(t) . . . vNn(t)]T . The basis function vector is given by φ(x) =
[φ1(x) φ2(x) . . . φNn(x)]T , where φi represents a basis function centred at the ith DOF.
Thus, the velocity is approximated according to the finite-element approach:

v(x, t) ≈ φ(x)Tv(t).

The displacement u and virtual velocity δv are discretised in a similar way.
The semi-discretised weak formulation can then be written as∫

Ω

ρφφT
dv

dt
= σ(x, t)φ

∣∣∣
∂Ω
−
∫

Ω

ρgφ dΩ−
∫

Ω

σ(x, t)∇φ dΩ.

Denoting the acceleration vector a = dv
dt

, the consistent mass matrix MC =
∫

Ω
ρφφT dΩ,

the external force vector f ext = σ(x, t)φ
∣∣∣
∂Ω
−
∫

Ω
ρgφ dΩ, and the internal force vector

f int =
∫

Ω
σ(x, t)∇φ dΩ, we obtain

MCa = f ext − f int. (12)

It should be noted that in the considered version of MPM, the consistent mass matrix
in Equation (12) is typically replaced by the lumped mass matrix, which is obtained by
summing off-diagonal entries of MC , M =

∫
Ω
ρφdΩ. Alternatively, the lumping can be per-

formed variationally. Thus, the mass corresponding to the DOFs is stored in the diagonal
m of M :

M =

 m .

Finally, the stress is updated using the gradient of the basis function vector ∇φ(x) and
the constitutive relation. For example, for small deformations, Equation (2) yields:

σ(x, t) ≈ E∇φ(x)Tu(t). (13)

In MPM, the particles move within the grid and serve as integration points. If the
continuum is discretised by Np material points, then for an arbitrary function f , the
integral is computed as ∫

Ω

f(x)dΩ ≈
Np∑
p=1

Vpf(xp),

where Vp is the particle volume.
For temporal discretisation the considered version of MPM adapts the Euler-Cromer

time-stepping scheme [23]. This method is semi-implicit, applying the forward Euler
method to advance the velocity in time and the backward Euler method to advance the
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displacement. The scheme is energy conservative, conditionally stable, and first-order ac-
curate.

The discretisation of the two-phase formulation from Section 2.2 is similar to that
described above. The spatial discretisation results in the following system:

MC
w aw = f ext

w − f int
w ,

MC
s as + M̄C

w aw = f ext
s − f int

s ,

where MC
w , MC

s , and M̄C
w are the consistent mass matrices, aw and as are the acceleration

vectors, and f ext
w , f int

w , f ext
s , and f int

s are the force vectors for the liquid and solid phase,
respectively. The corresponding lumped mass matrices have the following forms:

Mw =

 mw , Ms =

 ms , M̄w =

 m̄w .

For more details of the discretisation, the reader is referred to [24].

3.2 Algorithm for one-phase continuum

When the deformation of a one-phase continuum is studied, each particle carries a certain
volume Vp, density ρp, position xp, velocity vp, and stress σp. All these values are time-
dependent, while the material-point mass mp is constant throughout the simulation. The
superscript t denotes the time level, and ∆t is the time step length. At t = 0 s, the material
points are initialised (see [24] for further details). Assuming that all particle properties are
known at time t, the computation for time t+ ∆t proceeds as follows.

First, the data from the material points is projected to the DOFs. For example, the
diagonal of the lumped mass matrix and the internal force vector are computed as

mt =

Np∑
p=1

mpφ
(
xtp
)
, (14)

(
f int
)t

=

Np∑
p=1

σtp · ∇φ
(
xtp
)
V t
p . (15)

The accelerations at the DOFs are then obtained by combining the internal forces with
any external forces, namely,

at =
(
M t
)−1
((

f ext
)t − (f int

)t)
.

While for each DOF, the Update-Stress-Last (USL) scheme [1] calculates the velocities
directly from the accelerations, the Modified-Update-Stress-Last (MUSL) scheme [2] com-
putes the particle velocities first and then maps the information to the DOFs. Since USL
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can generate ill-conditioned mass matrices when piecewise-linear basis functions are used,
we consider the MUSL scheme. Therefore, in the next step, the velocity of particle p at
t+ ∆t is determined as

vt+∆t
p = vtp + ∆t φT

(
xtp
)

at ∀ p = {1, 2, . . . , Np}.

The velocities at the DOFs are subsequently obtained from

vt+∆t =
(
M t
)−1

Np∑
p=1

mpφ
(
xtp
)
vt+∆t
p . (16)

This allows for computing the incremental displacement vector as

∆ut+∆t = ∆t vt+∆t.

After these steps, the remaining part of the particle properties is updated:

ut+∆t
p = utp + φT

(
xtp
)

∆ut+∆t,

xt+∆t
p = xtp + φT

(
xtp
)

∆ut+∆t,

∆εt+∆t
p = ∇φT

(
xtp
)

∆ut+∆t,

where up and ∆εp are the particle displacement and incremental strain, respectively. The
particle stress at t + ∆t is computed from σt and ∆εt+∆t

p using a constitutive law. Since,
only one-dimensional elastic deformations are considered, it follows from Equation (2), (3),
and (13) that

σt+∆t
p =

{
σtp + E ∆εt+∆t

p ∀ p = {1, 2, . . . , Np} for small strains,

σtp +
(
E − σtp

)
∆εt+∆t

p ∀ p = {1, 2, . . . , Np} for large strains.

Finally, the volume and density of each particle are computed from

V t+∆t
p =

(
1 + εt+∆t

p

)
V t
p ,

ρt+∆t
p =

ρtp(
1 + ∆εt+∆t

p

) .
3.3 Algorithm for two-phase continuum

For a saturated two-phase continuum described by the v−w formulation from Section 2.2,
the information about both phases is assigned to the material points. This implies that
every particle carries the following properties: permeability kp, porosity np, density of the
solid phase (ρs)p, density of the liquid phase (ρw)p, volume Vp, position of the solid phase
xp, velocity of the solid phase (vs)p, velocity of the liquid phase (vw)p, effective stress σ′p,
and pore water pressure pp. The above quantities can vary in time, whereas the particle
masses for the solid phase, (ms)p, and liquid phase, (mw)p, are constant.
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Similarly to the algorithm for the one-phase formulation, at the beginning of a com-
putational cycle the information is mapped from the particles to the nodes. For example,
the diagonals of Mw, M̄w, and Ms are calculated as follows:

mt
w =

Np∑
p=1

(mw)pφ
(
xtp
)
,

m̄t
w =

Np∑
p=1

ntp (mw)pφ
(
xtp
)
,

mt
s =

Np∑
p=1

(
1− ntp

)
(ms)pφ

(
xtp
)
.

The internal forces at the DOFs are obtained from(
f int
w

)t
=

Np∑
p=1

ptp · ∇φ
(
xtp
)
V t
p ,

(
f int
s

)t
=

Np∑
p=1

σ
′t
p · ∇φ

(
xtp
)
V t
p .

For the two-phase formulation, the presence of the drag force is essential. It is a resistance
force acting on the liquid phase due to its relative motion with respect to the solid phase.
Thus, this force is included in the computation through f ext

w . The vector containing the
drag forces at the DOFs, fdragw , is given by

(
fdragw

)t
=

Np∑
p=1

ntp (mw)p g

ktp

(
vts − vtw

)
,

where g is the gravitational acceleration.
The discretised momentum balance equations provide the accelerations at DOFs for

both phases:

atw =
(
M t

w

)−1
((

f ext
w

)t − (f int
w

)t)
,

ats =
(
M t

s

)−1
((

f ext
s

)t − (f int
s

)t − M̄ t
watw

)
.

For the solid phase, the remaining part of the method is similar to that from Section
3.2. The only difference is that mp and σp should be replaced by

(
1− ntp

)
(ms)p and σ′p,

respectively. For the liquid phase, the velocities are calculated as

(vw)t+∆t
p = (vw)tp + ∆t φT

(
xtp
)

atw ∀ p = {1, 2, . . . , Np},

vt+∆t
w =

(
M̄ t

w

)−1
Np∑
p=1

ntp (mw)pφ
(
xtp
)

(vw)t+∆t
p .
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Finally, the pore water pressure is obtained from

pt+∆t
p = ptp + ∆t

Kw

ntp
∇φT

(
xtp
) (

(1− ntp) vt+∆t
s + ntp vt+∆t

w

)
∀ p = {1, 2, . . . , Np}.

3.4 Piecewise-linear basis functions

The standard MPM uses piecewise-linear (P1) basis functions illustrated in Figure 1a. On
the one hand, P1 basis functions have several advantages:

• They satisfy the partition of unity property:

Nn∑
i=1

φi(x) = 1 ∀ x.

• Each φi has compact support. For i = 2, 3, . . . , Nn − 1, φi is supported by element
i − 1 and i. The compact supports of basis functions φ1 and φNn are contained in
element 1 and Nn − 1, respectively.

• P1 basis functions are implemented in a straightforward manner.

• They enable lumping.

On the other hand, the gradients of the piecewise-linear basis functions, just as the gradi-
ents of all other C0-continuous basis functions, are discontinuous on the element boundaries
leading to unphysical oscillations in the internal forces when material points cross those
boundaries. The gradient of a P1 function is shown as ∇φ in Figure 1b.

3.5 Dual Domain Material Point method

DDMPM [12] uses piecewise-linear basis functions, but replaces their gradients by smoother
ones. For the construction of the new gradients, the method introduces a weight function
α and the gradient ∇̃φi defined as

∇̃φi(x) =
Nn∑
j=1

φj(x)

Vj

∫
Ω

φj∇φidΩ,

where Vj is the volume associated with node j and given by Vj =
∫

Ω
φjdΩ. The weight

function is required to be zero on the cell boundaries, but is not uniquely specified [12]. For
the one-dimensional problems considered in this paper, the following expression is adopted:

α(x) = 2
Nn−1∑
i=1

φi(x)φi+1(x).
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Figure 1: Piecewise-linear basis functions (a) and basis function gradients used in DDMPM
(b). Here, L represents the element length.

DDMPM substitutes the gradients of the piecewise-linear basis functions by

∇φi(x) = α(x)∇φi(x) + (1− α(x))∇̃φi(x) ∀i = {1, . . . , Nn},

The gradients used in this method are depicted in Figure 1b. Moreover, from Section 3.2
and 3.3 it follows that DDMPM modifies the computation of the internal forces, strains,
and pore pressures.

4 B-Spline Material Point Method

BSMPM [13, 14] replaces the piecewise-linear basis functions from Section 3 by higher-order
B-splines, which guarantee at least C0-continuity of the gradients. The use of higher-order
B-splines not only reduces the grid-crossing error, but also the interpolation and time-
stepping errors [10]. Similarly to piecewise-linear basis functions, B-splines enable lumping
of the mass matrix.

B-spline basis functions are constructed based on a knot vector, a sequence of ordered
nondecreasing points in R called knots. A knot vector is denoted by Ξ = {ξ1, ξ2, . . . , ξn+l+1}
with n and l being the number of basis functions and the polynomial order, respectively. If
the knots are distributed equidistantly, they are said to be uniform. Otherwise, the knots
are non-uniform. When more than one knot is positioned at the same location, the knots
are called repeated. In an open knot vector, the first and last knots are repeated l + 1
times, which ensures that the resulting basis functions are interpolatory at the domain
boundaries. A non-empty knot interval [ξi ξi+1) is referred to as knot span. For an open
uniform knot vector, the number of spans is equal to n− l.

The Cox-de Boor formula [25] defines B-spline basis functions recursively, starting with
piecewise constants (no repeated knots, i.e. l = 0):

φi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise.
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For l > 0, the basis functions are given by

φi,l(ξ) =
ξ − ξi
ξi+l − ξi

φi,l−1(ξ) +
ξi+l+1 − ξ
ξi+l+1 − ξi+1

φi+1,l−1(ξ) ξ ∈ Ω.

B-spline basis functions satisfy the following properties.

1. They form a partition of unity:

n∑
i=1

φi,l(ξ) = 1 ∀ ξ.

2. Each φi,l has compact support [ξi, ξi+l+1].

3. They are non-negative in their support:

φi,l(ξ) ≥ 0 ∀ ξ.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6

(b)

Figure 2: Example of quadratic B-splines for an open, uniform knot vector (a), gradient
of a quadratic B-spline basis function (b).

The gradients of the B-spline basis functions can be defined as follows [25]:

dφi,l(ξ)

dξ
=

l

ξi+l − ξi
φi,l−1(ξ)− l

ξi+l+1 − ξi+1

φi+1,l−1(ξ). (17)

In this paper, we only consider open, uniform knot vectors and restrict the analysis to
quadratic B-spline basis functions (i.e., l = 2). Figure 2 shows quadratic basis functions
with Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1} and the corresponding gradients.
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5 Function reconstruction

An important property of MPM, DDMPM, and BSMPM is that they preserve the total
mass M and linear momentum P of the system. For a one-phase continuum, Equation
(14), Equation (16), and the partition of unity property of the basis functions yield:

M =
Nn∑
i=1

mi =
Nn∑
i=1

Np∑
p=1

mpφi(xp) =

Np∑
p=1

mp

Nn∑
i=1

φi(xp) =

Np∑
p=1

mp,

P =
Nn∑
i=1

mivi =
Nn∑
i=1

mi
1

mi

Np∑
p=1

mpφi(xp)vp =

Np∑
p=1

mpvp

Nn∑
i=1

φi(xp) =

Np∑
p=1

mpvp.

The time index is dropped to simplify the notation. In a similar way, MPM, DDMPM,
and BSMPM conserve the mass and momentum for two-phase formulation.

MPM can be viewed as a version of FEM, where the particles provide data for the
background grid. In fact, the scattered material-point information is projected to the grid
by reconstructing a function of interest and evaluating it at the nodes. Sulsky and Gong
[7, 8] point out that MPM reconstructs functions using a particular case of Shepard inter-
polation [6] that can introduce significant errors. They improve the accuracy of the method
by adopting higher-order reconstruction techniques. In the modified versions, the veloc-
ity, density, and stress fields are reconstructed from the particle data and evaluated either
at the nodes or element centres. The MPM-integration is then replaced by a one-point
quadrature rule. Moreover, Tielen et al. [14, 26] introduce an alternative reconstruction
technique for BSMPM. They reconstruct functions using cubic-spline interpolation and
integrate with a two-point Gauss rule on the half of each non-zero interval. However, it
should be noted that while the adjusted mapping techniques can increase the accuracy of
the solution, they do not necessarily conserve the total mass and momentum of the system.

In this section, we introduce an alternative reconstruction technique, called Taylor Least
Squares (TLS), that maintains the conservative properties of the standard algorithm. Its
fundamental concepts are described in Sections 5.1 – 5.3. The use of the TLS technique
for mapping the particle data within the material point methods is outlined in Section
5.4. A mathematical analysis of the conservation properties of the technique is provided
in Section 5.5.

5.1 Least Squares approximation

Given a set of Np distinct data points, {xp}Np

p=1, and the data values of these points,

{u(xp)}Np

p=1, we assume that u ∈ F , where F is a normed function space on R, and P =
span{ψi}nb

i=1 ⊂ F is a set of nb basis functions. The Least Squares [15] approximation at
a point x ∈ R is the value w∗ ∈ P that minimizes, among all w ∈ P , the Least Squares
error:

E =

Np∑
p=1

(w(xp)− u(xp))
2 .
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Using the basis function vector, ψ(x) = [ψ1(x) ψ2(x) . . . ψnb
(x)]T , and vector of unknown

coefficients, a = [a1 a2 . . . anb
]T , the Least Squares approximation can be written as

w∗(x) =

nb∑
i=1

aiψi(x) = ψT (x)a.

In order to compute the coefficient vector, ∂E
∂ai

is set to zero for i = 1, 2, . . . , n, leading to
the normal equations:

Np∑
p=1

ψ(xp)
(
ψT (xp)a− u(xp)

)
= 0.

Therefore, we obtain the following expression:

a =

(
Np∑
p=1

ψ(xp)ψ
T (xp)

)−1 Np∑
p=1

ψ(xp)u(xp). (18)

DefiningD =
∑Np

p=1ψ(xp)ψ
T (xp), B = [ψ(x1)ψ(x2) . . .ψ(xNp)], and U = [u(x1)u(x2) . . . u(xNp)]T ,

the Least Squares solution is given by

w∗(x) = ψT (x)D−1BU. (19)

What remains to be specified is the basis for P .

5.2 Taylor basis functions

Available choice that leads to an overall conservative reconstruction scheme are the local
Taylor basis functions [16]. To define these basis functions we introduce the concept of the
volume average of a function f over cell e:

f =
1

|Ωe|

∫
Ωe

f dΩe,

where |Ωe| is the volume of cell e. In one dimension, Ωe = [xmin, xmax] with xmax > xmin,
and |Ωe| = xmax − xmin.

The Taylor basis functions are then given by

ψ1 = 1,

ψ2 =
x− xc

∆x
,

ψ3 =
(x− xc)2

2∆x2
− (x− xc)2

2∆x2
, etc.

Here, xc = xmax+xmin

2
is the cell centroid xc of a cell e, and ∆x = xmax−xmin

2
.

An important quality of the Taylor basis that will ensure the conserving property of
the reconstruction technique is the following:∫

Ωe

ψi dΩe =

{
|Ωe| if i = 1,

0 if i 6= 1.
(20)
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5.3 Taylor Least Squares reconstruction

The TLS approach uses local Taylor basis functions for the Least Squares approximation
of a function f :

f(x) ≈ f̂(x) =

nb∑
i=1

aiψi(x). (21)

Suppose that
∫

Ωe
f(x) dΩe = c with c ∈ R required to be conserved by the reconstruction.

Then, using Equation (20), we obtain:∫
Ωe

f̂(x) dΩe =

∫
Ωe

nb∑
i=1

aiψi(x) dΩe =

nb∑
i=1

ai

∫
Ωe

ψi(x) dΩe = a1|Ωe|. (22)

Therefore, the integral is conserved after the reconstruction if

a1 =
c

|Ωe|
. (23)

It should be noted that Equation (23) can be enforced explicitly.
We illustrate this property by reconstructing f(x) = sin(x) + 2 on [0, 4π]. In this case,

the integral is equal to 8π. The domain is divided into four elements of size π and contains
11 data points. Two data points are located at the boundaries of the first element, (i.e.,
0 and π). In [2π, 3π], the data points are distributed uniformly in the interior of the
domain. The remaining data points have random positions creating different types of data
distribution within an element.

0 2 3 4
0

0.5

1

1.5

2

2.5

3

Figure 3: Cubic-spline (CS) and TLS reconstructions of f(x) = sin(x) + 2 on [0, 4π] for
different types of data point distribution within an element.

The TLS approximation is obtained using three Taylor basis functions. We compare its
performance with that of the cubic-spline reconstruction in terms of the Root-Mean-Square
(RMS) error for function f and the relative error for the integral of f . The RMS error
is computed using 100 Gauss points per element, while for the numerical integration, the
reconstructed function is evaluated only at two Gauss points within each element. Figure
3 visualises the data point distribution, and the cubic-spline and TLS reconstructions of f
for 10 Gauss points per element, while Table 1 provides the corresponding errors.
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Table 1: Errors made by TLS and cubic-spline reconstruction for f(x) = sin(x) + 2 and its
integral on [0, 4π] with four elements and eleven data points.

Error Cubic-splines TLS
RMS error for function 6.0867 · 10−2 3.9967 · 10−2

Relative error for integral 4.2759 · 10−2 2.7903 · 10−15

Table 1 shows that, for the considered example, the TLS technique outperforms the
cubic-spline reconstruction when the conservation and accuracy properties are considered.
In fact, the TLS approach preserves the integral up to machine precision. However, Figure
3 shows that the performance of the TLS technique depends on the distribution of the data
points within each element.

0 2 3 4
-1

0

1

2

3

Figure 4: Comparison of cubic-spline and TLS reconstructions of f(x) = sin(x) + 2 on
[0, 4π] for a challenging local data distribution.
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Figure 5: Comparison of cubic-spline and TLS reconstructions of f(x) = sin(x) + 2 on
[0, 4π] with a virtual data point at 2π.

In some rare cases, data distribution can locally decrease the quality of the TLS approx-
imation, but have little influence on cubic-spline interpolation. An example is provided in
Figure 4, where [π, 2π] contains only two data points located at π and 5/3π. This par-
ticular data distribution leads to a linear dependence between the columns of matrix D
from Equation (19) and, hence, distorts the TLS approximation within [π, 2π]. Therefore,
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the condition number of D can be used to detect the data distributions that decrease the
accuracy of the TLS technique. In addition, the quality of the TLS technique in such
situations can easily be improved.

First of all, the singularity of D can be prevented by reducing the number of basis
functions used for the reconstruction on [π, 2π]. While this approach will preserve the
conservative properties of the TLS technique and can be implemented in a straightforward
manner, it will lower the accuracy of the method. Another option is available to maintain
the high quality of the reconstruction. In this approach, the TLS approximation of f for
[2π, 3π] is evaluated at 2π, the obtained value is then used for the function reconstruction
on [π, 2π], but is excluded from the computation of a1 in Equation (23). We refer to
2π as a virtual data point, because its value is produced by the application of the TLS
technique to one cell in order to enlarge the set of data points, upon which the least squares
approximation is based, in a different cell. Moreover, virtual points do not influence the
conservative properties of the technique. Figure 5 illustrates the approximation improved
by including a virtual data point at 2π.

5.4 Mapping of particle data

When the TLS reconstruction is considered as part of a material point method, particles
serve as data points. To conserve the integral of a certain quantity within each element,
the coefficient of the first basis function is specified according to Equation (23). The
remaining coefficients are calculated from Equation (18) without ψ1 thereby not changing
the integral value. When the conservation is not required, a standard least-square approach
is followed. This implies that all unknown coefficients are obtained from the least-square
approximation.
A TLS reconstruction is applied to replace the MPM-integration in Equations (15) and (16),
and their equivalents for a two-phase material by an exact method, such as an element-wise
Gauss quadrature. The internal forces at the DOFs are computed as follows:

1. Apply a quadratic TLS approach to reconstruct the stress field from the particle data
within each active element without specifying the coefficient of the first Taylor basis
function:

σ̂e =

nb∑
i=1

siψi, (24)

where si is the coefficient corresponding to Taylor basis function i. Outside of element
e, σ̂e is zero. The global approximation of the density function, σ̂, is then equal to

σ̂ =
Ne∑
e=1

σ̂e.

2. Integrate the stress approximation using a two-point Gauss quadrature:

f int ≈
∫

Ω

σ̂(x, t)∇φ dΩ =

Ng∑
g=1

σ̂ (xg)∇φ (xg)ωg,
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where Ng is the total number of Gauss points, xg is the global position of a Gauss
point, and ωg is the weight of a Gauss point. To assure the exact integration of the

approximated function Ng should be selected so that nb ≤ 2Ng

Ne
.

The material-point velocities are mapped to the DOFs in the following manner:

1. Apply a quadratic TLS approach to reconstruct the density field and the product
of density and velocity from the particle data within each active element, while
preserving the mass and momentum of the element:

ρ̂e =

nb∑
i=1

riψi with r1 =
1

|Ωe|
∑

{p|xp∈Ωe}

mp

(ρ̂v)e =

nb∑
i=1

γiψi with γ1 =
1

|Ωe|
∑

{p|xp∈Ωe}

mpvp.

where ri and γi are the coefficients corresponding to Taylor basis function i. Outside
of element e, ρ̂e and (ρ̂v)e are zero. The global approximations are then equal to

ρ̂ =
Ne∑
e=1

ρ̂e and (ρ̂v) =
Ne∑
e=1

(ρ̂v)e.

2. Integrate the approximations using a two-point Gauss quadrature to obtain the mo-
mentum vector p and and the consistent mass matrix MC :

p =

Ng∑
g=1

ρ̂ (xg)ωgφ (xg) v̂ (xg) , (25)

MC =

Ng∑
g=1

ρ̂ (xg)ωgφ (xg) (φ (xg))
T , (26)

3. Compute the velocity vector:
v = (MC)−1p. (27)

It should be noted that MC may be replaced by a lumped mass matrix without a
loss of conservative properties of the algorithm.

We obtain the approximations with a quadratic TLS reconstruction. This implies that only
the first three Taylor basis functions are used (i.e, nb = 3). In this case, a two-point Gauss
rule within each element leads to an exact integration. For a two-phase computation,
the TLS approach is additionally applied to compute the internal force and velocity of
the liquid phase. Furthermore, from Section 5.3 it follows that optimal performance of
the TLS technique requires at least three particles in each element at the beginning of
the simulation. Since this particle distribution is not preserved under large deformations,
virtual data points may be used to improve the accuracy of the approximation within
elements that contain only one or two material-points.
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5.5 Conservation of mass and momentum

As mentioned in Section 5.4, the TLS technique reconstructs the density field and the
product of density and velocity inside each element in the following way:

ρe ≈ ρ̂e =

nb∑
i=1

riψi with r1 =
1

|Ωe|
∑

{p|xp∈Ωe}

mp

(ρv)e ≈ (ρ̂v)e =

nb∑
i=1

γiψi with γ1 =
1

|Ωe|
∑

{p|xp∈Ωe}

mpvp,

According to Equation (22) and (23), this preserves the mass Me and momentum Pe of
element e. As a result, the total mass and momentum of the system are conserved after
the TLS reconstruction:

M =
Ne∑
e=1

Me =
Ne∑
e=1

∑
{p|xp∈Ωe}

mp =

Np∑
p=1

mp, (28)

P =
Ne∑
e=1

Pe =
Ne∑
e=1

∑
{p|xp∈Ωe}

mpvp =

Np∑
p=1

mpvp. (29)

The mass- and momentum- conservative properties of the mapping obtained using TLS
reconstruction and Gauss quadrature can be shown as well.

Since the total mass is equal to the sum of the entries in the consistent mass matrix
from Equation (26), it can be written as

M =
Nn∑
i=1

Nn∑
j=1

MC
ij =

Nn∑
i=1

Nn∑
j=1

Ng∑
g=1

ρ̂ (xg)ωgφi (xg)φj (xg)

=

Ng∑
g=1

ρ̂ (xg)ωg

Nn∑
i=1

φi (xg)
Nn∑
j=1

φj (xg) =

Ng∑
g=1

ρ̂ (xg)ωg. (30)

The last equality is derived using the partition of unity property of piecewise-linear and
B-spline basis functions. In the remaining part of the proof, we assume that nb ≤ 2Ng

Ne
, so

that the Gauss quadrature with Ng

Ne
integration points per element (or knot span) is exact.

Therefore, the following holds:

M =

Ng∑
g=1

ρ̂ (xg)ωg =
Ne∑
e=1

∑
{g|xg∈Ωe}

ρ̂e (xg)ωg =
Ne∑
e=1

∫
Ωe

ρ̂e dΩe =
Ne∑
e=1

Me =

Np∑
p=1

mp.

The last two steps emerge from the conservation of mass per element and Equation (28).
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For the linear momentum, we also assume that nb ≤ 2Ng

Ne
. Following the above steps,

the total momentum after the mapping can be written as

P =
Nn∑
i=1

pi =
Nn∑
i=1

Ng∑
g=1

(ρ̂v)(xg)ωgφi(xg) =

Ng∑
g=1

(ρ̂v)(xg)ωg

Nn∑
i=1

φi(xg)

=

Ng∑
g=1

(ρ̂v)(xg)ωg =
Ne∑
e=1

∑
{g|xg∈Ωe}

(ρ̂v)e(xg)ωg

=
Ne∑
e=1

∫
Ωe

(ρ̂v)edΩe =
Ne∑
e=1

Pe =

Np∑
p=1

mpvp.

Therefore, we have shown that if the Gauss quadrature is performed using a sufficient
number of integration points, the mass and momentum balance is satisfied not only by the
TLS function reconstruction, but also by its combination with the Gauss quadrature.

6 Numerical results

For the spatial convergence analyses, we minimise the contribution of temporal errors by
using small time-step sizes and short simulation times. The material-point solutions are
considered at the particle positions, which implies that the one-phase examples are studied
in terms of the particle displacement, velocity, and stress. For two-phase problems, we look
at the displacement of the solid phase, velocities of both phases, effective stress, and pore
pressure.

We study the conservative properties of the material point methods by calculating the
maximum relative errors in the total mass and momentum over all time steps before and
after the computation of the velocity at the DOFs. For MPM, DDMPM, and BSMPM, the
errors in the mass and momentum are bounded by 10−15 for the vibrating bar benchmark,
and 10−13 for the consolidation example. Therefore, the TLS results are only compared to
those obtained with the cubic-spline reconstruction.

6.1 Vibrating bar

This example describes the vibration of a one-phase bar with fixed ends. The motion
triggered by an initial velocity that varies along the bar is captured by Equations (1) - (4)
with g = 0 (i.e., the gravitational force is neglected) and the following initial and boundary
conditions:

u(x, 0) = 0, v(x, 0) = v0 sin
( πx

2H

)
, σ(x, 0) = 0;

u(0, t) = 0, u(H, t) = 0.
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For small strains, the analytical solution in terms of displacement, velocity, and stress
is given by

u(x, t) =
v0H

π
√
E/ρ

sin

(
π
√
E/ρ t

H

)
sin
(πx
H

)
,

v(x, t) = v0 cos

(
π
√
E/ρ t

H

)
sin
(πx
H

)
,

σ(x, t) = v0

√
Eρ sin

(
π
√
E/ρ t

H

)
cos
(πx
H

)
.

Table 2 provides exemplary parameter values for the vibrating bar benchmark under small
deformations. The time-step size and total simulation time are 1 · 10−7 s and 1.9 · 10−6

s, respectively. Furthermore, the number of elements (knot spans) is varied from 5 to 40,
while the number of particles per cell (PPC) is fixed to 12. Grid crossing does not occur,
and the maximal observed strain is equal to 5.3 · 10−7 m.

Table 2: Exemplary parameters allowing for small deformations in the vibrating bar prob-
lem.

Parameter Symbol Value Unit
Height H 1.00 m
Density ρ 2.00 · 103 kg/m3

Young’s modulus E 7.00 · 106 Pa
Max. initial velocity v0 0.28 m/s2

The results in terms of spatial errors are shown in Figure 6. As expected, MPM with
piecewise-linear basis functions demonstrates second-order convergence in both the dis-
placement and velocity. Since the stress is not discretised, its convergence rate is one. The
application of the TLS reconstruction technique, as well as the cubic-spline interpolation,
has almost no influence on the stress, but decreases the displacement error by a factor of
1.7. For DDMPM, the application of the reconstruction techniques tends to reduce not
only the error in the displacement, but also in the stress. However, other results are similar
to those obtained for MPM.

The use of quadratic B-splines as basis functions leads to a significant decrease in
the error and a higher order of convergence for the velocity, but causes problems at the
boundaries of the domain for both stress and displacement. The absolute error in stress over
the domain is shown in Figure 7. The large values of the error at the boundaries prevent the
reduction of the RMS error and worsen the convergence properties of the method. However,
the use of BSMPM with the function reconstruction techniques eliminates the boundary
issues. An example is provided in Figure 8. Consequently, third-order convergence is
obtained for all the considered quantities. It should also be noted that the integration of
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Figure 6: Spatial convergence of material point methods for the vibrating bar problem
without grid crossing. The results are shown for the material point methods without
reconstruction techniques (solid blue line, empty marker); with cubic-spline reconstruction,
CS, (dashed black line, empty marker); and with TLS reconstruction (red filled marker).
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Figure 7: Absolute error obtained with BSMPM for stress distribution in the vibrating bar
problem without grid crossing.

the TLS or spline reconstruction in BSMPM produces more accurate results than the other
considered methods.

Table 3 compares the relative error in mass and momentum made using the TLS and
cubic-spline reconstructions. The results are provided for MPM, DDMPM, and BSMPM
applied to the vibrating bar problem discretised by 40 elements (knot spans) and 12 PPC.
They demonstrate that while the cubic-spline interpolation tends to accurately conserve
the mass, it produces errors of order 10−6 for the linear momentum. The errors produced
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Figure 8: Absolute error obtained with BSMPM-TLS for stress distribution in the vibrating
bar problem without grid crossing.

Table 3: Maximum relative errors in the total mass M and momentum P over the sim-
ulation run with cubic-spline (CS) and TLS reconstructions when grid crossing does not
occur. The vibrating bar is discretised using 40 elements (knot spans) and 12 PPC.

MPM DDMPM BSMPM
ErrorM ErrorP ErrorM ErrorP ErrorM ErrorP

CS 2.3825 · 10−12 3.7053 · 10−6 3.9211 · 10−13 3.7053 · 10−6 2.3825 · 10−12 3.7053 · 10−6

TLS 7.5033 · 10−15 2.1007 · 10−16 7.3896 · 10−15 2.5208 · 10−16 7.5033 · 10−15 2.1007 · 10−16

by the TLS approach consistently remain close to machine precision and, hence, are orders
of magnitude smaller than those generated by the cubic-spline interpolation.

Table 4: Exemplary parameters allowing for large deformations in the vibrating bar prob-
lem.

Parameter Symbol Value Unit
Height H 1.00 m
Density ρ 2.00 · 103 kg/m3

Young’s modulus E 4.00 · 104 Pa
Max. initial velocity v0 0.80 m/s2

For large-deformation simulations, the parameters from Table 4 are used. The time-
step size and the simulation time are increased to 1 · 10−5 s and 0.1 s, respectively. The
domain is discretised using 20 elements (knot spans) with initially 8 PPC. The maximal
strain that is reached is 0.056 m. Since the analytical solution is not available when the
vibrating bar experiences large deformations, the numerical results are compared to the
solution obtained with the Updated Lagrangian Finite Element Method (ULFEM) [27].

In the standard MPM simulation, material points cross the element boundaries more
than 450 times leading to significant inaccuracies in the results. Although grid crossing
influences the computation of the displacement and velocity, its most evident consequences
are in the stress distribution. DDMPM and BSMPM reduce the grid-crossing error, but
their results still significantly deviate from the solution provided by ULFEM. This is shown
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in Figure 9. The figure also illustrates that the application of the TLS approximation
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Figure 9: Stress distribution and corresponding relative errors in the L2-norm in the vi-
brating bar problem with grid crossing. The results are obtained for the material point
methods without reconstruction technique (dotted blue line); with cubic-spline reconstruc-
tion, CS (black cross marker); with TLS reconstruction (solid red line); and ULFEM (grey
circle marker).

Table 5: Maximum relative errors in the total mass M and momentum P over the simu-
lation run with cubic-spline (CS) and TLS reconstructions when grid crossing occurs. The
vibrating bar is discretised using 40 elements (knot spans) and 12 PPC.

MPM DDMPM BSMPM
ErrorM ErrorP ErrorM ErrorP ErrorM ErrorP

CS 8.2017 · 10−5 7.9819 · 10−5 3.5971 · 10−5 3.7506 · 10−5 7.4131 · 10−7 1.5794 · 10−5

TLS 2.9331 · 10−14 5.8469 · 10−15 2.9104 · 10−14 5.7725 · 10−15 2.9104 · 10−14 5.7205 · 10−15

or the cubic-spline reconstruction leads to close agreement of the MPM, DDMPM, and
BSMPM solutions with that of ULFEM. The maximal reduction of the relative error
in L2-norm made by standard MPM is achieved when the reconstruction techniques are
combined with BSMPM. More precisely, the integration of the spline interpolation or the
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TLS reconstruction in BSMPM decreases the MPM error by a factor of 13.3 and 9.8,
respectively. On the other hand, the conjunction of the reconstruction techniques with
DDMPM leads to highly accurate results as well. The spline and TLS reconstruction
reduces the MPM error by a factor of 9.3 and 8.1, respectively. As expected, the TLS
approximation conserves the total mass and linear momentum significantly more accurately
than the spline interpolation, regardless of the material-point method. The conservative
properties of the reconstruction techniques are provided in Table 5.

6.2 Consolidation

In this example from AL-Kafaji [24], we consider a column of height H that consists of
fully saturated soil and has an impermeable bottom. On the top surface, a constant load
q is applied. Initially, the load is carried by the liquid phase maximising the pore pressure.
After water starts to drain out, the load is gradually transferred to the solid phase, and
the excess pore pressure starts to decrease. In the final stage, the water drainage no
longer occurs and the load is fully shifted to the solid phase. The consolidation process is
described by Equations (5) - (9) with g = 0 and ∂σ/∂x = 0 (i.e., the gravity is neglected
and the total stress is constant). The boundary and initial conditions are:

us(x, 0) = 0, vs(x, 0) = 0, σ(x, 0) = q, vw(x, 0) = 0, p (x, 0) = q,

us(0, t) = 0, σ(H, t) = q, vw(0, t) = 0, p (H, t) = 0.

It should be noted that the boundary and initial conditions for this case study are incom-
patible. According to the boundary conditions p (H, 0) = 0, while the initial conditions
state that p (H, 0) 6= 0.

The analytical solution for the pore pressure is given by [28]:

p (x, t) =
4p0

π

∞∑
j=1

(−1)j−1

2j − 1
cos
(

(2j − 1)
πx

2H

)
exp

(
−(2j − 1)2π

2cvt

4H2

)
,

where cv is the consolidation coefficient defined as

cv =
k

ρwg (1/Ec + n/Kw)
.

This implies that the effective stress, the displacement of the solid phase, and the velocities
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of solid and liquid phases are obtained as follows:

σ′(x, t) = q − 4p0

π

∞∑
j=1

(−1)j−1

2j − 1
cos
(

(2j − 1)
πx

2H

)
exp

(
−(2j − 1)2π

2cvt

4H2

)
,

us(x, t) =
qx

Ec
− 8p0H

Ecπ2

∞∑
j=1

(−1)j−1

(2j − 1)2
sin
(

(2j − 1)
πx

2H

)
exp

(
−(2j − 1)2π

2cvt

4H2

)
,

vs(x, t) =
2p0cv
EcH

∞∑
j=1

(−1)j−1 sin
(

(2j − 1)
πx

2H

)
exp

(
−(2j − 1)2π

2cvt

4H2

)
,

vw(x, t) = −2p0cv
H

(
1

Kw

+
1− n
nEc

) ∞∑
j=1

(−1)j−1 sin
(

(2j − 1)
πx

2H

)
exp

(
−(2j − 1)2π

2cvt

4H2

)
.

The first 100,000 terms of the Fourier series are used to ensure the accuracy of the solution.
The exemplary parameters used to simulate the soil consolidation are provided in Ta-

ble 6. The number of elements (knot spans) varies from 20 to 160, whereas each element
(knot span) contains four material points. Moreover, the time-step size and total simu-
lation time are 1 · 10−10 s and 2 · 10−9 s. The computation starts at 5 s, because at 0 s
the boundary and initial conditions are incompatible, and for t ∈ (0, 5 s) the quantities of
interest vary quite severely over the domain. For the described settings, the displacement
of the material points is bounded by 2.6 · 10−4 m and grid crossing does not occur.

Table 6: Exemplary parameters allowing for small deformations in the soil consolidation
problem.

Parameter Symbol Value Unit
Height H 1.00 m
Porosity n 0.40 -
Density liquid phase ρw 1.00 · 103 kg/m3

Density solid phase ρs 2.60 · 103 kg/m3

Constrained modulus Ec 1.00 · 107 Pa
Bulk modulus liquid phase Kw 3.00 · 108 Pa
Hydraulic permeability k 1.00 · 10−5 m/s
Total load q −1.00 · 104 Pa

The convergence results for the displacement of the solid phase, velocity of the liquid
phase, and pore pressure are provided in Figure 10. The RMS errors of the velocity
of the solid phase and the effective stress are not provided, because they show similar
behaviour to the corresponding quantities of the solid phase. In contrast to the vibrating
bar problem, for this example, MPM shows second-order convergence for all considered
quantities. Application of the function reconstruction techniques has no influence on the
MPM results.

DDMPM preserves the RMS errors of the displacement, stress, and pore pressure pro-
duced by MPM, but as illustrated in Figure 11 it shows a lack of convergence for the
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Figure 10: Spatial convergence of material point methods for the soil consolidation problem
without grid crossing. The results are shown for the material point methods without
reconstruction techniques (solid blue line, empty marker); with cubic-spline reconstruction,
CS, (dashed black line, empty marker); and with TLS reconstruction (red filled marker).

velocities. The cubic-spline interpolation and TLS reconstruction enable second-order con-
vergence for the velocities and decrease the error for relatively fine grids. This is depicted
in Figure 12 for the TLS approach.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 11: Absolute error obtained with DDMPM for the velocity of the solid phase during
soil consolidation without grid crossing.

Furthermore, from Figure 10 it follows that the use of B-spline basis functions con-
siderably reduces the error produced by MPM and DDMPM, and leads to third-order
convergence for the displacement, stress and pore pressure. For the velocities, the conver-
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Figure 12: Absolute error obtained with DDMPM-TLS for the velocity of the solid phase
during soil consolidation without grid crossing.

gence of BSMPM is hindered at the boundaries of the domain. Although the TLS and
spline reconstructions further lower the RMS errors in the velocity, they do not resolve the
issues at the boundaries.

In general, the spline interpolation and the TLS technique reconstruct the quantities of
interest equally accurately during the simulation of the consolidation process (i.e., the dif-
ferences in their RMS errors are negligible). In addition, for the cubic-spline interpolation,
the relative error in mass of both phases remains at machine precision, but the relative
error in momenta varies between 1 · 10−9 and 2 · 10−6. The TLS technique conserves the
total mass and momentum of the solid and liquid phase at machine precision regardless of
the utilised variant of the material point method.

To compel the material points to travel from one cell to another during the consolidation
process, the parameters from Table 7 are used. In addition, the computational time is
increased to 0.4 s. At the end of the simulation, the total displacement reaches 5.4 · 10−2

m at the top of the column. The domain is discretised by 120 elements and each element
contains 16 material points. Under large deformations, the analytical solutions for the
quantities of interest are provided by Xie and Leo [29]. As before, the solution is computed
using the first 100,000 terms of the Fourier series.

Table 7: Exemplary parameters allowing for large deformations in the soil consolidation
problem.

Parameter Symbol Value Unit
Height H 1.00 m
Porosity n 0.40 -
Density liquid phase ρw 1.00 · 103 kg/m3

Density solid phase ρs 2.60 · 103 kg/m3

Constrained modulus Ec 1.00 · 106 Pa
Bulk modulus liquid phase Kw 3.00 · 107 Pa
Hydraulic permeability k 1.00 · 10−5 m/s
Total load q −5.00 · 105 Pa
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Figure 13: Comparison of TLS and cubic-spline (CS) reconstructions and the corresponding
relative errors in the L2-norm for consolidation problem with grid crossing. The results are
shown for the material point methods without reconstruction techniques (dotted blue line,
empty marker); with reconstruction (solid red line, empty marker); and the exact solution
(grey circle marker).
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Figure 13 provides the results in terms of the effective stress and pore pressure obtained
for MPM, DDMPM, and BSMPM, with and without the reconstruction techniques. For
the results of BSMPM combined with the TLS technique, the consistent mass matrix in
the velocity computation described by Equation (27), is replaced by a lumped mass matrix.
This is required to prevent stability issues.

The effect of grid crossing on the MPM solution is clearly illustrated by the pore pressure
distribution depicted in Figure 13c and Figure 13d . When the magnitude of the pore
pressure starts to decrease, particles move between the elements leading to the oscillations
in the solution. This is readily visible for material points originally located between 0.8 m
and 0.9 m. The grid crossing effect is present in the velocities as well, but is not observed
in the results for the displacement. Since the MPM solution for the effective stress is
computed based on the strains, it is also barely influenced by grid crossing. However, the
effective stress distribution shows that the method does not satisfy the boundary condition
for the total stress at the top surface of the soil column.

Replacing MPM by DDMPM increases the number of oscillations along the column
hight and worsens the results at the top boundary. The use of B-splines leads to close
agreement with the analytical solution for the pore pressure: it decreases the relative error
in the pore water pressure by a factor of 3.8 compared to MPM. However, BSMPM solution
deviates from the analytical solution in the effective stress at the top boundary.

In addition, Figure 13 shows that the application of the spline reconstruction tech-
nique reduces the grid crossing errors, but the material point methods still fail to satisfy
the boundary conditions in terms of the effective stress. However, the technique brings
the DDMPM solution for the effective stress at the boundary closer to the values obtained
analytically. The TLS reconstruction outperforms the spline interpolation, because it elim-
inates the unphysical oscillations and ensures that the the boundary conditions are satisfied
regardless of the material point method. Finally, the TLS approach preserves the relative
errors in total mass and momentum of solid and liquid phase under 4 · 10−12, while for the
cubic-spline reconstruction, the errors reach 1.4 · 10−4.

7 Summary and conclusions

In this paper, we have introduced Taylor Least Squares reconstruction for material point
methods. The proposed technique combines the least squares approximation with local
Taylor basis functions to accurately reconstruct the quantities of interest (e.g., stress and
density fields) from scattered particle data within each element. We have shown that in
contrast to standard reconstruction techniques, the TLS approximation conserves the mass
and linear momentum of the system after the material-point data is mapped to the inte-
gration points. More importantly, in conjunction with a sufficiently accurate numerical
quadrature method, the technique preserves the total mass and momentum after the in-
formation is projected to the degrees of freedom of the grid. This implies that the TLS
reconstruction maintains the physical properties of the standard material point methods.

For several examples, the TLS technique was applied to MPM, DDMPM, and BSMPM.
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Without grid crossing, the reconstruction technique had little influence on MPM, but was
able to improve the convergence properties of DDMPM and BSMPM. When material points
started to cross cell boundaries, the TLS approximation smoothened the solutions obtained
by all considered material point methods for the vibrating bar problem and brought them
closer to the solution computed by ULFEM. For the consolidation problem, the proposed
technique substantially decreased the unphysical oscillations in the results computed by
MPM, DDMPM, and BSMPM, and ensured that they satisfied the boundary conditions
in terms of the effective stress. Furthermore, the TLS technique was also compared to a
spline reconstruction technique. In general, the differences in spatial accuracy of the re-
construction approaches were negligible, but the error in total mass and linear momentum
was consistently much lower for the TLS reconstruction. In contrast to the TLS function
reconstruction, the cubic-spline reconstruction technique was not able to follow the analyt-
ical solution for the effective stress at the loaded boundary during the simulations of the
consolidation process. Therefore, this study has demonstrated that the integration of the
TLS technique into the material point methods leads to a higher accuracy of the material
point methods without losing their fundamental physical properties.
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A List of abbreviations

BSMPM B-Spline Material Point Method
CPDI Convected Particle Domain Interpolation
DDMPM Dual Domain Material Point Method
DOF Degrees Of Freedom
FEM Finite Element Method
GIMP Generalized Interpolation Material Point
NWO Nederlandse Organisatie voor Wetenschappelijk Onderzoek
MPM Material Point Method
PPC Particles Per Cell
RMS Root Mean Square
TLS Taylor Least Squares
ULFEM Updated Lagrangian Finite Element Method
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