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Abstract

We consider several mathematical issues regarding models that simulate forces ex-
erted by cells. Since the size of cells is much smaller than the size of the domain of
computation, one often considers point forces, modelled by Dirac Delta distributions on
boundary segments of cells. In the current paper, we treat forces that are directed normal
to the cell boundary and that are directed toward the cell centre. Since it can be shown
that there exists no smooth solution, at least not in H1 for solutions to the governing
momentum balance equation, we analyse the convergence and quality of approximation.
Furthermore, the expected finite element problems that we get necessitate to scrutinize
alternative model formulations, such as the use of smoothed Dirac distributions, or the
so-called smoothed particle approach as well as the so-called hole approach where cellular
forces are modelled through the use of (natural) boundary conditions. In this paper, we
investigate and attempt to quantify the conditions for consistency between the various
approaches. This has resulted into error analyses in the H1-norm of the numerical so-
lution based on Galerkin principles that entail Lagrangian basis functions. The paper
also addresses well-posedness in terms of existence and uniqueness. The current analysis
has been performed for the linear steady-state (hence neglecting inertia and damping)
momentum equations under the assumption of Hooke’s law.

1 Introduction

Wound healing is a complicated process of a bunch of cellular events contributing to resurfacing,
reconstitution and restoration of the tensile strength of injured skin. Significant damage of
dermal tissue often leads to skin contraction. If the contraction of the skin near a joint is large
then it may result into a decrease of functionality. If the patient’s daily life is impacted as
result of the contraction, then one speaks of a contracture.

In order to improve the patient’s quality of life, one aims at reducing the contractile be-
havior of the skin. In order to reduce the severity of the contraction, one needs to know the
physiological dynamics and time evolution of the underlying biological mechanisms. According
to [5, 7, 10], the contraction starts developing during the proliferative phase of wound healing.
This proliferative phase sets in after the inflammatory phase, in which the immune system is
clearing up the debris that resulted from the damage. The proliferative phase usually sets in
during the second day post-wounding, and commonly lasts during two to four weeks. Besides
the closure of the epidermis (that is the top layer of skin), the proliferative phase is charac-
terized by ingress of fibroblasts from the surrounding undamaged tissue and differentiation to
myofibroblasts, and by the regeneration of collagen by the (myo)fibroblasts. Despite the rel-
atively quick closure of the epidermis, often the restoration of the underlying dermis is still
in progress. After closure of the epidermis, the damaged region in the dermis is referred to
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as a scar instead of a wound. Next to the regeneration of collagen, the (myo)fibroblasts exert
contractile forces on their direct surroundings, which will result into contraction of the scar
tissue. In human skin, wound volume reductions of 5 - 10% are commonly observed [6].

The current manuscript contains an extension of the work in [8], which treats a model for
the contractile forces that are exerted by the (myo)fibroblasts. The forces are distinguished
into two categories: (1) temporary forces that are exerted as long as the (myo)fibroblasts
are actively pulling; and (2) permanent or plastic forces, which are imaginary forces that are
introduced to describe the localized plastic deformations of the tissue. This formalism was
firstly developed by [14], and later extended by [3]. The formalism is based on the point
forces, which are mathematically incorporated by means of linear combinations of Dirac Delta
distributions. The irregular nature of Dirac Delta distributions make the solution to the elliptic
boundary value problem from the balance of momentum have a singular solution in the sense
that for dimensionality higher than one, no formal solutions in the finite-element space H1

exist. Although in classical finite-element strategies, one uses for instance piecewise linear
Lagrangian elements, of which the basis functions are in H1, and therewith one attempts to
approximate the solution, which is not in H1, as well as possibly by a function in H1. In [2],
the convergence of finite-element solutions by means of piecewise linear Lagrangian elements
in multiple dimensions has been demonstrated. In our earlier studies [11, 12], we proved the
convergence of solutions obtained by regularization of Dirac Delta distributions, the so-called
smoothed particle approach and the so-called ’hole’ approach to the solution obtained by Dirac
Delta distributions in the one- and two dimensional cases. In the one-dimensional case, for the
sake of completeness, we start with the presentation of force equilibrium with point forces in
one dimension, the equations are given by

−dσ
dx

= f, Equation of Equilibrium, (1.1)

ε = du
dx
, Strain-Displacement Relation, (1.2)

σ = Eε, Constitutive Equation. (1.3)

To simplify the equation, we use E = 1 here, the equations above can be combined to the
one-dimensional Laplace equation:

− d2u

dx2
= f. (1.4)

We assume that there is a biological cell with size h and centre position c in the computational
domain such that 0 < c − h/2 < c < c + h/2 < L. Then the force is given by f = δ(x − (c −
h/2))− δ(x− (x+ h/2)). Combined with homogeneous Dirichlet boundary conditions:

u(0) = 0, u(L) = 0,

the Galerkin form is given by
Find uh ∈ H1

0 ((0, L)), such that∫
Ω

∇uh∇φhdΩ = φh(c−
h

2
)− φh(c+

h

2
),

for all φh ∈ H1
0 ((0, L)).

The exact solution is

u(x) =
hx

L
+ (x− (c+

h

2
))+ − (x− (c− h

2
))+,

where (x)+ = max{0, x}. Note that in one dimension, the solution is piecewise linear and
hence in H1(Ω), however not in H2(Ω). Since most conventional errors are expressed in the
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L2–norm of the second derivative of the solution, one may not apriorily expect very accurate
finite element solutions.

In the current manuscript we extend the results to general dimensionality. The boundary
value problem is stated in Section 2. The ’hole’ approach and the smoothed particle approach
are developed in Section 3. Furthermore, we prove consistency between the alternatives and
the immersed boundary approach in multi dimensions. Section 4 displays some conclusions and
discussions.

2 Elasticity Equation with Point Sources in Multi Di-

mensions

Let Ω be a bounded domain in Rn, then we consider the following balance of momentum where
inertial effects have been neglected:

−∇ · σ = f . (2.1)

Here σ denotes the stress tensor and f represents a body force that is exerted within Ω. We
consider a linear, homogeneous, isotropic and continuous material; hence, Hooke’s Law is used
here for the relation between the stress and strain tensors:

σ =
E

1 + ν

{
ε+ tr(ε)

[
ν

1− 2ν

]
I

}
, (2.2)

where E is the stiffness of the computational domain, ν is Poisson’s ratio and ε is the infinites-
imal Eulerian strain tensor:

ε =
1

2

[
∇u+ (∇u)T

]
. (2.3)

Within the domain of computation, Ω, we consider the presence of a biological cell, which
occupies the portion ΩC that is completely embedded within Ω (hence ΩC is a strict subset of
Ω). The boundary of the cell is divided into surface elements. On the centre of each surface
element, a point force by means of Dirac Delta distribution, is exerted in the direction of the
normal vector that is directed inward into the cell. This results into (see [14]):

ft =

NS∑
j=1

P (x, t)n(x)δ(x− xj(t))∆S(xj(t)), (2.4)

where NS is the number of surface elements of the cell, P (x, t) is the magnitude of the pulling
force exerted at point x and time t per unit of measure (being area in R3 or length in R2), n(x)
is the unit inward pointing normal vector (towards the cell centre) at position x, xj(t) is the
midpoint on surface element j of the cell at time t and ∆S(xj) is the measure of the surface
element j. In the general model where we use this principle, we consider transient effect due
to migration and possible deformation of the cells. However, since we predominantly focus on
the mathematical issues in the current manuscript, we will not consider any time-dependencies
and hence t will be removed from the expressions in the remainder of the paper.

In the n-dimensional case, we are solving the boundary value problems described in Eq (2.1),
(2.2) and (2.3). The body-force is given in Eq (2.4). Therefore, the boundary value problem
that we are going to consider is given by

(BV P )


−∇ · σ(x) =

NS∑
j=1

P (xj)n(xj)δ(x− xj)∆S(xj), in Ω,

u = 0, on ∂Ω.
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Next to this boundary value problem, we consider the continuous immersed boundary counter-
part, given by

(BV P∞)

−∇ · σ(x) =

∫
Sc

P (x′)n(x′)δ(x− x′)dS(x′), in Ω,

u = 0, on ∂Ω.

Due to the irregular nature of the Dirac Delta distributions, the solutions do not exist in
H1. We attempt to approximate the solution by the functions in H1 via the Galerkin form of
(BV P ). In this manuscript, piecewise linear Lagrangian basis functions are selected. Further,
the convergence of the finite-element solutions using linear Lagrangian elements in general
dimensionality has been proved in [2].

To construct the Galerkin form, we introduce the bilinear form a(., .):

a(uh,φh) =

∫
Ω

σ(uh) : ∇φhdΩ =

∫
Ω

σ(uh) : ε(φh)dΩ, (2.5)

The last step is motivated by symmetry of the stress tensor σ. Since the solution u is not in
H1(Ω), we consider a subspace of H1(Ω), which is defined as Vh(Ω) = Span{φ1,φ2, . . . ,φN}
[13]. Here, φi for i = {1, 2, . . . , N} is the linear Lagrangian basis function, which is piecewise
smooth and continuous over Ω. Hence, these basis functions are in H1. Subsequently, the
Galerkin form is

(GF )


Find uh ∈ Vh(Ω), such that

a(uh,φh) = (φh,ft) =

NS∑
j=1

P (xj)n(xj)φh(xj)∆S(xj),

for all φh ∈ {φ1,φ2, . . . ,φN} ⊂ Vh(Ω).

We further consider the solution to the continuous immerse boundary problem, with the fol-
lowing Galerkin form:

(GF∞)


Find uh ∈ Vh(Ω), such that

a(uh,φh) = (φh,ft) =

∫
Sc

P (x′)n(x′)φh(x
′)dS(x′),

for all φh ∈ {φ1,φ2, . . . ,φN} ⊂ Vh(Ω).

Before we proceed to claim the existence and the uniqueness of the Galerkin solution in
(GF ), we need to state Korn’s Inequality in multiple dimensions:

Lemma 2.1. (Korn’s Second Inequality[4]) Let Ω ⊂ Rn be an open, bounded, connected
domain. Then there exists a positive constant K, such that for any vector-valued function
u ∈H1

0 (Ω), ∫
Ω

||ε(u)||2dΩ > K‖u‖2
H1(Ω).

We note that Korn’s Second Inequality can be generalised to cases in which the boundary
condition u = 0 is imposed only on a non-zero measure part of the boundary. Using Korn’s
Second inequality gives the following lemma:

Lemma 2.2. Let Ω ⊂ Rn be an open, bounded, connected domain. Then there exists a positive
constant K, such that for any vector-valued function u ∈H1

0 (Ω),

a(u,u) =

∫
Ω

σ(u) : ε(u)dΩ > K||u||2H1(Ω).
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Proof. The lemma directly follows from the definition of the stress tensor, let u ∈H1
0 (Ω):

a(u,u) =

∫
Ω

σ(u) : ε(u)dΩ

=

∫
Ω

E

1 + ν

{
ε(u) + tr(ε(u))

ν

1− 2ν
I

}
: ε(u)dΩ

=

∫
Ω

E

1 + ν
||ε(u)||2 +

Eν

(1 + ν)(1− 2ν)
(tr(ε(u)))2dΩ

>
E

1 + ν
K||u||2H1(Ω).

The last step follows from Lemma 2.1. Hence redefining K := E
1+ν

K concludes the proof the
lemma.

Herewith coerciveness of the linear form a(., .) has been demonstrated, which is needed for
the proof of existence and uniqueness of the Galerkin finite-element solution.

Theorem 2.1. Let {φi} be piecewise Lagrangian basis field functions and let F be a vector in
Rn with unit length, further let P ∈ C(Ω), and let |P | 6 M2 for some M2 > 0. We define
Vh(Ω) = Span{φ1,φ2, . . . ,φN} ⊂H1

0 (Ω), then

• ∃ ! uGh (x;x′;F ) ∈ Vh(Ω) such that a(uh,φh) = F (x′) · φh(x′) for all φh ∈ Vh;

• ∃ ! uh ∈ Vh(Ω) such that a(uh,φh) =
∑NS

j=1 P (xj)n(xj)φh(xj)∆S(xj) for all φh ∈ Vh,

and uh =
∑NS

j=1 P (xj)u
G
h (x;xj;n(xj))∆S(xj);

• ∃ ! uh ∈ Vh(Ω) such that a(uh,φh) =
∫
Sc
P (x′)n(x′)φh(x

′)dS(x′) for all φh ∈ Vh, and

uh =
∫
Sc
P (x′)uGh (x;x′;n(x′))dS(x′);

Proof. • It is immediately clear that a(., .) is a bilinear form. We have Vh ⊂ H1
0 (Ω), and

a(., .) is bounded in H1
0 (Ω) (see for instance [1]). Furthermore, Lemma 2.2 says that

a(., .) is coercive in H1
0 (Ω). Regarding the right-hand side, we have |φh| ≤ M1 for some

M1 > 0 since φh is a Lagrangian function, and hence the magnitude of the right-hand
side can be bounded from above by

|F · φh(x′)| 6M1.

Note that ||F || = 1. Hence the right-hand side is bounded, and herewith from Lax-
Milgram’s Lemma, the existence and uniqueness of uGh (x,x′,n(x′)) follows.

• Existence and uniqueness follow analogously, only boundedness of the right-hand side,
which is a linear functional in φh ∈ Vh(Ω) has to be checked:

|
NS∑
j=1

P (xj)n(xj) · φh(xj)∆S(xj)| 6
NS∑
j=1

|P (xj)| · ||n(xj)|| · ||φh(xj)||∆S(xj)

=

NS∑
j=1

|P (xj)| · ||φh(xj)||∆S(xj)

6M1M2

NS∑
j=1

∆S(xj).
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Note that n has unit length. The summation gives the polygonal length or polyhedral
area of the cell boundary. Hence the right-hand side is bounded, then by Lax-Milgram’s
Lemma, existence and uniqueness follow. Further by substitution, it follows that that

a(uh,φh) = a(

NS∑
j=1

P (xj)u
G
h (x,xj,n(xj))∆S(xj),φh)

=

NS∑
j=1

P (xj)a(uGh (x,xj,n(xj)),φh)∆S(xj)

=

NS∑
j=1

P (xj)n(xj) · φh(xj)∆S(xj).

The last step uses the first part of the theorem, and finally proves the assertion.

• We proceed similarly, by boundedness of the right-hand side:

|
∫
Sc

P (x′)n(x′) · φh(x′)dS(x′)| 6M1M2|Sc|,

which again shows that the right-hand side is a bounded linear functional in Vh(Ω). We
proceed by substitution:

a(uh,φh) = a(

∫
Sc

P (x′)uGh (x,x′,n(x′))dS(x′),φh)

=

∫
Sc

P (x′)a(uGh (x,x′,n(x′)),φh)dS(x′)

=

∫
Sc

P (x′)n(x′) · φh(x′)dS(x′).

Note that, formally, it was not necessary to prove boundedness, because coerciveness implies
uniqueness and the existence was proved by construction and by combining the result for the
existence of uGh .

Further in two and three dimensional case, the convergence between the solution to (GF )
and (GF∞) can be proved. Similar work has been done in [9] regarding Stokes problem with
the Delta distribution term.

Theorem 2.2. Let Sc be a polygon or polyhedron embedded in Ω ⊂ Rn and let P (x) be suffi-
ciently smooth. Further, let xj be the midpoint of surface element ∆S(xj). Denote u∆S

h as the
Galerkin solution to (GF ) and the u∞h as the Galerkin solution to (GF∞), respectively. In two
dimensions, for any x /∈ Sc, there exists a positive constant C, such that for each component
of u∞h we have

|u∆S
h − u∞h | 6 C∆S2

max,

where ∆Smax = max{∆S(xj)} for any j = {1, 2, · · · , NS}. In three dimensions, for any x /∈ Sc,
there exists a positive constant C, such that for each component of u∞h we have

|u∆S
h − u∞h | 6 Ch2

max,

where hmax is the maximal diameter among all the triangular elements over Sc.
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Proof. Away from Sc, the function uGh is smooth, and since P (x) is smooth as well, the in-
tegrand, given by P (x)uGh (x;x′;n) is smooth as well. For ease of notation, we set f(x) =
P (x)uGh (x;x′;n). We start with the 2D-case. Given the i − th boundary element ∆Γi on Sc
with the endpoints xi and xi+1 and we denote its midpoint by xi+1/2, where i ∈ {1, 2, · · · , NS}.
We consider

x(s) = xi+1/2 + s
xi+1 − xi

2
, −1 6 s 6 1,

Hence, x(0) = xi+1/2 and x′(s) =
1

2
(xi+1 − xi), and subsequently

‖x′(s)‖ =
1

2
‖xi+1 − xi‖.

We calculate the contribution over ∆Si to the integral, where Taylor’s Theorem and the Mean
Value Theorem for integration are used to warrant the existence of a ŝ ∈ (−1, 1), such that∫

∆Si

f(x)dS =

∫ 1

−1

f(x(s))‖x′(s)‖ds

=
1

2
‖xi+1 − xi‖

∫ 1

−1

f(x(s))ds

(Taylor Expansion) =
1

2
‖xi+1 − xi‖

∫ 1

−1

f(x(0)) + s
xi+1 − xi

2
∇f(x(s))|s=0

+
1

2
s2(
xi+1 − xi

2
)TH(x(ŝ))|(xi+1 − xi

2
)

=
1

2
‖xi+1 − xi‖[2f(xi+1/2) + 0 +

1

12
(xi+1 − xi)TH(x(ŝ))|(xi+1 − xi)]

= ‖xi+1 − xi‖f(xi+1/2) +
1

24
‖xi+1 − xi‖(xi+1 − xi)TH(x(ŝ))|(xi+1 − xi),

where H(x(s)) is the Hessian matrix of f(x(s)). Therefore, we obtain that∣∣∣∣∫
∆Si

f(x)dS − ‖xi+1 − xi‖f(xi+1/2)

∣∣∣∣ =
1

24
‖xi+1 − xi‖ · |(xi+1 − xi)TH(x(ŝ))|(xi+1 − xi)|

6
1

24
‖xi+1 − xi‖K̃‖xi+1 − xi‖2.

Since f(x) ∈ C2(Ω), it follows that there exists a K̃ > 0, such that

|(x,H(x))| 6 K̃‖x‖2.

Therefore, considering the summation of the boundary elements over SC ,∣∣∣∣∣
∫

∆Si

f(x)dS −
NS∑
i=1

‖xi+1 − xi‖f(xi+1/2)

∣∣∣∣∣ 6
NS∑
i=1

1

24
‖xi+1 − xi‖K̃‖xi+1 − xi‖2

6
1

24
K̃∆S2

max

NS∑
i=1

‖xi+1 − xi‖

6
1

24
K̃∆S2

max|Sc|,

where ∆Smax = maxi∈{1,...,NS} ||xi+1 − xi|| is the maximal length of the line segment over SC ,
and |Sc| is the perimeter of the polygon Sc. It can be concluded that there exists a positive
constant K, such that

|u∞h − u∆S
h | 6 K∆S2

max.
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In three dimensions, the surface element is a triangle. We map the triangle in (x, y, z)-
space to the reference triangle in (s, t)-space with points (0, 0), (0, 1) and (1, 0). Suppose there
is a surface element ej with nodal points x1,x2 and x3, then the centre point of ej is xc =
(x1 +x2 +x3)/3. The map from the reference triangle e0 to the physical triangle ej is given by

x(s, t) = x1(1− s− t) + sx2 + tx3, 0 6 s, t 6 1.

For any function f(x) ∈ C2(Ω), the integral over the original triangle is given by∫
ej

f(x)dx =

∫
e0

f(x(s, t))|
√

det(JTJ)|d(s, t),

where J is the Jacobian matrix, given by

J =
∂(x, y, z)

∂(s, t)
=

x2 − x1 x3 − x1

y2 − y1 y3 − y1

z2 − z1 z3 − z1

 ,

and
√
| det(JTJ)| is twice the area of the original triangle ej, i.e.

|∆j| :=
√
| det(JTJ)| = ||(x2 − x1)× (x3 − x1)||.

We conduct the same process as for the two dimensional case, we obtain, where x(1
3
, 1

3
) =

xc coincides with the midpoint of element ej, and where Taylor’s Theorem for multi-variate
functions is used:∫

ej

f(x)dx =

∫
e0

f(x(s, t))|∆j|d(s, t)

= |∆j|
∫
e0

f(x(s, t))d(s, t)

= |∆j|
∫
e0

f(xc) + (x(s, t)− xc) · ∇f(xc) +
1

2
(x(s, t)− xc)TH(x(ŝ, t̂))(x(s, t)− xc)d(s, t)

= |∆j|[
1

2
f(xc) + 0 +

1

2

∫
e0

(x(s, t)− xc)TH(x(ŝ, t̂))(x(s, t)− xc)d(s, t)].

Due to f(x) ∈ C2(Ω), then for the Hessian matrix of f(x), there exists K̃ > 0, such that

|(x,H(x))| 6 K̃‖x‖2.

It yields∣∣∣∣∣
∫
ej

f(x)dx− |∆j|
2
f(xc)

∣∣∣∣∣ 6
∣∣∣∣ |∆j|

2

∫
e0

(x(s, t)− xc)TH(x(ŝ, t̂))(x(s, t)− xc)d(s, t)

∣∣∣∣
6
|∆j|

4
K̃h2

max,

where h2
max is the largest diameter in the original triangle ej. Considering all the surface

elements over SC , we compute∣∣∣∣∣
∫
Sc

f(x)dx−
NS∑
j=1

|∆j|
2
f(xj)

∣∣∣∣∣ 6 K̃

4
h2
max

NS∑
j=1

|∆j|
2

6
K̃

4
h2
max|Sc|,
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where h2
max is the maximal diameter among all the surface element (i.e. triangle) and |Sc| is

the sum of the measure (area in R3) of all the surface elements over Sc. Therefore, in three
dimensions, we can conclude that there exists a positive constant K, such that for the unique
Galerkin solution to both (GF ) and (GF∞),

|u∞h − u∆S
h | 6 Kh2

max.

The above proof and theorem can easily be extended to higher dimensionalities.

3 Alternative Approaches for Elasticity Equation with

Point Sources in Multi Dimensions

3.1 The ’Hole’ Approach

We compare the immersed boundary method with an alternative description, where we use
a force boundary condition over the cell boundary. The area within the cell is not taken
into account, and only stresses, strains and displacements over the region outside the cell are
computed. We consider the balance of momentum over Ω \ ΩC . This gives the following
boundary value problem:

(BV PH)


−∇ · σ = 0, in Ω\ΩC ,

σ · n = P (x)n(x), on SC ,

u = 0, on ∂Ω,

Taking β > 0, we adjust the immersed boundary method such that

E(x) =

{
βE, in ΩC ,

E, in Ω \ ΩC .

Let D ⊂ Ω, then we introduce the following notation:

aD,E(u,v) :=

∫
D

σE(u) : ε(v)dΩ,

where

σE :=
E(x)

1 + ν

{
ε+ tr(ε)

[
ν

1− 2ν

]
I

}
Regarding the adjusted immersed boundary approach, we have the following Galerkin form

(GFβ)


Find uβh ∈ Vh(Ω) such that for all φh ∈ Vh(Ω), we have

βaΩC ,E(uβh,φh) + aΩ\ΩC ,E(uβh,φh) =

∫
Sc

P (x)n(x) · φhdS(x).

For the hole approach, we have the following Galerkin form

(GFH)


Find uHh ∈ Vh(Ω \ ΩC) such that, for all φh ∈ Vh(Ω \ ΩC), we have

aΩ\ΩC ,E(uHh ,φh) =

∫
Sc

P (x)n(x) · φhdS(x).

We will prove that the adjusted immersed boundary method is a perturbation of the hole
approach:

9



Proposition 3.1. Let uHh and uβh, respectively, satisfy Galerkin forms (GFH) and (GFβ), then

there is a C > 0 such that ||uHh − u
β
h||H1(Ω) 6 C

√
β.

Proof. Let v = uβh − uHh , then subtraction of problems (GFH) and (GFβ) gives

aΩ\ΩC ,E(v,φh) = −βaΩC ,E(uβh.φh).

The left-hand side is a bounded and coercive form on which we can apply Korn’s Inequality.
Furthermore, boundedness of the right-hand side in Vh(Ω \ ΩC) follows by application of the
Cauchy-Schwartz Inequality, hence there is an L > 0 such that aΩC ,E(uβh.φh) 6 L. Herewith,
we arrive at

−βL 6 aΩ\ΩC ,E(v,φh) 6 βL, for all φh ∈ Vh(Ω \ ΩC).

Using Korn’s Inequality, and upon setting φh = v in Ω \ ΩC , we arrive at

K||v||2H1Ω\ΩC 6 aΩ\ΩC ,E(v,v) 6 βL

⇒ ||v||H1Ω\ΩC 6 C
√
β, where C =

√
L

K
.

For the case of a spring-force boundary condition on ∂Ω one can derive a compatibility
condition. To this extent, we consider the following boundary value problems, for the hole
problem:

(BV P ′H)


−∇ · σ = 0, in Ω\ΩC ,

σ · n = P (x)n(x), on SC ,

σ · n+ κu = 0, on ∂Ω,

and for the immersed boundary problem:

(BV P ′I)

 −∇ · σ =

∫
Sc

P (x′)n(x′)δ(x− x′)dS(x′), in Ω\ΩC ,

σ · n+ κu = 0, on ∂Ω,

Next we give a proposition regarding compatibility for the hole approach and the immersed
boundary method for the case of a spring boundary condition:

Proposition 3.2. Let uH and uI , respectively, be solutions to the ’hole-approach’, see (BV P ′H)
and to the immersed boundary approach, see (BV P ′I). Let SC denote the boundary of the
biological cell, over which internal forces are exerted, and let ∂Ω be the outer boundary of Ω.
Then ∫

∂Ω

κuHdS =

∫
∂Ω

κuIdS =

∫
SC

P (x)n(x)dS

.

Proof. To prove that the above equation holds true, we integrate the PDE of both approaches
over the computational domain Ω.

For the immersed boundary approach, we get

−
∫

Ω

∇ · σdΩ =

∫
Ω

NS∑
j=1

P (x)n(x)δ(x− xj)∆S(xj)dΩ,

10



then after applying Gauss Theorem in the left-hand side and simplifying the right-hand side,
we obtain

−
∫
∂Ω

σ · n(x)dS =

NS∑
j=1

P (xj)n(xj)∆S(xj).

By substituting the Robin’s boundary condition and letting NS → ∞, i.e. ∆S(xj) → 0, the
equation becomes ∫

∂Ω

κuIdS =

∫
SC

P (x)n(x)dS. (3.1)

Subsequently, we do the same thing for the hole approach. Then, we get

−
∫

Ω

∇ · σdΩ = 0,

and we apply Gauss Theorem:

−
∫
∂Ω∪SC

σ · n(x)dS = 0,

which implies

−
∫
∂Ω

σ · n(x)dS −
∫
SC

σ · n(x)dS = 0.

Using the boundary conditions, we get∫
∂Ω

κuHdS =

∫
SC

P (x)n(x)dS,

which is exactly the same as Eq (3.1). Hence we proved that∫
∂Ω

κuHdS =

∫
∂Ω

κuIdS =

∫
SC

P (x)n(x)dS.

Hence, the two different approaches are consistent in the sense of global conservation of
momentum and therefore the results from both approaches should be comparable.

3.2 The Smoothed Particle Approach

The Gaussian distribution is used here as an approximation for the Dirac Delta distribution.
Hereby, we show that in the n-dimensional case, the Gaussian distribution is a proper approx-
imation for the Dirac Delta distribution.

Lemma 3.1. For an open domain Ω = (x1,1, x1,2)× (x2,1, x2,2)× · · · × (xn,1, xn,2) ⊂ Rn, n > 2,
let

δε(x− x′) =
1

(2πε2)n/2
exp{−‖x− x

′‖2

2ε2
},

where x′ = (x′1, . . . , x
′
n) ∈ Ω, then

(i) limε→0+ δε(x− x′)→ 0, for all x 6= x′;

(ii) Let f(x) ∈ C2(Rd) and ‖f(x)‖ 6M < +∞, then there is a C > 0 such that

|
∫

Ω

δε(x− x′)f(x)dΩ− f(x′)| 6 Cε2 as ε→ 0+.
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Proof. (i) Since x 6= x′, limε→0+ exp{−‖x− x
′‖2

2ε2
} → 0. Thus,

lim
ε→0+

δε(x− x′)→ 0, for all x 6= x′.

(ii) Now we consider∫
Ω

δε(x− x′)f(x)dΩ =

∫
Ω

1

(2πε2)n/2
exp{−‖x− x

′‖2

2ε2
}f(x)dΩ.

Firstly, we integrate over the infinite domain:∫
Rn
δε(x− x′)f(x)dΩ =

1

(2πε2)n/2

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp{−‖x− x

′‖2

2ε2
}f(x)dxn · · · dx1

=
1

(2πε2)n/2

∫ +∞

−∞
exp{−(x1 − x′1)2

2ε2
} · · ·

∫ +∞

−∞
exp{−(xn − x′n)2

2ε2
}f(x)dxn · · · dx1.

Again let si =
(xi−x′i)−

xi,1+xi,2
2√

2ε
, and furthermore ξi = si +

xi,1+xi,2
2

, i = {1, 2, . . . , n}. We

denote x1 = (x1,1, x2,1, . . . , xn,1), x2 = (x1,2, x2,2, . . . , xn,2) and x′ = (x′1, x
′
2 . . . , x

′
n). By Taylor

Expansion, f(x) can be rewritten as

f(x) = f(
√

2εs+
x1 + x2

2
+ x′)

= f(x′) +∇f(x′)(
√

2εs+
x1 + x2

2
) +

1

2!
(
√

2εs+
x1 + x2

2
)TH(x′)(

√
2εs+

x1 + x2

2
) +O(ε3)

= f(x′) +∇f(x′)
√

2ε(s+
x1 + x2

2
√

2ε
) + ε2(s+

x1 + x2

2
√

2ε
)TH(x′)(

√
2εs+

x1 + x2

2
√

2ε
) +O(ε3)

= f(x′) +∇f(x′)
√

2εξ + ε2ξTH(x′)ξ +O(ε3)

where H(x′) is Hessian matrix of f(x). For any non-negative integer d,

∫ +∞

−∞
zde−z

2

dz =

 0, if d is odd,

Γ(
d+ 1

2
), if d is even.
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First we calculate∫
Rn
δε(x− x′)f(x)dΩ =

1

(2πε2)n/2

∫ +∞

−∞
exp{−(x1 − x′1)2

2ε2
} · · ·

∫ +∞

−∞
exp{−(xn − x′n)2

2ε2
}f(x)dxn · · · dx1

=
1

πn/2

∫ +∞

−∞
exp{(−s1 +

x1,1 + x1,2

2
)2} · · ·

∫ +∞

−∞
exp{(−sn +

xn,1 + xn,2
2

)2}

f(
√

2εs+
x1 + x2

2
+ x′)dsn · · · ds1

=
1

πn/2

∫ +∞

−∞
e−ξ

2
1 · · ·

∫ +∞

−∞
e−ξ

2
nf(
√

2εξ + x′)dξn · · · dξ1

=
1

πn/2

∫ +∞

−∞
e−ξ

2
1 · · ·

∫ +∞

−∞
e−ξ

2
n [f(x′) +∇f(x′)

√
2εξ + ε2ξTH(x′)ξ +O(ε3)]dξn · · · dξ1

=
f(x′)

πn/2

∫ +∞

−∞
e−ξ

2
1 · · ·

∫ +∞

−∞
e−ξ

2
ndξn · · · dξ1 +

√
2ε

πn/2

∫ +∞

−∞
e−ξ

2
1ξ1f

′
x1

(x′) · · ·
∫ +∞

−∞
e−ξ

2
nξnf

′
xn(x′)dξn · · · dξ1

+
ε2

πn/2

∫ +∞

−∞
e−ξ

2
1(
√

2ξ1 + f ′′x1,x1(x
′)ξ2

1 +
n∑

i=1,i 6=1

f ′′x1,xi(x
′)ξ1ξi) · · ·

∫ +∞

−∞
e−ξ

2
n(
√

2ξ1

+ (f ′′xn,xn)(x′)ξ2
n +

n∑
i=1,i 6=n

f ′′xn,xi(x
′)ξnξi)dξn · · · dξ1 +O(ε3)

= f(x′) +
ε2

√
π

Γ(
3

2
)

d∑
i=1

f ′′xi,xi(x
′) +O(ε3)

→ f(x′), as ε→ 0+.

For the integral over the given domain Ω = (x1,1, x1,2)× · · · × (xn,1, xn,2), it can be written
as∫ x1,2

x1,1

· · ·
∫ xn,2

xn,1

dxn · · · dx1 =

∫ +∞

−∞
· · ·
∫ +∞

−∞
dxn · · · dx1 −

n∑
i=1

∫ x1,2

x1,1

· · ·
∫ xi,1

−∞
· · ·
∫ xn,2

xn,1

dxn · · · dx1

−
n∑
i=1

∫ x1,2

x1,1

· · ·
∫ +∞

xi,2

· · ·
∫ xn,2

xn,1

dxn · · · dx1

= (
√

2ε)n
[∫ +∞

−∞
· · ·
∫ +∞

−∞
dsn · · · ds1 −

n∑
i=1

∫ s1,2

s1,1

· · ·
∫ si,1

−∞
· · ·
∫ sn,2

sn,1

dsn · · · ds1

−
n∑
i=1

∫ ξ1,2

ξ1,1

· · ·
∫ +∞

ξi,2

· · ·
∫ ξn,2

ξn,1

dξn · · · dξ1

]

= (
√

2ε)n
[∫ +∞

−∞
· · ·
∫ +∞

−∞
dξn · · · dξ1 −

n∑
i=1

∫ ξ1,2

ξ1,1

· · ·
∫ ξi,1

−∞
· · ·
∫ ξn,2

ξn,1

dξn · · · dξ1

−
n∑
i=1

∫ ξ1,2

ξ1,1

· · ·
∫ +∞

ξi,2

· · ·
∫ ξn,2

ξn,1

dξn · · · dξ1

]
,
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where ξi,1 =
xi,1−x′i√

2ε
and ξi,2 =

xi,2−x′i√
2ε

. Therefore,∣∣∣∣∫
Ω

δε(x− x′)f(x)dΩ− f(x′)

∣∣∣∣ =

∣∣∣∣∣f(x′) +
ε2

√
π

Γ(
3

2
)

d∑
i=1

f ′′xi,xi(x
′) +O(ε3)

− 1

πn/2

[
n∑
i=1

∫ ξ1,2

ξ1,1

e−ξ1 · · ·
∫ ξi,1

−∞
e−ξi · · ·

∫ ξn,2

ξn,1

e−ξnf(
√

2εξ + x′)dξn · · · dξ1

+
n∑
i=1

∫ ξ1,2

ξ1,1

e−ξ1 · · ·
∫ +∞

ξi,2

e−ξi · · ·
∫ ξn,2

ξn,1

e−ξnf(
√

2εξ + x′)dξn · · · dξ1

]
− f(x′)

∣∣∣∣∣
6

∣∣∣∣∣ ε2

√
π

Γ(
3

2
)

d∑
i=1

f ′′xi,xi(x
′) +O(ε3)

∣∣∣∣∣+
M

2n−1

n∑
j=1

n∏
i=1,i 6=j

[erf(ξj,2)− erf(ξj,1) + 2]×

[erf(ξi,2)− erf(ξi,1)]

6

∣∣∣∣∣ ε2

√
π

Γ(
3

2
)

d∑
i=1

f ′′xi,xi(x
′) +O(ε3)

∣∣∣∣∣+
M

2

n∑
j=1

[erf(ξj,1)− erf(ξj,2) + 2]→ 0, as ε→ 0+,

since ‖f(x)‖ < M < +∞, ξi,1 → −∞ and ξi,2 → ∞ respectively. Using 1 − erf(y) <
2√
π

exp(−y) for y > 0 and the fact that exp(y) < 1
yα

as y → ∞, we see that the second
term approximates zero faster than the first term. Hence, we conclude that there is a C > 0
such that

|
∫

Ω

δε(x− x′)f(x)dΩ− f(x′)| 6 Cε2 as ε→ 0+.

As a remark we add that setting f(x) = 1, immediately shows that there is a C > 0 such
that

|
∫

Ω

δε(x− x′)dΩ− 1| 6 Cε2 as ε −→ 0+.

Using the result above, we start with analysing different approaches with only one relatively
big cell in the computational domain. According to the model described in Eq (2.4), the forces
released on the boundary of the cell are the superposition of point forces on the midpoint of
each surface element. For example, if we use a square shape to approximate the biological cell,
then the forces are depicted in Figure 3.1. Therefore, in n dimensional case (n > 1), if the
biological cell is a n-dimensional hypercube, then the forces can be rewritten as

ft =

NS∑
j=1

P (x)n(x)δ(x− xj)∆S(xj)

= P
n∑
i=1

{ei(∆x)n−1[δ(x1 − x′1, . . . , xi − (x′i +
∆x

2
), . . . , xn − x′n)

− δ(x1 − x′1, . . . , xi − (x′i −
∆x

2
), . . . , xn − x′n)]},

(3.2)

where ei is the standard basis vector with 1 in the i-th coordinate and 0′s elsewhere, and ∆x
is the length of cell boundary in each coordinate. For the smoothed force approach, we set
δ(x) ≈ δε(x). The force is given by

fε = P

n∑
i=1

{ei(∆x)n−1[δε(x1 − x′1, . . . , xi − (x′i +
∆x

2
), . . . , xn − x′n)

− δε(x1 − x′1, . . . , xi − (x′i −
∆x

2
), . . . , xn − x′n)]}.

(3.3)
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Following the same process in two dimensions [12] and thanks to the continuity of Gaussian
distribution, as ∆x→ 0, the force converges to

fSP = P (∆x)n∇δε(x− x′). (3.4)

Figure 3.1: We consider a rectangular shape cell in two dimensions, with the centre position at
(a, b). The forces exerted on the boundary are indicated by arrows

Theorem 3.1. Let uh ⊂ Vh(Ω) be the Galerkin solution to the problem

(BV P )


Find uh ∈ Vh(Ω) such that

a(uh,φh) =

∫
Ω

ftφhdΩ, for all φh ∈ Vh(Ω),

and uε
h be the Galerkin solution to

(BV Pε)


Find uεh ∈ Vh(Ω) such that

a(uεh,φh) =

∫
Ω

fεφhdΩ, for all φh ∈ Vh(Ω).

Then there is an L1 > 0 such that ||uε
h − uh||H1(Ω) 6 L1 (∆x)(n−1)/2 ε.

Proof. Using bilinearity of a(., .) gives upon setting w = uh − uε
h the following equation:

a(w,φh) =

∫
Ω

(ft − fε) · φhdΩ.

Using the result from Lemma 3.1 and the Triangle Inequality, bearing in mind that ||ei|| = 1
and that the basis field functions φh are bounded, and after some algebraic manipulations, we
can write the right-hand side as

|
∫

Ω

(ft − fε) · φhdΩ| 6 C(∆x)n−1ε2. (3.5)

Coerciveness, see Lemma 2.2, and using φh = w, gives

K||w||2H1(Ω) 6 a(w,w) 6 C(∆x)n−1ε2,

hence there is an L1 > 0 such that ||w||H1(Ω) 6 L (∆x)(n−1)/2 ε, which immediately implies
that

||uh − uεh||H1(Ω) 6 L1 (∆x)(n−1)/2 ε
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Theorem 3.2. Let uε
h be the solution to the boundary value problems in Eq (3.1), and uSPh the

solution to

(BV PSP )


Find uSPh ∈ Vh(Ω) such that

a(uSPh ,φh) =

∫
Ω

fSPφhdΩ,

for all φh ∈ Vh(Ω).

(3.6)

Then there is an L2 > 0 such that

1

(∆x)n
||uSPh − uεh||H1(Ω) 6 L2

(∆x)2

ε3
.

Proof. Using bilinearity of a(., .) gives upon setting w = uεh − uSPh the following equation:

a(w,φh) =

∫
Ω

(fε − fSP ) · φhdΩ.

Using Taylor’s Theorem for multivariate functions on smoothed delta distributions, we get the
following result for the right-hand side:∫

Ω

(fε − fSP ) · φhdΩ =

∫
Ω

P (x′)

48
(∆x)n+2

n∑
i=1

ei
∂3δε(x̂− x′)

∂x3
i

· φhdΩ, (3.7)

for x̂ between x and x′. The magnitude of the above expression can be estimated from above
by

|
∫

Ω

(fε − fSP ) · φhdΩ| 6 P (x′)

48
(∆x)n+2||

n∑
i=1

ei
∂3δε
∂x3

i

||L∞(Ω)||φh||H1(Ω). (3.8)

Using Lemma 2.2, this gives

K||w||2H1(Ω) 6 a(w,w) 6
P (x′)

48
(∆x)n+2||

n∑
i=1

ei
∂3δε
∂x3

i

||L∞(Ω)||φh||H1(Ω).

Division by K||w||H1(Ω) gives

||w||H1(Ω) 6
P (x′)

48
(∆x)n+2||

n∑
i=1

ei
∂3δε
∂x3

i

||L∞(Ω).

We bear in mind that ∂3δε
∂x3i

= O(ε−3), this implies that there is an L2 > 0 such that

1

(∆x)n
||uSPh − uεh||H1(Ω) 6 L2

(∆x)2

ε3
.

With the two theorems above, we have proved that the solution to (BV Pε) converges to the
solution to (BV P ), and the solution to (BV PSP ) converges to the solution to (BV Pε). Hence,
we can derive the following theorem:

Theorem 3.3. Let uh be the Galerkin solution to (BV P ) and uSPh be the solution to (BV PSP ),
let ε = O(∆x)p and ∆x→ 0. If 0 < p < (2 + n)/3 then uSPh converges to uh in the H1–norm,
and uSPh converges to u in the H1–norm.
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Proof. Denote uh and uSPh to be the Galerkin solution to (BV Pε) and (BV PSP ). Firstly, we
consider

‖uh − uSPh ‖ = ‖uh − uε
h + uε

h − uSPh ‖
6 ‖uh − uε

h‖+ ‖uε
h − vεh‖

= L1(∆x)(n−1)/2ε+ L2
(∆x)2+n

ε3

= L1(∆x)(n−1)/2+p + L2(∆x)2+n−3p −→ 0,

as ∆x −→ 0, if 0 < p < (2 + n)/3.

From this inequality, we conclude that the finite element solution of the smooth particle
method converges to the solution of the immersed boundary method upon letting ∆x→ 0 and
choosing ε = O((∆x)p) for 0 < p < (2 + p)/3. [2] demonstrated that the Galerkin solution of
the immersed boundary method converges in H1 norm to the exact solution of the immersed
boundary method. Using

‖u− uSPh ‖H1(Ω) 6 ‖u− uh‖H1(Ω) + ‖uh − uSPh ‖H1(Ω)

→ 0, as ∆x −→ 0,

upon letting ∆x→ 0 and choosing ε = O((∆x)p) for 0 < p < (2 + p)/3.

4 Conclusion

For the dimensionality exceeding one, the existence of Dirac Delta distributions in the elas-
ticity equation results into a singular solution. We analyse the solutions based on Galerkin
approximations with Lagrangian basis functions for different approaches that are consistent if
biological cell sizes and smoothness parameters tend to zero. We have shown that the smoothed
particle approach is consistent with the immersed boundary approach. The current paper has
investigated and extended earlier findings to multi-dimensionality.
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