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Abstract

Optimization is an important tool for the operation of an energy system. Multi-carrier
energy systems (MESs) have recently become more important. Load flow (LF) equations are
used within optimization to determine if physical network limits are violated. The way these
LF equations are included in the optimal flow (OF) problem, influences the solvability of the
OF problem and the convergence of the optimization algorithms. This paper considers two
ways to include the LF equations within the OF problem for general MESs.

In the first formulation, optimization is over the combined control and system-state vari-
ables, with the the LF equations included explicitly as equality constraints. In the second
formulation, optimization is over the control variables only. The system-state variables are
solved from the LF equations in a separate subsystem, given the control variables. Hence, the
LF equations are included only implicitly in the second formulation. The two formulations are
compared theoretically. The effect of the two formulations on the solvability of the OF problem
is illustrated by optimizing two MESs.

Both formulation I and formulation II result in a solvable OF problem. For the two example
MESs, the optimization algorithms require significantly fewer iterations with formulation II
than with formulation I. For formulation II, the direct and the adjoint approach can be used
to determine the required derivatives within the optimization algorithms. Scaling is needed to
solve the OF problem for MESs. Both matrix scaling and per unit scaling can be used, but
they are not equivalent.
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1 Introduction

Multi-carrier energy systems (MESs) have become more important, as the need for sustainable
energy systems increases. Single-carrier energy systems, such as power grids or gas networks,
are coupled to form one integrated or multi-carrier energy system. Due to increased flexibility,
reliability, use of renewables and distributed generation, and due to reduced carbon emission, MESs
can give better performance than classical energy systems. An overview of MESs is given in [1].

Optimization is an important tool for the operation of an energy system. The distribution of
generation over the various sources, or the set points of controllable elements, are determined such
that some objective is optimized. At the same time, the operation of the energy system must stay
within physical limits. Optimization for single-carrier systems, especially power grids, has been
widely studied, but optimization for MESs has only been proposed recently. Load flow equations,
or network equations, are used in finding an optimal solution and to determine if physical limits are
violated. The way these load flow equations are included in the optimization problem influences
the solvability of the optimization problem. Most optimization problems for MES simplify these
equations, or do not consider network transmission at all.

In [2], social welfare is maximized for a combined gas and electricity network. The load flow
equations are included as equality constraints. However, there is only a single point of coupling
between the two networks, and the boundary conditions are chosen such that the load flow problem
for electricity can be solved independently of that of gas. In [3], a general optimization framework for
MESs is introduced. They use the energy hub (EH) concept, which is a linear model for the coupling
units assuming uni-directional flow, which limits the generality. In [4], the total operation costs
of an integrated gas, electricity, and heat network are minimized, also using EHs for the coupling
models. In [5], the operation costs of a combined gas and electricity network are minimized, by
decomposing the coupled problem in a gas problem and an electrical problem. In [6], an integrated
gas, electricity, and heat network is optimized, where the thermal equations are decoupled from
the other constraints, and a linear model for heat exchangers is used. In [7], an optimal dispatch
problem is used, considering only energy balances instead of detailed load flow equations. In [8],
an integrated gas, electricity, and heat network, including storage, is optimized. The optimization
and network simulation are decoupled, such that a linear approximation of the network equations
is used within the optimization.

Various formulations of the load flow equations exist for modeling energy systems, both in the
single-carrier and in the multi-carrier case. Moreover, there are multiple ways to incorporate the
load flow equations in the optimization problem. Usually, the load flow equations are directly
included in the optimization problem as equality constraints. Nonlinearities of these constraints
cause issues with convexity and solvability of the optimization problem, as also noted in [3] and
[6]. Hence, the formulation of the load flow equations, and the way they are incorporated in the
optimization problem, greatly influence the solvability of the optimization problem.

An important factor for practical solvability of optimization problems is scaling. Due to the
various orders of magnitude of the physical quantities in energy systems, an unscaled optimization
problem for MESs is generally badly scaled. Therefore, scaling greatly improves solvability of the
optimization problem and convergence of the optimization algorithm.

To the best of the authors knowledge, the effect of the formulation of the load flow equations,
of the way they are incorporated in the optimization problem, and the effect of the type of scaling
on the solvability of optimization problem has not been studied.

In this work, we provide an analysis of the effect of the load flow equations on the solvability of the
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optimization problem for general MESs. We formulate an optimization problem for a general single-
or multi-carrier energy system, providing a general optimization framework. Total energy generation
costs are minimized, where the optimal solution is required to satisfy the physical operational limits
of the energy system. The load flow equations are included either explicitly as equality constraints
or they are included implicitly as subsystem. In the latter, the steady-state load flow problem is
solved as a subproblem of the optimization problem. We give a qualitative analysis of the resulting
optimization problems by comparing, amongst others, nonlinearity, feasibility, problem size, and
solvability. Furthermore, we consider the effect of scaling on the solvability of the optimization
problem.

We show that the optimization problem of MESs is solvable when the load flow equations
are included as equality constraints and when the are included as subsystem. This allows for
various formulations of the load flow equations, within an optimization framework. Both ways
of incorporating the load flow equations have advantages and disadvantages. The best way to
formulate the optimization problem, and the load flow equations, depends on the MES and the
specific problem at hand. Furthermore, we show that scaling is crucial for convergence of the
optimizer.

In Section 2, the steady-state load flow problem of general MESs is stated. In Section 3 we
formulate the optimization problem. First, we give the objective function to be minimized. Then,
the effect of which network quantities are chosen as variables and which are considered known
is discussed. We describe the two ways of including the load flow equations, that is as equality
constraints or as subsystem, within an optimization framework. Based on this, two formulations
of the general optimization problem for MESs are stated. Advantages and disadvantages of both
formulations are discussed. In Section 4 we give the methods used for solving the optimization
problem. Various optimizers suitable for the two optimization problems are used. We give two ways
of scaling the optimization problem: per unit scaling and matrix scaling. Finally, two approaches
for calculating the required (partial) derivatives of the objective function and constraints when
the load flow equations are included as subsystem are introduced. The two formulations of the
optimization problem, both with and without scaling, are used to optimize example MESs in Section
5, demonstrating some of the theoretical advantages and disadvantaged of the formulations of the
optimization problem in practice.

2 Steady-state Load Flow

Steady-state simulation of an energy system, sometimes called steady-state load flow (LF), is the
problem of determining the flows and other quantities of interest in the energy system, given
constant demands. See for instance [9] for a single-carrier electrical system, [10] for a single-carrier
gas system, and [11], [12], or [13] for MESs. We use a slightly adjusted model of the LF model
described in [13] for MESs.

For the steady-state problem, the energy system is mathematically represented as a graph.
The quantities of interest, and their relation to the graph representation, are shown in Figure
1 for a single-carrier gas, electricity, and heat network, and for a coupling node. In this graph
representation, terminal links are used to model inflow and outflow of the energy network. Figures
1a–1c show single-carrier gas, electricity, and heat networks, consisting of one link k, connecting
nodes i and node j, which both have a terminal link l connected to it. In a gas network, the
quantities of interest are the link mass flow qij , terminal link mass flow qi,l, and nodal pressure pi.
In an electrical network, they are the active power Pij and reactive power Qij at the start of the
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Figure 1: Quantities of interest for load flow simulation of energy systems, and the network elements
they are associated with. Arrows on links and terminal links show defined direction of flow.

link, and Pji and Qji at the end of the link, terminal link active and reactive power Pi,l and Qi,l,
and nodal voltage amplitude |Vi| and voltage angle δi. The terminal link powers are also called
injected powers. In a heating system, hot water is transported from a source through the supply
line to a heat demand. Then, cold water is transported back to the source through the return line.
We assume the water flow in the return line is equal in size but opposite in direction to the flow in
the supply, such that we can represent the supply line and return line with one link, and we can
represent heat sources and demands with a terminal link. The quantities of interest are the link
water mass flow mij , supply temperature T s

ij , return temperature T r
ij , and supply and return line

heat powers ϕs
ij and ϕr

ij at the start of the link, and T s
ji, T

r
ji, ϕ

s
ji and ϕr

ji at the end of the link,
terminal link mass flow mi,l, temperature at the supply line side T s

i,l and at the return line side T r
i,l,

and heat power inflow or outflow ∆ϕi,l, and nodal pressure pi, supply temperature T s
i , and return

temperature T r
i,l. The heat powers on the (terminal) links are defined such that ∆ϕ = ϕs + ϕr.

Figure 1d shows a multi-carrier network with a single coupling node. The coupling node itself
has no nodal variables. The variables of interest for a coupling node are the link variables of the
single-carrier links connected to the coupling node.

Some quantities, such as demands and a reference pressure or reference voltage, are given for
load flow simulations. These are the boundary conditions (BCs) or set points of the network. Given
BCs, a system of nonlinear equations has to be solved for state variables. With these state variables,
all other quantities of interest in the network can be determined. As such, they are derived variables
based on the state variables. For instance, in a power grid the state variables usually are the nodal
voltage amplitudes and nodal voltage angles, and the derived variables are complex power through
a line and injected reactive power at a generator (e.g. [9]).

The division of network variables into state variables and derived variables is not unique. In
a gas network, two formulations for the LF problem are commonly used; the nodal formulation
and the loop formulation (e.g. [10]). In the nodal formulation, the state variables are the nodal
pressures, while the gas flows on the links are the derived variables. In the loop formulation it is the
other way around, such that the state variables are the gas link flows and the nodal pressures are
the derived variables. We call the vector x, consisting of state variables xF and derived variables
xG, the extended state variables:

x :=
(
xG1 , . . . , x

G
s , x

F
1 , . . . , x

F
n

)T
(1)
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The LF problem is concerned with solving a (non)linear system of equations for the state variables.
In optimization problems, the derived variables are also used, either in the objective function

or with respect to physical limits of the energy system. We extend the standard LF equations and
state variables with the derived variables and with the (non)linear equations needed to derive them,
leading to the extended LF problem:

F
(
xF
)

= 0 (2a)

G
(
xG, xF

)
= 0 (2b)

Here, F : Rn → Rn is the system of (non)linear steady-state load flow equations, xF ∈ Rn are
the state variables, G : Rn+s → Rs are additional load flow equations, and xG ∈ Rs are the
derived variables. To solve the extended LF problem (2), the standard LF problem (2a) is solved
for the state variables xF . Then, using this xF , the additional equations (2b) determine the derived
variables xG.

Various formulations of the LF problem (2a) exist for a given (single-carrier) network, such
as the nodal or loop formulation in a single-carrier gas network [10], or the power-mismatch or
current-mismatch formulation in single-carrier power grids [14]. Moreover, the individual load flow
equations within (2) can be formulated in various ways. For instance, the hydraulic flow equation
used for pipes in a gas or heating network can express the pressure drop as function of flow or the
other way around. These formulations influence the solvability of the optimization problem or the
convergence behavior of the solvers, which we will show in Section 5.

3 Optimal Flow

An optimal flow problem (OF) finds an optimal solution to an objective function, while satisfying
operational constraints or physical limits of the energy system. To ensure that the optimal solution
satisfies operational constraints, the LF equations are used within OF. A solution that satisfies the
operational constraints is called (physically) feasible. Solvability of OF depends on the choice of
variables, the formulation of the LF equations used to model a MES, and how the LF equations
are included within OF.

3.1 Objective Function

Several objective functions are used in optimization of energy systems, such as minimizing gen-
eration costs, minimizing losses, or minimizing carbon emissions. We choose to minimize total
generation costs, which is commonly used in both single-carrier and multi-carrier systems (e.g. [3],
[4], and [15]). We model the costs of a source as a quadratic function of its energy flow, such that
the objective function is

f(E) =
∑
e∈E

ae + bee+ cee
2 (3)

Here, E is the vector of energy flows of the sources. For instance, for a gas source with mass flow
q and gross heating value (GHV), we have GHVq ∈ E, and for a gas-fired generator that produces
active power P we have P ∈ E. The parameters ae, be, and ce specify the cost of the energy source
related to energy flow e.
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The sum of quadratic functions is twice-continuously differentiable. Moreover, the objective
function f is convex in E for suitable parameters ae, be, and ce. Both the differentiability and
convexity have several mathematical advantages (e.g. [16], [17]).

3.2 Variables and bounds

The variables y of OF can be divided into control variables u and (extended) state variables x

as y :=
(
u1, . . . , up, x1, . . . , xn+s

)T
. By definition, the state variables cannot be control variables.

When a design optimization problem is considered, the control variables can include design variables
such as the diameter of a gas pipe. We consider an optimal flow problem, which is an operational
optimization problem. The control variables are quantities in the energy system that are controllable
in practice. They can include set points, which are (a subset of) the BCs of the LF problem, or
model parameters such as transformer tap-ratio’s [9] or dispatch factors of energy hubs [3]. Including
model parameters as variables would require derivatives of the objective and constraint functions
to these parameters. Since the model parameters would be part of the control variables u, which
are given for the LF equations, including the model parameters as variables does not change the
nature of the optimization problem and the proposed framework. Therefore, we assume the model
parameters are given, leaving only the BCs of LF as possible control variables.

The LF problem determines the state variables in the network, for given BCs. That is, for any
u, the nonlinear system (2) can be solved for xF and xG, assuming the LF problem is well-posed.
For notational simplicity, we denote the extended LF problem (2) by

h (x; u) :=

(
G (x; u)
F (x; u)

)
= 0 (4)

However, not every u results in a physically feasible extended state x.
To ensure physical feasibility of the set points u, bounds are imposed on network quantities.

Bounds imposed on variables y are simple linear inequality constraints in the optimization problem.
Bounds imposed on network quantities not in y have to be included as (non)linear inequality
constraints that are a function of y. These inequality constraints can be highly nonlinear.

When the energy flows of sources are part of the optimization variables, i.e. when E ⊆ y, the
objective function (3) is convex in y. However, when some of the energy flows in E are derived
quantities that are not included in the extended state x, the nonlinearity of the objective function
increases, and it may no longer be convex in y.

To avoid (highly) nonlinear inequality constraints, and to reduce the nonlinearity of the objective
function, derived variables can be included in the extended state. On the other hand, including
the derived variables in x increases the optimization space and the number of LF equations in the
(extended) LF problem. Depending on the optimizer, using extended state variables instead of only
the regular state variables can be beneficial.

3.3 Two Problem Formulations

The optimization problem determines a solution that minimizes the objective function, while sat-
isfying the LF problem and while staying within the feasibility limits. We consider two ways to
formulate the optimal flow (OF) problem, which we call formulation I and formulation II. Formu-
lation I includes the LF equations as equality constraints, while formulation II includes them as
subsystem.
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3.3.1 Formulation I: LF as equality constraints

The most straightforward way to satisfy the LF equations during optimization is to include them as
equality constraints directly, and optimize over the combined control and (extended) state variables
(as is done in e.g. [3], [4], and [15]). This gives formulation I of the OF problem:

min
x,u

f (x, u) (5a)

s.t h (x; u) = 0 (5b)

γ (x, u) ≥ 0 (5c)

ulb ≤ u ≤ uub (5d)

xlb ≤ x ≤ xub (5e)

Here, f : Rn+s+p → R is the objective function (3), u ∈ Rp is the vector of control variables,
x ∈ Rn+s is the vector of extended state variables (1), h : Rn+s+p → Rn+s are the equality
constraints given by the extended system of LF equations (4), ulb and uub are the lower and upper
bounds for the control variables, xlb and xub are the lower and upper bounds for the extended
state variables, and γ : Rn+s+p → Rm are inequality constraints representing the bounds for any
network quantities not included in y.

3.3.2 Formulation II: LF as subsystem

Another way to formulate the optimization problem is to apply (nonlinear) elimination of variables
and constraints (e.g. [16], [17]). We eliminate the extended state variables x using the LF equations
(4), to get an optimization over the control variables u only. This gives formulation II of the OF
problem:

min
u

f (x (u) , u) (6a)

s.t ulb ≤ u ≤ uub (6b)

g (x (u) , u) ≥ 0 (6c)

with g (x (u) , u) =

γ (x (u) , u)
x (u)− xlb

xub − x (u)

 (6d)

The relation x (u) is implicitly given by the extended LF problem (4). That is, for any given u,
the (extended) state x satisfies the LF equations by solving x from (4).

3.3.3 Comparison

If bounds are only imposed on network quantities that are included in y, then m = 0, (5c) is not
included in optimization problem (5), and γ is not included in (6d). Similarly, bounds do not have
to be imposed on all variables in y. Suppose bounds are imposed on p̃ ≤ p of the control variables
and on ñ + s̃ ≤ n + s of the extended state variables. Then (5d) and (6b) consist of p̃ bounds,
which are 2p̃ linear inequality constraints, and (5e) consists of ñ + s̃ bounds or 2ñ + 2s̃ linear
inequality constraints. Furthermore, g : Rn+s+p → Rm+2ñ+2s̃ such that (6c) consists of m+2ñ+2s̃
(non)linear inequality constraints.
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Formulations I and II have several advantages and disadvantages. Formulation II has a smaller
optimization space, due to the elimination of extended state variables. However, this elimination
increases the nonlinearity of the inequality constraints and objective function, and the linear bounds
(5e) are turned into (non)linear inequality constraints (6c). Moreover, elimination of variables using
nonlinear equations may result in errors ([17] pp. 426–428). Using nonlinear inequality constraints
γ in (5c) or in (6d), instead of including derived variables in the extended state variables, is an
example of (nonlinear) elimination of variables as well. This type of elimination is commonly used
in optimal power flow problems (e.g. [9]).

An advantage of formulation II is that the extended LF problem (4) is solved separately. The
LF problem can be delegated to a dedicated LF solver, instead of having the optimizer itself solve
the LF problem. A user solving the optimization problem does not need to have access to the
LF model; they only need access to the output and be able to set the input. This can be an
advantage, especially when optimizing a multi-carrier system, where the operator of each carrier
might have their own LF solver. Moreover, dedicated LF solvers might be more efficient at solving
the LF problem than an optimizer. However, the LF problem needs to be solved (at least) once per
iteration of the optimization algorithm used to solve (6). This might increase the total computation
time of the optimizer for formulation II compared with formulation I, depending on the efficiency
of the dedicated LF solver. On the other hand, this means the LF equations are satisfied at every
iteration of the optimizer. Depending on the optimizer, equality constraints are not satisfied at every
iteration, such that the LF equations are not always satisfied when using optimization problem (5).
Therefore, problem (6) can be preferred to (5) if feasibility has to be ensured.

The same quadratic objective function is used in both problems. If the objective function
depends on x, then it might have some nonlinear dependency on u, other than quadratic, in
problem (6). The (in)equality constraints (5b) and (5c) generally are nonlinear in y, while (5d)
and (5e) are linear inequality constraints. If bounds are imposed on variables in y only, such that
(5c) is not included, problem (5) is an optimization problem with nonlinear equality constraints
and linear inequality constraints. If (5c) is included, problem (5) is an optimization problem with
nonlinear equality and nonlinear inequality constraints. The inequality constraints (6c) generally
are nonlinear in u, regardless of whether γ is included or not. Problem (6) is an optimization
problem with nonlinear inequality constraints, but has no equality constraints. Both problems (5)
and (6) are nonlinearly constrained optimization problems.

Since the two formulations have advantages and disadvantages, we compare the two formulations
using some example multi-carrier networks.

4 Solving the Optimal Flow Problem

OF problems (5) and (6) are nonlinear, (in)equality constrained, multivariable optimization prob-
lems. It is generally not possible to determine analytically if the first-order, or KKT, and second-
order optimality conditions are met. Moreover, when the objective function is concave, or when the
(in)equality constraints are nonlinear, which is the case for most load flow equations, the solution
space might be non-convex. Hence, we use numerical solvers to approximate an optimal solution.

4.1 Optimizers

To solve problems (5) and (6) we consider three solvers used for nonlinearly constrained optimization
problems: The ‘trust-constr’ (t-c) and ‘SLSQP’ methods from SciPy [18], and IPOPT [19].
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The trust-constr method is a trust-region interior-point method for large-scale nonlinear opti-
mization problems, based on the algorithm developed in [20]. Inequality constraints are handled
by introducing a barrier function. The resulting barrier subproblems are solved using an adapted
version of the Byrd-Omojokun Trust-Region Sequential Quadratic Programming (SQP) Method
([17] p. 549). The trust-constr method is a projected Lagrangian method.

The SLSQP method is a sequential least squares programming method, based on the algorithm
developed in [21]. It is a projected Lagrangian method, where a sequence of linearly constrained
quadratic programming (QP) subproblems is created. The Hessian of the Lagrangian is factorized,
turning the QP problem into a least-squares problem. Hence, a sequence of least-squares subprob-
lems is solved. Unlike the trust-constr method, the SLSQP method does not require the Hessian of
the Lagrangian.

IPOPT is a primal-dual interior-point method for large-scale nonlinear optimization problems,
using the algorithm developed in [19]. Like the trust-constr method, inequality constraints are han-
dled by introducing a barrier function. These barrier subproblems are solved by applying Newton’s
method to the system of primal-dual equations. The search directions for the next iterate are deter-
mined by linearizing these primal-dual equations. The step sizes are determined by a backtracking
line-search procedure, which is a variant of a filter method, to ensure global convergence.

4.2 Scaling

Badly scaled optimization problems cause convergence issues for the optimizer [22]. In energy
systems, especially in multi-carrier systems, the variables and model parameters can differ several
orders of magnitude. For instance, gas flow q ∼ 1 kg/s while active power P ∼ 107 W. Hence, the
optimization problem for a MES is usually scaled badly.

Scaling does not influence the iterates of Newton’s method, which we use to solve the LF problem
[22, 23]. However, scaling might influence the iterates of an optimizer [22]. For instance, scaling
changes the steepest-descent direction.

We consider per unit scaling and matrix scaling [23]. Per unit scaling scales all variables and
model parameters directly. This scaling is generally used in LF and OF problems in power grids.
Matrix scaling does not scale the model parameters, but scales the variables and systems of equations
using matrix multiplication. To scale the objective function using per unit scaling, the parameters
ae, be, and ce in (3) are also scaled. When using matrix scaling, we scale the objective function
with a chosen base value instead.

4.3 Additional steps for formulation II

Formulation II of the OF problem includes the state variables x and associated LF equations as a
subsystem, which requires additional steps in the optimization algorithm.

The trust-constr method uses the Hessian H of the objective function. For the general objec-
tive function (3) the Hessian is a constant diagonal matrix. This is also true for problem (5) in
formulation I, where e ∈ y for all e ∈ E, such that

Hij :=
∂2f

∂yi∂yj
=

{
2ce, yi = yj := e ∈ E
0, otherwise

(7)

In formulation II, where x depends (implicitly) on u, the Hessian is no longer constant if any of the
energy flows e in the objective is part of x instead of u. Therefore, we let trust-constr determine
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the Hessian numerically for formulation II.
The considered optimizers use the gradient of the objective and the Jacobian of the (in)equality

constraints. For formulation II, the gradient and Jacobian can be determined by a direct or an
adjoint approach (e.g. [24] and [25]). The direct approach is also called the forward approach, and
the adjoint approach is also called the backward approach. The gradient of the objective (6a) and
the Jacobian of the inequality constraints (6c) to the control variables are given by

df

du
=
∂f

∂x

dx

du
+
∂f

∂u
(8a)

dg

du
=
∂g

∂x

dx

du
+
∂g

∂u
(8b)

For notational simplicity, we denote partial derivatives by a subscript, e.g. gu := ∂g
∂u . Furthermore,

we define v := dx
du , such that v ∈ Rn+s × Rp. Using the extended LF problem (4) we have:

hxv = −hu (9)

4.3.1 Formulation II.A: Direct approach

In the direct or forward approach, (8) is determined using (9) directly. That is, the gradient and
the Jacobian are given by

df

du
= fxv + fu (10a)

dg

du
= gxv + gu (10b)

where hxv = −hu (10c)

Here, v is determined by solving (10c). Hence, formulation II.A requires solving p linear systems
of size (n+ s)× (n+ s) any time df

du or dg
du is calculated.

4.3.2 Formulation II.B: Adjoint approach

In the adjoint or backward approach, we introduce λT := fxh
−1
x and µT := gxh

−1
x to determine

(8). With these definitions of λ ∈ Rn+s and µ ∈ Rn+s × Rm+2ñ+2s̃, we have fxv = −λThu and
gxv = −uThu. The gradient and the Jacobian are then given by

df

du
= −λThu + fu (11a)

dg

du
= −µThu + gu (11b)

where hT
xλ = fTx (11c)

hT
xµ = gTx (11d)

Here, λ and µ are determined by solving (11c) and (11d) respectively. Hence, formulation II.A
requires solving 1 + m + 2ñ + 2s̃ linear systems of size (n + s) × (n + s) any time df

du or dg
du is

calculated.
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4.3.3 Comparison

The direct approach requires solving (10c), which are p linear systems of size (n + s) × (n + s).
The adjoint approach requires solving (11c) and (11d), which are 1 +m+ 2ñ+ 2s̃ linear systems of
size (n+ s)× (n+ s). Since the linear systems in both approaches have the same size, the adjoint
approach might be more efficient than the direct approach if p > 1 +m+ 2ñ+ 2s̃. In other words,
the adjoint approach might be faster if the number of control variables is large compared to the
number of (nonlinear) inequality constraints. For optimization problems of energy systems, this is
generally not the case. With our assumptions, and imposing bounds on most of the extended state
variables, we indeed have p < 1 + m + 2ñ + 2s̃. Therefore, we expect that the direct approach is
more efficient than the adjoint approach.

4.3.4 Load flow as subproblem

Whenever one of the extended state variables x (u) is needed while solving problem (6), the extended
LF problem (4) would need to be solved. Since x (u) might be used several times per iteration of
the optimizer, the system (4) might be solved multiple times per optimizer iteration. To increase
efficiency, we store the values x (u). Furthermore, the extended LF problem (4) is only solved to
determine a new x (u) if u has changed significantly since the last solve, or if the LF equations
with the current x are not satisfied within a desired tolerance. Suppose xk and ui are the previous
values of the extended state and control variables, and ui+1 are the current control variables. The
extended LF problem (4) is only solved if

||ui+1 − ui||2 > τ (12a)

or ||h
(
xk, ui

)
||2 > ε (12b)

with τ and ε tolerances. We store ||h (x, u) ||2 any time (4) is solved to evaluate (12b) without
having to recalculate the LF equations.

5 Comparison of formulations and solvers of the optimal
flow problem

Combining all possible ways described in Sections 3 and 4 to formulate and solve the OF problem
leads to multiple combinations. To compare these various formulations and aspects of the optimiza-
tion problem, we optimize two different MESs. We mainly compare the various formulations and
aspects based on the efficiency of the optimizer. That is, first we determine if an optimal solution
is found. Then, the number of iterations and function calls to the objective functions required by
the optimizer are used as a measure for efficiency.

We compare formulation I and formulation II, i.e. the way that LF is incorporated into OF,
for both MESs. Additionally, for each MES we focus on some of the formulations and aspects of
solving the OF problem. Scaling greatly improves the convergence of the optimizers for the LF
problem. Hence, we only consider the scaled OF problem.

The coupling of first MES is modeled in two different ways, giving two multi-carrier network rep-
resentations for the same MES. For both versions, we use a single formulation of the LF equations.
Bounds are imposed on all variables y or on the control variables u only. Within the optimizers, the
inequality constraints are taken as hard constraints or as soft constraints. With hard constraints,
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each iteration of the optimizer must satisfy all inequality constraints. With soft constraints, iterates
are allowed to violate the inequality constraints, but the final solution must satisfy all constraints.
We consider both, since hard constraints might help keep the iterates feasible. Hence, we use this
MES to focus on the inequality constraints.

The second MES is represented by one multi-carrier network, but we use multiple formulation
of the LF equations. We consider two options in the gas part and two in the heat part. Bounds
are imposed on (most) variables y. We look at the effect of imposing bounds on some derived
variables. These variables might not be included in y, depending on the formulation of the system
of LF equations. Furthermore, we compare the two methods of scaling described in Section 4.2.
Finally, the number of demands in each carrier of this MES can be changed, giving multi-carrier
networks of various sizes. Hence, this MES focuses on the effect of the LF formulation on OF and
on scaling.

5.1 Costs of energy sources

The cost parameters ae, be, and ce in the objective function (3) are chosen to represent the vari-
able operation and maintenance costs of the energy sources. The focus of this research is on the
mathematical formulation of the optimization problem, and the inclusion of the load flow equations
within an optimization framework. As such, the values of the cost parameters ae, be, and ce are
chosen to be realistic, but are not meant to be accurate values of any specific energy source.

For non-coupling sources or (external) grid connections, we take ae = ce = 0 for all carriers,
bgas = 15AC/(MW h) for gas, belec. = 40AC/(MW h) for electricity, and bheat = 16AC/(MW h) for
heat.

The operational costs of the coupling components are based on the produced energy. A com-
bined heat and power plant (CHP) produces both electricity and heat, but the heat is ‘waste’
from the production of electricity, such that it is considered free. We take bCHP = 5AC/(MW h)
and cCHP = 0.05AC/(MW2 h), and bGG = 2AC/(MW h) and cGG = 0.02AC/(MW2 h), for the ac-
tive power P produced by a CHP and a gas-fired generator (GG), and bGB = 1AC/(MW h) and
cGB = 0.01AC/(MW2 h), for the heat power ∆ϕ produced by a gas-boiler (GB).

5.2 MES 1: Effect of inequality constraints

The first MES is a small system first introduced in [26], where a gas, electricity, and heat network
are connected by several coupling components. It was later adapted to use the energy hub (EH)
approach in [12]. We model the energy system by two different networks, as described in [13].
Figure 2 shows the topology of the two networks. Network 1, see Figure 2a, uses a GG, a GB,
and a CHP for the coupling. Network 2, see Figure 2b, uses EHs. In both networks, link 1g–3g

represents a compressor, while the other gas links represent pipes. Nodes 1 and 2 are sinks in all
single-carrier networks, and node 0g has an external source. See [13] for further details and the
specific LF equations used.
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(a) Network 1. Carriers coupled with a GG (0c), a
GB (1c), and a CHP (2c).
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(b) Network 2. Carriers coupled with EHs.

Figure 2: MES network topologies, see also [13]. Network (a) is based on [26], network (b) is based
on [12]. Arrows on links and terminal links show defined direction of flow.

Table 1: Boundary conditions for steady-state LF for the networks in Figure 2.

(a) Network 1. Coupled with a GG, a GB, and
a CHP.

Node Node type Specified Unknown

0g ref. pg q

1g load q pg

2g ref. load pg, q -

3g load q = 0 pg

0e PQVδ P, Q, |V |, δ -

1e load P, Q |V |, δ
2e PQV P, Q, |V | δ

0h ref. ph, m = 0 T r, T s

1h load (sink) T r
1,0, ∆ϕ1,0 > 0 T r, T s, ph, m1,0

2h load (sink) ref. T r
2,0, ∆ϕ2,0 > 0, ph T s, T r, m2,0

0c standard - -

1c temp. T s
1c0h -

2c temp. T s
2c2h -

(b) Network 2. Coupled with EHs.

Node Node type Specified Unknown

0g ref. pg q

1g load q pg

2g load q pg

3g load q = 0 pg

0e PQVδ P, Q, |V |, δ -

1e load P, Q |V |, δ
2e PQV P, Q, |V | δ

0h ref. ph, m = 0 T r, T s

1h sink T r
1,0, ∆ϕ1,0 > 0 T r, T s, ph, m1,0

2h sink T r
2,0, ∆ϕ2,0 > 0 T r, T s, ph, m2,0

0c temp. T s
0c0h -

1c temp. T s
1c2h -
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5.2.1 Problem Formulations

Both networks have only one external source, connected to node 0g. The electrical and heat powers
are produced by the couplings. The energy vector E of the objective function (3) is

E =
(
−GHVq0,0, P0c0e , P2c2e , ∆ϕ1c0h

)T
, for network 1 (13a)

E =
(
−GHVq0,0, P0c0e , P1c2e , ∆ϕ0c0h

)T
, for network 2 (13b)

Table 1 gives the BCs of both networks used in the LF equations. The BCs in network 1 are
slightly different from those in network 2, due to the different coupling components. We take some
of these known variables as control variables in the OF problem:

u =
(
pg2, |V2|, ph2 , T s

2c2h

)T
, for network 1 (14a)

u =
(
|V2|, T s

1c2h

)T
, for network 2 (14b)

The choice for control variables is different for the two networks, since the BCs used in LF are
different.

For the LF problem, we use the full formulation in the gas network, and the terminal link flow
formulation in the heat network. See Section 5.3.1 for the description of these formulations. The
extended state variables for network 1 are then:

xG =
(
q0,0

)
(15a)

xF,g =
(
q01, q02, q32, q13, p

g
1, p

g
3

)T
(15b)

xF,e =
(
δ1, δ2, |V1|

)T
(15c)

xF,h =
(
m01, m02, m12, m1,0, m2,0, p

h
1 , T

s
0 , T

s
1 , T

s
2 , T

r
0 , T

r
1 , T

r
2

)T
(15d)

xF,c =
(
q0g0c , q0g1c , q2g2c , P0c0e , P2c2e , Q0c0e , Q2c2e , m1c0h , m2c2h , ∆ϕ1c0h , ∆ϕ2c2h

)T
(15e)

and the extended state variables for network 2 are:

xG =
(
q0,0

)
(16a)

xF,g =
(
q01, q02, q32, q13, p

g
1, p

g
2, p

g
3

)T
(16b)

xF,e =
(
δ1, δ2, |V1|

)T
(16c)

xF,h =
(
m01, m02, m12, m1,0, m2,0, p

h
1 , p

h
2 , T

s
0 , T

s
1 , T

s
2 , T

r
0 , T

r
1 , T

r
2

)T
(16d)

xF,c =
(
q0g0c , q2g1c , P0c0e , P1c2e , Q0c0e , Q1c2e , m0c0h , m1c2h , ∆ϕ0c0h , ∆ϕ1c2h

)T
(16e)

Hence, there are 37 variables for network 1, consisting of 32 state variables xF , 1 derived variable
xG, and 4 control variables u, and 36 variables for network 2, consisting of 33 state variables xF ,
1 derived variable xG, and 2 control variables u.

The extended LF problem (4) is not solvable (for a physically feasible solution) for all values
of u. The bounds imposed on u are chosen such that the LF problem is solvable. This requires
relatively tight bounds, especially for pg2 and ph2 .

We can impose bounds on u only, or on the extended state variables x as well. We solve the
OF problem in both cases, with bounds on u only, and with bounds on y. Moreover, we consider
hard and soft inequality constraints within the optimizer.
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This gives a total of 12 different formulations and solution methods of the OF problem for
both network representations of this MES. That is, we use formulation I (5) for the OF problem,
including the LF equations as equality constraints, or we use formulation II (6), eliminating LF
equations. For the latter, we can use the direct approach II.A or the adjoint approach II.B when
solving the optimization problem. For each of these, we impose bounds on u or on y, and we use
soft or hard bound within the optimizers. In addition to these 12 options, we use t-c, SLSQP, or
IPOPT as optimizer, see Section 4.1.

Table 2 gives the number and size of the linear systems (10c) and (11c)–(11d) for formulation
II.A en II.B. Using soft or hard constraints does not change the system size. For both formulation
II.A and II.B, the size of the linear systems is equal, since hx is square. If bounds are imposed
on u only, there are no (nonlinear) inequality constraints on x(u), such that the OF problem is
given by (6a)–(6b). In that case, only (8a) is needed, such that only (11c) needs to be solved for
formulation II.B. Hence, formulation II.B requires solving fewer linear systems than formulation
II.A when bounds are imposed on u, while formulation II.B requires solving significantly more
linear systems than formulation II.A when bounds are imposed on y.

Table 2: Number and size of the linear systems (10c) and (11c)–(11d) for formulation II.A en II.B
for network 1 (a) and network 2 (b).

(a) Network 1. Coupled with a GG, GB, and CHP.

bounds on OF form. # lin. sys. size lin. sys.

u
II.A 4 33×33

II.B 1 33×33

y
II.A 4 33×33

II.B 67 33×33

(b) Network 2. Coupled with EHs.

bounds on OF form. # lin. sys. size lin. sys.

u
II.A 2 34×34

II.B 1 34×34

y
II.A 2 34×34

II.B 69 34×34

5.2.2 Results

We set the tolerance for the OF problem, for the extended LF problem ε, and τ to 10−6, and use
matrix scaling to scale the problem. The maximum number of iterations for the optimizers is 40,
and 10 for Newton’s method to solve the extended LF problem (4) within formulation II. We have
found that the optimizers were unlikely to find a solution if it did not find one within these 40
iterations.

Tables 3 and 4 give the results for network 1 and 2 respectively. A ‘-’ indicates the optimizer is
unable to find a solution for that particular case. The columns # iters and # f give the number
of iterations and number of calls to the objective function of the optimizer respectively. The last
column gives the error of the LF equations ||F ||2 for the found optimal solution.

First, we compare the optimizers. For network 1, t-c and IPOPT are not able to find a solution
for any of the options, while SLSQP finds a solution for all options. For network 2, IPOPT finds a
solution for all options, and t-c and SLSQP for all options using formulation II only.

We consider both soft and hard constraints, since hard constraints might avoid convergence
issues due to infeasible iterates. In various examples, we have seen that using appropriate values
for the bounds and using a reasonable initial guess are more effective to ensure feasible iterates than
imposing hard constraints. Tables 3 and 4 show this is also the case for this MES. There is no case
for which any of the optimizers find a solution with hard constraints but not with soft constraints.
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Table 3: Information on optimizers of the optimal flow problem for network 1, using matrix scaling.

# iters # f ||F ||2
bounds on constraints OF form. t-c SLSQP IPOPT t-c SLSQP IPOPT t-c SLSQP IPOPT

u

soft

I - 21 - - 32 - - 4.782 · 10−7 -

II.A - 15 - - 38 - - 2.674 · 10−10 -

II.B - 15 - - 38 - - 2.674 · 10−10 -

hard

I - 21 - - 32 - - 4.782 · 10−7 -

II.A - 15 - - 38 - - 2.674 · 10−10 -

II.B - 15 - - 38 - - 2.674 · 10−10 -

y

soft

I - 21 - - 32 - - 4.782 · 10−7 -

II.A - 9 - - 42 - - 6.606 · 10−7 -

II.B - 8 - - 42 - - 1.312 · 10−7 -

hard

I - 21 - - 32 - - 4.782 · 10−7 -

II.A - 9 - - 42 - - 6.606 · 10−7 -

II.B - 8 - - 42 - - 1.312 · 10−7 -

Table 4: Information on optimizers of the optimal flow problem for network 2, using matrix scaling.

# iters # f ||F ||2
bounds on constraints OF form. t-c SLSQP IPOPT t-c SLSQP IPOPT t-c SLSQP IPOPT

u

soft

I - - 15 - - 16 - - 3.744 · 10−9

II.A 20 6 10 14 7 11 2.696 · 10−7 8.532 · 10−7 5.605 · 10−7

II.B 20 6 10 14 7 11 2.696 · 10−7 8.532 · 10−7 5.605 · 10−7

hard

I - - 15 - - 16 - - 4.232 · 10−9

II.A 16 6 10 10 7 11 2.723 · 10−7 8.532 · 10−7 5.605 · 10−7

II.B 16 6 10 10 7 11 2.723 · 10−7 8.532 · 10−7 5.605 · 10−7

y

soft

I 30 - 14 30 - 15 1.944 · 10−8 - 3.817 · 10−8

II.A 24 9 9 27 22 10 7.465 · 10−7 4.268 · 10−8 4.163 · 10−8

II.B 24 9 9 27 22 10 7.465 · 10−7 4.257 · 10−8 4.163 · 10−8

hard

I 26 - 14 26 - 15 1.124 · 10−6 - 3.817 · 10−8

II.A 15 9 9 9 22 10 1.455 · 10−7 4.268 · 10−8 4.163 · 10−8

II.B 15 9 9 9 22 10 1.455 · 10−7 4.257 · 10−8 4.163 · 10−8

That is, there is no advantage to using hard bounds.
Then, we consider the bounds. For network 1 and formulation I, there is no difference between

bounds on u or y. For network 1 and formulation II, bounds on y reduces the number of iterations.
For network 2 and formulation I, t-c is only able to find a solution when bounds are imposed on y.
For network 2 and formulation II, imposing bounds on u requires more iterations for SLSQP. The
other optimizers seem to be less affected by this in this case. Hence, if bounds should be imposed
on u or on y depends on the network and the optimizer.

Finally, we consider the inclusion of the LF equations in the OF problem, that is, we compare
formulation I with formulation II. Figure 3 gives the error of the LF equations at every iteration of
the optimizer, for the OF problem of network 1 with soft bounds on y using SLSQP, and illustrates
the difference between the two formulations. As stated in Section 3.3.3, Figure 3 shows that the LF
equations are satisfied at every iteration when using formulation II, while this is not the case for
formulation I.Table 4 shows that there are cases where a solution cannot be found using formulation
I while it is found using formulation II. However, there are also cases where both formulation I and
II result in a solution. Tables 3 and 4 both show that formulation II requires fewer iterations than
formulation I, for all considered cases. Furthermore, formulation I gives a different optimal solution
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Figure 3: Error of scaled LF equations ||F ||2 at every iteration of the optimizer for network 1
(Figure 2a), for the OF problem with soft bounds on y, using SLSQP

than formulation II. Comparing the final error of the LF equations for formulation I an II for each
case, given in the final column of both tables, we see that the errors are slightly different, meaning
that the optimal solution found by formulation I and and formulation II are slightly different.
Formulations II.A. and II.B show very similar performance. Hence, formulation II is more efficient
than formulation I.

We find that there is no difference between soft and hard constraints. Based on this MES,
trust-constrs performs worse than SLSQP and IPOPT. If bounds should be imposed on u or on y
depends on the network and the optimizer. Finally, both formulation I and II can be used for the
OF problem, and formulation II is more efficient than formulation I.

5.3 MES 2: Effect of LF formulations

The second MES consists of a base network, coupling 3-node single-carrier gas, electricity, and heat
networks. For each carrier, node 1 is a source, and node 3 is a sink. For the electrical network and
the heat network, node 2 is an additional source. We choose to couple these single-carrier networks
at node 1 with a single EH, see Figure 4a. This base case can be extended by replacing the sink
at node 3 of each single-carrier network by a tree-like structure which we call ‘streets’. There are
s streets, S1 – Ss, which are all connected to node 3 of the base single-carrier network through
a junction node. The streets consists of n loads, L1 – Ln, connected to the main street links by
junctions, m of which, J1 – Jm, are connected to two loads. Figure 4b shows the topology of such
an extended single-carrier network, consisting of 3 + s (2n−m+ 1) nodes and 2 + s (2n−m+ 1)
links. The extended MES is created by coupling the single-carrier networks in the same way as for
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the base network. See [27] for further details and the specific LF equations used.

2h 3h1h
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(a) Coupled at node 1 with an EH.
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Ln
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(b) Extension of single-carrier networks.

Figure 4: MES network topology, see also [27]. The multi-carrier base network (a) can be extended
as (b). Arrows on links and terminal links show defined direction of flow.

We consider the base network, which is the network shown in Figure 4a, and an extended
network with 163 nodes per single-carrier network (n = 10,m = 5, s = 10).

5.3.1 Problem Formulations

Nodes 1g, 1e, 2e, and 2h are external single-carrier sources. The EH produces electrical and heat
power, such that is a source to the electrical and heat networks. The energy vector E in the
objective function (3) is then

E =
(
−GHVq1,0, −P1,0, −P2,0, P1c1e , −∆ϕ2,0, ∆ϕ1c1h

)T
(17)

where q1,0, P1,0, P2,0, ∆ϕ2,0 < 0 and P1c1e , ∆ϕ1c1h > 0.
Table 5 gives the BCs of the base network used in the LF problem. For the extended networks,

the additional nodes are load or junction nodes. We take some of these known variables as control
variables in OF:

u =
(
|V2|, P2, T

s
2,0, ∆ϕ2,0

)T
(18)
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Table 5: Boundary conditions for steady-state LF for the network in Figure 4.

Node Type Specified Unknown

1g ref. pg q

2g load q = 0 pg

3g load q pg

1e QVδ Q, |V |, δ P

2e gen. P, |V | Q, δ

3e load P, Q |V |, δ
1h junction ref. temp. T s, ph, m = 0 T r

2h load (source) T s
2,0, ∆ϕ2,0 < 0 T s, T r, ph, m2,0

3h load (sink) T r
3,0, ∆ϕ3,0 > 0 T s, T r, ph, m3,0

1c standard - T s
1c1h

We use two formulations of the LF equations in the gas part, and two in the heat part. In a
gas network, the general steady-state flow equation of a pipe [10], represented by a link k from
node i to node j, can either express the link flow as a function of pressures, denoted as fq(∆p), or
express the pressure drop as a function of link flow, denoted by f∆p(q). Defining the pressure drop

by ∆pgk := (pgi )
2 −

(
pgj
)2

, we have

f
q(∆p)
k := qk − Cg

ksign (∆pgk) (fgk )
− 1

2 |∆pgk|
1
2 = 0 (19a)

f
∆p(q)
k := ∆pgk − (Cg

k)
−2

fgk |qk|qk = 0 (19b)

with qk the link flow, pgi the nodal pressure, fgk the friction factor, and Cg
k the pipe constant. We

use the nodal or the full formulation to collect the LF equations into a system of equations for the
gas part. In the nodal formulation, the link equations (19a) are substituted in nodal conservation
of mass. In the full formulation, the link equations are not substituted. We use link equations (19b)
for the full formulation. In the nodal formulation, the link flows qk are derived variables, while they
are part of the state variables x in the full formulation.

For the heat load nodes i we assume that the outflow temperature directly after the heat
exchanger, modeled by a terminal link l, is known. That is, the terminal link supply temperature
T s
i,l is known for sources, and the terminal link return temperature T r

i,l is known for sinks. We use
the standard or the terminal link formulation to collect the LF equations into a hydraulic-thermal
system of equations for the heat part [27]. In the terminal link formulation, the terminal link flows
mi,l are part of the state variables x, and nodal conservation of mass is a linear equation. In the
standard formulation, the heat power equation is used to eliminate the terminal link mass flows,
reducing the system size of the LF problem. Nodal conservation of mass becomes nonlinear, and
the flows mi,l are derived variables.

If the link gas flows qk or terminal link mass flow mi,l are derived variables, we do not include
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them in xG. The extended state variables are then:

xG,g =
(
q1,0

)
(20a)

xG,e =
(
P1,0, Q2,0

)
(20b)

xF,g
n =

(
pg2, p

g
3

)T
(20c)

xF,g
f =

(
q12, q32, p

g
2, p

g
3

)T
(20d)

xF,e =
(
δ2, δ3, |V3|

)T
(20e)

xF,h
s =

(
m12, m23, p

h
2 , p

h
3 , T

s
2 , T

s
3 T

r
1 , T

r
2 , T

r
3

)T
(20f)

xF,h
t =

(
m12, m23, m2,0, m3,0, p

h
2 , p

h
3 , T

s
2 , T

s
3 T

r
1 , T

r
2 , T

r
3

)T
(20g)

xF,c =
(
q1g1c , P1c1e , Q1c1e , m1c1h , ∆ϕ1c1h , T s

1c1h

)T
(20h)

with xF,g
n and xF,g

f the gas state variables using the nodal or the full formulation, and xF,h
s and

xF,h
t the heat state variables using the standard or terminal link formulation.

The extended LF problem (4) is not solvable (for a physically feasible solution) for all values of u.
The bounds imposed on u are chosen such that the LF problem is solvable. We also impose bounds
on the (extended) state variables xG,g, xG,e, xF,g, xF,e, xF,h, and xF,c. In addition, we consider
imposing bounds on the gas link mass flows qk, electrical link complex power |Sk|2 = P 2

k +Q2
k, and

heat terminal mass flows mi,l. For the nodal and standard formulation, qk and mi,l are derived
variables, as is |Sk|2. Bounds are imposed by (nonlinear) inequality constraints (5c) or (6c). For
each gas and electrical link k and each heat terminal link l, the inequality constraints are:

γg
k =

(
qk(pi, pj)− qlbk
qubk − qk(pi, pj)

)
(21a)

γek = (|Sk|2)ub − P 2
k −Q2

k (21b)

γh
i,l =

mi,l

(
∆ϕi,l, T

s
i,l, T

r
i,l

)
−mlb

i,l

mub
i,l −mi,l

(
∆ϕi,l, T

s
i,l, T

r
i,l

) (21c)

Here, the heat terminal link mass flow mi,l is a function of terminal link heat powers ∆ϕi,l, ter-
minal link supply temperature T s

i,l, and terminal link return temperature T r
i,l using the heat power

equation.
If the full formulation is used in gas, and the terminal link formulation is used in heat, qk and

mi,l are part of xF . If bounds are then imposed on these variables, they are included as bounds
(5e) or (6d) instead of using (21a) and (21c).

We have seen in Section 5.2 that there is no difference between using soft or hard constraints
in the optimizers, so we only consider soft constraints for this network. Furthermore, we do not
consider the trust-constr optimizer, since it performs worse than SLSQP and IPOPT.

This gives a total of 24 formulations and solution methods of the OF problems. That is, we
use formulation I (5) for the OF problem, including the LF equations as equality constraints, or
we use formulation II (6), eliminating LF equations. For the latter, we can use the direct approach
II.A or the adjoint approach II.B when solving the optimization problem. For each of these, we
use one of the four possible formulation of the LF problems, based on the nodal formulation with
pipe flow equations (19a) or the full formulation with pipe flow equations (19b) in the gas part,
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and the standard formulation or the terminal link formulation in the heat part. Moreover, we
impose bounds on the (derived) variables qk, |Sk|2, and mi,l, or we do not impose these bounds.
In addition to these 24 options, we use matrix scaling or per unit scaling to scale the problem, and
we use SLSQP and IPOPT as optimizers. Finally, we consider various sizes of the network.

Table 6 gives the system size of the OF problem for these 24 formulations, for the base network.
The number of bounds on x ∈ x should be counted double, as they are lower and upper bounds.
The system sizes are different for the various formulations. However, using the adjoint approach, or
formulation II.B, always requires more linear systems to be solved than using the direct approach,
or formulation II.A. For both approaches, the size of the linear systems is equal, since hx is square.

Table 6: Size of u, xG, xF , γ, and the number of x ∈ x on which bounds are imposed, for the
various formulations of the OF problem for the base network. The last two columns give the number
and size of the linear systems (10c) and (11c)–(11d) for formulation II.A en II.B.

bounds on qk, #x with # lin. size

|Sk|2, mi,l form. gas form. heat xG xF u γ bounds OF form. sys. lin. sys.

no

full

term. link 3 24 4 0 23
II.A 4 27×27

II.B 47 27×27

standard 3 22 4 0 23
II.A 4 25×25

II.B 47 25×25

nodal

term. link 3 22 4 0 23
II.A 4 25×25

II.B 47 25×25

standard 3 20 4 0 23
II.A 4 23×23

II.B 47 23×23

yes

full
term. link

3 24 4 2 27
II.A 4 27×27

II.B 57 27×27

standard
3 22 4 6 25

II.A 4 25×25

II.B 57 25×25

nodal
term. link

3 22 4 6 25
II.A 4 25×25

II.B 57 25×25

standard
3 20 4 10 23

II.A 4 23×23

II.B 57 23×23

5.3.2 Results

We set the tolerance for the OF problem, for the extended LF problem ε, and τ to 10−6. The
maximum number of iterations for the optimizers is 50, and 10 for Newton’s method to solve the
extended LF problem (4) within formulation II. We have found that the optimizers were unlikely
to find a solution if it did not find one within these 50 iterations.

Figures 5 and 6 show the difference in the energy flows of the sources between a reference LF
solution and optimal solutions. For the gas input, only the part of the total gas input into node
1 that is used by the coupling is shown, that is, only −q1 − q3 is shown. We can see that energy
flows of the optimal solution are distributed differently over the sources compared with the LF
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solution. Most significantly, P1 ≈ 0 for the optimal solutions. However, Figure 5b shows that the
total active power and heat power of the sources are roughly equal. Since P1 ≈ 0, the total gas
input −q1 is bigger for the optimal solutions, as we can see in Figure 5a. Figure 6 shows that the
total generation costs of the optimal solutions are lower than those of the reference LF solution, as
expected.

Tables 7 and 8 give the results for the base network, using matrix scaling and per unit scaling
respectively. Again, a ‘-’ indicates the optimizer did not find a solution for that particular case.

Table 7: Information on optimizers of the optimal flow problem for the base network, using matrix
scaling.

# iters # f ||F ||2
bounds on qk,

|Sk|2, mi,l form. gas form. heat OF form. SLSQP IPOPT SLSQP IPOPT SLSQP IPOPT

no

full

term. link

I 14 41 24 59 3.011 · 10−14 4.320 · 10−11

II.A 15 - 46 - 6.920 · 10−11 -

II.B 15 - 46 - 6.917 · 10−11 -

standard

I 17 13 25 14 3.874 · 10−13 1.991 · 10−9

II.A 6 - 16 - 6.078 · 10−11 -

II.B 6 - 16 - 6.087 · 10−11 -

nodal

term. link

I 13 16 23 18 6.025 · 10−12 3.063 · 10−8

II.A - - - - - -

II.B 49 - 50 - 9.439 · 10−11 -

standard

I 14 19 17 20 5.250 · 10−14 2.140 · 10−7

II.A 7 10 7 11 2.791 · 10−12 6.706 · 10−9

II.B 7 10 7 11 2.851 · 10−12 6.706 · 10−9

yes

full

term. link

I 12 27 22 33 6.589 · 10−12 1.306 · 10−9

II.A 7 21 7 29 2.850 · 10−12 1.077 · 10−9

II.B 7 21 7 29 2.791 · 10−12 1.077 · 10−9

standard

I 16 36 32 42 1.969 · 10−11 2.311 · 10−13

II.A 7 48 7 117 2.761 · 10−12 8.024 · 10−7

II.B 7 - 7 - 2.791 · 10−12 -

nodal

term. link

I 11 29 12 35 1.145 · 10−9 2.827 · 10−9

II.A 7 21 7 29 2.821 · 10−12 1.077 · 10−9

II.B 7 21 7 29 2.851 · 10−12 1.077 · 10−9

standard

I 14 40 17 97 1.686 · 10−14 6.655 · 10−14

II.A 7 18 7 26 2.791 · 10−12 2.197 · 10−12

II.B 7 18 7 26 2.732 · 10−12 2.197 · 10−12

For the base case, SLSQP is able to find a solution for slightly more options of the OF problem
than IPOPT. When both find a solution, SLSPQ converges significantly faster than IPOPT.

Then, we consider the effect of imposing bounds on qk, mi,l en |Sk|2. If bounds are imposed,
an optimal solution is found for more options of the OF problem, both in Table 7 and Table 8.
The number of iterations required to find a solution is roughly equal with or without these bounds,
except for one case. With nodal formulation in gas and standard formulation in heat, IPOPT
requires significantly more iterations if bounds are imposed than if they are not imposed, for all
three formulations I, II.A, and II.B.

Comparing the various formulations of the LF equations in Tables 7 and 8, that is, nodal or
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Table 8: Information on optimizers of the optimal flow problem for base network, using per unit
scaling.

# iters # f ||F ||2
bounds on qk,

|Sk|2, mi,l form. gas form. heat OF form. SLSQP IPOPT SLSQP IPOPT SLSQP IPOPT

no

full

term. link

I 12 41 22 59 6.601 · 10−12 4.316 · 10−11

II.A 15 - 46 - 6.911 · 10−11 -

II.B 15 - 46 - 6.920 · 10−11 -

standard

I 16 13 32 14 1.900 · 10−11 1.991 · 10−9

II.A 6 - 16 - 6.076 · 10−11 -

II.B 6 - 16 - 6.080 · 10−11 -

nodal

term. link

I 13 16 23 18 6.049 · 10−12 3.063 · 10−8

II.A - - - - - -

II.B - - - - - -

standard

I 16 19 31 20 3.224 · 10−14 2.140 · 10−7

II.A 7 10 7 11 2.863 · 10−12 6.706 · 10−9

II.B 7 10 7 11 2.862 · 10−12 6.706 · 10−9

yes

full

term. link

I 12 27 13 33 1.532 · 10−12 1.306 · 10−9

II.A 7 21 7 29 2.749 · 10−12 1.077 · 10−9

II.B 7 21 7 29 2.805 · 10−12 1.077 · 10−9

standard

I 16 36 32 42 1.926 · 10−11 2.418 · 10−13

II.A 7 20 7 28 2.750 · 10−12 1.651 · 10−10

II.B 7 20 7 28 2.805 · 10−12 1.651 · 10−10

nodal

term. link

I 13 29 23 35 6.037 · 10−12 2.827 · 10−9

II.A 7 21 7 29 2.805 · 10−12 1.077 · 10−9

II.B 7 21 7 29 2.806 · 10−12 1.077 · 10−9

standard

I 14 33 17 91 5.623 · 10−14 3.007 · 10−11

II.A 7 18 7 26 2.777 · 10−12 2.198 · 10−12

II.B 7 18 7 26 2.805 · 10−12 2.198 · 10−12

full formulation in gas and standard or terminal link formulation in heat, we can see that the
number of iterations required to find a solution are not the same for the various formulations.
These differences are minor, expect for one case. For the OF problem without bounds on qk, mi,l,
and |Sk|2, nodal formulation in gas, and terminal link flow formulation in heat, a solution is not
found with formulation II. This shows that the formulation of the system of LF equations influences
the solvability of the OF problem and influences the convergence of the optimizers.

We compare Table 7 with Table 8 to look at the effect of scaling. There are minor differences
between matrix scaling and per unit scaling. With matrix scaling (Table 7), SLSQP with II.B finds
a solution for the OF problem without bounds on qk, mi,l, and |Sk|2, nodal formulation in gas,
and terminal link formulation in heat, while no solution is found with per unit scaling (Table 8).
On the other hand, with per unit scaling, IPOPT with II.B finds a solution for the OF problem
with bounds on qk, mi,l, and |Sk|2, full formulation in gas, and standard formulation in heat, while
no solution is found with matrix scaling. Furthermore, there is some difference in the number of
iterations when a solution is found with both types of scaling. Compare, for instance, SLSQP with
I for the OF problem without bounds on qk, mi,l, and |Sk|2, full formulation in gas, and terminal
link flow formulation in heat, or SLSQP with I for the OF problem with bounds on qk, mi,l, and
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|Sk|2, nodal formulation in gas, and terminal link flow formulation in heat. Finally, the solutions
found with matrix scaling are slightly different from the ones found with per unit scaling, even if the
number of iterations of the optimizers are the same. Compare, for instance, the LF error in Table
7 with Table 8, for SLSQP for the OF problem with bounds on qk, mi,l, and |Sk|2, full formulation
in gas, and terminal link flow formulation in heat.

The difference between matrix and per unit scaling is illustrated in Figure 7, which shows the
error of LF equations ||F ||2 at each iteration of the optimizer for the base network. The results
are shown for the OF problem without bounds on qk, mi,l, and |Sk|2, nodal formulation in gas,
and terminal link flow formulation in heat, using SLSQP and formulation I. The figure shows that
the iterates give different values of the scaled LF equations, indicating that matrix scaling and per
unit scaling result in different iterates, even if the same base values are used. We have seen similar
results for MES 1 and for the extended network of MES 2. Therefore, matrix scaling and per unit
scaling are not equivalent if solving the OF problem.

Finally, we consider the inclusion of the LF equations in the OF problem, that is, we compare
formulation I with formulation II. For this network, there are some options of the OF problem where
a solution is found using formulation I but not when using formulation II.A or II.B. However, if
all three formulation I, II.A, and II.B find a solution, formulation II requires significantly fewer
iterations than formulation I.

Table 9 gives the results for the network with 163 nodes per single-carrier network, using matrix
scaling.

For this extended network, SLSQP and IPOPT find a solution in the same cases, although
IPOPT requires more iterations than SLSQP.

As for the base network, we see in Table 9 that the formulation of the LF problem influences
the solvability of the OF problem and influences the convergence of the optimizers. Most notably,
no solution is found for the OF problem with bounds on qk, mi,l, and |Sk|2, full formulation in gas,
and standard formulation in heat. SLSQP requires more iterations for the the OF problem with
bounds on qk, mi,l, and |Sk|2, nodal formulation in gas, and standard formulation in heat, than for
the other cases. IPOPT requires fewer iterations for the the OF problem without bounds on qk,
mi,l, and |Sk|2 and nodal formulation in gas, than for the other OF formulations.

Finally, we compare formulations I, II.A, and II.B. No solution is found using formulation I, for
any of the formulations of LF. Furthermore, there are some differences between formulation II.A
and II.B, both for SLSQP and IPOPT. The difference is biggest for the OF problem without bounds
on qk, mi,l, and |Sk|2, nodal formulation in gas, and standard formulation in heat, using SLSQP.
This is illustrated in Figure 8, which shows the error of LF equations ||F ||2 at each iteration of
the optimizer for this case. We can see that formulations II.A and II.B result in different iterates
and a different number of iterates. For the other cases there are minor differences. Therefore,
formulations II.A and II.B are not equivalent.

Based on this MES, we find that matrix scaling and per unit scaling are not equivalent when
solving the OF problem. Neither are formulations II.A and II.B. The formulation of the LF equa-
tions influences the solvability of the OF problem, and the convergence of the optimizers. If a
solution is found for all three formulations I, II.A, and II.B, formulation II requires significantly
fewer iterations than formulation I.
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Table 9: Information on optimizers of the optimal flow problem for the extended network (163
nodes per carrier, n = 10,m = 5, s = 10), using matrix scaling.

# iters # f ||F ||2
bounds on qk,

|Sk|2, mi,l form. gas form. heat OF form. SLSQP IPOPT SLSQP IPOPT SLSQP IPOPT

no

full

term. link

I - - - - - -

II.A 5 24 5 40 1.307 · 10−12 5.825 · 10−7

II.B 5 24 5 40 1.578 · 10−12 5.825 · 10−7

standard

I - - - - - -

II.A 3 24 3 40 2.933 · 10−10 5.834 · 10−7

II.B 3 24 3 40 2.933 · 10−10 5.834 · 10−7

nodal

term. link

I - - - - - -

II.A 5 15 5 40 1.368 · 10−12 1.532 · 10−12

II.B 5 15 5 40 1.399 · 10−12 1.148 · 10−12

standard

I - - - - - -

II.A 15 14 15 22 2.318 · 10−11 1.678 · 10−12

II.B 3 14 3 22 2.933 · 10−10 2.152 · 10−12

yes

full

term. link

I - - - - - -

II.A 5 31 5 32 1.309 · 10−12 1.903 · 10−12

II.B 5 32 5 33 1.451 · 10−12 1.515 · 10−12

standard

I - - - - - -

II.A - - - - - -

II.B - - - - - -

nodal

term. link

I - - - - - -

II.A 5 30 5 31 1.368 · 10−12 4.251 · 10−7

II.B 5 28 5 29 1.399 · 10−12 4.520 · 10−10

standard

I - - - - - -

II.A 12 28 14 30 5.331 · 10−11 6.984 · 10−7

II.B 12 28 13 30 1.608 · 10−10 6.985 · 10−7
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(a) With gas input; the part that goes towards the coupling.
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Figure 5: Energy of sources E for the base network. The first bar shows a reference LF solution,
the others OF solutions, without bounds on qk, mi,l, and |Sk|2, full formulation in gas, terminal
link flow formulation in heat, using SLSQP and matrix scaling.
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Figure 6: Generation costs for the base network. The gas input is only the part that goes towards
coupling. The first bar shows a reference LF solution, the others OF solutions, without bounds on
qk, mi,l, and |Sk|2, full formulation in gas, terminal link flow formulation in heat, using SLSQP and
matrix scaling.
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Figure 7: Error of scaled LF equations ||F ||2 at every iteration of the optimizer for the OF problem
of the base network, without bounds on qk, mi,l, and |Sk|2, nodal formulation in gas, and terminal
link flow formulation in heat, using formulation I and SLSQP. Comparison of matrix scaling and
per unit scaling.
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Figure 8: Error of scaled LF equations ||F ||2 at every iteration of the optimizer for the extended
network (163 nodes per carrier, n = 10,m = 5, s = 10), bounds on qk, mi,l, and |Sk|2, nodal
formulation in gas, and standard formulation in heat, using SLSQP. Comparison of formulation
II.A. and formulation II.B.

32



6 Conclusion

We optimize the operation of multi-carrier energy systems (MESs) by minimizing total energy gen-
eration costs while satisfying the steady-state load flow equations (LF) and other physical network
limits. We compare two ways of including the LF equations within the optimal flow (OF) prob-
lem: formulation I and formulation II. Formulation I includes the LF equations explicitly in OF, as
equality constraints. Formulation II includes the LF equations as subsystem in OF, using nonlinear
elimination of variables and equations. In addition to these two formulations, we consider the effect
of scaling, formulation of the LF equations, and imposing bounds on the solvability of the OF
problem. To solve the resulting OF problems and to consider converge, we use three optimizers,
and two approaches with formulation II: the direct approach (II.A) or the adjoint approach (II.B).

Scaling is needed to solve the OF problem for MESs. Both matrix scaling and per unit scaling
can be used. The are not equivalent for optimization, resulting in different iterates of the optimizers.

The formulation of the LF equations, both the individual equations and the system of equations,
influences the solvability and convergence of the OF problem. The formulation of the system of
LF equations determines which variables are state variables and which are derived variables, which
subsequently determines the nonlinearity of the (in)equality constraints and objective function. The
formulation of the system of LF equations is related to the choice of boundary conditions for the LF
problem, which determines the choice of control variables in the OF problem. The best formulation
of the LF equations, and the best choice for the control variables, depends on the specific problem
and network.

Bounds on the control variables are used to keep the iterates (physically) feasible, by ensuring
the extended LF problem is solvable. Hence, choosing appropriate bounds for the control variables
is crucial in formulating a solvable OF problem. Additional bounds on (extended) state variables
and derived variables increase the complexity of the optimization problem and (can) increase the
nonlinearity. Hence, they influence the solvability of the OF problem and the convergence of the
optimizers. Whether bounds should be imposed depends on the specific problem and energy system.

Including the LF equations as equality constraints or as subsystem both result in a solvable
OF problem. That is, both formulation I and formulation II can be used to optimize a MES.
Formulation II reduces the size of the optimization space compared with formulation I, but increases
the nonlinearity of the objective function and constraints. In formulation II, the LF equations are
solved separately for multiple iterations of the optimizer. This allows the use of a dedicated,
separate, solver for the LF problem. Furthermore, it ensures the LF equations are satisfied at each
iteration of the optimizer. However, it might increase CPU time.

For the two example MESs, formulation II requires significantly fewer iterations than formulation
I, if an optimal solution is found for both formulations. Furthermore, formulations II.A and II.B are
not equivalent. For some OF problems, II.A and II.B result in different iterates of the optimizers.

The OF problem for a MES can be formulated in various ways, with respect to choice of state
variables, control variables, and boundary condition, with respect to the formulation of the LF
equations, with respect to including the LF equations in the OF problem, with respect to scaling,
and with respect to bounds and inequality constraints. Which way is best depends on the specific
network and problem considered.
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[3] Martin Geidl and Göran Andersson. Optimal Power Flow of Multiple Energy Carriers. IEEE
Transactions on Power Systems, 22(1):145–155, 2007.

[4] Amin Shabanpour-Haghighi and Ali Reza Seifi. Simultaneous integrated optimal energy flow
of electricity, gas, and heat. Energy Conversion and Management, 101:579–591, 2015.

[5] P. N. Biskas, N. G. Kanelakis, A. Papamatthaiou, and I. Alexandridis. Coupled optimization
of electricity and natural gas systems using augmented Lagrangian and an alternating mini-
mization method. International Journal of Electrical Power & Energy Systems, 80:202–218,
2016.

[6] Emmanouil Loukarakis and Pierluigi Mancarella. A sequential programming method for multi-
energy districts optimal power flow. 2017 IEEE Manchester PowerTech, Powertech 2017, pages
1–6, 2017.

[7] Zhengmao Li and Yan Xu. Optimal coordinated energy dispatch of a multi-energy microgrid
in grid-connected and islanded modes. Applied Energy, 210:974–986, 2018.

[8] Eduardo Alejandro Mart́ınez Ceseña and Pierluigi Mancarella. Energy Systems Integration in
Smart Districts: Robust Optimization of Multi-Energy Flows in Integrated Electricity, Heat
and Gas Networks. IEEE Transactions on Smart Grid, 10(1):1122–1131, January 2019.

[9] Pieter Schavemaker and Lou Van der Sluis. Electrical power system essentials. Wiley, Chich-
ester, West Sussex, 2008.

[10] Andrzej J. Osiadacz. Simulation and analysis of gas networks. Spon, London, 1987.

[11] Xuezhi Liu and Pierluigi Mancarella. Modelling, assessment and Sankey diagrams of integrated
electricity-heat-gas networks in multi-vector district energy systems. Applied Energy, 167:336–
352, 2016.

[12] Getnet Tadesse Ayele, Pierrick Haurant, Björn Laumert, and Bruno Lacarrière. An extended
energy hub approach for load flow analysis of highly coupled district energy networks: Illus-
tration with electricity and heating. Applied Energy, 212:850–867, December 2018.

[13] Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. A graph-based model framework
for steady-state load flow problems of general multi-carrier energy systems. Applied Energy,
280, December 2020.

[14] Baljinnyam Sereeter, Cornelis Vuik, and Cees Witteveen. On a comparison of Newton–Raphson
solvers for power flow problems. Journal of Computational and Applied Mathematics, 360:157–
169, 2019.

34



[15] Xuezhi Liu, Nick Jenkins, Jianzhong Wu, and Audrius Bagdanavicius. Combined analysis of
electricity and heat networks. Applied Energy, 162:1238–1250, 2016.

[16] E. Gill, Philip, Walter Murray, and H. Wright, Margaret. Practical Optimization. Acadamic
Press, London, 1981.

[17] Jorge Nodecal and Stephen J. Wright. Numerical Optimization. Springer, New York, second
edition, 2006.

[18] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
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