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Abstract

Power flow simulations form an essential tool for electricity network analysis
but conventional models are designed to work on a separated transmission or
distribution network only. The continuing growth of electricity consumption,
demand side participation, and renewable resources makes the electricity net-
works co-dependent. Integrated models incorporate the coupling of the net-
works and interaction that they have on each other, representing the power
flow within this changing environment accurately.
Several numerical methods are available to solve the power flow problem on
integrated networks. They can be categorized as a unified or as a splitting
method and networks can be modeled as a homogeneous or hybrid network.
In this paper, we review and assess these methods on the network models by
running simulations on small test networks and comparing the outcome on
their numerical performance, ie on convergence rate and CPU-time. The re-
view shows that the convergence rate is comparable for most of the methods,
but that hybrid networks have a slight advantage in computational time. Re-
alistic network models, running on millions of buses and with large distribution
networks, should give a better insight into the speed of the computations.

1 Introduction

Power flow computations are used to simulate the transport, generation, and con-
sumption of power in electricity networks. The simulations are important for safe
operation and planning of the electricity grid [1]. A national electricity grid con-
sists of one transmission network, responsible for transport of power over large
distances, and several distribution networks, responsible for the transport to end-
consumers. Transmission networks transport high-voltage power to substations from
where power is converted to a lower voltage level. The distribution network trans-
ports low-voltage power from substations to end-consumers. These transmission
and distribution domains are currently separately analyzed: In the analysis of the
first, the transmission network is modeled in detail while the distribution network
is modeled as an equivalent load. In the analysis of the distribution system, this
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system is modeled in detail while the transmission network is simplified as a power
supply source.

The power system is changing: 1) more renewable energy is entering the grid at dis-
tribution level, 2) we see an increase of demand-side participation as a mechanism
to balance frequency, and 3) we see an increase of electricity consumption [2]. The
changing environment requires a more detailed analysis of the electricity network
and a more complex model of the interaction between the networks. Integrated
transmission-distribution network models study the interaction that these networks
have on each other. But it is not straight-forward to integrate these separate do-
mains. The networks have different characteristics what has resulted in different
network models that cannot be easily integrated. The most important difference is
that the transmission network is a balanced network: Power is generated in three
phases but voltage and current of other phases have the same magnitude and are
equally shifted in phase by 2/3π rad. Therefore, the transmission network is mod-
eled in single-phase while the distribution network is in general not balanced and
thus modeled in three-phase [3]. Furthermore, the different characteristics have
lead to the development of different algorithms to solve the power flow problem
of different systems. The power flow problem is a nonlinear problem which is
solved using iterative methods. Well-known algorithms to solve transmission sys-
tems are: Gauss-Seidel, Newton-Raphson, Decoupled loadflow, and DC loadflow [4].
These solvers have been adapted to distribution solvers, among which the most
well-known are: Newton-Raphson current mismatch [5] [6], implicit Zbus [7] [8],
BIBC/BCBV [9] [10], and Forward/Backward Sweep [11] [12] methods.
Besides the technical complexity of integrating network models, we have the issue
of confidentiality. System operators, the instances responsible for safe operation
of their electricity grid, are not willing or not allowed to share network information
with other system operators. One can reason that the ongoing energy transition
and electrification is going to push the limits of conventional models until they do
not suffice anymore. It is probable that legislation and current behaviour will then
follow the necessary change towards the use of integrated network models.

The study of integrated network models is an emerging field. A literature review
shows that multiple approaches exist that can roughly be categorized into 1) co-
simulation frameworks that combine multiple domains that can be studied using
different tools and 2) stand-alone analysis frameworks that study integrated net-
work models in one software program [13]. The focus of this work is on the analysis
of stand-alone frameworks. Although co-simulation frameworks are ideal for simul-
taneous analysis of large transmission and distribution networks (100s to 1000s of
buses) due to their modular nature and suitability for HPC architectures [2], we
expect a competitive advantage for stand-alone models in the near future. Effi-
ciently integrated stand-alone models require significantly less communication and
should therefore be compatible with co-simulation techniques. Thus far, several
stand-alone integration techniques have been developed and tested on small-size
transmission and distribution networks in order to check their feasibility [14] [15].
In this work, we compare the performance of the existing stand-alone methods on
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convergence rate and CPU-time and their ability to be efficiently scaled to large-
size networks by applying them on several transmission-distribution networks. The
contributions of this work can be summarized as follows:

• An extensive description of existing stand-alone methods that have been cat-
egorized according their modeling and integration approach;

• A comparison of these methods using the Matpower library [16] in which
several test-cases are created to simulate the convergence behavior, where
special attention is paid to CPU-time and number of iterations;

• An analysis of convergence characteristics under varying circumstances such
as a high level of distributed generation and the integration of multiple dis-
tribution networks into one transmission-network;

• An insight into how these methods should adapt according to HPC applica-
tions in order to solve realistically sized networks (up to 1000000s buses).

2 Characterization of the power flow problem

The steady-state power flow problem is the problem of determining the voltages
V in a network, given the specified power1 S = P + ιQ and current I. V and I
are related by Ohm’s Law, I = Y V , and S and V are related by S = V I∗. Y
represents the admittance of a power cable. Power is generated in three phases
leading to three sinusoidal functions that describe phase a, b, and c of the voltage
and of the current. The voltage and current are both expressed in phasor notation:

Vp = |V |p exp (ιδVp − φp), (1)

Ip = |I|p exp (ιδIp − φp), p ∈ {a, b, c}, (2)

where | · | describes the phasor magnitude, δ∗ the phase angle, and φ∗ the phase
shift. Phasors are often expressed as V = {|V |, δ}. Current is never specified in
an electricity system, therefore we substitute Ohm’s Law into S = V I∗ and get a
nonlinear equation for S, the three-phase nonlinear power flow equation, described
as follows:

Sp = Vp(YV )∗p, p ∈ {a, b, c}. (3)

We represent an electricity network as a graph consisting of buses i = 1, .., N and
branches (named after the two surrounding buses). These buses are either a load
bus (PQ bus), a generator bus (PV bus), or a reference bus, depending on the
information we know at that point. The loads in a network are modeled as PQ
buses, loads consume power and at this bus, the active (P) and reactive power (Q)
are specified. Generators are modeled as PV buses, except for the first generator
in a network, this bus is modeled as the slack bus. Generators supply power and
at this bus, the active power (P) and voltage magnitude (|V |) are specified. At a
slack bus, the voltage magnitude and angle are specified. This is summarized in
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Table 1: Bustypes in a network and the information we know and not know at each
bus i.

bus type known unknown
PQ-bus Pi, Qi δi, |Vi|
PV -bus Pi, |Vi| Qi, δi
slack bus δi, |Vi| Pi, Qi

table 1. We scale all the engineering quantities in the power system to per-unit (pu)
quantities by dividing them by their base value. In this way, we bring the voltage in
a narrow range close to unity to eliminate erroneous values [4].
Equation (3) is a nonlinear equation so we solve it using iterative methods. At each
node i, we solve the following equation for the unknown quantities:

Si = Vi

N∑
k=1

Y∗ikV
∗
k (4)

The nodal admittance matrix Yij consists of admittance yij of a line between node
i and j and nodal shunt susceptance bc. Line admittance consists of a real and
imaginary part: yij = 1/zij = 1/(rij + ιxij), z being impedance, r being resistance
and x being reactance. The nodal admittance matrix relating node i and j looks
as the following:

Yij =

[
(yij + ι bc2 ) 1

τ2 −yij 1
τ exp (−ιθs)

−yij 1
τ exp (ιθs)

yij + ι bc2

]
=

[
Y11 Y12
Y21 Y22

]
ij

The parameters θs and τ are the transformer’s phase-shift angle and tap ratio, when
there is no transformer between two nodes but just a normal power cable, θs = 0
and τ = 1.

3 Electricity networks

An electricity network consists of one transmission and several distribution networks.
The design and characteristics of these types are different and therefore require
different approaches to solve equation (3).

3.1 Transmission networks: single-phase representation

The transmission network is the high-voltage network, responsible for the trans-
portation of power over large distances. It is a balanced system which means that
the three phases a, b, and c of the generated power are equal in magnitude and
equal in phase-shift (φ). For a voltage V this means that |V |a = |V |b = |V |c
and φab = φbc = φca = 2

3π. To simplify and speed-up the computations in the

1We use the subscript ι as the imaginary unit.
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transmission network, they only calculate Va and deduct the other two phases from
here. This changes (3) into the following:

Sp = Vp(Y V )∗p, p ∈ {a, b, c} ⇒ Sa = Va(Y V )∗a. (5)

We use Newton-Raphson power mismatch (NR-power) to compute unknown quan-
tities at each bus i. NR-power computes Vi using the following power mismatch
formulation:

∆Si = Ss,i − S(Vi) ≈ 0. (6)

Ss is the specified power, the known information at generator and load nodes:
Ss = Sg − Sd, subscript g representing the generator buses and d the load buses.
S(V ) is the injected power, S(V ) = V (YV )∗. The complex power S is split into
an active and reactive part and combined to form the power mismatch vector F ,

F (V ) =

[
∆P
∆Q

]
=

[
Ps − P (V )
Qs −Q(V )

]
. (7)

We denote the state variables V by x, x := V = {|V |, δ}. We compute V in an
iterative manner using the Jacobian J of the power mismatch vector:

∆xν = −J−1(xν)F (xν), (8)

xν+1 = xν + ∆xν , (9)

where the Jacobian is represented as follows:

J(x) =

[
∂P
∂δ

∂P
∂|V |

∂Q
∂δ

∂Q
∂|V |

]
.

We repeat this until the norm of the power mismatch vector |F |∞ is lower than a
certain tolerance value ε. We choose ε = 10−5 and start with a flat profile as initial
guess: V 0 = 0. The Newton-Raphson algorithm is as follows:

Algorithm 3.1 The Newton-Raphson iterative method

1: Set ν = 0 and choose appropriate starting value x0;
2: Compute F (xν);
3: Test convergence: If |F (xν)|∞ ≤ ε then xν is the solution, Otherwise continue.
4: Compute the Jacobian matrix J(xν);
5: Update the solution:

∆xν = −J−1(xν)F (xν)

xν+1 = xν + ∆xν

6: Update iteration counter ν + 1→ ν, go to step 2.
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3.2 Distribution networks: three-phase representation

Distribution systems are unbalanced: the three phases are not equal in magnitude
nor in phase-shift. This requires us to compute all the three phases in every iteration
when solving equation (3). We use Newton-Raphson Three-Phase Current Injection
Method (NR-TCIM) [5] to solve distribution networks. Instead of applying the
standard Newton-Raphson method to power mismatches, Ohm’s Law is directly
used resulting in the current mismatch vector:

F (x) =

[
∆IRe,abc(x)
∆IIm,abc(x)

]
=

[
IRe,abcs − IRe,abc(x)
IIm,abcs − IIm,abc(x)

]
. (10)

The specified current Is and computed current I (V ) are calculated using the in-
jected complex power and Ohm’s Law:

Is,i =

(
Ss
V

)
i

and I(V )i = YVi (11)

The Jacobian is formed by taking the derivative of the real and imaginary current
mismatch with respect to the real and imaginary voltage.

3.3 Modeling elements in three-phase configuration

An electricity network models consists of nodal and series elements. Loads, gen-
erators, and shunts are nodal elements and are taken into account in the complex
power vector S. Transformers, line elements, and regulators are placed in series.
They are accounted for in the Ybus matrix. Regulators are elements that are placed
alone the distribution feeder to regulate the voltage profile of the feeder.

3.3.1 Loads and shunts

Loads are modeled as buses where active and reactive power (P and Q) are speci-
fied. They are modeled as a function of the voltage in which the load-model type
determines the relation between power and voltage. Three types exist: the con-
stant power (P), constant current (I), and constant impedance model (Z). Together
called: ZIP-load models.

1. Constant Power models (P): power is independent of the change in voltage
magnitude, which is expressed as:

P

P0
= 1 and

Q

Q0
= 1

Constant power loads draw the same power from its source even if the source
changes voltage.

2. Constant Current models (I): power is related to the voltage magnitude as:

P

P0
=
|V |
|V0|

and
Q

Q0
=
|V |
|V0|
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A constant current load varies its internal resistance according to the volt-
age which is being fed to it in order to achieve a constant current despite
fluctuations in the source voltage.

3. Constant Impedance models (Z): power is related to the square of the voltage
magnitude:

P

P0
= (
|V |
|V0|

)2 and
Q

Q0
= (
|V |
|V0|

)2

A constant impedance load presents the same impedance even when voltage
is fluctuating.

The entities P0 and Q0 are the specified power ratings and |V0| is the nominal
voltage magnitude. In p.u. calculations, |V0| is often equal to 1.

Loads are physically connected in a grounded Wye or ungrounded Delta config-
uration. In the grounded Wye configuration all the three phases are connected to a
single neutral point. This neutral point is connected to the ground by a fourth wire:
the neutral conductor. The voltage is specified line-to-neutral. In an ungrounded
Delta configuration the loads are connected phase-to-phase without a neutral con-
ductor. Here, the voltage is specified phase-to-phase, also called line-to-line. The
line-to-line voltages of a three-phase Delta-configuration are: V ab, V bc, and V ca.
The line-to-line voltages and line-to-neutral voltages (V a, V b, and V c) are related
as follows:

V ab = V a − V b, (12)

V bc = V b − V c, (13)

V ca = V c − V a. (14)

(15)

The line-to-neutral currents are related to line-to-line voltages according:

Ia = Iab − Ica, (16)

Ib = Ibc − Iab, (17)

Ic = Ica − Ibc. (18)

In the following lines we clarify the relationship of the ZIP-load models in a Wye
and Delta configuration.

Wye - P We know that power is independent of voltage magnitude:

P

P0
= 1,

Q

Q0
= 1 ⇔ S := P + ιQ = P0 + ιQ0 (19)

For phases a, b, and c this means that for each load bus i the active and reactive
power are expressed as follows:SaSb

Sc


i

:=

P a + ιQa

P b + ιQb

P c + ιQc


i

=

(P a0 + ιQa0)
(P b0 + ιQb0)
(P c0 + ιQc0)


i

(20)

9



Wye - I Constant current load models vary their power S with voltage mag-
nitude, leading to the following relationship:

P

P0
= |V |, Q

Q0
= |V | ⇔ S := P + ιQ = (P0 + ιQ0)|V | (21)

For phases a, b, and c this means that for each load bus i the active and reactive
power are expressed as follows:

SaSb
Sc


i

:=

P a + ιQa

P b + ιQb

P c + ιQc


i

=


(P a0 + ιQa0)( |V

a|
|V a

0 |
)

(P b0 + ιQb0)( |V
b|

|V b
0 |

)

(P c0 + ιQc0)( |V
c|

|V a
0 |

)


i

(22)

Wye - Z Constant impedance models vary their power with the square of
voltage magnitude, leading to the following:

P

P0
= |V |2, Q

Q0
= |V |2 ⇔ S := P + ιQ = (P0 + ιQ0)|V |2 (23)

For phases a, b, and c this means that for each load bus i the active and reactive
power are expressed as follows:

SaSb
Sc


i

:=

P a + ιQa

P b + ιQb

P c + ιQc


i

=


(P a0 + ιQa0)( |V

a|
|V a

0 |
)2

(P b0 + ιQb0)( |V
b|

|V b
0 |

)2

(P c0 + ιQc0)( |V
c|

|V a
0 |

)2


i

(24)

We solve the three-phase distribution systems with the NR-TCIM method, which
implies that we need the specified currents Is in our mismatch equation (eq: 10)
instead of specified powers. As currents are never measured in a power system, they
are conducted from the specified power according the relationship:

S = V I∗ ⇔ I = (
S

V
)∗ (25)

If we divide the expressions of the loads S by V and take the conjugate of this new
relation we get the load models expressions in terms of specified current:

Wye - P

I := (
S

V
)∗ = (

P0 + ιQ0

V
)∗ (26)

Or in three-phase matrix: IaIb
Ic


i

=

(P
a+ιQa

V a )∗

(P
b+ιQb

V b )∗

(P
c+ιQc

V c )∗


i

(27)
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Wye - I

I := (
S|V |
V

)∗ = (P0 + ιQ0)∗
|V |
V ∗

= (P0 + ιQ0)∗
V

|V |
(28)

Or in three-phase matrix:IaIb
Ic


i

=

(P a + ιQa)∗ V
a

|V a|

(P b + ιQb) V b

|V b|
(P c + ιQc)∗ V

c

|V c| )


i

(29)

Wye - Z

I := (
S|V |2

V
)∗ = (P0 + ιQ0)∗

|V |2

V ∗
= (P0 + ιQ0)∗

V V ∗

V ∗
= (P0 + ιQ0)∗V (30)

Or in three-phase matrix: IaIb
Ic


i

=

(P a + ιQa)∗V a

(P b + ιQb)∗V b

(P c + ιQc)∗V c


i

(31)

Delta loads Delta loads are expressed by line-to-line voltages and currents while
we need line-to-neutral currents in our calculations. We express the line-to-neutral
currents directly for the three load models using

Ia = Iab − Ica, (32)

Ib = Ibc − Iab, (33)

Ic = Ica − Ibc. (34)

Delta - PIaIb
Ic


i

:=

Iab − IcaIbc − Iab
Ica − Ibc


i

=

(P
ab+ιQab

V a−V b )∗ − (P
ca+ιQca

V c−V a )∗

(P
bc+ιQbc

V b−V c )∗ − (P
ab+ιQab

V a−V b )∗

(P
ca+ιQca

V c−V a )∗ − (P
bc+ιQbc

V b−V c )∗


i

(35)

Delta - IIaIb
Ic


i

=


(P ab + ιQab)∗ (V

a−V b)
|V a−V b| − (P ca + ιQca)∗ (V

c−V a)
|V c−V a|

(P bc + ιQbc)∗ (V
b−V c)

|V b−V c| − (P ab + ιQab)∗ (V
a−V b)

|V a−V b|

(P ca + ιQca)∗ (V
c−V a)

|V c−V a| − (P bc + ιQbc)∗ (V
b−V c)

|V b−V c|


i

(36)

Delta - ZIaIb
Ic


i

=

(P ab + ιQab)∗(V a − V b)− (P ca + ιQca)∗(V c − V a)
(P bc + ιQbc)∗(V b − V c)− (P ab + ιQab)∗(V a − V b)
(P ca + ιQca)∗(V c − V a)− (P bc + ιQbc)∗(V b − V c)


i

(37)
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Overview of load models We give an overview line-to-neutral currents Ipi , p ∈
{a, b, c} for the three static load models (P, I, and Z) in Wye and Delta configuration.

Table 2: Specified line-to-neutral currents Ipi of load bus i in Wye and Delta con-
figuration, given for different load models (ZIP).

Y ∆

load model Wye Delta

Z


(P a + ιQa)∗V a

(P b + ιQb)∗V b

(P c + ιQc)∗V c


i


(P ab + ιQab)∗(V a − V b) − (P ca + ιQca)∗(V c − V a)

(P bc + ιQbc)∗(V b − V c) − (P ab + ιQab)∗(V a − V b)

(P ca + ιQca)∗(V c − V a) − (P bc + ιQbc)∗(V b − V c)


i

I


(P a + ιQa)∗ V

a

|V a|

(P b + ιQb) V b

|V b|

(P c + ιQc)∗ V
c

|V c| )


i


(P ab + ιQab)∗ (V

a−V b)

|V a−V b| − (P ca + ιQca)∗ (V
c−V a)

|V c−V a|

(P bc + ιQbc)∗ (V
b−V c)

|V b−V c| − (P ab + ιQab)∗ (V
a−V b)

|V a−V b|

(P ca + ιQca)∗ (V
c−V a)

|V c−V a| − (P bc + ιQbc)∗ (V
b−V c)

|V b−V c|


i

P


(P

a+ιQa

V a )∗

(P
b+ιQb

V b )∗

(P
c+ιQc

V c )∗


i


(P

ab+ιQab

V a−V b )∗ − (P
ca+ιQca

V c−V a )∗

(P
bc+ιQbc

V b−V c )∗ − (P
ab+ιQab

V a−V b )∗

(P
ca+ιQca

V c−V a )∗ − (P
bc+ιQbc

V b−V c )∗


i

3.3.2 Transformers

Transformers are placed between two networks that have different voltage levels.
The primary side (p) of the transformer is connected to the higher voltage network
and the secondary side (s) is connected to the lower voltage level. The transformer
in a power system is represented by two blocks:

• An admittance matrix block, Y abcT , consisting of per-unit leakage admittance
yt, and

• A shunt block that models core losses. The shunt block can be represented
by voltage dependent loads and follow the representation in Table 2.

The admittance matrix block is given in a similar manner as the Ybus matrix of a
distribution cable, but now consisting of leakage admittance of the transformer:

Y abcT =

[
Y abcpp Y abcps

Y abcsp Y abcss

]
. (38)

Each block Y abcij , i, j ∈ {p, s} has a different configuration. This configuration
depends on the connection of the transformer and is either one of the three following
blocks:

Y1 =

yt 0 0
0 yt 0
0 0 yt

 , Y2 = 1
3

2yt −yt −yt
−yt 2yt −yt
−yt −yt 2yt

 , and Y3 = 1√
3

−yt yt 0
0 −yt yt
yt 0 −yt

 . (39)
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Table 3 represents the corresponding block per transformer configuration.
The pu leakage admittance yt consists of resistance r and reactance x. The equa-
tions should be scaled according the correct base quantities in order to match the
different pu-systems. The pu leakage admittance results in:

yt =
1

zt
, where zt = (r + ιx)(

Vlow
Vbase

)2
Sbase
St

, (40)

where r and x are given in fractions. Vlow is the voltage at the secondary level of the
transformer, and ST is apparent power of the transformer, expressed in volt-ampere.
Vbase is always given in line-to-line and should be converted to line-to-neutral by
dividing it by

√
3, in order to match the calculations.

Table 3: Specified line-to-neutral currents of load bus i in Wye and Delta configu-
ration, given for different load models (ZIP).

Transformer model

Primary Secondary Y abcpp Y abcps Y abcsp Y abcss

Wye-G Wye-G Y1 −Y1 −Y1 Y1

Wye-G Wye Y2 −Y2 −Y2 Y2

Wye-G Delta Y1 Y3 Y T3 Y2

Wye Wye-G Y2 −Y2 −Y2 Y2

Wye Wye Y2 −Y2 −Y2 Y2

Wye Delta Y2 Y3 Y T3 Y2

Delta Wye-G Y2 Y T3 Y3 Y1

Delta Wye Y2 Y T3 Y3 Y2

Delta Delta Y2 −Y2 −Y2 Y2

3.3.3 Step-Voltage Regulators

Step-Voltage Regulators (SVRs) are installed along distribution feeders, often after
the substation, but also at other locations, to control the voltage along the feeder
and to keep it within an acceptable range. As the voltages along a distribution feeder
can vary, it is important to keep it within an acceptable range. An SVR consists of
a sequence of autotransformers and load tap changing mechanisms [17]. The taps
of the transformers are responsible for the voltage level at the secondary side, the
output voltage. This voltage is measured: If it falls outside the safety region, the tap
ratios are changed automatically to adjust this voltage level. Standard SVRs allow
a total of ±10% voltage change, usually achieved in 32 steps. This means that each
tap changes the voltage with 0.000625 per unit in an up or down direction [17]. In
our load-flow computations, we are not implementing an SVR that changes its tap
ratio automatically. We pre-determine the safe tap-ratios based on output data of
openDSS. With these data we model the SVR directly.
An SVR is modeled as a series block that is placed between any connected pair
of buses (n,m). The voltages and currents of the primary (bus n) and secondary
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side (bus m) of the SVR are related via matrices: AV , AI , and ZR ∈ C6x6. The
first one represents voltage gain, the second current gain, and the last impedance.
AI and AV consists of effective regulator ratio aR and ZR consists of pu series
impedance zR of the SVR [18]. The regulator ratio, aR, is expressed as a function
of the tap ratio:

aR = 1± 0.000625tap, (41)

where tap is the tap-ratio of the SVR. The minus sign in this equation applies for
the raise position and the positive sign for the lower position.
Three-phase SVRs are commonly configured as Wye, closed-delta, and open-delta
connections. Just like transformers, these configurations determine the entities of
the three blocks AI , AV , and ZR. Furthermore, it holds that:

A−V−1 = ATI . (42)

These three blocks form the SVR-admittance matrix, Y abcR . The admittance matrix
Y abcR looks as follows:

Y abcR =

[
AIF

−1
R Y abcnn A

T
I −AIF−1R Y abcnm

−Y abcmn F
−T
R ATI Y abcmm − Y abcmnA

T
I ZRAIF

−1
R Y abcnm

]
(43)

Y abcij , i, j ∈ {n,m} is the admittance of the distribution line along which the

regulator is placed. FR and F−TR are defined as follows:

FR = I3×3 + Y abcnn A
T
I ZRAI , (44)

F−TR = I3×3 −ATI ZRAIF−1R Y abcnn . (45)

We list the entities of the blocks AI , AV , and ZR, that depend on the SVR
configuration, in Table 4. More information on how to derive these entities can
be found in [18].

Table 4: Specified line-to-neutral currents of load bus i in Wye and Delta configu-
ration, given for different load models (ZIP).

SVR connection AI AV ZR

Wye


1

aRa
0 0

0 1
aRb

0

0 0 1
aRc


aRa 0 0

0 aRb 0

0 0 aRc


ZRa 0 0

0 ZRb 0

0 0 ZRc


Closed-Delta

 aRab 0 1 − aRca

1 − aRab aRbc 0

0 1 − aRbc aRca


−1  aRab 1 − aRab 0

0 aRbc 1 − aRbc

1 − aRca 0 aRca


ZRab 0 0

0 ZRbc 0

0 0 ZRca


Open-Delta


1

aRab
0 0

1 − 1
aRab

1 1 − 1
aRcb

0 0 1
aRcb


aRab 1 − aRab 0

0 1 0

0 1 − aRcb aRcb


ZRab 0 0

0 0 0

0 0 ZRcb
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Ideal SVRs If the auto-transformer of the SVR is ideal, the tap-ratio is equal to
0 and the impedance matrix ZR is equal 0. This results into FR being the identity
matrix: I3×3. The admittance matrix of an ideal SVR becomes the following:

Y abcR,ideal =

[
AIY

abc
nn A

T
I −AIY abcnm

−Y abcmnA
T
I Y abcmm

]
. (46)

4 Integrating transmission and distribution networks

We have a single-phase transmission system described by the following power flow
relation:

Sai = V ai I
a
i = V ai

N∑
k=1

Y aikV
a
k , (47)

and a three-phase distribution system, described by the following power flow relation:

Spi = V pi I
p
i = V pi

N∑
k=1

∑
q=a,b,c

Y pqik V
q
k , p ∈ {a, b, c}. (48)

These two networks are connected to each other via a substation. A dimension
mismatch takes place at this substation, depicted in figure 1. Table 5 shows the
single-phase and three-phase representation of S, V and Y in the network models.
We need integration methods to resolve this mismatch at the substation and solve

the power flow problem on the integrated network. The literature suggests two
approaches to run stand-alone computations on integrated networks: a unified and
a splitting approach, and it suggests two ways of modeling integrated networks: as
a homogeneous or as a hybrid network. The unified method solves the integrated
system as a whole [14]. The splitting approach appoints the transmission network as
the manager2 and the distribution network as the fellow [19]. It iterates between the
two networks and at each iteration, it solves the networks separately. This method

2Note that the existing literature talks about master and slaves instead of manager and fellows,
but we modernised the naming convention.

?
Distribution 

Network

Transmission 

Network

Substation

Figure 1: Information mismatch at the substation between a transmission and dis-
tribution network
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Table 5: Representation of parameters in transmission and distribution network
models

parameter Transmission Distribution

Si [Sa]i [Sa Sb Sc]
T
i

Vi [Va]i [Va Vb Vc]
T
i

Yij

Y
a
11

1×1

Y a12
1×1

Y a21
1×1

Y a22
1×1


ij

Y
abc
11
3×3

Y abc12
3×3

Y abc21
3×3

Y abc22
3×3


ij

is similar to the co-simulation approach where the separate domains are solved on
its own and coupled using an iterative scheme. We call the unified approach applied
to homogeneous networks the full three-phase (F3P) method and applied to hybrid
networks the interconnected (IC) method. We call all splitting methods manager-
fellow splitting (MFS) methods. We define the MFS-methods based on the network
model they are applied to, eg: the splitting approach applied to hybrid networks is
called the MFS-hybrid method. Figure 2 gives an overview of the methods.

Numerical
integration
methods

Unified

Homogeneous ⇒ Full three-phase

Hybrid ⇒ Interconnected

Manager-
Fellow

Homogeneous ⇒ MFS-homo

Hybrid ⇒ MFS-hybrid

Figure 2: Classification of numerical methods to solve integrated systems.

4.1 Unified methods

Unified methods solve the integrated system using one iterative scheme applied to
the entire integrated network. The substation is modeled as a transformer that
connects the two networks. The original slack bus of the distribution network
becomes a load bus that is connected to the right-hand side of the substation. Any
load bus of the transmission network can be connected to the left-hand side of the
substation. We solve the entire system using one algorithm.
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4.1.1 The full three-phase method

The full three-phase method is the unified method applied on homogeneous networks
and a homogeneous network consists of two three-phase networks. Unbalanced dis-
tribution networks are by default modeled in three-phase, the transmission networks
requires a transformation. This transformation is based on the assumption that the
transmission system is balanced: we deduct the phases b and c from the first phase
a and we transform the voltage Va, the complex power Sa, and the admittance Ya
of all the buses i = 1, ..., N to their three-phase equivalents. We transform all the
buses i = 1, .., N in the transmission system using transformer matrices:

T1 =
[
1 a2 a

]T
and T2 =

[
1 1 1

]T
, a = e

2
3πι,

and identity matrix I3×3. This results into the following:

T1 [Va]i =
[
Va Vb Vc

]T
i
, (49)

T2

[
Sa
]
i

=
[
Sa Sb Sc

]T
i
, (50)

[
Y a11 ⊗ I3×3 Y a12 ⊗ I3×3
Y a21 ⊗ I3×3 Y a22 ⊗ I3×3

]
ij

=

[ 3 3

3 Yabc
11 Yabc

12

3 Yabc
21 Yabc

22

]
ij

. (51)

4.1.2 The interconnected method

k msingle-phase

transmission

network

V
a

k Vm

abc

three-phase

distribution

network
y

abc

b bc c

Figure 3: The substation transformer in a hybrid network connecting single-phase
bus k and three-phase bus m.

The interconnected method is the unified method applied to hybrid networks.
A hybrid network consists of a single-phase transmission part and a three-phase
distribution part. The substation transformer, between load bus k of the transmis-
sion network and the original slack bus m of the distribution network, connects the
information between the two networks. It couples the single-phase quantities at the
transmission side to the three-phase quantities at distribution side by transforming
the nodal admittance matrix Ykm. This is depicted in figure 3. We use three
transformer matrices

T1, T3 =
1

3
[1 a a2], T4 =

1

3
[1 1 1] , and T5 =

1

3

[
1 a2 a

]
, a = e

2
3πι,
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to establish the connection of bus k and m via the admittance matrix Ykm. This
transformation is based on the assumption that the connecting bus k is perfectly
balanced. This means that the single-phase and three-phase quantities are related
as the following: [

Va Vb Vc
]T
k

= T1

[
Va
]
k
, (52)[

Ia
]
k

= T3

[
Ia Ib Ic

]T
k
, (53)[

Sa
]
k

= T4

[
Sa Sb Sc

]T
k
. (54)

The change of the transformer substation depends on whether the unified system
is solved using NR-Power or NR-TCIM. The relations (52), (53), and (54) are
substituted in the corresponding power flow equations.

Using current injections The NR-TCIM method uses Ohm’s law directly. The
relation between node k and m is expressed as follows:

I = YV ⇔
[
Ik
Im

]
=

[
Y11 Y12
Y21 Y22

] [
Vk
Vm

]
(55)

If node k and m we’re both modeled in three-phase, we know the following:

Iabck = Yabc
11 V

abc
k + Yabc

12 V
abc
m , (56)

Iabcm = Yabc
21 V

abc
k + Yabc

22 V
abc
m . (57)

We now multiply equation (56) by T3 to obtain Iak :

Iak = T3I
abc
k = T3Y

abc
11 V

abc
k + T3Y

abc
12 Vabc

m . (58)

We then substitute Vabc
k in equations (58) and (57) by T1V

a
k (equation 52):

Iak = T3I
abc
k = T3Y

abc
11 T1V

a
k + T3Y

abc
12 Vabc

m , (59)

Iabcm = Yabc
21 T1V

a
k + Yabc

22 V
abc
m . (60)

From (59) and (60) we see that our new nodal admittance matrix becomes:

Ykm =

[ 1 3

1 T3[Yabc
11 ]T1 T3[Yabc

12 ]
3 [Yabc

21 ]T1 Yabc
22

]
km

(61)

Using power injections We can also start from the power equations. The relation
between node k and m is expressed as follows:

S = V I∗ ⇔
[
Sk
Sm

]
=

[
Vk
Vm

] [
Ik
Im

]∗
(62)

18



In the same manner as current injections, we can write this relation in three-phase:

Sabck = V abck Iabc∗k + V abck Iabc∗m , (63)

Sabcm = V abcm Iabc∗k + V abcm Iabc∗m . (64)

⇔ (65)

Sabck = diag(V abck ) · (Yabc
kk V

abc
k )∗ + diag(V abck ) · (Yabc

kmV
abc
k )∗, (66)

Sabcm = diag(V abcm ) · (Yabc
mkV

abc
k )∗ + diag(V abcm ) · (Yabc

mmV
abc
m )∗. (67)

We multiply the first line from the left by T4 to obtain Sak :

Sak = T4S
abc
k = T4diag(V abck ) · (Yabc

kk V
abc
k )∗ + T4diag(V abck ) · (Yabc

kmV
abc
m )∗.

(68)

Then, we substitute V abck = T1V
a
k (equation (52)) in equations (67) and (68) and

obtain the following:

Sak = T4diag(T1V
a
k ) · (Yabc

kk T1V
a
k )∗ + T4diag(T1V

a
k ) · (Yabc

kmV
abc
m )∗, (69)

Sabcm = diag(V abcm ) · (Yabc
mkT1V

a
k )∗ + diag(V abcm ) · (Yabc

mmV
abc
m )∗. (70)

We can rewrite T4diag(T1V
a
k ), the first part of the rhs in (69), as:

T4diag(T1V
a
k )⇔ T4diag(T1)diag(V ak ) (71)

=
1

3

[
1 1 1

] 1 0 0
0 a2 0
0 0 a

 diag(V ak ) (72)

⇔ 1

3

[
1 a2 a

]
︸ ︷︷ ︸

T5

diag(V ak ) (73)

⇔ diag(V ak )T5. (74)

This results in the following relations for single-phase and three-phase power:

Sak = diag(V ak ) · (T5Y
abc
kk T1V

a
k )∗ + diag(V ak ) · (T5Y

abc
kmV

abc
m )∗, (75)

Sabcm = diag(V abcm ) · (Yabc
mkT1V

a
k )∗ + diag(V abcm ) · (Yabc

mmV
abc
m )∗. (76)

Equations (75), (76) yield the following transformed admittance matrix Ykm:

Ykm =

[ 1 3

1 T5[Yabc
kk ]T1 T5[Yabc

km]
3 [Yabc

mk ]T1 Yabc
mm

]
km

(77)

4.2 Manager-Fellow splitting methods

In contrast to the unified methods, the MFS-methods keep two separate domains,
the transmission and distribution network (or the manager and the fellow), and
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introduces an extra iterative scheme between the domains. The two domains have
one overlapping bus, this bus is called the boundary bus [19]. The boundary bus
is the original slack bus of the distribution system and, like the unified methods,
can be any load bus of the transmission system. As the two domains are solved
separately, the boundary bus remains the slack bus for the distribution system and
the load bus for the transmission system. During one MFS-iteration, we solve the
fellow, inject the solution of the boundary bus into the manager, and then solve this
system. This iterative process continues until the difference between the boundary
bus of the two systems is smaller than a certain tolerance value ε. As the boundary
bus is the slack bus of the distribution system, it requires the voltage VB as known
information. In the first iteration, we initialize the voltage as VB = 1.0 pu. In the
following iterations, we determine the voltage by solving the transmission system.
The boundary bus is a load bus for the transmission system and thus requires the
complex power as known. We use the output from the distribution system SB as
input for the transmission system. Algorithm 4.1 shows how the iterative scheme of
the MFS-method works. As the MFS-method solves the transmission and distribu-

Algorithm 4.1 General algorithmic approach of the manager-fellow splitting method

1: Set iteration counter ν = 0. Initialize the voltage V 0
B of the fellow.

2: Solve the distribution system. Output: Sν+1
B .

3: Inject Sν+1
B into the manager.

4: Solve the manager. Output: V ν+1
B .

5: Is |V ν+1
B − V νB |1 > ε ? Repeat step 2 till 5.

tion systems separately, it allows for using different algorithms per domain. In this
way, we choose to solve the distribution system with the advantageous NR-TCIM
method and the transmission system with the NR-power method.

The MFS-method can be applied to homogeneous networks and to hybrid net-
works. The first one requiring a transformation of the entire manager domain, the
latter requiring a transformation of the boundary bus only.

4.2.1 The MFS-homogeneous method

The MFS-method applied to homogeneous networks requires a transformation of the
single-phase transmission system. The balanced transmission system is transformed
in the same was as in the F3P-method. The voltage, power, and admittance of
all the buses i = 1, .., N are transformed to three-phase equivalents. This idea is
summarized in equations (49) - (51) of section 4.1.1.

4.2.2 The MFS-hybrid method

The MFS-method applied to hybrid systems keeps the transmission system in single-
phase. Only a transformation of the boundary bus is then required.
As we first solve the distribution system, we receive the complex power SB as
three-phase output, which we have to transform to a single-phase quantity. Once
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we have solved the transmission system, we have to transform the single-phase
output of the voltage VB of this system. Here again, we assume that the boundary
bus B is balanced. Balanced three-phase power in pu is related to single-phase
power in (54) according the following relation:

[Sa] = T4

[
Sa Sb Sc

]T
, T4 =

1

3
[1 1 1] , and a = e

2
3πι. (78)

The voltage of the boundary bus has the same relation as in (52):[
Va Vb Vc

]T
B

= T1

[
Va
]
B
, T1 = [1 a2 a]T , and a = e

2
3πι. (79)

The MFS-methods do not require a transformation of the nodal admittance matrix.
We transform the necessary boundary parameters directly. At every MFS-iteration,
we make transformation (78) and (79) after step 2 and step 4 of algorithm 4.1,
respectively.

4.2.3 The manager-fellow iterative schemes

In the early work of the research group of [20] are two iterative schemes of the
manager-fellow splitting proposed. The first is the Convergence Alternating Iterative
(CAI) scheme and the second is the Multistep Alternating Iterative (MAI) scheme.
The MAI-scheme is probably disregarded later on as it is not mentioned in more
recent work [15] [19] [21]. We explain both schemes, but decided to only include
the results of the CAI-scheme in our comparison3. In the CAI-scheme, an explicit
convergence condition is defined for the fellow and for the manager. The fellow is
solved with NR-TCIM, for which we define a tolerance value εD. Once this system
has converged, its boundary output is injected into the manager. The manager is
solved using NR-power, for which a (not necessarily) different tolerance value εT
is defined. Once the manager has converged, its boundary output is injected into
the fellow. The integrated network is converged once the convergence condition
of the MFS-algorithm is met. In the MAI-scheme, first, a maximum number of
iterations per separate system is defined, ie: Imax,D and Imax,T . Then, the output
of one system is injected into the other as soon this maximum number of iterations
has been reached. The convergence of the integrated network is based on the
convergence condition of the MFS-algorithm.

Speeding up the CAI-scheme We can speed-up the CAI-scheme if we, at every
MFS iteration, initialize the voltages as the output of the previous MFS iteration.
In the current suggested schemes, we initialize all the buses, except the boundary
bus B, to V = 1.0 pu. We can reduce the number of required iterations for the
separate systems if we initialize the voltages to its last obtained solution in the
previous MFS-iteration, ie: V ν+1

0,D = V νI,D and V ν+1
0,T = V νI,T .

3We did implement the MAI-scheme, but these tests showed us that MAI was not beneficial
compared to the CAI-scheme and only lead to extra work.
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4.3 General expectations of the methods

Based on the theoretical study of the unified and splitting methods and hybrid and
homogeneous networks, we have some first expectations about their performances.
Firstly, we expect the methods applied on hybrid networks to perform better in
terms of CPU-time. Homogeneous network contain a three-phase representation
of the transmission network and thus needs to process a larger Jacobian matrix:
If we consider a transmission system with N buses, then the Jacobian matrix of a
three-phase network will be of size 6N x 6N compared to a single-phase Jacobian
matrix of size 2N x 2N . Secondly, it is possible that we observe a higher number of
iterations for the methods applied on hybrid networks. This expectation is based on
the assumption that the connection bus at transmission side is completely balanced
while it might be unbalanced due to the connection to the unbalanced distribution
system.
If we compare the unified and splitting methods, we expect to see an advantage in
speed for the unified methods as they only need to solve one system. The splitting
methods are advantageous when system operators are not allowed to share complete
network information: In the splitting methods, they only need to share information
of the connecting boundary bus.
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5 Numerical assessment

We implement all previous mentioned methods into the Matpower4 library. Mat-
power contains several transmission network test cases. The resources page of IEEE
Power & Energy Society contains several distribution network test cases [22]. We
create integrated test cases from the existing transmission and distribution test
cases. We use the 9-bus, 33-bus, 118-bus, and 3120-bus networks from Matpower
as balanced network test cases. All these test-cases, besides the 33-bus network, are
transmission networks. The 33-bus is a balanced distribution network. We use the
IEEE 13-bus, 37-bus, 123-bus, and 8500-bus data from IEEE P&ES as unbalanced
distribution test cases. We change the loading of the 37-bus network by shifting
20% of the original load of phase b equally to phase a and c, like the original au-
thors [14] to create an unbalanced network. We connect the loads of the IEEE
test-networks according their given configuration. The loads in the balanced test-
networks are originally single-phase loads. In the homogeneous networks, we model
them as Wye-P loads. we model the transformers in these networks in a Wye-Wye
configuration. We solve the unified methods using NR-TCIM with ε = 10−5 as
convergence tolerance value. In the splitting methods, we solve the distribution
system using NR-TCIM and a tolerance value of εD = 10−5 and the transmission
system using NR-P and a tolerance value of εT = 10−5. We define the tolerance
value of the MFS-method also as εMFS = 10−5.

We create the following integrated test cases by integrating one balanced network
to one or multiple unbalanced networks:

• Test case 1: T9-D13

• Test case 2: D33-D37

• Test case 3: T118-D123

• Test case 4: T3120-D8500

• Test case 5: T9-3D13

• Test case 6: T118-3D123

Connection bus We select a random load bus in the transmission network as the
connection bus in the integrated network. We choose bus 7 in the 9-bus network,
bus 30 in the 33-bus network, bus 108 in the 118-bus network, and we choose bus
2700 in the 3120-bus network. The original reference bus of the distribution network
becomes the connection bus at the distribution side of the integrated network. In
the unified methods, this former reference bus must be changed to a load bus. In the
splitting method, the distribution reference bus remains a reference bus, initialized
by the output it receives from the transmission network. Test cases 5 and 6 have
multiple distribution networks connected, eg. test-case 6 consists of one 118-bus
transmission network and three 123-bus distribution networks. These networks are
connected to the mentioned connection bus and its sequential buses.

4MATPOWER is a package of free, open-source Matlab-language M-files for solving steady-
state power system simulation and optimization problems [16].
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5.1 Results

In this section we compare the integration methods on their numerical performance,
which are CPU-time and number of iterations. We share the results in Table 6. We
need insight into their numerical performance in order to get an idea which method
to choose to solve realistic power flow problems, which are very large electricity
networks.

Table 6: Comparison on number of iterations (in case of the MFS-method (IMFS)
and the necessary iterations per subdomain (IT and ID)), and CPU-time of the
integration methods, applied on six test-cases. The top one are methods applied
on homogeneous networks. The bottom one is applied on hybrid networks. The
slowest CPU-times are printed in boldface.

F3P MFS-homo-CAI

its CPU IMFS IT ID CPU

test case # sec # # # sec

T9-D13 (7) 3 0.016 3 4 4 0.901

D33-D37 (30) 3 0.016 10 3 4 2.641

T118-D123 (108) 4 0.025 3 7 5 0.807

T3120-D8500 (2700) 4 0.367 3 6 5 2.569

T9-3D13 (7-9) 3 0.020 3 4 5 1.49

T118-3D123 (108-110) 4 0.060 3 7 4 1.69

IC MFS-hybrid-CAI

its CPU IMFS IT ID CPU

test case # sec # # # sec

T9-D13 (7) 3 0.015 3 4 4 1.071

D33-D37 (30) 3 0.020 11 3 4 3.818

T118-D123 (108) 4 0.039 3 4 5 1.173

T3120-D8500 (2700) 4 0.612 3 6 5 3.697

T9-3D13 (7-9) 3 0.017 3 4 5 1.79

T118-3D123 (108-110) 4 0.073 3 4 4 1.97

These results show that the difference in CPU-time is most significant between uni-
fied and MFS-methods. The MFS-CAI scheme, on average, requires three runs.
Per MFS-iteration, two separate systems are solved. If we combine this, we expect
to see a difference in CPU-time of around six times, in the advantage of the uni-
fied methods. When we compare the results between network models, ie between
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Figure 4: Representation of the norms of |F |∞ for the interconnected and full three-
phase methods for four different test-cases per iteration. The The black dotted line
is the tolerance value, ie ε = 1e− 5.
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hybrid and homogeneous networks, the difference is less significant. For the small
test cases, the unified methods are comparable in speed and the MFS methods are
comparable in speed. The big test case, T3120-D8500, gives the most significant
results. For this test case, the hybrid network methods are 1.5 times faster than the
homogeneous methods. Over-all, the MFS-homo-CAI methods perform the least
and the IC methods perform the best, in line with our expectations.

If we compare the number of iterations, we see that there is hardly any differ-
ence among unified methods and among MFS-methods. Note also that adding
multiple distribution networks to a transmission network, does not influence the
total number of iterations.

6 Conclusion

We have reviewed and assessed two types of integration methods to solve the power
flow problem. We classified them as unified and splitting methods and applied them
on hybrid and homogeneous networks. This resulted in four different methods as
starting point of our numerical comparison study. We analyzed the numerical per-
formance, ie CPU-time and number of iterations to reach convergence.
From this assessment we can conclude that the unified methods are most favorable
in sense of CPU-time compared to splitting methods, in line with the expectations
we stated in section 4.3. The differences within the unified methods are less signif-
icant than we expected. We argued that the increase in size of the Jacobian would
have resulted in increase of CPU-time. Only in the bigger test-case T3120-D8500
that the difference becomes significant: The F3P-method is around 1.5 times as
slow as the Interconnected method.
Based on these results we would recommend to choose the unified methods applied
on hybrid networks, ie the interconnected methods, when this is possible. But in
geographically distinct locations, or when legislation prohibits system operators to
share complete network data, the splitting methods are a good alternative. The
speed of the CAI-schemes can be increased if we apply the idea of paragraph 4.2.3.

The next step is to continue with realistic test cases which can be up to mil-
lions of buses per network domain. In most countries, the physical transmission
network is much smaller than the distribution network and a country has in general
more than one distribution network. The differences between homogeneous and
hybrid methods then become less significant. To solve these very large systems in
reasonable amount of time, we have to adapt the methods, using Newton-Krylov
methods and preconditioning techniques [23], for a parallel or GPU environment.
Then, the MFS-hybrid method gets an advantage when multiple distribution net-
works are connected to one transmission network as it is a domain-decomposition
approach: multiple distribution networks can run on parallel cores. Doing new sim-
ulations using these speed-up techniques on realistically sized networks, should give
a better idea which method is most favorable to solve the integrated power flow
problem.
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