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solved using probabilistic, graph theoretic and algebraic methods.
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Trifferent codes

A ternary code C ⊆ {0, 1, 2}n is called a trifferent code or a perfect 3-hash
code, if for any three distinct codewords there is a coordinate where they
all differ.

0 0 0 0 ←
1 0 1 2
2 0 2 1
0 2 2 2 ←
1 1 2 0
2 1 0 2 ←
1 2 0 1
0 1 1 1
2 2 1 0

A trifferent code of size 9 and length 4.
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The trifference problem

What is the largest size T (n) of a trifferent code of length n?

n 1 2 3 4 5 6 7
T (n) 3 4 6 9 10 13 ?

Theorem (Körner 1973)

T (n) ≤ 2 (1.5)n

Theorem (Körner-Marton 1984)

T (n) ≥ (9/5)n/4 ≃ (1.158)n
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Linear trifferent codes

Identify {0, 1, 2} with the finite field F3
∼= Z/3Z.

What is the largest size TL(n) of a trifferent code C ⊆ Fn
3 which

is also a linear subspace?

For example, let C be

0 0 0 0
1 0 1 2
2 0 2 1
0 2 2 2
1 1 2 0
2 1 0 2
1 2 0 1
0 1 1 1
2 2 1 0

then, C = ⟨{(0, 1, 1, 1), (1, 0, 1, 2)}⟩.
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Motivation

TL(n) ≤ T (n).

Explicit constructions.

Probabilistic lower bounds.

Further motivations coming up soon . . .
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Previous bounds on linear trifferent codes

Theorem (Pohoata-Zakharov 2022)

Every linear trifferent code of length n has dimension at most n
4 , and thus

TL(n) ≤ (1.3160)n.

Theorem (Wang-Xing 2001)

There are (explicit) linear trifferent codes of length n and dimension n
112 ,

and thus
TL(n) ≥ (1.0098)n.



Previous bounds on linear trifferent codes

Theorem (Pohoata-Zakharov 2022)

Every linear trifferent code of length n has dimension at most n
4 , and thus

TL(n) ≤ (1.3160)n.

Theorem (Wang-Xing 2001)

There are (explicit) linear trifferent codes of length n and dimension n
112 ,

and thus
TL(n) ≥ (1.0098)n.



Previous bounds on linear trifferent codes

Theorem (Pohoata-Zakharov 2022)

Every linear trifferent code of length n has dimension at most n
4 , and thus

TL(n) ≤ (1.3160)n.

Theorem (Wang-Xing 2001)

There are (explicit) linear trifferent codes of length n and dimension n
112 ,

and thus
TL(n) ≥ (1.0098)n.



Our results
Bishnoi, D’Haeseleer, Gijswijt, Potukuchi, Blocking sets, minimal codes and trifferent

codes arXiv:2301.09457

Theorem

Every linear trifferent code of length n has dimension at most n
4.55 , and

thus
TL(n) ≤ (1.273)n.

Theorem

There are linear trifferent codes of length n and size at least 1
3(9/5)

n/4,
and thus

TL(n) ≥ (1.158)n.

Theorem

An explicit construction of linear trifferent codes of length n and
dimension n

13.5 .
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Finite affine spaces

The Affine plane F2
3

Points: F2
q

Lines: translates of 1-dimensional vector subspaces



Smallest affine blocking sets

bq(k, s) := min number of points in the k-dimensional finite affine space
that block every (k − s)-dimensional affine subspace.

Theorem (Jamison/Brouwer-Schrijver 1977)

bq(k , 1) = (q − 1)k + 1.

Corollary

bq(k, s) ≥ (qs − 1)(k − s + 1) + 1.

Theorem (Lovász 1975)

bq(k , s) ≤ qs

(
1 + ln

[
k

s

]
q

)
≈ (qs ln q)(s(k − s)).
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Projective blocking sets

The projective plane over F3
2.

How many 1-dimensional subspaces of Fk
q do we need to block every

hyperplane?

Answer: q + 1 subspaces spanning a plane.
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Strong blocking sets

How many 1-dimensional linear subspaces of Fk
q do we need to meet every

(k − 1)-dimensional linear subspace in a spanning set?

Let Si be the set of i-dimensional linear subspaces of Fk
q .

mq(k) := min{|B| : B ⊆ S1, ⟨B ∩ H⟩ = H,∀H ∈ Sk−1}.



Strong blocking sets

How many 1-dimensional linear subspaces of Fk
q do we need to meet every

(k − 1)-dimensional linear subspace in a spanning set?

Let Si be the set of i-dimensional linear subspaces of Fk
q .

mq(k) := min{|B| : B ⊆ S1, ⟨B ∩ H⟩ = H, ∀H ∈ Sk−1}.



Smallest strong blocking sets

Let mq(k) be the smallest size of a strong blocking set in Fk
q .

Motivation: minimal error-correcting codes, digital fingerprinting,
code-based cryptography, circuits in matroids, . . . .

Theorem (Alfarano, Borello, Neri, and Ravagnani 2022)

mq(k) ≥ (q + 1)(k − 1).

Theorem (Héger and Nagy 2021)

mq(k) ≤ 2(q + 1)(k − 1).



Smallest strong blocking sets

Let mq(k) be the smallest size of a strong blocking set in Fk
q .

Motivation: minimal error-correcting codes, digital fingerprinting,
code-based cryptography, circuits in matroids, . . . .

Theorem (Alfarano, Borello, Neri, and Ravagnani 2022)

mq(k) ≥ (q + 1)(k − 1).
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Various new equivalences

L is a strong blocking set in

Fk
q

Minimal linear code of di-

mension k in F|L|
q

Linear trifferent code of

dimension k in F(|B|−1)/2
3

for q = 3

B =
⋃

ℓ∈L ℓ is an affine 2-

blocking set in Fk
q

for q = 3

Equivalences between blocking sets and codes.

New bounds and constructions for all of these objects!
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Lower bounds on strong blocking sets

Theorem (B., D’Haeseleer, Gijswijt, Potukuchi 2023)

For any prime power q, there is a constant cq > 1 such that

mq(k) ≥ (cq − o(1))(q + 1)(k − 1).

The constant cq is the unique solution x ≥ 1 to the equation

Mq

(
q − 1

x(q + 1)

)
=

1

x(q + 1)
,

where Mq is the function appearing in the LP bound on asymptotic rate of
a code.

Corollary

TL(n) ≤
n

4c3
+ 1 ≤ n

4.55
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Upper bounds on blocking sets

Theorem (B., D’Haeseleer, Gijswijt, Potukuchi 2023)

bq(k, s) ≤ (qs − 1) · s(k − s) + s + 2

logq(
q4

q3−q+1
)

+ 1.

Proof.

Pick random s-dimensional subspaces through the origin.

Corollary

mq(k) ≤ (q + 1)
2k

logq(
q4

q3−q+1
)
.

Corollary

T (n) ≥ TL(n) ≥
1

3

(
9

5

)n/4
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Explicit Constructions

Big open problem: construct small strong blocking sets explicitly.

Theorem (Alon, B. , Das and Neri, 2023+)

An explicit construction of a strong blocking set in Fk
q of size

c(q + 1)(k − 1).

Corollary

An explicit construction of affine-2 blocking sets in Fk
q of size

c(q2 − 1)(k − 1) + 1.

Corollary

An explicit construction of trifferent codes of size 3
n
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Integrity of a graph

Definition

For a graph G, let ι(G ) = min{|S |+ κ(G − S)}, where κ(G − S) is the
largest size of a connected component in G − S.

Examples: ι(Kn) = n, ι(Cn) = 2⌈
√
n⌉ − 1 and ι(Qn) =?.

Theorem (Alon, B., Das, Neri, 2023+)

For any (n, d , λ)-graph G,

ι(G ) ≥ d − λ

d + λ
n.
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The construction

Let V be a collection of n 1-dim vector subspaces of Fk
q that meets every

hyperplane in at most n − d points.

Let G = (V ,E ) be a graph with ι(G ) ≥ n − d + 1.

For each edge e = uv , let Pe be the collection of 1-dim subspaces
contained in the span of u and v . Then the set

S = ∪e∈EPe ,

is a strong blocking set of size n + (q − 1)|E |.

By using explicit [n, k , d ]q codes with k , d linear in n (algebraic-geometric
codes), and constant-degree expanders Ramanujan graphs, we get our
explicit construction.
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Future work

1 Improve the upper bound on mq(k), and in particular for q = 3.

2 Improve the lower bound bq(k , s) ≥ (qs − 1)(k − s + 1)+ 1 for s > 1.

3 Further explore the graph theoretic construction, and apply it to other
problems in finite geometry/coding theory.

Thank you!
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