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EINDHOVEN UNIVERSITY OF TECHNOLOGY (TU/e)

Abstract

Mathematics and Computer Science

Cardiovascular blood flow

Comparing measurement and simulation

N.H.L.C. (Niels) de Hoon

In the cardiovascular field, Magnetic Resonance Imaging (MRI) is increasingly used in

healthcare, to obtain non-invasive anatomical patient-specific images. In addition to

anatomical images, MRI can be used to evaluate the blood flow within the cardiovascu-

lar system. Time-resolved 3D phase-contrast (PC) MRI provides a technique to measure

blood flow in three directions at multiple time steps during the cardiac cycle. The ac-

quired PC-MRI blood-flow data is expected to be able to diagnose several cardiovascular

diseases (CVDs), and is therefore of great relevance to physicians. With typically twenty

measurements per cardiac cycle the data is relatively coarse in the temporal domain.

Due to this coarse temporal domain, linear temporal interpolation is currently used to

obtain a velocity field between two measurements. In this study, a novel method is

proposed, PC-MRI-measurement integrated (PCMI) simulation. PCMI combines PC-

MRI measurements with a fluid simulation from the computer-graphics field, namely the

fluid implicit particle (FLIP) method. Our measurement-coupling method was compared

to existing techniques using synthetic data, and it was shown that our method was more

similar to the measured velocity field, within the physical constraints. Furthermore,

noise robustness was shown for noise typical for PC-MRI. A significant difference between

linear temporal interpolation and the fluid simulation was demonstrated, however, our

technique is likely beneficial due to its use of fluid mechanics. Furthermore, a visual

analysis with PC-MRI data was done. This showed that typical blood-flow patterns, in

a healthy volunteer and a patient suffering from an aortic dissection, was maintained.

To the best of our knowledge, we are the first to combine full field velocity measurements

with fluid simulation instead of defining only the in- and outflow conditions for the sim-

ulation. Therefore, we think it is plausible, that our method is more in correspondence

with patient’s blood flow than conventional measurements coupling techniques, as PCMI

is physically underpinned.
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) cause 47% of all deaths in Europe and 40% in the

European Union. It takes the first place on the list of the main causes of death in women

in all countries of Europe, and is the number one cause of death in men in all but six

countries [1]. Many studies indicate that abnormal blood flow can cause cardiovascular

anomalies. Moreover, abnormalities in the vessel structure can cause aberrant blood flow.

Examples include atherosclerosis [2], valve-related diseases [3] and aortic dissections [4].

Furthermore, age dependent blood-flow differences can be measured with techniques

such as phase-contrast magnetic resonance imaging (PC-MRI) [5]. This study focuses

on aortic blood flow.

In order to understand, prevent, or cure CVDs, a thorough understanding of the car-

diovascular system and its blood flow is required. Research and cardiac investigations

in clinical practice utilizes various types of non-invasive measurement techniques, such

as Doppler ultrasonography, computed tomography angiography (CTA), magnetic res-

onance angiography (MRA), phase-contrast X-Ray imaging (PCI) and phase-contrast

magnetic resonance imaging (PC-MRI). Moreover, computer simulations are used to

model patient-specific blood flow under all kinds of circumstances. Both measurements

and simulations have contributed to a better understanding of cardiovascular blood

flow, as well as cardiovascular anomalies. Although, some hospitals opt for Doppler

ultrasonography as the first choice of investigation when, for example, aortic dissection

is suspected, MRI is increasingly used [6]. Doppler ultrasonography costs less, however,

MRI is less noisy. Figure 1.1 shows a healthy anatomical structure of the thorax seen

1



Chapter 1. Introduction 2

from the left hand side. In Figure 1.2 the anatomical location of a healthy aorta is

depicted from posterior direction.

Figure 1.1: The anatomical structure of the thorax, seen from the left hand side. The heart is
clearly visible, as well as the aorta coming from the upper side of the heart moving towards the
the back and then downwards. Image taken from Sobotta edited by R. Putz and R. Pabst [7].

Within the heart, blood flow is generated by alternating blood pressures. These alternat-

ing blood pressures are formed due to varying degrees of contraction of the heart. One

heartbeat, or one cardiac cycle as depicted in Figure 1.3, consists of the systolic phase,

followed by the diastolic phase. During the systolic phase, as a result of the contracting

ventricles, the heart will pump blood into the aorta. Approximately halfway the sys-

tolic phase we find the peak systemic arterial blood pressure, which is produced by the

transmission of the pressure generated by the contracting ventricles. Subsequently, the

systolic pressure will decrease, which gives rise to the diastolic phase, in which the heart

will fill itself with blood again. For the specific moment during the heartbeat, where

we speak of peak systemic arterial blood pressure, the term peak systole is commonly

used. To maintain diastolic blood pressure, and therefore optimal functioning of the
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Figure 1.2: The anatomical location of the aorta in the thorax, depicted from posterior
direction. Image taken from Sobotta edited by R. Putz and R. Pabst [7].

heart, vascular tone and the presence of intact valves are crucial [8]. By vascular tone is

meant the degree of constriction experienced by a blood vessel relative to its maximally

dilated state. When abnormalities in blood flow are detected by using techniques such as

Doppler ultrasonography or PC-MRI, the chance of finding CVDs increases significantly.

These measurement techniques all have a limited spatial-temporal resolution. To ensure

that the temporal interpolation between time points of the measurement is based on the

physics of fluid mechanics, this project focuses on combining PC-MRI measurements

with simulation techniques from the computer graphics field. The main advantage of

simulation techniques in computer graphics is that they are generally real-time, and

therefore can be incorporated interactively. This makes it possible to change the settings

of the simulation during runtime. Furthermore, it saves processing time. This in contrast

to the current more complex blood-flow simulations.

Most of these blood-flow simulations are initialized with a patient-specific mesh of the

vessel wall obtained from measurements. Furthermore, the in- and outflow conditions of
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Figure 1.3: The blood flow in a normal heart. Oxygen-poor blood (blue) from the inferior
and superior vena cava streams into right atrium during the diastolic phase, to subsequently
stream into the right ventricle. The blood flow will then continue to stream into the truncus
pulmonalis, or pulmonary artery, for the blood to be oxygenated in the lungs. Oxygen-rich
blood (red) will then flow, via the pulmonary veins, into the left atrium and then the left
ventricle, to be pumped into the aorta during the systolic phase. Image taken from P. Kumar
and M. Clark [6].

the mesh are determined using measurements, however, these only specify the in- and

outflow. This means no specification of the flow is given for the rest of the simulation.

Moreover, these methods take a lot of computations, and thus are slow compared to the

simulations used in computer graphics.

In this thesis, a novel technique is proposed to combine PC-MRI measurements with

a simulation. This technique, called the the PC-MRI-measurement-integrated method

(PCMI), is applied on our fluid simulation technique from the computer graphics field.

To the best of our knowledge, this has not been done before. We can improve the tem-

poral interpolation within physical constraints. Also, we see opportunities for prognosis

and interactive treatment assessment in the future.

This thesis is structured as follows: first the data acquisition is explained in Chapter 2,

then the related work in the field will be discussed in Chapter 3. Subsequently, in Chap-

ter 4, a comparison study on the different fluid simulation techniques in computer graph-

ics is conducted. In this chapter a suitable simulation technique is selected. Chapter 5

describes the selected fluid simulation in detail. In Chapter 6, four different measurement
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coupling techniques are explained; no method, velocity field replacement, the linear feed-

back control (LFC) method by Kim [9] and our novel PC-MRI-measurement-integrated

(PCMI) method based on the ultrasound-measurement-integrated (UMI) method by Fu-

namoto [10]. In Chapter 7, the implementation details and used tools are described. The

techniques, described in Chapter 6, are evaluated and the best performing technique is

selected in Chapter 8. In this chapter also robustness is tested and a comparison with

conventional linear interpolation is done. Chapter 9 shows the results, presenting the

performance of the simulation and the selected coupling method on both volunteer and

patient data. The conclusion is given in Chapter 10. Lastly, future work is discussed in

Chapter 11.



Chapter 2

Data acquisition

2.1 Doppler Ultrasonography

The most common method to measure blood-flow velocity data is by using Doppler

ultrasonography. The main reason for Doppler ultrasonography to be so commonly

used, despite the relatively high amount of noise, is that it has a high spatial-temporal

resolution. Moreover, Doppler ultrasonography is relatively inexpensive. In Doppler

ultrasonography, ultrasound is used to measure the Doppler velocity of the blood flow.

Ultrasonography measures the reflected frequencies of the ultrasound signal. However,

moving particles, in this case blood cells, cause a shift in frequency when moving in

the direction of the ultrasound beam. Doppler ultrasonography measures this frequency

shift. Due to the restriction of the beam direction it is rather difficult to recognize the

exact three-dimensional velocity field of the blood flow. Therefore, a complete velocity

field is not directly available. This also causes a limited field of view. Moreover, nearby

vessels can produce a so-called shadow in the measurements hiding other vessels.

Currently, several diseases can be diagnosed using echocardiography, which is a form of

ultrasonagraphy particularly concerning the heart. Inspected diseases include valvular

stenosis, valvular regurgitation, aortic aneurysms and aortic dissections. For example,

in case of mitral stenosis, peak, mean and end-diastolic pressure gradients can be ob-

tained using continuous-wave (CW) Doppler, a form of echocardiography that collects

all the velocity data and analyzes it. Also, dilatation of the aorta, as seen in aneurysms

6
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and dissections, and which is strongly suggestive for the diagnosis, can be measured

accurately with the aid of echocardiography [6].

2.2 Phase-Contrast Magnetic Resonance Imaging

The data used in this project is obtained by Phase-Contrast Magnetic Resonance Imag-

ing (PC-MRI). This is a technique where Magnetic Resonance Imaging (MRI) is used

to measure blood-flow velocities in arteries. It provides 3D images of the blood flow

over time, and therefore this data is often referred to as 4D blood-flow data. However,

clinically, 2D images of the blood flow over time are used. Visual inspection of healthy

individuals and patients with anomalies yields better understanding of hemodynamics

in general, and potentially leads to better diagnosis and treatment.

MRI uses the fact that nuclei of atoms have a physical property called spin. This spin

has a direction that can be influenced by magnetic fields as produced by MRI scanners.

This magnetic field aligns the spin of the hydrogen nuclei in the magnetic field direction.

By superimposing small spatially varying magnetic fields, called gradient fields, it is

possible to make the spin rotate around a specified axis at specified locations. This

rotation can be measured, and the amount of measurements in a region corresponds to

the density of hydrogen nuclei of the region. Also, each kind of tissue has a certain

amount of hydrogen nuclei, and each type of tissue thus has its own specific density.

Therefore, a measurement yields a slice of the density of the measured tissue [11]. This

process can be repeated to get multiple slices, and also a three dimensional image of

the anatomical structure. However, MRI is sensitive to flow as well as movement, when

flow or movement is measured a shift in spin occurs, and thus a low or no density is

measured at that point.

PC-MRI applies a constant magnetic field to align all spins, as depicted by Figure 2.1a.

Then a linear gradient field is applied, so spins get a location-specific direction, while

moving nuclei get a spin that varies, as depicted by Figure 2.1b. Finally the negative

linear gradient is applied to ensure all atoms, which do not have any velocity owing to the

flow, have a spin equal to the situation beforehand, while moving atoms have a spin that

is linearly depending on their velocity, as depicted by Figure 2.1c. By measuring this

spin the component in the direction of the linear gradient of velocity can be derived. By
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a) Constant magnetic field

b) Linear positive gradient magnetic field

c) Linear negative gradient magnetic field

Figure 2.1: Different phases (a, b, c) of a PC-MRI measurement with different magnetic
fields. Figure based on Van Pelt [11] and J. Lotz et al.[12].

using the magnetic field with a linear gradient in all three dimensions, a three-directional

velocity field can be made. Typically a measurement of cardiac blood-flow has a spatial

resolution of 2.0 × 2.0 × 2.5mm, for 128 × 128 × 50 voxels. The temporal resolution is

typically 50ms, yielding 20 to 25 measurements throughout the cardiac cycle [11]. In

Figure 2.2 a three-dimensional PC-MRI measurement of the aorta is depicted. It shows

the magnitude of the measured velocities. Figure 2.3 depicts the velocity in the three

measured directions, X, Y and Z.

Using PC-MRI it is possible to diagnose CVDs due to an altered or aberrant flow,

including dissections [4], atherosclerosis [2], stenosis [13] and valve-related diseases [3].
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Figure 2.2: 3D time-resolved blood-flow measurements using PC-MRI. Here the velocity is
shown by means of the magnitude. Black represents a low velocity and white is used for high
velocities.
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Figure 2.3: The velocity in the X, Y and Z directions as measured is shown. Blue represents
the negative velocity and red is used for the positive velocity relative to the normal plane of the
direction. Gray represents zero velocity. The orientation is shown by the arrows.



Chapter 3

Related work

4D PC-MRI of blood flow, as described in Chapter 2, helps doctors to identify anoma-

lies and get a better understanding of blood flow inside intracranial vessels [14] and

the cardiac system [15, 16]. To overcome the coarse temporal resolution of PC-MRI,

temporal interpolation is often used. Various interpolation techniques are used, such as

temporal interpolation for particle path tracing with Runge-Kutta 4 [11]. Schwenke et

al. [17] present a technique propagates the velocity field from the measurements over

time using the so-called Fast Sweeping technique, however, this method is not based on

fluid mechanics. This project tries to improve the temporal interpolation by using a

simulation technique from the computer graphics field. This technique should be driven

by the given PC-MRI measurements, while maintaining a physically-correct model of the

blood flow. That is, the fluid should be incompressible, and based on the fluid mechan-

ics, i.e. the so-called Navier-Stokes equations. For this project, a fluid simulation from

the computer-graphics field is selected, since such simulations are fast and physically

correct. However, they often are less accurate compared to contemporary blood-flow

simulations. However, this inaccuracy of fluid simulations from the computer-graphics

field is depending on the amount of calculations allowed per time step. This chapter will

discuss the related work of respectively control methods for fluid simulations in com-

puter graphics, subsequently, we look at blood-flow simulations and control methods for

blood-flow simulations.

11
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3.1 Fluid simulation control

For this project, controllability of the fluid simulation is required to ensure that the

blood-flow simulation incorporates the given measurements. Simulations in computer

graphics often require controllability to allow animators to produce various effects, such

as maelstroms and characters made of fluid. To be of use for animators, the simulations

should be interactive, easy to use and controllable, also the fluid should look realistic.

In this section, different methods of controllability are discussed. Foster and Metaxas

[18] were one of the first to enable control of the animated fluid for animators that do

not have a full understanding of the underlying physics, while maintaining a relatively

low number of computations. They provide different control mechanisms to allow the

animator to set an external and internal pressure field, a velocity field and (moving)

boundary conditions. These controls directly influence the properties of the modeled

fluid. However, the control for the animator is limited, and details of the flow are hard

to model. Therefore, different methods were developed that allow more control and more

detailed effects. Such a method is given by Hong et al. [19]. They define a potential

field, which can be regarded as an extra dimension acting as a sort of height map. That

is, the fluid flows down, to regions with a lower potential. This allows specific control of

the shape of the fluid, while the incompressibility is maintained. The potential is applied

in the fluid simulation by taking the negative gradient, resulting in a force that directs

the fluid to flow to the regions with low potential. With this method it is relatively

complex to make, for example, the fluid follow a certain path defined by the animator.

The method by Kim [9] makes it possible to let the fluid follow a defined line or shape.

To do so, a linear control force is applied that directs the fluid towards the line. This

force is derived from a given target velocity field, and the velocity of the simulation.

This allows the simulation to match with the target velocity field after a number of

iterations, while maintaining the incompressibility of the fluid. For this method, the

animator only has to draw the line or shape to be followed over time and is thus easy

to use. However none of these control method allow the use of a target velocity field

provided in our case by the PC-MRI measurements, which are only available at certain

times during the simulation.
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3.2 Blood-flow simulation

Blood-flow simulations are generally performed using computational fluid dynamics

(CFD) methods, because of their scalability and their high temporal and spatial res-

olutions, compared to measurements. Another advantage is that minimal patient in-

volvement is required; this is in contrast to flow measurements such as PC-MRI, which

require a large scan time and the patient has to be motionless during these scans. An-

other advantage of CFD over measurements is that one can use models of any anomaly

and experiment with treatments, without the need of multiple of patients. Furthermore

complex operations can be planned using the simulations.

While CFD methods only provide a model of the actual blood flow, this model is accurate

as shown in the papers by Kong et al. [20], Theresia et al. [21] and Ooij [22]. In these

papers, PC-MRI measurements of flow in phantoms and patients are compared with a

CFD simulation, yielding comparable results.

Ivankovic et al. [23] developed a method that aims for an early diagnosis of atheroscle-

rosis. For this they use a technique called the finite volume method, which divides

the simulated space in small discrete control volumes, and solves the partial derivative

equalities of fluid mechanics for these volumes using restrictions on the boundaries of

the volumes. A similar technique, the finite element method (FEM), discretizes the

simulated space into so-called elements e.g. triangles in 2D and tetrahedra in 3D. FEM

then connects the many relatively simple local element equations over many small do-

mains within the simulation, named finite elements, to approximate the more complex

equation of the full domain. By using this kind of discretization it is possible to set the

level of detail by using smaller volumes or elements. FEM is used successfully to model

blood flow in the brain [24, 25], the aorta and hearth [26, 27].

A different technique is used by Figueroa et al. [28]. Their techique Coupled Momentum

Method for Fluid-Solid Interaction (CMM-FSI) models the elasticity of the vessel walls.

It models the elasticity of the tissue of the vessel wall by using the physical laws for

elasticity. This method can also be used to model large scale blood flow of all major

arteries as well as detailed blood flow within single arteries, as shown by Xiao et al. [29].
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3.3 Measurement-integrated blood-flow simulations

This study tries to combine simulation techniques from the computer graphics fields with

PC-MRI measurements. This should result in a physics based temporal interpolation

between measurements. Furthermore, the fluid simulation is based on the physical laws

of fluid mechanics, and therefore, yields a temporal interpolation that is based on the

fluid mechanics laws.

The combination of blood-flow measurements and simulations exists in the Doppler ul-

trasonography by means of ultrasound-measurement-integrated (UMI) simulation. This

method, first described by Funamoto et al. [10], uses the difference in the projected

measured velocity and the velocity field of the simulation, Section 6.1. From this dif-

ference, feedback signals are generated. These signals define a local force, which is used

to direct the simulation towards the measurements. However, in contrast to PC-MRI,

ultrasound provides a high spatial and temporal resolution. Therefore, this technique

cannot be applied on PC-MRI measurements directly.

To the best of our knowledge no temporal interpolation method exists for PC-MRI

measurements based on the fluid mechanic laws. Therefore, this study proposes a novel

coupling method for a computer-graphics simulations with PC-MRI measurements. This

method is based on the UMI method described in this section.



Chapter 4

Comparison study of

fluid-simulation techniques in

computer graphics

Several fluid simulation techniques exist in computer graphics. This chapter provides a

brief comparison between these techniques. From the discussed techniques one is chosen

to be used as basis for our approach. The technique should model physically-correct

blood flow, that is, within the made assumptions. The fluid simulation should model

blood as incompressible, without viscosity and with low computational costs. By using

the Navier-Stokes equations, which describe the behavior of fluid in physics, this is

approximated. When modeling small arteries the compressibility of blood is important

[23], however, blood-flow in larger structures is usually modeled using incompressible

fluid [28]. The viscosity can be dropped since blood is not highly viscous nor do we

model small scale fluid behavior [30]. In this chapter, first the physics behind fluid

mechanics are explained. Then, different approaches for fluid simulations in computer

graphics applying these physics are explained and compared.

Every physically-based fluid simulation is based on the Navier-Stokes equations, the

physical equations that describe fluid behavior. These equations consist of a momentum

equation given by Equation 4.1, and an incompressibility condition given by Equation

4.2. The latter is optional, depending on whether the modeled fluid is incompressible or

15
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not.

∂~u

∂t
+ ~u · ∇~u+

1

ρ
· ∇p = ~g + ν∇2~u, (4.1)

∇ · ~u = 0. (4.2)

In these equations the velocity field ~u(~x, t) of the fluid in three dimensions is defined by

three components of velocity, namely (u, v, w). A position in the field ~x is given by the

three directions (x, y, z). Time is denoted by t. The density of the fluid is given by ρ,

which may vary within the fluid. The pressure p denotes the force per unit area that the

fluid exerts. To take body forces, e.g. gravity, into account, the force ~g is used, exerting

a uniform force on the fluid as a whole. The kinematic viscosity is denoted by ν and is

given by the dynamic viscosity η of the fluid divided by pressure. Note that Equation

4.1 does not directly relate to fluid mechanics. Rewriting Equation 4.1 and filling in the

formula for kinematic viscosity makes it possible to assign fluid mechanical properties

to different terms as shown in Equation 4.3.

inertia︷ ︸︸ ︷
ρ

 ∂~u

∂t︸︷︷︸
acceleration

+ ~u · ∇~u︸ ︷︷ ︸
convective acceleration

 = −∇p︸ ︷︷ ︸
pressure force

+ η∇2~u︸ ︷︷ ︸
viscosity

+

body forces︷︸︸︷
~g ·ρ

(4.3)

Here advection is the process of transport of a quantity through a fluid, such as velocity,

heat, density, etc. The properties at a point A are transported over time to point B.

Another type of transport, namely diffusion, also carries the property of a point directly

to all neighboring points. The viscosity of a fluid describes the resistance to deformation.

A highly-viscous fluid, such as honey or lava, tries to maintain its shape more than for

example water. The divergence of a velocity field (so also of a fluid) measures the

magnitude of sources and sinks at a given point. A divergence-free liquid therefore does

not contain such sources, nor sinks, and thus can be said to be incompressible. By using

the Helmholtz-Hodge decomposition, any velocity field can be made divergence-free by

subtracting the pressure gradient from the velocity field [30]. This means the pressure

should be calculated from the velocity field. Another important property of fluid is

vorticity. Vorticity is the rotational movement around an axis inside a fluid. Every axis

with such a rotation is called a vortex.
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In fluid simulation for computer graphics, two distinct approaches are used to model

fluid, namely the Eulerian, grid-based, approach and the Lagrangian, particle-based,

approach. Each method tries to mimic the continuity of fluids by solving the fluid

equations on a finite number of fixed “measurement” points, spread out in the space

continuum in which the fluid exists. This discretizes the computations such that only

a finite number of calculations have to be done. The main difference between these

methods is given by these measurement points, for the Eulerian approach these are

positioned on a fixed grid, and thus have a static location, whereas for the Lagrangian

approach, the measurement points evolve along with the fluid. Both methods fill up

the continuum by using interpolation between the measuring points. The following

properties are in most cases important, with respect to fluid simulation in computer

graphics:

• Physically correct

• Low computational cost

• Boundary conditions

• Incompressibility

Physical correctness means that the Navier-Stokes equations should be approximated

as close as possible, this includes advection and vorticity; furthermore, the fluid should

look realistic. Low computational cost is required to make the simulation run fast and

thus more interactive; this requirement, however, hampers the physical correctness by

allowing less detail. It is therefore important to make a trade off between physical

correctness and required time per frame. The boundary conditions of the fluid should

be obeyed in a natural manner, such that the boundaries of solids are taken into account

in a realistic manner. Divergence-freeness is required for (almost) incompressible fluids,

such as water and oil.

4.1 Eulerian approaches

Stam [31] proposed one of the first stable fluid simulation based on the Navier-Stokes

equations. The paper introduced a semi-Lagrangian approach for the advection: the
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value of a quantity at a grid point is derived by backtracking through the velocity

field from the current grid point pg to find a point pi. The value of this point pi is then

interpolated to retrieve the value at point pg, which is stored in a new grid. This method

is semi-Lagrangian because the backtracking can be regarded as if a virtual particle’s

previous location was traced. However, no real particles are used in the system. By

using this approach, the Eulerian approach is unconditionally-stable with regard to

advection. Unfortunately, this method yields numerical dissipation over time, due to

rounding errors in the interpolation.

Diffusion is relatively easy as we can spread out the value stored at a grid cell to the

neighboring grid points. For viscosity an additional term of the Navier-Stokes equation

must be solved to model the resistance of the fluid to shape changes.

An advantage of this method is that boundary conditions, such as walls, can be modeled

easily by defining some cells to be solid, and alter the fluid at the boundaries of this solid

cell. This is done mainly by setting the velocity in the direction of the normal of the

solid to the velocity of the solid in that direction, thus zero if the solid does not move,

as done by Bridson [30]. This way, one enforces that no fluid leaks inside the solid. To

allow more curved, non-grid aligned boundaries, additional tricks are needed as applied

by Chentanez et al. [32], also enabling deformable bodies. Zhu and Bridson [33] and

Batty et al. [34] define the solids on a grid using a “Signed Distance Function’ (SDF),

which results in some inaccuracy of the actual location of the boundary, but enables

relatively simple coupling between solids and fluids.

The strength of the Eulerian approach mainly lies in the fact that it can enforce incom-

pressibility, since the velocity field is stored on a grid, as well as the pressure. By using,

for example, the preconditioned conjugate gradient (PCG) algorithm (preconditioned

by a Poisson matrix), the pressure of the velocity field can be computed. This pressure

then can be used to make the velocity field divergence-free; for a detailed overview of

the PCG algorithm see the book by Bridson [30] and Appendix A.

A main drawback of the Eulerian approach is the lack of details such as vorticity, which

can be added using a technique called vorticity confinement. Vorticity confinement,

introduced by Fedkiw et al. [35], adds small scale detail to the flow. This additional

vorticity is not based on any physical equivalence, but is needed to enforce that vortices

in the fluid do not damp out too fast, which is caused by undesired smoothing due to the
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interpolations done on the grid. Another disadvantage is that the computations need to

solve one time step are related to the size of the grid instead of the amount of fluid.

4.2 Lagrangian approaches

For almost every Lagrangian approach it is hard to make the fluid incompressible. This

is mainly due the lack of structure between the measurement points. No advanced

mathematical algorithms, such as available for grids, can be applied (directly) as these

require a matrix with information and thus a grid. However two methods have been

developed that attempt to overcome this problem. Smoothed Particle Hydrodynamics

(SPH) uses particles that represent the fluid, while the vortex method uses particles that

represent vorticity, so-called vortons, to model the velocity field of the fluid.

SPH– Smoothed Particle Hydrodynamics (SPH), introduced in the field of astronomy

by Gingold and Monaghan [36], is a technique that uses Equation 4.4 for interpolating

a scalar quantity A at a position ~x:

A(~x) =
∑
j

mj
Aj
ρj
W (~x− ~xj , h), (4.4)

where j iterates over all particles, mj is the mass, ~xj is the location, ρj the density and

Aj the quantity of A of the particle j, and W is a smoothing kernel with core radius h.

Computing the gradient (∇) or the Laplacian (∇2) of A, is relatively simple.

∇A(~x) =
∑
j

mj
Aj
ρj
∇2W (~x− ~xj , h), (4.5)

∇2A(~x) =
∑
j

mj
Aj
ρj
∇2W (~x− ~xj , h), (4.6)

This also makes the calculations of the pressure easy, which can be used to make the

fluid incompressible, since the pressure is a scalar value. The technique was first used

by Müller et al. [37] for fluid simulations, in a computer-graphics setting.

In SPH the velocity of a particle has a certain range of influence; typically this range is

determined using a kernel function W as described above, which takes the distance to

the particle as input. Its value decreases with increasing distance. This means a particle

only influences nearby particles, which increases the performance, if particles are stored
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such that the neighboring particles are known to a particle, as introduced by Harada et

al. [38] for Graphics Processing Units (GPUs).

Due to the fact that particles store their own velocity, the advection step becomes

implicit. Every time step they simply move using their stored velocity. Viscosity is

modeled in a natural fashion by reducing the neighboring particles’ velocity, depending

on viscosity, and thus making the fluid resist deformation. However, it is very hard to

make SPH incompressible, as stated by Hong et al. [39].

The main advantages are its high performance due to the fact that only particles are

needed where fluid exists, and the relative simple per particle computation. As in the

paper by Harada et al. [38], boundary conditions are taken into account by placing

particles on the boundary of solids, and take these particles with infinity mass into

account when solving the equations. This, however, increases the computation time due

to the many additional particles.

Vortex particle method– The vortex particle method, introduced by Rosenhead [40],

models the Navier-Stokes formulas by means of vorticity. Like SPH, the vortex particle

method uses particles to represent parcels of fluid. SPH, however, directly solves the

momentum equation, whereas the vortex particle methods solve the vorticity equation.

This equation rewrites the Navier-Stokes equations 4.3 by amending the velocity with

the vorticity ~ω defined as ~ω = ∇×~u. This results in Equation 4.7, where ~τ is an external

torque, which can be added to model external forces. This torque is defined as ~τ = ~r× ~F ,

where ~r is the vector from which the torque is measured to the point where to force ~F

is applied. The buoyancy is used to ensure incompressibility, as it contains the pressure.

Buoyancy is defined as the force exerted by a displaced volume inside the fluid, and thus

it depends only on the density and pressure.

δ~ω

δt︸︷︷︸
Change in vorticity

= ~ω · ∇~u︸ ︷︷ ︸
stretching/tilting

+ ν∇2~ω︸ ︷︷ ︸
viscous diffusion

+
∇ρ×∇p

ρ2︸ ︷︷ ︸
buoyancy

+ ~τ︸︷︷︸
torque

(4.7)

The vortex method uses vorticity of vortons, i.e. particles that represent a vortex in the

fluid. For advection and viscosity, a technique as in SPH is used. This kernel function

states the effect of a vorton on neighboring vortons. This is done by translating the

vorticity of a vorton to a local velocity field.
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Due to the use of particles, incompressibility is hard to model according to the same

argument as why SPH is hard to make incompressible. Furthermore, advection is not

trivial since the velocity field is only stored implicitly in the vortons, and thus more

computations are needed for the advection compared to SPH. Like in SPH, the bound-

aries are normally modeled by using fixed vortons on the boundary as done by Park et

al. [41]. By modeling the fluid using vortons, the simulation exhibits more small-scale

rotational features, due to the vorticity common in explosions and smoke, as shown by

Selle et al. [42].

4.3 Hybrid approaches

Since every of these techniques has its own advantages, hybrid approaches between Eu-

lerian and Lagrangian methods exist. For making Lagrangian methods incompressible,

often grids are used to solve the incompressibility term, while maintaining the high de-

tails of the particles. This combination of a Lagrangian approach with an additional

grid for incompressibility, is done for SPH by Hong [39], Losasso [43] and for the vortex

method by Selle [42]. This, however, has the disadvantage that two techniques should

be solved every time step.

Other hybrid approaches are the Particle-In-Cell (PIC) method, introduced by Harlow

in 1963 [44], and FLuid Implicit Particle (FLIP) method, introduced by Brackbill et al.

in 1965 [45]. These methods use both particles and grids. However the particles are

used in the advection step to have small scale features, but the velocity of the particles

is projected on a grid, which is then used to ensure incompressibility. The differences

between PIC and FLIP is in the translation from the divergence-free grid velocity to

the particles. In the PIC method the velocity of the particles is substituted, while in

the FLIP method only the difference in velocity is added to the particles velocity. This

allows FLIP to have nearly no numerical dissipation, and thus no vorticity confinement

is needed. FLIP is nowadays used by many fluid simulations, for examples see Zhu et

al. [33] and Batty et al. [34].
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Table 4.1: Performance of different fluid simulation techniques from the computer graphics
field with respect to the requirements. Here a “-” means the technique does not perform well for
the given property. An “o” means the technique can handle the property up to a certain level.

The “+” means the technique performs good on the specified property

Properties Eulerian SPH Vortex particle method

Computation time - + +
Advection - + o
Diffusion + + +
Boundary conditions o + +
Enforce incompressibility + - -
Vorticity - o +

4.4 Comparison

Table 4.1 shows an overview of the properties of the different fluid simulation techniques

described in Sections 4.1 and 4.2. The score is based on the known weaknesses, as

described and referenced in these sections. Note that hybrid methods are not taken into

account. Overall the Lagrangian methods, SPH and the vortex particle method provide

higher detail, compared to the Eulerian approaches, by means of vorticity and advection,

and exact boundary conditions, while having a lower computation time. Furthermore,

Lagrangian approaches allow a per-particle implementation, which reduces the overall

complexity. Also scaling is straightforward by adding additional particles. The main

disadvantage of these methods is the fact that it is hard to make these simulations

incompressible.

The Eulerian approaches can guarantee incompressibility. However, the methods are

hard to scale, e.g., many grid cells might be empty and thus not contain any fluid,

however, they are still taken into account by the computations. Also modeling the

boundaries is not very precise and requires a high density grid when highly detailed

boundaries should be taken into account. Furthermore, due to numerical dissipation,

many small scale features will smoothen away.

For our application the fluid must be incompressible, and hence a grid-based solution is

required. However, the small scale features might also be of interest for physicians, which

are given by the use of particles. Therefore, hybrid techniques come to mind. Using

both a grid and particles solves the incompressibility issues, while maintaining the high

amount of details. However, implementing a hybrid that is Lagrangian based, requires

a full implementation of this Lagrangian method. Moreover, also an implementation of



Chapter 4. Comparison study 23

an Eulerian approach is required to get the incompressibility. This incompressibility of

the Eulerian method is the most computation-intense step of all Eulerian methods. By

using such hybrids, the computations of both the Eulerian and the Lagrangian method

are summed up.

The hybrid methods remaining are PIC and FLIP. Both these methods also use an Eule-

rian grid for the incompressibility. However, the implemented particles are much simpler

than the particles used by the other Lagrangian methods. These particles therefore use

less computations compared to the Lagrangian methods. Due to this, the advantages

of both Eulerian methods and Lagrangian methods are exploited without a big increase

in terms of computations. To ensure that the numerical dissipation is minimal, FLIP is

preferred over PIC. By above reasoning FLIP is selected as the best suiting fluid sim-

ulation technique for this project. Therefore, a more detailed explanation of FLIP will

be provided in Chapter 5.



Chapter 5

Blood-flow visualization based on

the FLIP method

Due to the outcome of the comparison study in Chapter 4, here we explain the fluid

implicit particle (FLIP) method, used on our approach. Despite when modeling small

arteries the compressibility of blood is important [23], blood-flow in larger structures is

usually modeled using incompressible fluid [28]. This is because blood is only minimally

compressible. Therefore, when modeling on a large scale, this compressibility is so

minimal that the fluid is nearly incompressible. The viscosity, as stated by Bridson

[30], can be dropped, since blood is not highly viscous nor do we model small-scale fluid

flows. Furthermore, the aorta is not a static boundary for the blood. However modeling

elasticity is complex [32]. Also the real boundary is unknown but a good approximation

can be made at peak-systole. Therefore only the boundary at peak systole is used in our

approach. In conclusion the modeled blood should be incompressible, is inviscid and the

aorta is modeled using a static solid boundary. The method described in this chapter,

the FLIP method, allows modeling blood-flow under these assumptions.

FLIP is a hybrid approach as it uses both the Eulerian (grid-based) and the Lagrangian

(particle-based) approaches. The FLIP method (first introduced by Brackbil et al. [45])

described in this chapter uses a grid structure based on the book by Bridson [30]. The

particle structure is based on the method by Zhu et al. [33], while the solid-fluid coupling

and solver is done using the method described by Batty et al. [34]. The coupling between

the grid and particles is made to overcome the weaknesses of both the Eulerian and the

24
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Lagrangian methods, as explained in Chapter 4.4. The main purpose of the grid is to

ensure a divergence-free velocity field, while the particles have no numerical dissipation

in the advection step when using FLIP.

5.1 The Navier-Stokes Equations

In Chapter 4, we have described the Navier-Stokes equations, given by Equations 4.1

and 4.2. These equations govern the physics of fluid mechanics. Assuming the viscosity

η = 0 as explained, these more general equations are reduced to:

∂~u

∂t
= ~g − ~u · ∇~u− 1

ρ
∇p, (5.1)

∂ρ

∂t
= −∇~u · ∇ρ, (5.2)

∇ · ~u = 0, (5.3)

where the velocity field ~u is an abbreviation for ~u(~x, t), the velocity at location ~x at time

t. ~g is the body force, ρ the density and p the pressure. To solve Equations 5.1, 5.2 and

5.3, a discretization is required. This discretization separates the continuous spatial and

temporal domain into discrete spatial and temporal domains. These discrete spatial and

temporal domains require a finite number of calculations, such that it can be solved in

a finite number of steps.

Due to the complexity of the equations, they are first divided into smaller, simpler-

to-solve equations. To do so operator splitting is used, so that every part is efficiently

solved using dedicated methods. Equation 5.1 defines the derivative of the velocity

field over time. This derivative should be integrated for ~u to get the current solution

~unew at time tnew, given dt = tnew − told. It is important to notice that the order in

which the terms of the equations are solved matters. The body force should be added

before the advection step to ensure it is taken into account. The advection itself needs a

divergence-free velocity field to be correct, but may yield a non-divergence-free velocity

field. The density is required for the pressure. The pressure is used to make the velocity

field divergence-free again for the next step. Note that the velocity ~u and pressure p

are coupled. The idea is to decouple ~u and p, such that the incompressibility (pressure)

term is separated from the rest of the equation. Furthermore, the body force term can
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be decoupled. Splitting the equations in the right order yields the following partial

differential equations (PDEs):

BF (~u, dt) :
∂~u

∂t
= ~g : body force, (5.4)

ADV (~u, dt) :
∂~u

∂t
= −~u · ∇~u : advection, (5.5)

DENS(~u, dt) :
∂ρ

∂t
= −~u · ∇~ρ : density advection, (5.6)

PROJ(~u, dt) :
∂~u

∂t
= −1

ρ
∇p : projection (5.7)

where ∇ · ~u = 0 : incompressibility. (5.8)

Thus the original Navier-Stokes equation is rewritten as:

~unew = PROJ(DENS(ADV (BF (~u, dt), dt), dt), dt). (5.9)

5.2 Domain discretization

Note that the above equations are still a specification, and require a discretization in

time and space. To discretize in time, a proper time step dt should be derived. This is

described in Section 5.2.1. Then, for the spatial discretization both a grid and particles

are used, which is discussed in Sections 5.2.2 and 5.2.3 respectively. The algorithms

BF (~u, dt), ADV (~u, dt) and PROJ(~u, dt) are explained in Sections 5.3.1, 5.3.2 and 5.3.3

respectively. The advection of density, computed by DENS(~u, dt), is derived from the

particles, and therefore discussed in Section 5.2.3. The boundary conditions of the

simulation are discussed in Section 5.4.

5.2.1 Time step size

To guarantee convergence of the simulation, a necessary condition for the time step is

given by the CFL condition, named after Courant, Friedrichs and Lewy. Basically, it

describes a relation between the cell dimension dx, the maximal velocity in the system

c and the timestep size dt. Equation 5.10 is the general CFL condition. Here α is a

user-defined variable, stating the distance, expressed in the number of cells the fluid

can flow through in one timestep. By using α = 1 the fluid can only move one cell per
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time step, and thus the interpolation errors made by advecting the particles are small,

therefore α = 1 is used. The CFL condition is defined as:

dt = α
dx

c
. (5.10)

5.2.2 Space discretization - Grid

The grid in the FLIP method is an auxiliary data structure. No information is stored

longer than one time step, i.e., all necessary data is stored in the particles. Every time

step, the grid is cleared and refilled with the data from the particles.

The grid data is stored on a so-called staggered marker-and-cell (MAC) grid, first used

by Harlow and Welch [46]. On this MAC-grid, the pressure is stored in the center of

the cell and the velocity is stored on the cell boundaries, as depicted in Figure 5.1.

In the implementation non-cubical cells are used, with dimensions dx, dy and dz. For

simplicity, however, here each cell is a cube with edges of length dx. This grid is used to

derive the unbiased second-order accurate central difference to calculate the derivative

of the velocity in the center of the cell. This is required to calculate the gradient of

the velocity at the center point of a cell, needed for the pressure solve. For example,

the first-order difference in the x direction of u component of ~u = (u, v, w) at a point

q(i, j, k)is (
∂u(q)

∂x

)
=
u(x+ 1/2, y, z)− u(x− 1/2, y, z)

dx
. (5.11)

To get the velocity at locations that are not stored within the cell, trilinear interpolation

is used on individual components of velocity ~u. A small interpolation error occurs, but

only the difference between the particle’s velocity and the grid velocity is used, therefore,

minimizing the numerical dissipation caused by the interpolation.

5.2.3 Space discretization - Particles

Each particle stores its own velocity. Every time step this velocity is split in its compo-

nents, and accumulated to the grid cell containing the particle using a one-dimensional

kernel function K, which used for weighting in every direction. This weighting is related

to the distance of the particle to the grid location, where the velocity should be stored.
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Figure 5.1: A cell from the 3D-MAC-grid

Here, the following linear kernel function is used:

K = dx− x. (5.12)

The return value of this function is always between 1
2dx and dx, where dx is the cell

dimension and x is the distance of the particle to the center of the cell. A copy of the

grid is made of this grid to be used after the grid is made divergence-free.

When the grid is made divergence-free, the translation from grid to particles uses the

difference between the stored velocity on the grid ~uold as stored and the new velocity

as stored on the on the divergence-free grid ~unew via interpolation. Then the velocity

of the particle is given by ~unew − ~uold. By using this difference, a minimal undesired

smoothing, due to numerical dissipation, of the particles’ velocity occurs, as stated by

Batty et al. [34]. Due to this property, no vorticity confinement is needed to get small

scale features as the velocity does not fade out at an unnaturally fast peace. As was

explained in Chapter 4.1, this occurs in pure Eulerian approaches.

The density advection is implicitly given by the particles. Here it is important that

density ρ is defined as ρ = m
V , mass divided by volume. Now by assigning a mass to

every particle we can set the density. For example, if we initially have 16 particles per

cell and want a density of 0.00106 g/mm3, the density of blood [47], and the dx of the cell

is 2mm the mass in such an initial cell is given by m = ρ·V = 0.00106·(2·2·2) = 0.00848.
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From this the mass of a particle is given by 0.00848
16 = 0.00053g. When the mass of a

particle is known it is straightforward to compute the density of a cell after the particles

are advected. Using the example of above we get for a cell with 12 particles a density

of ρ = m
V = 0.00053·12

2·2·2 = 0.000795 g/mm3.

5.3 Operator computation

5.3.1 Body forces

The body force algorithm BF (~u, dt) applies a given force ~g to the whole velocity field.

Meaning that for all the velocities on a grid cell ~g · dt should be added to the velocity ~u

on the grid. The function BF (~u, dt) was specified by:

(
∂~u

∂t
= ~g

)
,

by using forward differencing we get:

u(~x, t+ dt) = u(~x, t) + dt · g. (5.13)

5.3.2 Advection

The advection algorithm ADV (~u, dt) transports the particles on the grid storing the

velocity ~u. For advection of a particle p, we have to calculate the new location p ~xnew

from its old location p ~xold. To advect the particles we use the second second order

Runge-Kutta method. By using Runge-Kutta 2 the new location of the particle ~xnew is

defined as:

~xmid = ~xold −
1

2
dt · ~u( ~xold),

~xnew = ~xold − dt · ~u( ~xmid), (5.14)

where ~u(~x) is the velocity stored on the grid for position ~x. Once every particle is

advected, their velocity can be stored on the grid again for the next step. Outside

the fluid the velocity field is extended using the method described in Section 5.5. This

extension is required so that the fluid can advance into regions in which there is, and



Chapter 5. A computer graphics fluid simulation: the fluid implicit particle method 30

thus the velocity could be 0 there. For this Fast Sweeping method extends the PDE

∇~u · ∇φ = 0 is extended, here φ is the distance to the nearest solid stored on the grid,

this φ is also described in Section 5.5.

5.3.3 Projection

In this section the pressure solver is explained. The pressure is used to make the velocity

field divergence-free, and thus incompressible. A different notation is used in order to

make a clear distinction between big matrices, vectors with a dimension higher than

3 and scalars needed by the solver, this to distinguish them with the vectors in the

simulation. These matrices are represented with bold capital letters, and vector names

are represented using lower-case bold letters, while scalars and indices are non-bold

letters.

Pressure projection uses the Helmholtz-Hodge decomposition [30], which states that

every vector field ~u can be decomposed in a divergence-free vector field ~udf and a curl-

free scalar field p. This curl field describes the rotation of the three-dimensional velocity

field at given points. Thus,

~u = ~udf +∇p. (5.15)

Note that by definition ∇ · udf = 0. This is the case because for a given region, the

amount of inflow and outflow for the region must be equal, and therefore the divergence

must be zero. By applying the divergence to every term in Equation 5.15 we get:

∇ · ~u = ∇ · ~udf +∇2p = ∇2p. (5.16)

This is a Poisson equation, and by solving it, the pressure p can be obtained. This

Poisson equation can be solved for p using the method described in the next section.

From this, the divergence-free velocity field ~udf can be computed:

~udf = ~u−∇p. (5.17)
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5.3.4 Preconditioned conjugate gradient algorithm

The Poisson equation presented in the previous section can be solved using the Conjugate

Gradient (CG) algorithm, of which a detailed explanation is given in Appendix A. The

Poisson equation can be broken down in a linear equation for every grid point [48]. This

yields a set of linear equations.

An example, without weighting irregular boundaries, shows why the pressure can be

solved by an algorithm that solves linear equations, can be shown using the following

function:

A · p = f.

In this equation, A is the area of the cells boundary being fluid in mm2, p is the pressure

in Pa and f is the magnitude of force acting in the normal direction of the surface A in

g · mm
s . By multiplying with time step dt we get

A · p · dt = f · dt = m · v.

Here m is the mass in g and v is the speed in the normal direction of A in mm
s . We

can get rid of the mass term using m = ρ · V where ρ is the density and V the volume

of the cell, assuming that the density is equal to one leaves a division by V , which in

our example would be dx in mm. Note that three spatial components, x, y and z, are

threated separately, hence the scalar-valued volume. The resulting formula is given by:

A · p · dt
dx

=
s

dx
. (5.18)

This is a linear equation that relates the pressure to the velocity for every point on the

grid. If these equations are solved for p at every grid point, the pressure field is obtained.

These linear equations can be solved by the CG algorithm. This algorithm solves these

linear equations by iteratively solving the linear system A·x = b, where x is an unknown

vector, A is a symmetric and positive-definite square matrix, and b is a given vector.

Because A must be positive-definite the property given by equation 5.19 must hold.

yTAy > 0, for any non-zero vector y (5.19)
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Instead of CG, the Preconditioned Conjugate Gradient (PCG) solver of Bridson was

used, similar to the paper by Batty et al. [34]. In this paper a pressure equation is

introduced that reduces the kinetic energy, while taking arbitrary solids into account.

The solver defined in the paper ensures incompressibility by using the PCG algorithm,

which is a faster variant of the conjugate gradient (CG) algorithm.

To solve the pressure with the PCG algorithm, vector div is initialized with the di-

vergence, and matrix A is used to define the constant relation of the linear equation

between neighboring cells. To get the index of a cell from the 3D environment with

coordinates (i, j, k) with respect to the one dimensional vector (and two dimensional

matrix) the vector index q is calculated using q = i + ni · (j + nj · k), where ni is the

number of cells in the in the i-direction and correspondingly nj is the number of cells

in the j-direction. Note that, this is an unique mapping from every cell to an index

in the vector and to row and column indexes of the matrix. This is used to initialize

the divergence vector div. For every cell with index i, j, k and corresponding mapped

index q the divergence divq is calculated and stored in div at index q. In the continuous

case divergence is defined as ∇ · ~u. Therefore, on a MAC-grid, the discrete divergence is

calculated as follows:

−divq =
uw(i− 1

2 , j, k) · u(i− 1
2 , j, k)− uw(i+ 1

2 , j, k) · u(i+ 1
2 , j, k)

dx
+

vw(i, j − 1
2 , k) · v(i, j − 1

2 , k)− vw(i, j + 1
2 , k) · v(i, j + 1

2 , k)

dx
+

ww(i, j, k − 1
2) · w(i, j, k − 1

2)− ww(i, j, k + 1
2) · w(i, j, k + 1

2)

dx
, (5.20)

where both the weights (uw, vw and ww) and the corresponding velocity fields (u, v and

w) are defined on a MAC-grid with cell width dx. The weights are computed as in

Section 5.4. Note that the div vector corresponds with the s
dx term in Equation 5.18.

Filling in the matrix A is a bit more complex. Note that this matrix should correspond

with the area term, A·dtdx , of Equation 5.18. If the cell fl contains fluid, and a neighboring

cell nb contains fluid we add the term term = nbw · dt
dx2

to the entry (flt, f lt) for

every neighboring fluid cell, and we subtract term from the entry (flt, nbt). If the cell

fl contains fluid but the neighbor does not, we add term divided by the fraction of

fluid between the neighbor and fl. These subtracted and added values are used to

ensure the area of a cell is not taken into account twice, and to enforce the boundary
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conditions. Now by using the PCG algorithm the pressure can be found by calculating

A · pressure = div, where the input is the matrix A and the vector div and the

resulting vector pressure is returned. More details on the PCG algorithm can be

found in Appendix A. Then according to Equation 5.17, we can make the velocity field

divergence-free.

5.4 Boundary conditions

To use irregular boundaries, i.e., boundaries that do not have to be aligned with the

grid, the technique by Batty et al. [34] is used. They use a signed distance function

(SDF) with distance to solid objects stored on the MAC-grid, which is used to compute

the weights needed by the pressure solve explained in Section 5.3.3. This weights ensure

that no fluid can flow inside the solids.

The SDF is negative inside the solid and positive outside the solid. On the boundary of

the solid the function is 0, as depicted by Figure 5.2. Calculating the signed distance
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1.4142...

1.1180...

Figure 5.2: The two-dimensional signed distance function of a polygon assuming cell spacing
of 1. The given values are the nearest signed distance to the polygon boundary, negative values
are inside the polygon and positive values lay outside the polygon.

function of an implicit function, e.g., a sphere is trivial, as this function already defines

the distance to the spheres surface. Furthermore the surface has distance value 0 by

definition.

For meshes, however, a more complex method is required. Only the points on the bound-

ary of the mesh have a known distance. To assign distance values to other locations,
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the Fast Sweeping technique by Zhao is used [49]. This technique extends the known

distance by sweeping over the domain multiple times in every direction, a thorough

explanation of the sweeping algorithm can be found in Section 5.5.

k
j

i

fcorner1

fcorner2

fcorner3

fcorner4

f of u

Figure 5.3: An example of the computation of the velocity weight in the u direction. The
weight is computed on the blue face, the red area is inside the solid.

The scalar-valued distance to the solid, like the pressure, is stored in the center of the

MAC-grid. From this, the fraction inside the solid for every faces f of every MAC-

grid cell is computed and stored as a the weight of this face. Note that the area of

the complete face is defined as being 1 to get a 0 ≤weight≤ 1. Figure 5.3 depicts an

example of such a face. Here face in the u direction is shown in blue. The corners,

fcorner1, fcorner2, fcorner3 and fcorner4, are used to compute the area of the face that is

inside the solid, shown in red. For example, the weight uw of the face in the u direction

is calculated as follows:

uw = 1−Area(fcorner1, fcorner2, fcorner3, fcorner4). (5.21)

Here the function Area calculates the area of the face that is inside the solid (has a

SDF value smaller than 0). Note that the SDF values are stored on the corners of the

MAC-grid cells. The area it self is calculated using the Marching Squares algorithm to

find the boundaries of the region, a polygon, inside the solid. The area of this polygon

is then calculated.

This weight is later on used to alter the velocity around the solid and is therefore used

in the projection step, explained in Section 5.3.3. To ensure no fluid flows inside the

solid, the velocity in the direction of the normal should be zero (or for moving solids
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equal to the solids velocity). This requires a normal at any position of the SDF. This

normal ~n can be calculated using the gradient of the SDF at the point q:

~n(q) =

( ∇SDF (q)

||∇SDF (q)||

)
. (5.22)

Also the velocity of the fluid at the given point is derived and the normal component is

calculated. This normal component is then used to set the velocity of the fluid in the

direction of the solid to zero (or to the solids velocity).

For particles the same method is used when a particle ends up on a grid location with

a negative SDF value. First the location of the collision of the particle with the solid is

derived using bisection search on the particles trajectory. The particle is clamped to that

position. Then, the normal of the SDF is calculated and is used to remove the particles

velocity in the normal direction. Note that the gradient gives the normal pointing away

from the solid.

In this project only static solids are taken into account. Therefore, only when initializing

the simulation, the SDF and its corresponding weights are computed. When considering

moving solids, one has to calculate these every step, which yields a higher computation

time per time step. To avoid having to calculate the whole SDF again, one can also store

every distance larger than a constant c as being equal to c. Now when a solid moves

only the region nearby the surface should be updated, i.e., only the region around the

solids boundary with absolute SDF values < c. For the weight function this c value can

be used to derive whether a solid is inside the face; just check the corners of the face

(or line) and check if these are all ≥ c, if so no solid intersects this face (or line). This,

however, requires an appropriate value for c.

5.5 Sweeping

In this section we present the approach to calculate the SDF for solid objects as men-

tioned in Section 5.4 and the extension of the velocity field as explained in Section 5.3.2.

We use the Fast Sweeping for Eikonal equations method by Zhao [49] in 3D. An Eikonal

equation is of the form

|∇q(x)| = F (x), x ∈ Ω, (5.23)
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and it describes the propagation of a function q(x) through the domain Ω. F (x) is given

a function with positive values. In case F = 1, the signed distance function (SDF) is

the solution of the Eikonal equation. In general this method is used to extend a given

wave equation to define the wave propagation.

The Fast Sweeping algorithm combines upwind differencing with Gauss-Seidel iterations

in all spatial directions. To use the algorithm by Zhao, first the known values should be

set to initialize the system. For example, the points in the mesh have a known distance

of 0 to the mesh or the velocity of the fluid. Before the first iteration all unknown values

are set to the highest distance in the system (for example the width of the total grid)

plus one. These values are later updated in an iterative manner. Namely, the algorithm

sweeps the grid in all three directions, back and forth, per iteration. Below we assume

F (x) = 1 to compute the SDF.

For the three dimensional case we want to calculate the new value qi,j,k for the cell

with index (i, j, k). For this, the upwind differencing given by Equation 5.24 is used to

discretize Equation 5.23:

(qi,j,k − a)2 + (qi,j,k − b)2 + (qi,j,k − c)2 = F (x) = 1. (5.24)

Here, the values a = min(q(xi−1,j,k), q(xi+1,j,k)), b = min(q(xi,j−1,k), q(xi,j+1,k)) and

c = min(q(xi,j,k−1), q(xi,j,k+1)) are defined. They store the minimal value of x for the

neighboring cells. Now, without loss of generality we assume a ≤ b ≤ c. A new value for

qi,j,k is only assigned if this new value is smaller than the current value. The new value

for qi,j,k is defined as:

qi,j,k =


d1, if d1 ≤ b

d2, if d2 ≤ c

d3, otherwise

(5.25)

where d1, d2 and d3 are defined by:

d1 = a+ 1,

d2 =

√
−a2 + 2 · a · b− b2 + 2 + a+ b

2
,

d3 =

√
(−2 · a− 2 · b− 2 · c)2 − 12 · (a2 + b2 + c2 − 1) + 2 · a+ 2 · b+ 2 · c

6
.
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Here, the function for d1 is given by solving (qi,j,k − a)2 = 1, thus d1 = qi,j,k = a + 1

for q, likewise d2 is given by solving (qi,j,k − a)2 + (qi,j,k − b)2 and d3 by solving (qi,j,k −
a)2 + (qi,j,k − b)2 + (qi,j,k − c)2 = 1.

dim + 1 dim + 1 dim + 1

2.3

3

dim + 1

dim + 1 dim + 1

l

Figure 5.4: An example of 2 dimensional Fast Sweeping. The arrow indicates the sweeping
direction. A value of approximately 3.264 for l is found. dim+ 1 is the largest grid dimension
plus one.

Figure 5.4 shows a two dimensional example of Fast Sweeping. The arrow indicates the

sweeping direction. Here a = min(2.3, dim+1) = 2.3 and b = min(dim+1, 3). The value

for l is now given by computing first d1 = a+ 1 = 3.3. This is larger than 3, so also d2

has to be computed: d2 =
√
−a2+2·a·b−b2+2+a+b

2 =

√
−2.32+2·(2.3)·(3)−32+2+2.3+3

2 ≈ 3.264.

No value for c exists in this two dimensional example, and thus l = 3.264.

When sweeping for the SDF of the solid objects, only two iterations are used as this is a

simple scalar field. To extend the velocity of the fluid in the regions without fluid three

iterations per component are done in.



Chapter 6

Measurement-simulation coupling

This project tries to combine the PC-MRI measurements, introduced in Section 2.2,

and the simulation introduced in Chapter 5. Both have their own limitations and ben-

efits. The goal of this project is to exploit the advantages of both, with a minimum

of disadvantages. The advantages of the PC-MRI measurements are the fact that they

provide patient-specific and real world values, while the simulation is a model of the

blood-flow in the patient. This model strives to be a physically correct representation

of the physiology of the patient.

The cardiac 4D PC-MRI data yields patient-specific data in relatively short period.

From this, the velocity field of the flow can be reconstructed retrospectively with a

temporal resolution of approximately 50ms with a spatial resolution of about 2 mm ×
2 mm × 2.5 mm [11]. Moreover, measurements allow physicians to do patient specific

research as well as diagnosis. For simulations, however, the amount of computation

time available determines the amount of detail incorporated in the simulation. A high

resolution requires more computations. Another advantage of the simulation is that it

yields incompressible velocity fields, while the measurements suffer from divergence due

to noise and artifacts.

By combining both methods, we aim to increase the temporal and spatial resolution of

the measured data in a physically based manner by using the simulation coupled with

the measurements.

38
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In this chapter two methods will be presented that couple the measurements with the

simulation. A coupling method should maintain the incompressibility of the fluid sim-

ulation, but should ensure the measurements are clearly represented by the simulation.

Furthermore, the small scale features of the flow as measured should remain intact af-

ter the coupling is done. However, the smallest scale spatial features will not occur

in the measurements, but can be introduced by the simulation. The first method we

will discuss alters the velocity field of the simulation, while the second uses so-called

control forces. These control forces are local forces that steer the simulation towards a

measurement. The quality of the described methods will be evaluated in Chapter 8.

6.1 The PC-MRI-measurement-integrated method

A simple control method would be to replace the velocity field of the simulation by the

velocity field of the measurement at the point in time. This, however, is likely to result

into divergence in the simulation, since the measurements are not guaranteed to be

divergence-free, and the artifacts and noise may influence the simulation. Furthermore

all previous steps of the simulation are not taken into account. This is where our new

method, PC-MRI-measurement-integrated (PCMI) simulation, is used.

PCMI simulation is inspired by ultrasound-measurement-integrated simulation (UMI).

The UMI simulation technique is described in the paper by Funamoto et al. [10]. This

technique combines Doppler ultrasonography measurements with a fluid simulation. Sec-

tion 2.1 provides more information about Doppler ultrasonography. UMI uses the dif-

ference between the velocity fields of the measurements and the simulation. From this

difference, feedback signals are generated to control the simulation. These signals are

then applied by using a local force ~fv on the simulation. This force is given by:

~fv = −Kvρ(~Vc − ~Vs)umax∆S, (6.1)

where Kv is the feedback gain, which is a control parameter, and umax is the maximum

flow speed of the measurements, and ∆S is the control volume of pressure. ~Vc and ~Vs

are respectively the projections of the velocity field of the simulation and the velocity

field of the measurement in the ultrasonic beam direction. The force is used to direct

the simulation towards the measurements.
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UMI, however, is geared towards ultrasound, which provides high spatial and temporal

resolution. In the PC-MRI case, the temporal resolution is much lower, but a complete

velocity field is given, in contrast with Doppler ultrsonography. While the temporal

resolution of the measurements can be lower than the resolution of the simulation [50],

a relatively high temporal resolution is required for to get the best results for UMI.

In contrast to UMI, for the PCMI method a complete velocity field is available for both

the simulation ~usim and the measurements ~umeas at a certain point in time. Therefore,

the difference of the two velocity fields yields another velocity field ~udiff . Unfortunately,

compared to Doppler ultrasonography, less measurements in the temporal domain are

available. Therefore, no control force is used, since such a force would only be defined

when a PC-MRI measurement is available.

Let ~udiff = ~usim − ~umeas be the difference between the simulation and measurement

velocities. By using the Helmholtz-Hodge decomposition we can compute a divergence-

free ~unew by computing the pressure pdiff of ~udiff :

~udiff = ~unew +∇pdiff ,

When appling the divergence operator, we get:

∇ · ~udiff = ∇ · ~unew +∇ · ∇pdiff ,

~unew is by definition divergence-free and thus equal to 0, so the result is

∇ · ~udiff = ∇2pdiff . (6.2)

By solving Equation 6.2 a divergence-free velocity field ~unew can be computed. By adding

this velocity field to the velocity field of the simulation incompressibility is maintained.

Furthermore, the velocity field will be close to the measurements, since ~unew is still close

to ~udiff . Advantages of this method are that it is fast, since it requires only one update.

A disadvantage is that the amount of control is not directly configurable, as is possible

when using forces. In some cases it might be desirable to have the simulation loosely

coupled to the measurements. For this method that is not trivial. This is because the

divergence-freeness of ~unew must be maintained.
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6.2 The Linear Feedback Control method.

The linear feedback control (LFC) method introduced by Kim [9] is a control force

method that allows the usage of a target velocity field ~umeas, and thus this method uses

a force to steer the simulation towards the measurements. The incompressibility of the

simulation is maintained by the solver of the simulation, because the forces are applied

before the velocity field is made divergence-free. Convergence is shown by Kim [9] when

the control force is applied iteratively for every time step. UMI adds a control force ~fl

to the force term ~g in the Navier-Stokes Equation 5.1 to control the flow of the fluid.

The goal is to converge the absolute difference between the simulation velocity field ~usim

and the target velocity field ~umeas to be zero, thus |~usim − ~umeas| → 0. However, if the

target field is not divergence-free the method still converges to a positive value, only the

converged value of |~usim − ~umeas| will not be 0.

The force applied is given by the following linear feedback law for the force ~fl:

~fl = ~Fb − γ(~usim − ~umeas) with γ > umax, (6.3)

where γ is a positive constant parameter with a value larger than the maximum speed

umax in the system, and ~Fb is a measure for the body force that is generated by the

target field. It represents the force within the target field. The γ(~usim − ~umeas) term

is used to parameterize the strength of the force applied. A lower γ value means less

control, and thus, γ can be used to tune the measurement-simulation balance. ~FB is

defined by:

~Fb =
∂~umeas
∂t

+ ~umeas · ∇~umeas − ν∇2~umeas. (6.4)

This equation corresponds with the Navier-Stokes equation, without the incompressibil-

ity condition. Therefore, it can be solved using the same methods as used for the fluid

simulation.

Due to the lack of enough measurements in the temporal domain, an iterative procedure

has to be applied at the time the measurement is available. This is because no target

field is known in the intermediate times between measurements; the temporal difference

between the measurements is large. This requires that when a measurement is available

at time t the algorithm must converge. Therefore, no temporal good approximation

differentiation of the the target field exists. Thus we assume the target field is constant
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during the iterations. Moreover, in our case the viscosity term is not modeled so ν = 0.

In our case Equation 6.4 thus reduces to:

~Fb = ~umeas · ∇~umeas. (6.5)

Due to the iterative behavior of the procedure, multiple updates of the velocity field of

the simulation are done when applying the method to maintain a divergence-free velocity

field.

An advantage of this method that it gradually steers the simulation towards the mea-

surements. Another advantage is that the amount of control can be set using γ. A

disadvantage is that it requires multiple iterations to converge, which all need a pressure

solve for the simulations.



Chapter 7

Implementation

All methods described in the previous chapters allow the implementation of a fluid

simulation that is controlled by PC-MRI measurements. This chapter explains the

developing details, aiming for an efficient and robust implementation of the presented

algorithms. For clarity, some of the details of the fluid simulation were given along with

the theory in Chapter 5.

The QFlowExplorer tool by Van Pelt [11] visualizes 4D PC-MRI blood-flow measure-

ments. This tool was extended with a module to combine the measurements with the

simulation. Both QFlowExplorer and the module are implemented using the C++ pro-

gramming language. This module uses the OpenGL library for the visualization. The

CLAPACK [51] and the CBLAS [52] libraries are used to improve the performance for

vector and matrix operations used in the fluid simulation. The CLAPACK is the C++

version of the Linear Algebra PACKage (LAPACK) and the CBLAS is the C++ version

of the Basic Linear Algebra Subprograms (BLAS). Both the CLAPACK and the BLAS

are originally written in the Fortran programming language. For the processing of mea-

sured blood-flow data and the anatomical meshes, the Visualization Tool Kit (VTK)

was used [53]. This toolkit implements functions for 3D computer graphics, image pro-

cessing and visualization. The toolkit also provides reading and writing functionality

for the VTI and VTK file formats that are used to store 3D image data in the XML

format. QT was used for the graphical user interface. All programming was done in

Visual C++ Studio 2008 Express Edition.

43
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The implementation was running on a system with the 64-bit Windows 7 operating

system. An Intel Core i7-3770 Quad-core processor with hyper-threading at 3.40GHz

and 8GB of RAM. The video card used was a NVIDIA GeForce GTX 660 with 4GB

memory.

7.1 QFlowExplorer

The QFlowExplorer tool is developed by Van Pelt [11]. In this tool, various visualizations

of PC-MRI blood-flow measurements were implemented. It has the ability to load PC-

MRI measurement data, stored in an application specific the VTI-data format. It also

allows the loading of meshes in the VTK-data format. For this project, QFlowExplorer

was extended with an additional module. This module implements the fluid simulation

described in Chapter 5 and the PC-MRI-measurement-integrated method presented in

Chapter 6.1, as well as the linear feedback control method in Chapter 6.2. By using

QFlowExplorer, the module has direct access to loaded measurements and meshes.

7.2 The PC-MRI-measurement-integrated method

The particles of the fluid simulation represent a more detailed velocity field. This is

because each cell contains multiple particles, which all store their own velocity. The

PC-MRI-measurement-integrated method, PCMI , which was described Chapter 6.1,

therefore applies the velocity update on the particles of the fluid simulation. For this

purpose, another fluid simulation SIMnew is initialized with the same dimensions and

solids as the current simulation SIMoriginal. Then, for every particle in SIMoriginal a

new particle is made for SIMnew. This new particle has the same location as the original

particle. The velocity of the new particle is set to the velocity of the original particle

minus the velocity of the measurement at the position of the particle. Now SIMnew

is made divergence-free, using the tools available for the fluid simulation. Finally, for

every particle ps in SIMoriginal the velocity of the corresponding particle pn in SIMnew

is subtracted from the velocity of ps. Here it is important that the particles are not

advected, so the location of the particles of both SIMoriginal and SIMold are equal.

Moreover, both have particles that represent a divergence-free velocity field. Thus, by
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subtracting the velocity field of SIMnew from SIMoriginal yields another divergence free

velocity field, which is close to the measurements velocity field.

7.3 The linear feedback control method

To apply the linear feedback control method (LFC) explained in Chapter 6.2, the velocity

field of the simulation ~u and the measurement ~U are used. Both ~u and ~U are stored on

a MAC-grid to enable second order accuracy on differential computations, as explained

in Chapter 5.2.2. The required gradient computations can be easily calculated with a

second order accuracy using the MAC-grid. Note that ~Fb only depends on the target

velocity field U , and therefore is constant for a specific measurement does not change.

When ~Fb is known, we can start the iterative procedure. Since U is most likely not

divergence-free, this procedure has to continue until it converges. Convergence is ob-

tained when the error of the current iteration is equal to the error of the previous

iteration. This error measure is max |u− U |, which specifies the distance of u to U .

Every iteration, the linear feedback force defined in Equation 6.3 has to be computed.

Which is defined as the previously computed (constant) Fb minus γ times the difference

between u and U . This yields a force field ~fl, which is then applied by adding ~fl ·dt to u,

where dt is the time step currently used in the simulation. Note that during the whole

procedure dt is constant. After the force is applied, u is made divergence-free using the

pressure solver of the simulation, which was explained in Chapter 5.3.3. Finally the

error is computed again, and if needed another iteration is executed.



Chapter 8

Qualitative evaluation

This section evaluates the presented measurement-simulation coupling. To do so, three

experiments were conducted. In the first experiment the quality of the different coupling

methods, given in Chapter 6, is compared. To make sure the expected velocity is known

at every moment in time, synthetic data is used. The second experiment tests the noise

robustness of the simulation. It shows the ability of the simulation to deal with various

amounts of noise, as occurs in the measurements. To quantify this, two simulations

are initialized with the same synthetic data. However, the second simulation has noise

added to the data. These two simulations are then compared, where the simulation

without noise is the expected result. The third experiment compares temporal linear

interpolation of velocity fields to the fluid simulation. In this experiment the quality of

the interpolation is compared with the use of fluid simulation for interpolation.

For all experiments two error measures are used for the comparison of the synthetic

ground truth of an experiment with the found value: the difference in angle and mag-

nitude of the velocity vectors. Assume that ~a is the velocity vector given by the ground

truth and ~b is the velocity vector found in the experiment. For the difference in angle

the dot product between the two normalized velocity vectors is calculated. This value

is then converted to degrees using the arc cosine to represent the error in degrees. So

the error in angle errangle is defined by:

errangle = arccos

(
~a

|~a| ·
~b

|~b|

)
(8.1)
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For the magnitude, a relative error is used. The length of found velocity vector ~b is

divided by the expected ground truth velocity vector ~a. The result of this division is

then subtracted from 1 to get an error of zero if ||~a|| = ||~b||. Subsequently, the result

is multiplied with 100 to get an error in terms of percentage. For the magnitude, this

relative error errmagn is defined by:

errmagn =

∣∣∣∣∣1− ~b~a
∣∣∣∣∣ · 100. (8.2)

Both these metrics linearly correlate the difference between the expected value and the

found value.

8.1 Comparison of simulation methods

This section tries to determine the most suitable method from the methods described

in Chapter 6. To quantify the error made by the methods, the previously defined

error metrics are used. However, actual PC-MRI data do not define a ground truth;

there is no ground truth for the description of cardiovascular blood flow, independent

of measurement technique. Therefore, to generate an expected ground truth for a flow

field, synthetic data is used.

For this evaluation study, a synthetic flow field is generated to mimic the measured data.

This way, the ground truth of the data set is known. The synthetic data consists of a

parametric flow field, describing a rotational vortex. The velocity (u, v, w) at a position

(x, y, z), where 0 ≤ x, y, z ≤ 1, is defined as:

u = (10 · time+ 1) · 2 · (y − 0.5)

v = (10 · time+ 1) · 2 · (x− 0.5)

w = 0, (8.3)

where, time is an integer value that increases from 0 to 7. This ensures a time dependent

velocity that increases linearly in time, as depicted by Figure 8.1. The actual time

between two outputs is 40ms, the velocities ranges from -72cm/s to 72cm/s. A boundary

mesh, a cylinder, that matches the vortex is also generated. Now the velocities at a

position are known throughout time, which is used as a ground truth for comparing the
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Figure 8.1: The synthetic data, a vortex with linearly increasing velocity. Blue indicates a
low velocity and yellow a high velocity. The red circle indicates the cross section of the
cylindrical mesh.
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velocities produced by the simulation. This allows for a validation of the coupling, and

a comparison between the approaches suggested in this thesis.

It is important to note that the simulation cannot mimic the synthetic data, due to fact

that the velocity in the synthetic data increases over time. The simulation, however,

dampens out over time. Therefore, the error, when no method is applied, will increase.

However, if a coupling method is applied, the error should be as low as possible.

Four different methods are tested:

• No method: only the first measurement is used to initialize the simulation. It

represents the lack of control.

• Replacement with measurement: replaces the velocity of every particle with the

velocity of the measurement at the position of the particle. This is the best case,

since it uses the measurement perfectly. However the result are not guaranteed

divergence-free, and are hence physically incorrect.

• Linear Feedback Control (LFC) method: the method by Kim [9] explained in

Section 6.2.

• PC-MRI-measurement-integrated method: our newly introduced method, explained

in Section 6.1.

Note that, the “no method” and “replacement with measurement” are respectively a

worst-case and best-case scenario, and are given for comparison. The “no method”

case uses no coupling between measurements and simulation. Therefore, no coupling

technique should get a comparable error. The ideal method would yield the same error

as the replacement with measurements method, while maintaining an incompressible

fluid, which is not possible, since the replaced velocity field is not incompressible.

Figures 8.2 and 8.3 show respectively the error in magnitude and angle of the chosen

methods. The average error is represented by lines, the standard deviation is represented

by the shades in the same color. Note that the time label represents the time of the

synthetic data. The methods are applied where t has an integer value, as represented

by the vertical lines. The error is measured every 0.10 time steps. For the LFC method,

the parameter γ is set to 200 ·~umax, where ~umax is the maximum velocity in the system.

How this γ value was determined is explained in Section 8.1.1.
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Figure 8.2: The error of the magnitude of velocity for different methods. The lines show the
average error, the shades represent the standard deviation. Note that max|~u| is the maximum
velocity in the system.

As expected, in both figures all methods have a comparable error in the first time steps

until the simulation methods are applied at time t = 1. All methods are initialized with

the same velocity field. The no method line represents the error when the simulation is

not affected by the measurements, and therefore the error increases. At time t = 1, the

methods are applied and the differences become clear. Note that between the vertical

lines no method is applied and the error increases.

For the error in magnitude, both the LFC method and PCMI method yield a velocity

magnitude comparable to the replacement of velocity. That is, an error of only a few

percent is found.

For the error in angle, however, the LFC method has a high error compared to the PCMI

method. This error can be explained by the fact that the LFC method is a method that

tries to control the shape and flow of the fluid. The method is intended to specify the

shape and general direction of the fluid, while locally the direction might differ from the

target field. The PCMI method has an error in angle close to zero when applied.
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Figure 8.3: The error of the angle of velocity for different methods. The lines show the
average error, the shades represent the standard deviation. Note that max|~u| is the maximum
velocity in the system.

Both the LFC method and the PCMI maintain a divergence-free velocity field. However,

while the magnitude is comparable to the replacement of velocity for the LFC method,

the angle might differ a lot. In contrast, the PCMI method behaves similar to the

replacement of the velocities with respect to both magnitude and angle. In general

the PCMI method seems to perform best by maintaining the fluid divergence-free and

having a small error with respect to the measurements when available. Note that, in

the actual measurements the velocity has a less steep increase in velocity between two

measurements. Therefore, the error in between two measurements will be smaller in

practice.

8.1.1 Sensitivity of parameter γ for the Linear Feedback Control method

To make a fair comparison, the best performing γ value for the LFC method should

be found. The parameter γ is used to set the amount of control for LFC. As stated

by Kim [9], γ should be larger than the maximum velocity in the system, therefore the

maximum velocity ~umax is calculated. This maximum velocity was then used to define
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Figure 8.4: The error of the angle of velocity for different γ values for the Linear Feedback
Control method.
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Figure 8.5: The error of the magnitude of velocity for different γ values for the Linear
Feedback Control method.
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four γ values: γ ← 25 · ~umax, γ ← 50 · ~umax, γ ← 100 · ~umax and γ ← 200 · ~umax. For

higher γ values the method produced too strong forces to stabilize. The four selected

values for γ fall within a range of ~umax to 200 · ~umax. Note that, γ only depends on the

maximum velocity, therefore the same value can be used once the best value is found.

Figures 8.4 and 8.5 show respectively the error in angle and magnitude after applying

the LFC method. The errors for the magnitude are comparable. For the angle however

decreases by using a large value for γ, which justifies the use of γ = 200 · ~umax for this

experiment.

8.2 Robustness

PC-MRI is subject to so-called Rician noise [54]. This noise influences the measurements,

and results in uncertainty of the measured values. The simulation, when given this noisy

data, should produce useful results, despite the introduced noise. In this section, the

robustness of the simulation to noise is tested.

The Rician noise of the PC-MRI can be approximated with Gaussian noise [54, 55], given

that the signal-to noise-ratio (SNR) is higher than two. For the experiment, different

SNRs are used. The SNR is defined as SNR = signal power
noise power , where the signal power is

given by the average velocity and the noise power can be set using the variance of the

normal distribution [14].

Using PC-MRI, the SNR for in vitro measurements is around 28 using contrast agent

[22]. For in vivo measurements, depending on the scanner and the scanned region, the

SNR lies between 21 and 56, as indicated by Bammer et al. [14].

To obtain Gaussian noise, a random value from a normal distribution is drawn. These

numbers are generated using the Box-Muller algorithm [56], which generates X ∼
N(µ, σ2), with mean µ = 0 and standard deviation σ = 1, where X is a value drawn

from the normal distribution. To generate noise with a certain SNR, the resulting value

should be multiplied with ~uavg/SNR to modify the variance, σ2. Here ~uavg is the average

of the velocities in the system. Note that the mean is not altered by the multiplication,

since it was defined to be zero.
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For this experiment, two simulations are running in parallel. Both simulations are

initialized with the previously defined synthetic data. From this data, the set with the

highest velocity, -72cm/s ≤ ~u ≤ 72cm/s, is selected to initialize the simulations. One

of these simulations, however, has additive Gaussian noise applied to the initial velocity

of the particle. Note that, the particles are unrelated when initialized, and thus the

additional noise is unrelated. The simulations are run and compared until time t = 1,

since after this, another noisy input measurement will arrive in practice.
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Figure 8.6: The error of the angle of velocity using different amounts of initial noise. The
lines show the average error. The corresponding coloring represents the standard deviation.

Figures 8.6 and 8.7 show respectively the error in angle and magnitude of the velocities

with different SNRs, namely 2, 5 and 10. These values clearly induce more noise than

normally in PC-MRI measurements. A time step of 0.05 time units is used. As can be

seen in both figures, the influence of noise is reduced. However, when more initial noise

is used, the error remains higher compared to less initial noise.

The lowering of the error due to noise is implicitly given by the translation of the particles

with a noisy velocity on the grid, causing smoothing of the data. This smoothing occurs,

since the noise has a mean value of 0. By taking the averages of the noisy velocity of

multiple particles over one grid cell, the overall noise of the grid cell is closer to the

mean. Also, the noise is reduced by the solver, which removes the divergence left by the
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Figure 8.7: The error of the magnitude of velocity using different amounts of initial noise.
The line show the average error. The corresponding coloring represents the standard deviation.

noise. The error due to noise for the angle is a lot higher compared to the error of the

magnitude. For the angle, the three components of the velocity vector are important,

while for the magnitude the three components are averaged again, and hence smoothing

the noise.

8.3 Simulation compared to interpolation

Currently, spatial-temporal linear interpolation of the measurements is used. In this

section the benefits of using simulation are compared to normal linear interpolation.

For this purpose, another experiment was conducted.

In this experiment the fluid simulation is initialized using the high velocity synthetic

data described above. The simulation is started, and every 0.10 time units the velocity

field is exported until the time t = 1. At this point, the velocity at time t = 0 and

t = 1 is interpolated and the results are compared with the stored intermediate velocity

fields. The results are shown in Figures 8.8 and 8.9. As shown, the linear interpolation

has a big error of both the angle and the magnitude when used at high velocities, right
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Figure 8.8: The error of the angle made by interpolation of simulated data, the coloring
represents the standard deviation.
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Figure 8.9: The error of the magnitude made by interpolation of simulated data, the coloring
represents the standard deviation.
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after the initialization. After this the simulation dampens out, and the overall velocity

decreases, as well as the relative errors. However, the error seems to stabilize for both

the angle and magnitude. This is as expected, because when the vortex barely moves

the difference in angle and magnitude will be minimal. Overall these results show that

interpolation of high velocity flow fields yields large errors.
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Results on PC-MRI data

Since no ground truth is known for the PC-MRI data, no quantitative comparison can

be made for the PC-MRI blood-flow data. Therefore, we rely on a visual inspection of

our data. As described in Section 8.1, the PCMI method yields a simulated velocity

closest to the measurements, and maintains a divergence-free velocity field. Therefore,

this method is used.

When applying the PCMI method on actual data, no unexpected sudden increases of

the velocity of the simulation are visible. The blood flow looks realistic and plausible.

Furthermore, by using the simulation the artifacts near the vessel wall due to respiration,

movement of the patient and the averaging over multiple heartbeats are reduced. This

reduction of artifacts is shown in Figure 9.1. Here, yellow is used to draw the velocity

vector of the particles of the simulation and purple represents the measured velocity.

When using PC-MRI measurements, no exact boundary is known. The anatomical

mesh is an approximation of the vessel boundary at maximum dilation, derived from

the measurements. Therefore, fluid can be simulated near the mesh boundary, while the

actual vessel boundary in the patient might be at a different location. Thus, the actual

vessel might be more narrow than it appears to be compared to the mesh boundary.

The flow in these regions, however, is more natural than given by the velocity measured

at these locations.
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Figure 9.1: The artifacts of the measurements is mainly present at the boundaries. Yellow
represents the simulations velocity of the particles while purple shows the velocity of the
measurement as interpolated.

In the next sections, a visual inspection of the simulation coupled with the measurements

is given for both a healthy volunteer, as well as a patient sufering from an aortic dissec-

tion. In these sections, we show that the typical expected blood-flow characteristics are

maintained.

9.1 Volunteer data

The images in Figure 9.2 show the simulation just before peak systole, and at peak

systole, respectively. The simulation is running in real-time on a coarse grid of 12×34×
12, and uses the PCMI method described in Section 6.1 for the coupling. Note that the

grid of the simulation is much sparser than the measured grid, which is 51 × 144 × 50.

In the images, the white lines indicate the particle (blue) trajectories over time.

As can be seen in the second image, the right-handed helical flow pattern in the aortic

arch, described by Kilner et al. [15], is preserved even on this sparse grid. That is, the
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Figure 9.2: The simulation applied on the measurements using the PCMI method, just before
peak-systole (left) and at peak-systole (right).
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particles shown have a helical movement in the curvature of the arch. This helical flow

is typical for healthy subjects at peak systole.

9.2 Patient data: aortic dissection

When a tear in the inner wall of the aorta causes blood to flow between the layers of

the wall, we speak of an aortic dissection. This blood between the layers will form a

so-called false lumen, which can also be seen in the image data. An aortic dissection

normally occurs in a weakened area of the aortic wall. It can be caused by chronic high

blood pressure that may stress the aortic tissue, which then has a higher risk of tearing.

An aortic dissection leads to a malformation of the aorta, and causes aberrant blood

flow. Furthermore, the blood pressure might increase due to narrowing of the aorta.

Figure 9.3 shows that, the existence of vorticity and jets in the blood flow is maintained

by the simulation with a 26×47×20 grid size. By jets is meant high velocity flow. In the

figure, only the velocity of the particles is shown for clarity. This vorticity corresponds

with the results found by Bogren et al. [57].

By using the simulation, also a relative pressure field within the flow was calculated.

Physicians are interested in this pressure, because high pressure regions have a higher

risk of tissue damage. Figure 9.4 shows relative pressure maps. As expected, the pressure

is high where jets are generated, due to the narrowing of the aorta. Moreover, a high

pressure is expected behind the aortic valve, because of the pressure that results from

the high velocity, caused by the high velocity of the blood pumped out of the heart.
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Figure 9.3: Vorticity in the aorta caused by a dissection. The zoom-in shows the vortex in the
aortic arch due to the narrowing before the arch. In the image, the false lumen is shown in blue.
The yellow lines indicate the velocity of the shown particles, the length indicates the speed.
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Figure 9.4: Relative pressure maps of a dissection. The pressure is normalized and shown by
a dot per location, yellow is used for the highest relative pressure, while red relates to low
relative pressure. The mesh is shown as transparent, yet the false lumen is not rendered. For
clarity, relative pressures below 0.1 are not rendered.
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Discussion & conclusion

We have presented a new control method to combine time-resolved three-dimensional

PC-MRI measurements with a fluid simulation from the computer graphics field. These

measurements are defined as a three-directional velocity field. The measured velocity

fields are used to be combined with the velocity field from the simulation. The goal of

this study was to temporally interpolate between measurements, based on the physics

of fluid mechanics, with limited computation time. That is, the resulting velocity field

should be incompressible and close to the measured velocity field, even if the measured

velocity field is not necessarily divergence-free. Moreover, limited computations reduce

processing time and allow incorporated interactively.

A linear feedback control technique and a novel measurement-integrated technique are

compared. The linear feedback control (LFC) technique is an iterative process. Every

step a control force field is determined by a linear feedback law, based on the differ-

ence between the simulated velocity field and the measured velocity field. The control

force is then applied to direct the fluid simulation to the measured velocity field. The

measurement-integrated technique also determines the difference between the simulated

velocity field and the measured velocity field. In contrast to the LFC method, this differ-

ence field is then made incompressible, and is added to the simulated velocity field. Both

methods are fast and an easy extension given an implementation of a fluid simulation.

Furthermore, they can be used for any numerical fluid simulation.

In this thesis, we have evaluated the mentioned techniques for measurement simulation

coupling. To evaluate these techniques, the difference in angle and magnitude of the
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vectors of the velocity fields of the simulation and the measurement were used as error

measures. The comparison revealed that the measurement-integrated method yields a

simulated velocity field that is more similar to the measured velocity field, compared

to the linear feedback control method. Especially the direction of the vectors of the

velocity field have a higher error using the linear feedback control method.

Furthermore, we performed a robustness evaluation. This evaluation compares two

simulated velocity fields. Both simulations were initialized with the same data. However,

noise is added to the input of one of the simulations. By comparing the two resulting

velocity fields for different amounts of noise, the robustness to noise is demonstrated. The

simulation is robust to the level of noise typically encountered in PC-MRI measurements.

This study also compared conventional linear interpolation and Runge-Kutta 4 ap-

proaches with the interpolation carried-out by our simulation. From this experiment

a significant difference between the current interpolation and the simulated interpola-

tion was found. This demonstrates a significant difference between interpolation and

simulation exist. It is important to keep in mind that, the simulation is physically

underpinned.

Finally, a visual inspection of the measurement-integrated technique applied to PC-MRI

measurements was conducted. It was shown that typical blood-flow characteristics are

maintained, also in pathological flow. Furthermore, artifacts near the vessel wall are

suppressed by using the simulation, and thus have less influence on the blood flow.

Therefore, we conclude that the presented measurement-integrated method, PCMI, pro-

vides a significant contribution for combining measurements and simulation techniques.

The method enforces a divergence-free flow field and deals with PC-MRI noise, and is

likely to perform better than conventional interpolation schemes.

To the best of our knowledge, we are the first to combine full field velocity measurements

with fluid simulation instead of defining only the in- and outflow conditions. Therefore,

we think it is plausible, that our method is more in correspondence with patient’s blood

flow than conventional measurements coupling techniques, as PCMI is physically under-

pinned.
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Future work

For future work, an interesting problem is to handle the non-static boundaries of the

aorta. It will be challenging, since the patient-specific time-resolved vessel boundaries

cannot be derived directly from PC-MRI measurements. The solution for this problem

may be found via two ways; either by MRI acquisition of the anatomical structure,

which is expensive and time consuming, or using post-processing by modeling an fluid-

penetrable boundary. By using the potential field by Hong et al. [19] it is possible

to define such a less strict boundary, compared to a mesh. This potential field can be

computed by using the available mesh, such that the regions inside the mesh have a

low potential. This way, the fluid will try to flow in the regions with low potential.

Furthermore, at the boundaries of the vessel, the strength of the potential can be varied

to mimic the wall movement. The attainability of this should be investigated.

Treatment planning and prognosis are also interesting prospectives. For example, by

altering the mesh, it is possible to determine variations in blood flow and pressure. This

can be used by physicians to experiment with approaches before actually applying them

on the patient. Furthermore, it can be used to predict malfunctions in the blood flow

and cardiovascular structure. You could, for example, predict beforehand in what way

the blood flow will respond to a stent, or what will be the result of a fenestration in a

vessel wall.

Due to the increase of information derived from the combination of measurements and
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simulation, previously unsuitable visualization techniques can become useful. For exam-

ple visualizations of the influence of pressure over time on the vessel wall, such visual-

izations could help to predict vessel damage within a patient. This can help physicians

to obtain a better understanding of the blood flow, as well as early diagnosis of CVDs.

More practically, the performance of the simulation can be increased. Due to the fact

that most of the cells are non-fluid cells, the performance of the solver of the fluid

simulation has a lot of overhead. By using a more efficient data structure, such as a

k-d tree, the amount of these empty cells can be reduced. However, the computations

become more complex. Still the amount of computations will be reduced enough to

reduce the overall computation time. Another improvement of the performance can

be made when all matrix operations, needed for the pressure solve, can be done on

the Graphics Processing Unit (GPU). This, in the ideal case, can reduce O(n) Central

Processing Unit (CPU) operations to O(1) where n is the number of cells in the matrix.

This, however, requires zero overhead and n processing units on the GPU. Still, the

parallel behavior of the GPU can be exploited to reduce overall computation time.

When combined with a sparse matrix library for the GPU, such as Cusp, cuBLAS or

cuSparse for CUDA, this ideal case can be approximated. CUDA is the Compute Unified

Device Architecture that allows the programmer to use the GPU.

Our method is, to the best of our knowledge, the first to combine full field velocity

measurements with fluid simulation. Several aspects for future work, as described in the

chapter, seem promising to implement, as they could be of great assistance to physicians.

Therefore, future research is needed to determine the attainability of these promising

extensions.
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Algorithms

The Preconditioned Conjugate Gradient (PCG) algorithm is used to solve A ·x = b for

the vector x, given a positve definite symmetric matrix A and a vector b. Precondition-

ing is used to decrease the number of iterations needed to solve the system. To generate

a suitable preconditioner the Modified Incomplete Cholesky (MIC) factorization algo-

rithm is used. In this appendix all matrices and vectors have a dimension greater than

3, and therefore they are shown in bold face for clarity.

The technical report by Shewchuk [58] gives a detailed and intuitive explanation of the

(preconditioned) conjugate gradient method. Basically, we want to solve a set of linear

equations such that A ·x−b = s. Ideally the so-called search vector s becomes 0 when

the system is solved. So the goal is to minimize s. Assume we have the scalar function

f(x):

f(x) =
1

2
xTAx− bTx + c, (A.1)

where c is a scalar constant. The derivative of this function when A is symmetric is

given by:

f ′(x) = Ax− b, (A.2)

which is exactly our system. This means that we solve the system (minimize s), when

f ′(x) = 0. It is important to note here that for every positive-definite matrix the

minimum is unique and no other (local) minima exist. Therefore, A must be positive-

definite to converge to a suitable solution.

68
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Clearly s relates to f(x). To solve f ′(x) = 0, an initial guess can be seen as the starting

point within the solution space in which we have to search. Typically, this search vector

is set to the null vector, however in some other cases a previously found x vector might

be useful to decrease the number of iterations.

The number of iterations needed by the algorithm corresponds to the number of steps

that are needed to move from the starting point towards the minimum. The direction and

step size taken per step greatly influences the total number of steps needed. Naturally

taking the direction with the steepest decrease seems a promising method, which is

conveniently called the ’Steepest Descent’ method. This method does converge but the

algorithm might decent in one direction multiple times before converging, and thus these

steps chosen according to the steepest descent rule are not optimal.

A better method is given by the observation that we have A-orthogonal directions to

move in. For an n × n matrix n such directions exist. Two vectors i and j are A-

orthogonal, or conjugate, if and only if iTAj = 0. This means that i and j are orthogonal

with respect to the space defined by A. By using the residual vector r = −f ′(xcurrent)
we can approximate how big a step in a certain direction should be. To make this step

the step size α is calcualted. Then x the result is updated to α · s. The residual vector

then is update by r = −α ·A · s since the algorithm made a step with size α in the A · s
direction. From that definition it is clear that r is the direction of steepest descent. So if

every direction is used once the step sizes, α, of each step is stored in x. This is exactly

what the Conjugate Gradient method does.

By using a preconditioner M that approximates A, the number of iterations, and thus

the computation time, can be decreased by computing x for

M−1Ax = M−1b. (A.3)

This Equation A.3 has the same solution for x as without preconditioning. Here M−1A

is almost the identity matrix since M is just an approximation of A. This makes the

whole computation easier when M is invertible.

Incomplete Cholesky factorization of a symmetric positive definite matrix generates a

sparse approximation of the Cholesky factorization of the given matrix. The Cholesky
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Data: Positive-definite symmetric matrix A, vector b, tolerance factor
toleranceFactor, maximum number of iterations maxIterations

Result: Solves A · x = b for x
set x to zero;
/* initialize auxilary data */

set z to zero;
/* z is an additional vector for storing results */

r← b;
/* r is the residual vector */

residual← |max(r)|;
if residual = 0 then

iterations← 0;
return x;

end
tol← toleranceFactor · residual;
FormPreconditioner(A);
ApplyPreconditioner(r, z);
ρ← z · r;
if ρ = 0 then

/* Invalid ρ value */

return null;

end
s← z;
/* s is the search vector */

for iteration← 0 to maxIterations do
z← A · s;
α← ρ

s·z ;
x← α · s;
r← −α · z;
residual← |max(r)|;
if residual ≤ tol then

return x;
end
ApplyPreconditioner(r, z);
ρnew ← z · r;
β ← ρnew

ρ ;

s← β · s + z;
ρ← ρnew;

end
/* Maximum number of iterations exceeded */

return null;
Algorithm 1: The PCG-algorithm

factorization of a matrix A generates a triangular matrix L such that A = L · LT,

where LT is the transpose of L. The Modified Incomplete Cholesky (MIC) factorization

however takes the sparseness of A into account by ensuring that every 0 value in A is

also 0 for the corresponding value in L. Therefore L ·LT is as sparse as A, enabling the
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use of sparse matrix libraries.

Moreover, solving Mx = b should be done efficiently, since it is done every time the

preconditioner is applied in the PCG algorithm, the function ApplyPreconditioner. The

pseudo code of the PCG algorithm is given in Algorithm 1. An efficient solving of the

system is possible by solving L(LTp) = b. Recall that L is triangular, and thus the

number of variables per linear equation increases linearly. So by using substitution of

variables L(LTp) = b can solved efficiently. Since the preconditioner is not necessary

for the solver to work, no detailed explanation of the algorithm is given, but details can

be found in the book by Bridson [30]. For completeness, Algorithm 2 gives pseudo code

to compute the MIC-preconditioner.
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Data: Positive-definite symmetric matrix A with dimension n, amount of MIC

compared to Incomplete Cholesky Ω

Result: Gives an approximation for L where LLT = A

L← the lower triangle of A;

for k ← 0 to n do

Lk,k ←
√

Lk,k ; for i← k + 1 to n do

Li,k = Li,k − Lk,k;

end

for j ← k + 1 to n do

for r ← 0 to n do

vr ← Lr,k · Lj,k;
if Ar,j 6= 0 then

wr ← vr;

else

wr ← 0;

end

end

missing ←∑
(v −w);

for t← j to n do

Lt,j ← Lt,j −wt;

end

Lj,j = Lj,j − Ω ·missing;

end

end

Algorithm 2: MIC Cholesky factorization for generating the preconditioner for PCG
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