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Acute Myeloid Leukemia is a highly diverse disease containing many cytogenetic and molecular abnormalities. We analyzed the DNA methylation
(DMP) and gene expression profiles (GEP) of 344 AML patients using an unsupervised and supervised approach. We hypothesized to better
characterize the disease phenotype by combing these features as these may result in specific patterns in cancer cells which reflect biological
differences. The unsupervised approach segregates patients into 18 clusters, among them six clusters that are defined by the World Health
Organization, such as inv16, t(15;17), t(8;21) and CEBPA double mutants. In addition we identified four novel AML subtypes that could not be
explained by the enrichment of any currently known recurrent cytogenetic, molecular, morphological or clinical feature. Two of these clusters are
categorized with good stability. One of these cluster could be characterized with pathways that are involved in the accumulation of red blood cells
and highly predictable using 21 GEP and 3 DMP features, whereas the other cluster is characterized with T-cell related pathways and highly

Qredictable with 9 GEP and 4 DMP features.
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Framework to identify an robust hierarchical clustering
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Whereas AVGD_WITHIN(i) is the average distance from the i-th point to
the other points in its own cluster, and AVGD_BETWEEN(i,k) is the average

Qistance from the i-th point to points in another cluster k. /
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Identification of novel and known clusters

Eighteen clusters are identified with the use of 2168 gene expression and 2045 DNA methylation probe sets. Six clusters (1, 9, 10, 15, 16 and 18) are
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reviously defined by the World Health Organization and, also detected by using solely GEP. Four clusters (cluster 3, 11, 12 and 17) could not be explained b
Y 4 Y 4 Y 4
the enrichment of any currently known recurrent cytogenetic, molecular, morphological or clinical feature.
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Conclusion

The final hierarchical clustering, using both gene expression and DNA methylation patterns, is superior above the hierarchical clustering using solely

GEP or DMP features. Our clustering is strongly supported by the data and thereby better resembling the disease phenotype.
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